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Résumé

Le développement de nouveaux outils de mesure et d’observation en astrophysique
permet la collecte de données de plus en plus nombreuses, précises et variées. Ces
données peuvent être des images complètes ou des mesures du flux lumineux à cer-
taines longueurs d’onde (de la spectroscopie haute résolution sur de petites parties
du spectre électromagnétique, ou de la photométrie, moins résolue mais couvrant
une plus grande partie du spectre). L’exploitation de cette manne d’information né-
cessite toutefois le développement de nouveaux outils statistiques afin d’être efficace
et précis. On s’intéresse en particulier à de nouveaux outils de statistique bayésienne
pour l’étude des distributions spectrales d’énergie des galaxies.
Apres une introduction à l’analyse des distributions spectrales d’énergie, la première
partie de cette thèse propose un algorithme de calcul bayésien approché (Approxi-
mate Bayesian Computation, ABC) pour le choix de modèle d’histoire de formation
stellaire à partir de données photométriques. Cet algorithme est basé sur la simulation
d’un ensemble échantillonné selon la distribution a priori de chaque modèle, puis sur
l’apprentissage d’un classifieur dont la sortie est utilisée directement comme estima-
tion de la probabilité a posteriori de chaque modèle. La méthode est appliquée à des
données issues du relevé COSMOS pour l’identification de galaxies dont le taux de
formation stellaire a subi une violente altération dans un passé proche, que ce soit une
augmentation (dite starburst) ou une diminution (quenching). De telles altérations
participeraient à expliquer les variations observées dans le rapport entre la masse
stellaire d’une galaxie et son taux de formation stellaire observés.
La seconde partie de la thèse propose un nouvel algorithme d’échantillonnage pré-
férentiel adaptatif multiple : TAMIS (Tempered Anti-Truncated Multiple Importance
Sampling). En introduisant une suite de distributions cibles auxiliaires auto-calibrées,
TAMIS résout le problème d’initialisation et de réglage des hyper-paramètres qui
limite l’utilisation automatique de l’échantillonnage préférentiel adaptatif. Cet algo-
rithme est robuste au fléau de la dimension ainsi qu’à une mauvaise initialisation et
ne requiert que relativement peu d’évaluations de la densité de cible, sans utiliser son
gradient.
La troisième partie présente le code CIGALE utilisé pour la modélisation des distribu-
tions spectrale des galaxies à partir de modèles physiques. Le calcul de la SED attendue
à paramètres connus se fait par étapes successives (détermination de l’histoire de
formation stellaire puis calcul des émissions lumineuses de la population d’étoiles
correspondante, ajout des émissions du gaz nébulaire, absorption et ré-émission par
la poussière, décalage vers le rouge dû à la distance). Pour accélérer le temps de calcul,
nous proposons le remplacement des calculs explicites de certaines étapes par une
approximation par réseau de neurones. Cette approximation permet de diminuer
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de façon drastique le temps de calcul et d’interpoler des valeurs sur des grilles pré-
calculées.
Enfin la dernière partie présente un modèle statistique complet pour l’estimation des
paramètres et le choix de modèle bayésiens prenant en compte à la fois les données
photométriques et spectroscopiques, puis l’implémentation et l’application de TAMIS
à ce problème spécifique.

Mots clés : Distribution spectrale d’énergie, galaxie, statistique bayésienne, échan-
tillonnage préférentiel, apprentissage statistique
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Abstract

The development of new measurements and observation tools in astrophysics al-
lows the collection of increasingly numerous, precise and varied data. This data can
be full images or light flux measurements at certain wavelengths (high resolution
spectroscopy on narrow parts of the light spectrum, or lower resolution but more
spread over the spectrum photometry). The exploitation of this wealth of information,
however, requires the development of new statistical tools in order to be effective and
precise. We are particularly interested in new tools of Bayesian statistics for the study
of the Spectral Energy Distributions of galaxies.
After an introduction to the analysis of spectral energy distributions, the first part of
this thesis proposes an Approximate Bayesian Computation algorithm (ABC) for the
choice of Star Formation History models from data photometric. This algorithm is
based on simulating a sample set according to the prior distribution of each model,
then training a classifier whose output is used directly as an estimate of the posterior
probability of each model. The method is applied to data from the COSMOS survey
for the identification of galaxies whose star formation rate has undergone a violent
alteration in the near past, either an increase (called starburst) or a decrease (quench-
ing). Such alterations would help explain the variations observed in the relationship
between the stellar mass of a galaxy and its observed star formation rate.
The second part of the thesis proposes a new Multiple Adaptive Importance Sampling
algorithm: TAMIS (Tempered Anti-Truncated Multiple Importance Sampling). By
introducing a sequence of self-calibrated auxiliary target distributions, TAMIS solves
the hyper-parameter initialization and tuning problem that limits the automatic use
of Adaptive Importance Sampling. This algorithm is robust to the curse of dimension-
ality as well as poor initialization, and requires relatively few evaluations of the target
density, without using its gradient.
The third part presents the CIGALE code used for modeling the spectral distributions
of galaxies from physical models. The calculation of the expected SED with known
parameters is done in successive stages (determination of the Star Formation History,
then computation of the light emissions of the corresponding stellar population, ad-
dition of the emissions of the nebular gas, absorption and re-emission by the dust,
redshift due to distance). To speed up the computation, we propose the replacement
of the explicit computations of certain steps by a neural network approximation. This
approximation makes it possible to drastically reduce the computation time and inter-
polate values on precomputed grids.
Finally the last part presents a complete statistical model for the Bayesian parameter
inference and model choice taking into account both photometric and spectroscopic
data, then the implementation and application of TAMIS to this specific problem.
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“Im Anfang war die Tat."
“Au commencement était l’action."

Goethe - Faust
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once the calibration of of the new proposal (i.e., of θt+1) with the EM
step is stable, increasing τ further only increases the computational cost. 72

3.4 Typical evolution of the inverse temperature β (y-axis in red) and es-
timated Kullback-Leibler divergence (y-axis in blue) along iterations
(x-axis). The automatically calibrated β starts by increasing slowly until
a sharp acceleration, followed by stabilization clearly indicating con-
vergence of sequence of proposal distributions. The estimated KL di-
vergence shows the upper bound biais until iteration 20, as detailed in
3.3.2. Yet its sharp decrease and stabilization mirrors β’s path. . . . . . 73

3.5 A very high-dimensional problem : The target is a 1000-dimensional
gaussian distribution, the proposals are gaussian distributions with
diagonal covariance. (left) Evolution of the inverse temperature β (in
red) and estimated Kullback-Leibler divergence (blue) along iterations.
(right) the L2 distance between the moments of the target and proposal
distribution at each iteration. The temperature doesn’t go to 1 despite the
target distribution belonging to the family of proposal distributions and
the covariance of the proposal doesn’t converge to the real covariance. 74

3.6 Effective Sample Size (y-axis) of AMIS, N-PMC and TAMIS after 40,000
draws along 20 iterations, with increasingly wide covariance matrix at
initialization (x-axis) in dimension 20 (left) and 50 (right). As expected
from the litterature, AMIS is only performing well with a good initializa-
tion and if the dimension is relatively low. N-PMC is able to correct for
bad initialization with a well chosen tempering path if the dimension is
low enough, while TAMIS performs well in every case. . . . . . . . . . . 76

