Thèse soutenue

Modélisation et caractérisation expérimentale des instabilités hydrodynamiques au front d’ablation dans les premiers instants d’irradiation laser en attaque directe.

FR  |  
EN
Auteur / Autrice : Thibault Goudal
Direction : Alexis Casner
Type : Thèse de doctorat
Discipline(s) : Astrophysique, Plasmas, nucléaire
Date : Soutenance le 24/01/2022
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Centre Lasers Intenses et Applications (Bordeaux ; 1999-....)
Jury : Président / Présidente : Hamid Kellay
Examinateurs / Examinatrices : Alexis Casner, Hamid Kellay, Marina Olazabal-Loumé, Claire Michaut, Arnaud Colaitis, Sébastien Le Pape, François Charru
Rapporteurs / Rapporteuses : Marina Olazabal-Loumé, Claire Michaut

Résumé

FR  |  
EN

Les instabilités hydrodynamiques sont des phénomènes néfastes à l’obtention des conditions nécessaires à l’allumage des cibles en Fusion par Confinement Inertiel. Lorsque la capsule est accélérée, toute perturbation spatiale du front d’ablation peut croître exponentiellement sous l’influence de l’instabilité de Rayleigh-Taylor. Avant cette phase d’accélération, l’évolution de l’amplitude du front d’ablation est déterminée par les instabilités de Richtmyer-Meshkov et Landau-Darrieus. Ce travail présente au lecteur des études analy-tiques et numériques en géométrie plane permettant de décrire ces phénomènes complexes.Des expériences sur les installations OMEGA-EP et NIF ont été menées avec des mousses de faibles densités irradiées en attaque directe pour étudier l’évolution du front d’ablation sous l’influence de Ces instabilités. Parmi ces mécanismes, l’instabilité de Landau-Darrieusn’a encore jamais été observée au front d’ablation. Afin de déterminer les conditions expérimentales permettant de la mettre en évidence, un nouveau modèle analytique a été développé pour décrire l’écoulement au sein de la cible. Sous certaines hypothèses, ce modèle permet en effet d’étudier la stabilité du système à travers un modèle perturbatif linéaire et de calculer les effets de l’instabilité de Landau Darrieus sur le front d’ablation. Afin de comparer et de valider ce modèle, des calculs ont été réalisés avec le code d’hydrodynamique radiative FLASH sur des durées de plusieurs dizaines de nanosecondes.Comparé à d’autres modèles de la littérature et aux résultats des simulations, le modèle et les simulations numériques permettent de construire une stratégie expérimentale permet-tant pour la première fois l’étude de l’instabilité de Landau-Darrieus au front d’ablation.Pour accroître les chances d’observation, la taille de la zone de conduction en face avant de la cible doit être plus petite que les longueurs d’onde d’interface étudiées. Nécessitant des conditions expérimentales particulières et peu explorées jusqu’à maintenant, des expériences préliminaires ont ainsi été réalisées afin de valider nos outils numériques et notre modélisation. Les résultats d’expériences récentes réalisées sur le NIF confirment la signature d’un nouveau comportement du front d’ablation, ouvrant ainsi de nouvelles perspectives pour l’étude de l’instabilité de Landau-Darrieus