Géométries riemanniennes et stratifiées des matrices de covariance et de corrélation
Auteur / Autrice : | Yann Thanwerdas |
Direction : | Xavier Pennec |
Type : | Thèse de doctorat |
Discipline(s) : | Automatique et traitement du signal et des images |
Date : | Soutenance le 24/05/2022 |
Etablissement(s) : | Université Côte d'Azur |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et de la communication (Nice ; 1992-....) |
Partenaire(s) de recherche : | Laboratoire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Sophia Antipolis, Alpes-Maritimes) |
Jury : | Président / Présidente : Rodolphe Sepulchre |
Examinateurs / Examinatrices : Xavier Pennec, Rodolphe Sepulchre, Marc Arnaudon, Pierre-Antoine Absil, Rajendra Bhatia, Frank Nielsen, Minh Ha Quang, Huiling Le | |
Rapporteur / Rapporteuse : Marc Arnaudon, Pierre-Antoine Absil |
Résumé
Dans de nombreuses applications, les données sont des matrices de covariance ou de corrélation entre plusieurs signaux (EEG, MEG, fMRI), grandeurs physiques (cellules, gènes) ou instants (autocorrélation). L'ensemble des matrices de covariance est un cône convexe qui est un espace stratifié non euclidien : il a un bord qui est lui-même un espace stratifié de dimension inférieure. Ses strates sont les variétés de matrices de covariance de rang fixé et la strate principale des matrices Symétriques Définies Positives (SPD) est dense dans l'espace total. L'ensemble des matrices de corrélations admet une structure similaire.Les concepts géométriques comme les géodésiques, le transport parallèle ou la moyenne de Fréchet permettent de généraliser les opérations classiques (interpolation, extrapolation, recalage) et statistiques (moyenne, analyse en composantes principales, classification, régression) à ces espaces non linéaires. Cependant, ces généralisations reposent sur le choix d'une géométrie supposée connue à l'avance, c'est-à-dire d'un opérateur de base tel qu'une distance, une connexion affine, une métrique riemannienne, une divergence. En général il n'existe pas une unique géométrie adaptée aux contraintes d'une application mais plutôt une famille de géométries à explorer pour faire ce choix.D'abord, la géométrie doit correspondre au problème. Par exemple, si les matrices de covariance doivent être inversibles, les matrices dégénérées doivent être rejetées à l'infini. Ensuite, elle doit satisfaire les invariances naturelles du problème par des groupes de transformations : si multiplier chaque variable par un facteur indépendant n'a pas d'influence, alors il faut une métrique invariante par le groupe des matrices diagonales strictement positives, par exemple une métrique produit qui découple les échelles et les corrélations. Enfin, de bonnes propriétés numériques (closes formes, algorithmes efficaces) sont essentielles pour utiliser cette géométrie en pratique.Dans ma thèse, j'étudie des géométries sur les matrices de covariance et de corrélation suivant ces principes. En particulier, je fournis les opérations géométriques associées qui sont les briques élémentaires pour calculer avec ces matrices.Sur les matrices SPD, je m'inspire de la caractérisation des métriques affine-invariantes pour caractériser les métriques continues invariantes par O(n) au moyen de trois fonctions multivariées continues. Je construis ainsi une classification de métriques : les contraintes imposées sur ces fonctions définissent des classes emboîtées satisfaisant des propriétés de stabilité. En particulier, je réinterprète la classe des ''kernel metrics'', j'introduis la famille des métriques ''mixed-Euclidean'' dont je calcule la courbure, et je résume et complète les connaissances sur les métriques classiques (log-euclidien, Bures-Wasserstein, BKM, power-Euclidean). Sur les matrices de corrélation de rang plein, je calcule les opérations riemanniennes de la métrique quotient-affine et je montre que, malgré sa construction intéressante et son invariance par permutations, sa courbure est non majorée et de signe non constant, ce qui rend sa géométrie très complexe en pratique. Pour pallier ce défaut majeur, j'introduis des métriques Hadamard ou même log-euclidiennes ainsi que leurs opérations géométriques. Pour retrouver l'invariance par permutations perdue, je définis deux nouvelles métriques log-euclidiennes invariantes par permutations, l'une d'elle étant invariante par une involution naturelle de l'espace. Je fournis aussi un algorithme efficace pour calculer les opérations géométriques associées, qui s'appuie sur le ''scaling'' de matrices SPD. Enfin, j'étudie la structure riemannienne stratifiée de la distance de Bures-Wasserstein sur les matrices de covariance. Je calcule le domaine de définition des géodésiques et le domaine d'injection dans chaque strate, puis je caractérise les courbes minimisant la longueur entre toutes les strates.