3.7 Mean square error (y-axis on the left) of the estimates of the mean and
covariance for increasing dimension (x-axis) and the required number
of iterations (y-axis on the right) before convergence of the proposal to
the target distribution (right). . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 The modular approach of CIGALE. The contributions of each physical
component of galaxy emissions are computed sequentially by different
modules, offering different models for each process. It starts by the
combination of a chosen SFH with a SSP to obtain a first spectrum (the
stellar emissions). The nebular emissions are then computed taking
into account the Lyman photons from the stellar emissions. Both those
contributions are then attenuated and re-emitted by dust following an
energy balance principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
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4.2 Illustration of the difference between the different attenuation mod-
els: dale2014 (top–left), dl2007 (top–right), dl2014 (bottom–left), and
casey2012 (bottom–right). Each color corresponds a different set of
parameters. The solid lines represent the total SED, summing up the dif-
ferent components specific to each model (e.g diffuse and star-forming
for the two Draine and Li models). The smoothness of the SED re-
sulting from casey2012 is due to the absence of PAH emissions in the
model.Figure extracted from Boquien, Burgarella, Roehlly, et al., 2019. 84

4.3 Our proposed approach to extend CIGALE’s framework : combining
Neural Network approximations replacing the expensive or unwieldy
computation steps while keeping the exact physical modules as much
as possible. This reduces the computational cost, and allows for inter-
polation of precomputed values while retaining CIGALE’s modularity
and explainability, confining the approximation and black-box aspects
to specific part of the model. . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 The two-step Neural network approximations we use to replace specific
modules of CIGALE. A PCA reduction is first performed on the spectra
composing the training set. A Neural network is then trained to ap-
proximate the PCA coefficients corresponding to each spectrum using
the physical parameters as input. The approximated spectrum is then
computing inverting the PCA reduction. Figure adapted from Alsing,
Peiris, Leja, et al., 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Heatmaps of the spectra approximation errors (y-axis) as a function of
ag ebur st (x-axis) on the test set. Left : after training on the first training
set only. There is a clear explosion of the errors for very low values
of ag ebur st . Right : After training on the completed training set. The
catastrophic errors for low ag ebur st have been greatly reduced. . . . . . 89

4.6 Error of the Stellar emissions approximation. Top : the true and approx-
imated spectrum for the 50th percentile and 99th percentile of errors.
Bottom : The relative error of both approximations. The clear error in-
crease at low wavelengths is due to both a large variability in the training
set and a flux magnitudes lower than the ones at higher wavelength. . . 90

4.7 Error of the Stellar emissions approximation. Top : The relative flux
error (y-axis) along wavelength (x-axis) across the entire test set The red
line is the mean of the distribution and the 5th and 95th percentiles are
in blue.Bottom : The relative error of the number of ionizing photons
estimations. In both cases the black lines represents a 5% relative error.
As seen in Fig. 4.6, the error greatly increase at very low wavelength.
However we expect to mitigate this error as the number of ionizing
photos in directly estimated instead of being derived from the spectrum 91

4.8 For each line supported by our CLOUDY approximation (x-axis), box-
plots of the absolute relative error (normalized by Hβ) . . . . . . . . . . 94
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5.1 Our proposed SED fitting pipeline. Top Left : The observed spectroscopy
(green) and photometry (blue). Top Right : The spectroscopy is binned
in 20 values (including the emission lines).The errors bars are repre-
sented to account for the noise (vertical lines). This is the data used to
compute the likelihood. Bottom Left : the SED corresponding to the
MAP is computed (red). Bottom Right : SEDs are sampled from the pos-
terior predictive distribution to visualize the prediction uncertainties
and assess proper coverage. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Comparison of the estimated posterior distributions over the continuous
parameter space using each datatype. Top Left : using only photometry.
Top Right : Using only spectroscopy. Bottom : Using both. The red line
represents the true simulating value. . . . . . . . . . . . . . . . . . . . . 108

5.3 Comparison of the estimated discrete distributions over the continuous
parameter space using each datatype. The bars are colored in green
if the MAP estimate is the true simulating value. If the MAP is not the
simulating value, it is colored in red and the true value in blue. Top
Left : using only photometry. Top Right : Using only spectroscopy.
Bottom : Using both. Some parameters are well estimated using only one
type of data or the other, but combining spectroscopy and photometry
successfully exploits the strong suits of both. . . . . . . . . . . . . . . . 109

5.4 Zoom on the high resolution spectra reconstruction. On the left the
observed noisy spectrum (green) with the MAP estimate (red). On the
right the original spectrum (before adding noise, green) and the MAP
estimate (red). The excellent reconstruction of detailed features despite
the noise level is likely a bias due to a lack of model complexity and both
original and reconstructed spectrum being generated by the same model.110

5.5 Comparison of the Mean errors between the simulating value and the
posterior mean estimate obtained using the 3 fitting methods (photom-
etry, spectroscopy, or both) for each parameter of interest. As expected,
spectroscopy is able to better constrain the nebular parameters (metal-
licity, logU, zgas), and combining both spectroscopy and photometry
almost always yields lower error. . . . . . . . . . . . . . . . . . . . . . . . 111

1 Distribution of the predictions p̂(m = 1|xobs) as a function of Ks band
SNR (top panel) and NUV SNR (bottom panel). The different colors are
for different selection in SNR in each panels. . . . . . . . . . . . . . . . 133
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1.1. Motivation and context
Advances in the development of observational tools in astronomy allow for the col-

lection of an ever increasing amount of data about galaxies. For example the Cosmic
Evolution Survey (COSMOS) collected multi-wavelength data for over two million
galaxies, spanning 75% of the age of the Universe. More recent tools such as the
MOONS spectrograph or the James Webb Space Telescope (JWST) will amplify this
phenomenon.
Once analyzed, this enormous amount of data will inform us about the nature, physi-
cal properties, history and evolution of those gigantic systems of billions of stars, gas
and dust. As the quality and the quantity of the collected data increase, we are able to
create and fit models of growing complexity to better understand the physical phe-
nomena at play. This complexity, combined with the number of galaxies to study, is a
computational challenge and requires also developing new statistical tools. The rise of
Bayesian methods in Physics and Astronomy since the 1990’s (c.f Loredo, 2013) allows
for a principled quantification of the uncertainty surrounding the estimates of the
physical quantities of interest, but often at the cost of the computationally expensive
use of Monte Carlo algorithms, mostly as Markov Chain Monte Carlo - such as the
popular Nested Sampling algorithm (Skilling, 2006), Metropolis-Hastings (Metropolis
and Ulam, 1949) or emcee (Foreman-Mackey, Hogg, Lang, et al., 2013)- or grid sam-
pling (e.g Roehlly, Burgarella, Buat, Boquien, et al., 2014 or Guinevere Kauffmann,
Timothy M. Heckman, Simon D. M. White, et al., 2003.
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This thesis focuses on developing a Bayesian framework and the necessary compu-
tational tools to study the physical properties of galaxies using measurements of their
Spectral Energy Distribution. After an introduction to the basic ideas of galaxy emis-
sion modeling and Bayesian inference, the first chapter proposes a machine learning
based Approximate Bayesian Computation scheme for the choice of Star Formation
History model. The second chapter introduces a new Monte Carlo algorithm in the
Adaptive Importance Sampling methodology. The third chapter reviews the CIGALE
code for SED modeling and the application of Neural Network approximations of
physical models. Finally the last chapter proposes a comprehensive methodology for
Bayesian SED fitting, as well as its implementation and application to simulated data.
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1.2. A primer on galaxy emissions

1.2.1. Spectral Energy Distribution
The spectrum of a galaxy contains the information on the physical processes acting

in galaxies and the contents of these galaxies. This information is distributed over
the entire electromagnetic spectrum (except for gravitational waves). A good and
complete analysis asks for the widest wavelength range, at least from X-rays to radio if
we wish to study the co-evolution of black holes and galaxies. Of course, in practice
this is not possible for every single galaxy in the universe and not even for very large
samples because spectroscopy is time consuming, and parts of the spectra are missing.
A less expensive way is to observe only at a finite number of wavelengths. Those
observations are called the Spectral Energy Distribution (SED) of the galaxy(Fig.1.1).
The SED can be decomposed in several features:

— The continuum: Mostly due to the light emitted by the stellar populations (hun-
dreds of millions to hundreds of billions of stars) making up the galaxies, with
an (often small) contribution from the nebular emissions from the ultraviolet to
the near-infrared. In the mid-infrared to the far-infrared, the emission from the
dust heated by the stars and/or the active galactic nucleus dominates.

