Méthodes numériques pour la résolution du problème inverse en électrocardiographie dans le cas d’anomalies structurelles du tissu cardiaque
Auteur / Autrice : | Oumayma Bouhamama |
Direction : | Lisl Weynans, Laura Bear |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées et calcul scientifique |
Date : | Soutenance le 01/04/2022 |
Etablissement(s) : | Bordeaux |
Ecole(s) doctorale(s) : | École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....) |
Partenaire(s) de recherche : | Laboratoire : Institut de mathématiques de Bordeaux |
Jury : | Président / Présidente : Yves Coudière |
Examinateurs / Examinatrices : Lisl Weynans, Laura Bear, Maxime Sermesant, Muriel Boulakia, Michele Orini | |
Rapporteurs / Rapporteuses : Maxime Sermesant, Muriel Boulakia |
Résumé
Le développement continu des méthodes non invasives de cartographie de l’activité électrique du cœur est motivé par l’espoir général qu’elles puissent être cliniquement utiles dans le diagnostic et le traitement des troubles du rythme cardiaque, responsables de 80 % des 350 000 décès par arrêt cardiaque soudain qui surviennent chaque année en Europe [LZ06]. L’imagerie électrocardiographique non invasive (ECGI) fournit des images panoramiques en temps réel de l’activité électrique épicardique à partir de mesures de poten-tiel à la surface du torse. Bien que plusieurs méthodes aient été développées pour l’ECGI, des études de validation récentes ont démontré que les implémentations actuelles sont imprécises dans la reconstruction de l’activité électrique en présence d’anomalies de conduction et dans les cœurs structurellement hétérogènes. L’ECGI est connue pour produire des lignes de bloc artificielles dans les tissus sains, ce qui fait douter de la capacité de ces méthodes à détecter la présence de régions de véritable conduction lente dans les cœurs structurellement anormaux.L’objectif de cette thèse est de développer une nouvelle méthode afin d’améliorer l’ECGI et sa capacité à détecter les régions de conduction lente en présence d’anomalies structurelles.Tout d’abord, nous avons présenté une nouvelle méthode pour résoudre le problème inverse de l’électrocardiographie. L’idée de la méthode est de combiner les solutions obtenues avec les formulations classiques afin de sélectionner la méthode la plus précise dans chaque zone et à chaque pas de temps, en fonction de leurs résidus de la surface du torse. Cette nouvelle approche, appelée la méthode Patchwork (PM), est évaluée, avec d’autres méthodes inverses classiques, à l’aide des données simulées et expérimentales. La stabilité et la robustesse de cette nouvelle approche sont également testées en ajoutant un bruit de mesure Gaussien aux potentiels de la surface du torse.Deuxièmement, nous nous sommes concentrés sur la détection de zones pré-sentant des tissus cardiaques endommagés. Les différentes méthodes d’ECGI ont été évaluées sur la base des caractéristiques des signaux bipolaires associés aux anomalies structurelles : amplitude, durée du QRS et fragmentation. N’étant pas en mesure de détecter les zones endommagées à l’aide de ces caractéristiques, nous avons développé une nouvelle méthode pour détecter les zones de conduction lente en utilisant le gradient de temps d’activation. Par la suite, nous avons évalué la capacité des méthodes ECGI standard, ainsi que de la méthode Patchwork, à localiser les zones de conduction lente et à réduire la fréquence des lignes de bloc artificielles.La principale contribution de cette thèse est le développement d’une nouvelle approche ECGI pour reconstruire les informations électriques à la surface du cœur. La méthode Patchwork a démontré un niveau de précision plus élevé dans la reconstruction des cartes d’activation et la localisation des sites de percée que les méthodes ECGI standard. Cette méthode est un outil efficace pour aider à surmonter certaines des limites des méthodes numériques conventionnelles dans les cœurs structurellement anormaux, montrant sa capacité à détecter les régions de conduction lente en utilisant le gradient de temps d’activation. Il est important de noter que ces améliorations incluent une réduction de la fréquence des lignes de bloc artificielles. Cela a des implications cliniques importantes car cela peut contribuer à réduire les faux diagnostics de troubles de la conduction.