— Emission lines: spikes in luminosity superposed to the continuum. They can
provide some information on the gas (atoms and molecules) and, for instance,
on the metallicity properties of the galaxies (their chemical composition).

— Absorption lines : Narrow drops in luminosity at specific wavelength due to the
absorption of light by atoms and molecules.

To interpret these observations and to measure fundamental physical properties of
galaxies (e.g., star formation rate (SFR) and history (SFH), stellar mass, attenuation,
dust mass, presence and characteristics of an active galactic nucleus, and so on),
significant investments have been made in developing ever more precise and accurate
models of galaxies’ emission over multiple orders of magnitude in wavelength. Mod-
eling the SED of galaxies is a difficult challenge to solve for at least two reasons: the
diversity of physical phenomena acting in galaxies and the degeneracies that make
SEDs to appear very similar for galaxies with very distinct characteristics. This is
especially true when limited wavelength ranges are used instead of the complete SED,
which is extremely difficult to impossible to collect because of the variety of telescopes
on the ground and in space that are necessary to observe over the entire electromag-
netic spectrum. As a result, determining the physical properties of galaxies accurately
and precisely with incomplete data is a significant issue. In practice, different avenues
can be taken to build physically motivated SED models and attempt to adjust them to
the observations.
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Figure 1.1. – A galaxy spectrum with a few points of measure. Each dot corresponds
to the middle of the filter (the colored curves). From left to right, the 16
bands U , B, V,R, i, z, [S I I I ]+65, Y, NB1.06, JWFCAM, JHAWK-I, H, Ks, K,
IRAC1, IRAC2. Extracted from Hatch, Muldrew, Cooke, et al., 2016.
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Figure 1.2. – Most physical processes at play in a galaxy contribute to the shape of
the emitted SED. The left-hand part of the figure shows observed or art
illustrations of the various components. The central and right-hand
parts present representative emissions for each of them. If we wish to
understand galaxies that are multi-facet objects, we need to be able to
model each and every physical process shown here. Credits: a) from
Schaye et al. (2015) by permission of Oxford University Press on behalf
of the Royal Astronomical Society, b) ESA/Herschel/PACS, SPIRE/Gould
Belt survey Key Programme/Palmeirim et al. (2013), c) NASA, ESA, and
T. Brown (STScI), d) ESA/NASA, the AVO project and Paolo Padovani, e)
NASA, ESA and the Hubble Heritage Team (STScI/AURA), g) and l) from
Smith et al. (2018) by permission of Oxford University Press on behalf
of the Royal Astronomical Society, h) NOAO/AURA/NSF, i) from Villar-
Martin et al. (2011) by permission of Oxford University Press on behalf of
the Royal Astronomical Society, j) from Jones et al. (2015) by permission
of Oxford University Press on behalf of the Royal Astronomical Society, k)
from Meiksin (2006) by permission of Oxford University Press on behalf
of the Royal Astronomical Society, m) from Kesseli et al. (2017) ©AAS.
Reproduced with permission, n) from Ho et al. (2012) ©AAS.
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1.2.2. Stellar Emissions
In order to compute the light emitted by the stars of a galaxy, we need to make

assumptions on several different components like, for instance, the chemical compo-
sition of the stars, their distribution in mass, evolution in time, etc.

Star Formation and evolution Stars are continuously formed from the gas present
in a galaxy. The rate of this formation (measured in solar mass per year, M⊙/yr ) is
called Star Formation Rate (SFR). Star formation mainly happens in Giant Molecular
Clouds (see Fig 1.3) : dense regions composed of molecular Hydrogen H2 protected for
UV radiations by dust. If a given cloud of gas is perturbed, it will start to contract, and
under specific conditions of the temperature and density will ultimately form a single
star or several of them. Since a fundamental property affecting stellar emissions is the
mass m of a star, we first need to assume an Initial Mass Function (IMF) describing
the distribution of the masses of the stars in a given stellar population. Several such
IMF have been described (Salpeter 1955,Chabrier 2003, see fig.1.4).

Figure 1.3. – Star-forming region called NGC 3324 in the Carina Nebula. Credits NASA,
ESA, CSA, and STScI
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Figure 1.4. – Several proposed Initial Mass Functions. Each curve represents the num-
ber of stars (y-axis) with a given stellar mass (x-axis) in the galaxy initial
population of stars. Figure adapted from Colman and Teyssier, 2020.
We note that there are few massive stars (right) and that most stars are
comparable to our Sun in term of their mass.

We call Single Stellar Population (SSP) a group of stars formed at the same time,
following the same IMF and with the same chemical abundances (or metallicity, Z ).
By following the evolution of each star in this SSP along time, we can assign a spec-
tra to each star at each time-step depending on its individual properties (mass, age,
metallicity, effective temperature Teff).

However we know that most galaxies do not form all their stars simultaneously at
a given time. This formation activity fluctuates during the life of the galaxy and is
characterized by the SFR at each timestep. This fluctuation is called the Star Forma-
tion History (SFH) of a galaxy (see Fig.1.5 adapted from Ciesla, Elbaz, and Fensch,
2017b). Modeling the SFH is an active research area. Popular models includes simple
parametric forms like

SFR(t ) ∝ exp(−t/τ) (1.1)

for example, that describes an exponentially decreasing SFR called the τ-exponential
SFH, where t is the time. However much more complex parametric, or non parametric
models have been proposed as it is unlikely that a single simple model describes
accurately the evolution of all galaxies in the Universe.
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Stellar Emission Assuming we know the IMF, metallicity and SFH of a given galaxy
we can follow the distribution of mass and age of the stars composing it. As we also
have models for the stellar evolution of single stars and their luminosity, we can model
the galaxy luminosity at a given wavelength λ and time t . Let φ be the IMF, Fλ(m, t , Z )
the flux emitted according to the spectral library used and T the age of the galaxy.
Then the galaxy emissivity is given by :

Lλ(t , Z ) =
∫ T

0

∫
M

Fλ(m,T − t , Z )SFR(t )φ(m)dmd t (1.2)

Figure 1.5. – Different SFH models. Top the “exponential" decreasing (left) and rising
(right) for different values of the τ parameter. Bottom are the“Delayed"
model (left), and the “log-normal" model (right). They describe different
possible analytical evolutions of the SFR (y-axis) as a function of time
(x-axis)
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Figure 1.6. – The description of the SFH can lead to nested models. An example is the
“Delayed + Trunc" model, of which “Delayed" (Bottom left of Fig.1.5 ) is a
specific case where ag etr unc = 0 or rSF R = 1. This particular example is
developped in depth in chapter 1.

1.2.3. Nebular emissions
As the stellar population of galaxy emits light, a fraction of the emission happens

below 91,2 nm. This wavelength, called the Lyman break, is the limit below which
photons are energetic enough to ionize the interstellar gas. In turn this ionized gas
re–emits the energy in the form of a series of emission lines and a continuum. Studying
those emission lines is a fundamental tool to learn about the star formation (through
hydrogen lines and radio continuum) and the abundance of the different elements
composing the gas (through the metal lines). As those emission lines only have a
very local imprint in wavelength on the SED, studying them often requires the use of
high resolution spectroscopy, although in certain cases their impact on broadband
photometry measurements is substantial and needs to be taken into account for SED
modeling (Boquien, Burgarella, Roehlly, et al., 2019 ; see Fig 1.7)
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Figure 1.7. – Illustration of the contributions of emission lines due to the interstellar
medium gas being ionized by the stellar light. Those emission lines are
added to the dust and stellar emissions with which they interact to obtain
the full emission of a galaxy.

Figure 1.8. – Example of a Lyman Break Galaxy around z = 1. The measurements in
the broadbands 1 and and 2 allows us to clearly locate the Lyman break
(figure from Orlitova, 2020)
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1.2.4. Dust contributions
The final piece we introduce about galaxy spectra composition is the effect of dust.

Interstellar dust consist in small solid particles, often less than 1µm, with a typical size
of 0.1µm. They are composed of abundant condensible elements (C, O, Mg, Si, S and
F) that are put together to form grains such as silicate, carbon solids and hydrocarbons.
Those particles will attenuate the stellar light at the shorter wavelengths and re-emit it
at a longer wavelengths.

Dust attenuation Dust in the interstellar medium have two effects on the light
emitted by the stars: reddening and obscuration. Reddening is caused by the dif-
ferential absorption and scattering of the shorter wavelength (blue) light. The exact
dependency between the extinction of light and the wavelength is described by a
reddening law, which depends on the characteristics of the dust grains. This law is
often characterized by the color excess E(B-V), the difference between the observed
color and its intrinsic color measured in the filters B(440 nm) and V(550 nm). The
attenuation law is then defined as:

Aλ = k(λ)E(B −V ) (1.3)

where k(λ) is a reddening curve. The most frequently used reddening curve was
empirically derived by Calzetti (D. Calzetti, Armus, Bohlin, et al., 2000), but other
parametrizations have been proposed (see Fig.1.9)

Figure 1.9. – Different reddening curves proposed to model dust attenuation.
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Dust emission The mid-infrared (MIR) part of the spectrum of most galaxies that
normally form stars is dominated by emission from Polycyclic aromatic hydrocarbons
(PAHs) which produce a characteristic emission between 3µm and 20µm with emis-
sion peaks at 3.3,6.2,7.7,8.6,11.3 and 12.7µm. At FIR wavelengths, the emission from
galaxies is generally dominated by the emission of "large" dust grains (between 10
nm and 0.1µm) at low temperatures and at thermal equilibrium. This is why the peak
intensity in IR of the SED of a galaxy is a good indicator of the heating of dust in the
interstellar medium. The temperature of the grains depends on the intensity of the
interstellar radiation field.

Figure 1.10. – Illustration of the influence of dust on the spectral energy distribu-
tion. Part of the emissions due to the stellar population is attenuated
at low wavelength (in blue), and re-emitted by the dust at higher wave-
lengths(in red)

1.2.5. Redshift
Redshift is an increase in the wavelength of the observed spectrum of a distant

galaxy relatively to its restframe emissions due to the dilatation of the universe on
which light moves. It is used as a characterization of the distance to the source of the
spectrum (and its age, see table 1.1 from Wright, 2006) . The redshift z of a galaxy can
be estimated using spectroscopic measurement: by comparing the wavelength λobs of
well known and easily identifiable features (such as emission lines) in the observed
spectrum to the wavelength λ0 of the same features here on Earth.

The lack of photons below the Lyman break is a very effective way to determine
the redshift of a galaxy as the Lyman Break will be observed at λz = (1+ z)×91,2 nm
(Bouwens, Illingworth, Labbe, et al., 2011) The redshift is then easily derived as:

z = λobs −λ0

λ0
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Table 1.1. – Emission age for a few values of z

z Age (in Gyr)
1 6.678

2.5 9.175
4 10.049
6 10.568

10 10.977
15 11.165

Figure 1.11. – From Caitlin M. Casey et al., 2015. SED of the same galaxy at different
redshift : z = 1 (yellow), z = 2.5 (orange),z = 4 (red), z = 6 (magenta),
z = 10 (violet), and z = 15 (blue). Since measurements on the SED are
taken at fixed wavelengths, different features would be probed by the
same instrument on objects at different redshifts.

Redshift has two related effects: it shifts the spectrum to the right (long wavelengths)
multiplying the wavelengths by 1 + z, and it decreases the observed flux, dividing
the spectrum by a factor depending on the distance of the galaxy. As measuring
instruments probe the spectrum at a given wavelength, redshift must be taken into
account as the spectrum features observed by the instrument will depend on the
redshift of the galaxy.
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1.3. A primer on Bayesian statistics
Bayesian statistics is an approach to statistical analysis using Bayes’ theorem to

update a state of knowledge about parameters in a statistical model with the infor-
mation brought by new data. The initial state of knowledge is expressed as a prior
distribution. It is combined with the observed data through likelihood function to
determine the posterior distribution. The latter describes the state of knowledge after
the observation. This posterior distribution can then be used for making inference,
taking decisions or making predictions (see e.g. Schoot, Depaoli, King, et al., 2021 ;
C. Robert, 2007 )
For studying a parameter of interest θ given an observation x, a Bayesian statistical
model is composed of a likelihood function p(x|θ) and a prior distribution over the
parameters p(θ).

1.3.1. Parameter inference
In Bayesian statistics, the focus is on estimating the entire posterior distribution of

the model parameters. From a formal viewpoint we consider a model M , parametrized
by a vector θ. For example, let us consider a Gaussian linear model on the dataset
D = {(xi , y i )}N

i=1, with xi ∈R2 and yi ∈R. It means that

y i =β1xi
1 +β2xi

2 +εi (1.4)

with εi ∼N (0,σ2). The corresponding likelihood is

p(y |x,θ) = (
2πσ2)−N /2exp

(− 1

2σ2
||y −xβ||2) (1.5)

Our goal is to estimate the parameters θ = (β1,β2,σ2). We start by setting a prior
distribution p(θ) and apply Bayes’ theorem to obtain the posterior

p(θ|x, y) = p(y |x,θ)p(θ)

p(y)
. (1.6)

In the above equation, p(y) = ∫
p(y |x,θ)p(θ)dθ is the marginal likelihood or the model

evidence.

The posterior distribution provides point estimates, such as the posterior mean,
mode, variance, median, or credible intervals. These point estimates are known to
be efficient, see e.g C. Robert, 2007, mainly because the posterior encodes all the
information regarding θ given by the data D. However computing those quantities
is typically not directly possible as it requires computing integrals of the posterior
density which are not tractable (and in practice often high-dimensional as the dimen-
sionality is the number of parameters of the model). The most common solution is
to resort to Monte Carlo methods (Christian P. Robert and Casella, 2004, C. Robert,
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2007,A. Gelman, Carlin, H. Stern, et al., 2013) , to obtain a sample from the posterior
distribution. Computing point estimates and credible intervals from this sample is an
easy Monte Carlo routine. The previous section present the Bayesian methodology to
estimate the parameters of a given model, with a given prior distribution.

1.3.2. Model choice and checking
We need to establish a way to select a model and check that it is somewhat relevant

to describe the data. Yet we will not explore the different ways to choose the prior
distribution(see C. Robert, 2007 or A. Gelman, Carlin, H. Stern, et al., 2013 for details
on the prior ellicitation problem).
In the previous regression example, we considered a linear model with two covariates.
But maybe we know of a third that could be useful ? Or a polynomial regression could
be better suited ? Then we also need to choose the degree of the polynomial... More
generally assume we have a collection of models {Mi }i competing to explain our
dataset D. Once again the Bayesian approach is to assign a prior probability p(Mi ) to
each model, and to compute the posterior probability of the model conditionally to
the data, namely

p(Mi |D) = p(D|Mi )p(Mi )

p(D)
(1.7)

where p(D) =∑
i p(D|Mi )p(Mi )) is the model evidence

Unfortunately computing the model evidence again typically requires numerical
integration over the parameter space. Few algorithms are reliable to obtain these
quantities from posterior samples. The bridge sampling is the most popular and reli-
able, though a bit tricky to implement when the dimensions of the models differ. The
simpler harmonic mean estimator is still popular, though not reliable, see e.g Marin
and C. Robert, 2009. In addition to computing the posterior probability of a model
given the data, practical Bayesian model choice sometimes rely on the computation
of one Bayes factor (Kass and Raftery, 1995) to quantify the preference for one model
over an other. If we consider two models, M1 and M2, with prior probability over the
models p(M1) and p(M2), we can define :

B1/2 = p(D|M1)

p(D|M2)

= p(M1|D)

p(M2|D)
× p(M2)

p(M1)

as the Bayes factor in favor of M1. Although setting a universal threshold as a decision
rule for every problem is impossible, Jeffreys, 1998 proposed the frequently used
interpretation scale given in table 1.2.

A feature of Bayesian model choice is that it gives a preference towards simpler
models, in line with Occam’s razor (see e.g C. Robert, 2007). Indeed as the marginal
likelihood can be seen as a probability distribution over the data space conditionally
to the model, it must normalize to 1 over this space. Since more complex models can

33



1. Introduction – 1.3. A primer on Bayesian statistics

Table 1.2. – Jeffreys scale

Grade Evidence against M2 Bayes Factor

1 Barely worth mentioning 100 to 10
1
2

2 Substantial 10
1
2 to 101

3 Strong 101 to 10
3
2

4 Very strong 10
3
2 to 102

5 Decisive > 102

generate a greater diversity of observations, the supports of their distributions are
wider in the data space, penalizing the probability density of any one observation.
When shifting from a simpler to a more complex model, the probability density of
some datasets explained by the simpler model must decrease in order to increase the
amount of datasets explained by the more complex model. Although Bayesian model
choice is sensitive to the choice of the prior distribution, it therefore naturally handles
the notion of complexity otherwise requiring criterions such as AIC (Akaike, 1973) or
BIC (Schwarz, 1978 ).

Finally, once we are able to select a model among competing ones and compute
the posterior distribution, we should be able to investigate whether the model and
the estimated parameters are able to properly explain the observed data. Intuitively,
if the model is a relevant way to explain the observed data, new data simulated
from the model should be compatible with the observed ones (see e.g A. Gelman,
Carlin, H. Stern, et al., 2013). Posterior predictive checks are techniques to assess this
compatibility.
Assuming D is our observed data, we computed the posterior distribution

p(θ|D) = p(D|θ)p(θ)

p(D)

and from this distribution, we can construct the posterior predictive distribution

p(Drep|D) =
∫

p(Drep|θ)p(θ|Drep)dθ

i.e the distribution of the data Drep we expect given the model and our knowledge on
θ based on D. From this posterior predictive distribution, we have two simple ways to
assess the compatibility with the observed data :

— Draw a sample from p(Drep|D)and graphically assess that the observed D lies in
the simulated sample

— Define a test statistic T (Drep,θ) and check that T (Drep,θ) are not significantly
different from what we expected .
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Abstract
Although galaxies are found to follow a tight relation between their star formation
rate and stellar mass, they are expected to exhibit complex star formation histories
(SFH), with short-term fluctuations. The goal of this pilot study is to present a method
that will identify galaxies that are undergoing a strong variation of star formation
activity in the last tens to hundreds Myr. In other words, the proposed method will
determine whether a variation in the last few hundreds of Myr of the SFH is needed
to properly model the SED rather than a smooth normal SFH. To do so, we analyze
a sample of COSMOS galaxies with 0.5 < z < 1 and log M∗ > 8.5 using high signal-to-
noise ratio broad band photometry. We apply Approximate Bayesian Computation, a
state-of-the-art statistical method to perform model choice, associated with machine
learning algorithms to provide the probability that a flexible SFH is preferred based
on the observed flux density ratios of galaxies. We present the method and test it
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on a sample of simulated SEDs. The input information fed to the algorithm is a
set of broadband UV to NIR (rest-frame) flux ratios for each galaxy. The choice of
using colors is made to remove any difficulty linked to normalization when using
classification algorithms. The method has an error rate of 21% in recovering the right
SFH and is sensitive to SFR variations larger than 1 dex. A more traditional SED fitting
method using CIGALE is tested to achieve the same goal, based on fits comparisons
through Bayesian Information Criterion but the best error rate obtained is higher,
28%. We apply our new method to the COSMOS galaxies sample. The stellar mass
distribution of galaxies with a strong to decisive evidence against the smooth delayed-
τ SFH peaks at lower M∗ compared to galaxies where the smooth delayed-τ SFH is
preferred. We discuss the fact that this result does not come from any bias due to our
training. Finally, we argue that flexible SFHs are needed to be able to cover that largest
SFR-M∗ parameter space possible.

2.1. Introduction
The tight relation linking the star formation rate (SFR) and stellar mass of star-

forming galaxies,the so-called main sequence (MS), opened a new window in our
understanding of galaxy evolution Elbaz, Daddi, Le Borgne, et al., 2007; Noeske, B. J.
Weiner, Faber, et al., 2007. It implies that the majority of galaxies are likely to form the
bulk of their stars through steady-state processes rather than violent episodes of star
formation. However, this relation has a scatter of ∼0.3 dex Schreiber, Pannella, Elbaz,
et al., 2015 that is found to be relatively constant at all masses and over cosmic time
Guo, Zheng, and Fu, 2013; Ilbert, Arnouts, Le Floc’h, et al., 2015; Schreiber, Pannella,
Elbaz, et al., 2015. One possible explanation of this scatter could be its artificial cre-
ation by the accumulation of errors in the extraction of photometric measurements
and/or in the determination of the SFR and stellar mass in relation with model uncer-
tainties. However, several studies have found a coherent variation of physical galaxy
properties such as the gas fraction Magdis, Daddi, Béthermin, et al., 2012, Sersic index
and effective radius S. Wuyts, Förster Schreiber, van der Wel, et al., 2011, and U-V
color e.g., Salmi, Daddi, Elbaz, et al., 2012, suggesting that the scatter is more related
to the physics than to measurement and model uncertainties. Furthermore, oscilla-
tions of the SFR resulting from a varying infall rate and compaction of star-formation
have been proposed to explain the MS scatter Sargent, Daddi, Béthermin, et al., 2014;
Scoville, Sheth, Aussel, et al., 2016; Tacchella, Avishai Dekel, Carollo, et al., 2016 and
even suggested by some simulations e.g., A. Dekel and Burkert, 2014.

To decipher if the scatter is indeed due to star formation history (SFH) variations,
one must be able to put constraint on the recent star formation history (SFH) of
galaxies, to reconstruct their path along the MS. This information is embedded in the
spectral energy distribution (SED) of galaxies. However, recovering it through SED
modeling is complex and subject to many uncertainties and degeneracies. Indeed,
galaxies are expected to exhibit complex SFHs, with short-term fluctuations, requiring
sophisticated SFH parametrizations to model them e.g., Lee, Ferguson, Somerville,
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et al., 2010; Pacifici, Kassin, B. Weiner, et al., 2013; Behroozi, Wechsler, and Conroy,
2013; Pacifici, S. Oh, K. Oh, et al., 2016; Leja, Carnall, Johnson, et al., 2019. The
implementation of these models is complex and large libraries are needed to model
all galaxies properties. Numerous studies have, instead, used simple analytical forms
to model galaxies SFH e.g., Papovich, Dickinson, and Ferguson, 2001; C. Maraston,
Pforr, Renzini, et al., 2010; Pforr, C. Maraston, and Tonini, 2012; Gladders, Oemler,
Dressler, et al., 2013; Simha, Weinberg, Conroy, et al., 2014; Buat, Heinis, Boquien,
et al., 2014; Boquien, Buat, and Perret, 2014; Ciesla, Charmandaris, Georgakakis, et al.,
2015; Abramson, Gladders, Dressler, et al., 2016; Ciesla, Boselli, Elbaz, et al., 2016;
Ciesla, Elbaz, and Fensch, 2017a. However, SFH parameters are known to be difficult
to constrain from broadband SED modeling e.g., C. Maraston, Pforr, Renzini, et al.,
2010; Pforr, C. Maraston, and Tonini, 2012; Buat, Heinis, Boquien, et al., 2014; Ciesla,
Charmandaris, Georgakakis, et al., 2015; Ciesla, Elbaz, and Fensch, 2017a; Carnall,
Leja, Johnson, et al., 2019.

Ciesla, Boselli, Elbaz, et al., 2016 and Boselli, Roehlly, Fossati, et al., 2016 have shown
on a sample of well-known local galaxies benefiting from a wealth of ancillary data,
that a drastic and recent decrease of the star formation activity of galaxies can be
probed as long as a good UV to NIR rest frame coverage is available. They showed
that the intensity of the variation of SF activity can be relatively well constrained from
broadband SED fitting. Spectroscopy is however needed to bring information on the
time when the change in star formation activity occurred Boselli, Roehlly, Fossati, et al.,
2016. These studies were made on well-known sources of the Virgo cluster, for which
the quenching mechanism - ram pressure stripping - is known and HI observations
allow a direct verification of the SED modeling results. To go a step further, Ciesla,
Elbaz, Schreiber, et al., 2018 have blindly applied the method on the GOODS-South
sample aiming at identifying sources that underwent a recent and drastic decrease
of their star-formation activity. They compared the quality of the results from SED
fitting using two different SFH and obtained a sample of galaxies where a modeled
recent and strong decrease of SFR produced significantly better fits of the broad band
photometry. In this work, we aim at improving the method of Ciesla, Elbaz, Schreiber,
et al., 2018 gaining in power by applying to a subsample of COSMOS galaxies a state-
of-the-art statistical method to perform the SFH choice: the Approximate Bayesian
Computation ABC, see, e.g. Marin, Pudlo, Christian P Robert, et al., 2012; Sisson, Fan,
and Beaumont, 2018. Based on the observed SED of a galaxy, we want to choose the
most appropriate SFH between a finite set. The main idea behind ABC is to rely on
many simulated SEDs generated from all the SFHs in competition using parameters
drawn from the prior.

The paper is organized as follows: Sect. 2.2 describes the astrophysical problem
and presents the sample. In Sect. 2.3 we present the statistical approach as well as
the results obtained from a catalog of simulated SEDs of COSMOS-like galaxies. In
Sect. 2.4 we compare the results of this new approach with more traditional SED
modeling methods, and apply it to real COSMOS galaxies in Sect. 2.5. Our results are
discussed in Sect. 2.6.
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2.2. Constraining the recent star formation history
of galaxies using broad-band photometry

2.2.1. Building upon the method of Ciesla, Elbaz, Schreiber,
et al., 2018

The main purpose of the study presented in Ciesla, Elbaz, Schreiber, et al., 2018 was
to probe variations in SFH that occurred in very short timescales, i.e. on hundreds
of Myrs. Therefore, a large-number statistics was needed to be able to catch galaxies
at the moment when these variations happened. They aimed at identifying galaxies
that have recently undergone a rapid (<500 Myr) and drastic downfall of their SFR
(more than 80%) from broadband SED modeling, since large photometric samples
can provide the statistics needed to pinpoint these objects.

To perform their study, they took advantage of the versatility of the SED modeling
code CIGALE 1 Boquien, Burgarella, Roehlly, et al., 2019. CIGALE is a SED modeling
software package that has two functions: a modeling function to create SEDs from a
set of given parameters and a SED fitting function to derive the physical properties
of galaxies from observations. Galaxies SEDs are computed from UV-to-radio taking
into account the balance between the energy absorbed by dust in the UV-NIR and
remitted in IR. To build the SEDs, CIGALE uses a combination of modules including
the star formation history assumption, either analytical, stochastic, or outputs from
simulations e.g., Boquien, Buat, and Perret, 2014; Ciesla, Charmandaris, Georgakakis,
et al., 2015; Ciesla, Elbaz, and Fensch, 2017a, the stellar emission from stellar popula-
tion models Bruzual and S. Charlot, 2003; C. Maraston, 2005, the nebular lines, and
the attenuation by dust e.g., D. Calzetti, Armus, Bohlin, et al., 2000; S. Charlot and Fall,
2000.

Ciesla, Elbaz, Schreiber, et al., 2018 compared the results of SED fitting on a sample
of GOODS-South galaxies using two different SFHs: one normal delayed-τ SFH and
one flexible SFH modeling a truncation of the SFH. The normal delayed-τ SFH is given
by the equation:

SFR(t ) ∝ t ×exp(−t/τmai n) (2.1)

where SFR is the star formation rate, t the time, and τmai n is the e-folding time.
Examples of delayed-τ SFHs are shown in Fig. 2.1 for different values of τmai n . The
flexible SFH is an extension of the delayed-τ model:

SFR(t ) ∝
{

t ×exp(−t/τmai n), when t ≤ t f lex

rSFR ×SFR(t = t f lex), when t > t f lex
, (2.2)

where t f lex is the time at which the star formation is instantaneously affected, and
rSFR is the ratio between SFR(t > t f lex) and SFR(t = t f lex):

1. https://cigale.lam.fr/
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rSFR = SFR(t > t f lex)

SFR(t f lex)
. (2.3)

A representation of flexible SFHs is also shown in Fig. 2.1. The normal delayed-τ SFH
is at first order a particular case of the flexible SFH for which rSFR = 1.

To differentiate between the two models, Ciesla, Elbaz, Schreiber, et al., 2018 es-
timated the Bayesian Information Criterion (BIC, see Sect. 2.3.2) linked to the two
models and put conservative limits on the difference between the two BIC to select
the most suited model. They showed that a handful of sources were better fitted using
the flexible SFH, that assumes a recent instantaneous break in the SFH, compared
to the more commonly used delayed-τ SFH. In fact, they discussed that these galax-
ies have indeed physical properties that are different from the main population and
characteristic of sources in transition.

The limited number of sources identified in the study of Ciesla, Elbaz, Schreiber,
et al., 2018 (102 out of 6,680) was due to their will to be conservative in their approach
and find a clean sample of sources that underwent a rapid quenching of star formation.
Indeed, they imposed that the instantaneous decrease of SFR was more than 80%
and that the BIC difference was larger than 10. These criteria prevent a complete
study of rapid variations in the SFH of galaxies as many of them would be missed.
Furthermore, only decrease of SFR were considered and not the opposite, that is
star formation bursts. Finally, their method is time consuming as one has to run the
CIGALE code twice, once per SFH model considered, to perform the analysis. To go
beyond this drawbacks and improve the method of Ciesla, Elbaz, Schreiber, et al.,
2018, we consider in the present pilot study a statistical approach, the Approximate
Bayesian Computation, combined with classification algorithm to improve both the
accuracy and the efficiency of their method.

2.2.2. The sample
In this pilot work, we use the wealth of data available on the COSMOS field. The

choice of this field is driven by the good spectral coverage of the data and the large
statistics of sources available.

We draw a sample from the COSMOS catalog of C. Laigle, McCracken, Ilbert, Hsieh,
I. Davidzon, P. Capak, Hasinger, Silverman, Pichon, Coupon, Aussel, Le Borgne, Caputi,
Cassata, Chang, Civano, Dunlop, Fynbo, Kartaltepe, Koekemoer, Le Fèvre, Le Floc’h,
Leauthaud, Lilly, Lin, Marchesi, Milvang- Jensen, et al., 2016a. A first cut is made to
restrict ourselves to galaxies with a stellar mass C. Laigle, McCracken, Ilbert, Hsieh, I.
Davidzon, P. Capak, Hasinger, Silverman, Pichon, Coupon, Aussel, Le Borgne, Caputi,
Cassata, Chang, Civano, Dunlop, Fynbo, Kartaltepe, Koekemoer, Le Fèvre, Le Floc’h,
Leauthaud, Lilly, Lin, Marchesi, Milvang- Jensen, et al., 2016a higher than 108.5 M⊙.
Then, we restrict the sample to a relatively narrow range of redshift to minimize its
impact on the SED and focus our method to the SFH effect on the SED. We thus select
galaxies with redshift between 0.5 and 1, assuring sufficient statistics in our sample.
We use the broad bands of the COSMOS catalog, listed in Table 2.1. For galaxies with
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Figure 2.1. – Examples of delayed-τ SFHs considered in this work (star formation rate
as a function of cosmic time). Different SFHs using τmai n =0.5, 1, 5, and
10 Gyr are shown to illustrate the impact of this parameter (light green
and dark green solid lines). An example of delayed-τ SFH with flexibility
is shown in solid dark green with the flexibility in green dashed lines for
(ag eflex=1 Gyr & rSFR =0.3) and (ag eflex=0.5 Gyr & rSFR =7).

redshifts between 0.5 and 1, Spitzer/IRAC3 probes the 2.9-3.9µm wavelength range
rest frame and Spitzer/IRAC4 probes the 4-5.3µm range rest frame. These wavelength
ranges correspond to the transition between stellar and dust emission. To keep this
pilot study simple we only consider the UV-to-NIR part of the spectrum, unaffected
by dust emission.

One aspect of the ABC method that is still to be developed is how to handle missing
data. In our astrophysical application, we identify several types of missing data.
First there is the impact of redshifting that is the fact that a galaxy is undetected at
wavelength shorter than the Lyman break at its redshift. Here, the absence of detection
provides an information on the galaxy coded in its SED. Another type of missing data
is linked to the definition of the photometric surveys: the spatial coverage is not
exactly the same in every bands and the different sensitivity limits yields to undetected
galaxies due to the faintness of their fluxes. To keep the statistical problem simple
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Table 2.1. – COSMOS broad bands used in this work.

Instrument Band λ (µm)
GALEX FUV 0.153
GALEX NUV 0.229
CFHT u′ 0.355
SUBARU B 0.443
SUBARU V 0.544
SUBARU r 0.622
Suprime Cam i ′ 0.767
Suprime Cam z ′ 0.902
VISTA Y 1.019
VISTA J 1.250
VISTA H 1.639
VISTA Ks 2.142
Spitzer IRAC1 3.6
Spitzer IRAC2 4.5

in this pilot study, we remove galaxies that are not detected in all bands. This strong
choice is motivated by the fact that the ABC method that we use in this pilot study has
not been tested and calibrated in the case of missing data such as extragalactic field
surveys can produce. The impact of missing data on this method would require an
important work of statistical research which is beyond the scope of this paper.

As an additional constraint, we select galaxies with a SNR equal or greater than 10.
However, given the importance of the NUV band Ciesla, Boselli, Elbaz, et al., 2016;
Ciesla, Elbaz, Schreiber, et al., 2018 and the faintness of the fluxes compared to the
other bands, we relax our criteria to a SNR of 5 for this band. The first motivation for
this cut is again to keep our pilot study simple, but we show in Appendix A that indeed
this SNR cut is relevant. In the following, we will consider a final sample composed
of 12,380 galaxies for which the stellar mass distribution as a function of redshift is
shown in Fig. 2.2 (top panel) and the distribution of the rejected sources in the bottom
panel of the same figure.

The stellar mass distribution, from C. Laigle, McCracken, Ilbert, Hsieh, I. Davidzon,
P. Capak, Hasinger, Silverman, Pichon, Coupon, Aussel, Le Borgne, Caputi, Cassata,
Chang, Civano, Dunlop, Fynbo, Kartaltepe, Koekemoer, Le Fèvre, Le Floc’h, Leau-
thaud, Lilly, Lin, Marchesi, Milvang- Jensen, et al., 2016a, of the final sample is shown
in Fig. 2.3. As a sanity check, we verify that above 109.5 M⊙, the stellar mass, star
formation rate, and specific star formation rate distributions are similar. Our selection
criteria mostly affect low mass galaxies which is expected since we made SNR cuts.

Given the wide ranges of redshift, stellar masses, and SED shapes considered in our
study, there is a normalization aspect that needs to be taken into account. Indeed,
this diversity in galaxies’ properties translates into a large distribution of fluxes in
a given photometric band, spanning over several orders of magnitude: 8 orders of
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magnitudes in the FUV band and 6 in the Ks band, for instance. This parameter space
is very challenging for classification algorithms. To avoid this problem, we compute
flux ratios. First we combine each flux with the closest one in terms of wavelength.
This set of colors provides an information on the shape of the SED but effects of the
SFH are also expected on wider scales in terms of wavelength. As discussed in Ciesla,
Elbaz, Schreiber, et al., 2018, discrepancy between the UV and NIR emission assuming
a smooth delayed-τ SFH is the signature that we are looking for indicating a possible
change in the recent SFH. To be able to probe these effects, we also normalize each
photometric band to the Ks flux and add this set of colors to the previous one. Finally,
we set the flux ratios FUV/NUV and FUV/Ks to be 0 when z > 0.68 to account for the
missing FUV flux density due to the Lyman break at these redshifts.

2.3. Statistical approach
In this section, we present the statistical approach that we will use to infer the most

suitable SFH from photometric data. This new approach is applied to the sample
described in Sect. 2.2.2 as a pilot study but can be applied to other datasets and to test
other properties than the SFH.

2.3.1. Statistical modeling
As explained in the previous section, we want to distinguish between two SFH

models: the first one is the smooth delayed-τ SFH, or SFH model m = 0, and the
second is the same with a flexibility in the last 500 Myr, or SFH model m = 1, as
presented in Sect. 2.2.1. The smooth delayed-τ SFH is thus a specific case of the
flexible SFH obtained when there is no burst nor quenching (rSFR = 1).

Let xobs denote the broadband data collected about a given galaxy. The statistical
issue of deciding which SFH better fits the data can be seen as the Bayesian testing
procedure distinguishing between both hypotheses

H0 : rSFR = 1 vs H1 : rSFR ̸= 1.

The procedure will decide in favor of a possible change in the recent history when
rSFR is significantly different from 1 based on the data xobs. Conducting a Bayesian
testing procedure based on the data xobs of a given galaxy is exactly the same thing
as the Bayesian model choice distinguishing between two nested statistical models
C. Robert, 2007.

The first statistical model (m = 0), that is the delayed-τ SFH, is composed as fol-
low: Let θ0 denote the vector of all parameters necessary to compute the mock SED,
denoted SED(θ0). In particular θ0 includes the parameters of the SFH. We denote
p(θ0|m = 0) the prior distribution over the parameter space for this statistical model.
Likewise for the second SFH model : let θ1 =(θ0,rSFR, tflex) be the vector of all parame-
ters for the delayed-τ+flex SFH. This vector includes the same parameters as for the
previous SFH, plus two added parameters rSFR and tflex. Let p(θ1|m = 1) be the prior
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distribution over the parameter space for the second model. We furthermore add a
prior probability on the SFH index, p(m = 1) and p(m = 0), which are both 0.5 if we
want to remain noninformative.

Finally, we assume a Gaussian noise. Thus, the likelihood p(xobs|θm ,m) of θm given
xobs under the statistical model m is a multivariate Gaussian distribution, centered
on SED(θm) with a diagonal covariance matrix. The standard deviations are set to
0.1×SED(θm) because of the assumed value of SNR in the observations. In particular,
it means that, up to constant, the loglikelihood is the negative χ2-distance between
the observed SED and the mock SED(θm):

p(xobs|θm ,m) ∝ exp

(
−1

2
χ2

(
xobs,SED(θm)

))
, where

χ2
(
xobs,SED(θm)

)
=

J∑
j=1

(
xobs(λ j )−SED(θm ,λ j )

)2

(
0.1SED(θm ,λ j )

)2 . (2.4)

2.3.2. Bayesian model choice
Bayesian model choice C. Robert, 2007 relies on the evaluation of the posterior

probabilities p(m|xobs) which, using Bayes formula, is given by

p(m|xobs) = p(m)p(xobs|m)∑
m′

p(m′)p(xobs|m′)
, (2.5)

where

p(xobs|m) =
∫

p(xobs|θm ,m)p(θm |m)dθm (2.6)

is the likelihood integrated over the prior distribution of the m-th statistical model.
Seen as a function of xobs, p(xobs|m) is called the evidence or the integrated likelihood
of the m-th model.

Bayesian model choice procedure innately embodies Occam’s razor. This principle
consists in choosing the simplest model as long as it is sufficient to explain the ob-
servation 2. In this study, the two parametric SFHs are nested: when the parameter
rSFR of an SFH m = 1 (flex + delayed-τ) is set to 1, we have an SFH that is also in the
model m = 0 (delayed-τ). Because of Occam’s razor, if we choose the SFH with highest
posterior probability when analyzing an observed SED xobs that can be explained by

2. Indeed, the evidence p(xobs|m) is a normalized probability density, that represents the distribu-
tion of datasets drawn from the m-th model, whatever the value of the parameter θm from its prior
distribution. If models m = 0 and m = 1 are nested, the region of the data space of non-negligible
probability under model m = 0 has also a non-negligible probability under model m = 1. Moreover,
since model m = 1 can fit to much more datasets, the probability density p(xobs|m = 1) is much more
diffuse than the density p(xobs|m = 0). Hence, we expect for datasets x that can be explained by
both models m = 0,1 that p(x|m = 1) ≤ p(x|m = 0). If the prior probabilities p(m = 0) and p(m = 1)
of both models are equal, it implies that, for datasets xobs that can be explained by both models,
p(m = 1|x) ≤ p(m = 0|x).
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both SFHs, we choose the simplest model m = 0.
To analyse the dataset xobs, it remains to compute the posterior probabilities. In our

situation, the evidence of the statistical model m is intractable. It means that it cannot
be easily evaluated numerically. Indeed, the function that computes SED(θm) given
m and θm is fundamentally a black-box numerical function.

There are two methods to solve this problem. First, we can use a Laplace approxi-
mation of the integrated likelihood. The resulting procedure is the one that choose
the SFH with the smallest Bayesian Information Criterion (BIC). Denoting θ̂m the max-
imum likelihood estimate under the SFH m, χ2 the non-reduced χ2-distance of the fit,
km the degree of freedom of model m, and n the number of observed photometric
bands, the BIC of SFH m is given by

BICm =−2max
θm

ln p(xobs|θm ,m)+km × ln(n),

=χ2
(
SED(θ̂m), xobs

)
+km × ln(n). (2.7)

Choosing the model with the smallest BIC is therefore an approximate method to
find the model with the highest posterior probability. The results of Ciesla, Elbaz,
Schreiber, et al. (2018) based on BIC are justified on this ground. But the Laplace
approximation assumes that the number of observed photometric bands n is large
enough. Moreover, determining the degree of freedom km of a statistical model can be
a complex question. For all these reasons, we expect to improve the method of Ciesla,
Elbaz, Schreiber, et al. (2018) based on BIC in the present paper.

Clever Monte Carlo algorithms to compute the evidence, Equation (2.6), of each
statistical model will give us a much sharper approximation of the posterior probabili-
ties of each SFH . We decided to rely on Approximate Bayesian Computation ABC, see
e.g. Marin, Pudlo, Christian P Robert, et al., 2012; Sisson, Fan, and Beaumont, 2018 to
compute p(m|xobs).We could have considered other methods Vehtari, Ojanen, et al.,
2012 such as bridge sampling, reversible jump MCMC, nested sampling, etc. But these
methods require separate runs of the algorithm to analyze each galaxy, and probably
more than a few minutes per galaxy. We expect to design a faster method here with
ABC.

Finally,to interpret the results, we rely on the Bayes factor of the delayed-τ+flex SFH
(m = 1) against the delayed-τSFH (m = 0)given by

BF1/0(xobs) = p(xobs|1)

p(xobs|0)
= p(1|xobs)

p(0|xobs)
= p(1|xobs)

1−p(1|xobs)
.

The computed value of the Bayes factor is compared to standard thresholds estab-
lished by Jeffreys see, e.g., C. Robert, 2007 in order to evaluate the strength of the
evidence in favor of delayed-τ+flex SFH if BF1/0(xobs) ≥ 1. Depending on the value of
the Bayes factor, Bayesian statisticians are used to say that the evidence in favor of
model m = 1 is either barely worth mentioning (from 1 to

p
10) or substantial (fromp

10 to 10) or strong (from 10 to 103/2) or very strong (from 103/2 to 100) or decisive
(larger than 100).
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Table 2.2. – Basic ABC model choice algorithm that aims at computing the posterior
probabilities of statistical models in competition to explain the data.

Input: - xobs, the observed SED we want to analyse
- p(m), prior probability of the m-th statistical model
- p(θm |m), prior distribution of parameter θm of the m-th statistical model
- p(x|θm ,m), probability density of a SED x given the m-th statistical model, and the
parameter θm , see Eq. (2.4)
- N , number of simulations from the prior
- S(x), a function that computes the summary statistics of a SED x
Output:
An approximation p̂(m|xobs) of the posterior probability of the m-th statistical model
given the observed data for all m.
1 For i = 1 to N
2 Generate mi from the prior p(m)
3 Generate θi

m from the prior p(θm |m)
4 Generate xi from the model p(x|θm ,m)
5 Compute S(xi ) and store (mi ,θi

m ,S(xi ))
6 End For
7 Compute p̂(m|xobs) with Eq. (2.8) for all m

2.3.3. The Approximate Bayesian Computation method
To avoid the difficult computation of the evidence, Equation (2.6), of model m and

get a direct approximation of p(m|xobs), we resort to the family of methods named
ABC model choice Marin, Pudlo, Estoup, et al., 2018.

The main idea behind the ABC framework is that we can avoid the evaluation of the
likelihood and directly estimate a posterior probability by relying on N random sim-
ulations (mi ,θi

m , xi ), i = 1, . . . , N from the joint distribution p(m)p(θm |m)p(x|θm ,m).
Here simulated (mi ,θi

m , xi ) are obtained as follow: first, we draw a SFH mi at random,
with the prior probability p(mi ); then we draw θi

m according to the prior p(θi
m |mi );

finally we compute the mock SED(θi
m) with CIGALE and add a Gaussian noise to the

mock SED to get xi . This last step is equivalent to sampling from p(xi |θi
m ,mi ) given

in (2.4). Basically, the posterior distribution p(m|xobs) can be approximated by the
frequency of SFH m among the simulations close enough to xobs.

To measure how close x is from xobs, we introduce the distance between vectors of
summary statistics d

(
S(x),S(xobs)

)
and we set a threshold ε: simulations (m,θm , x)

that satisfy d
(
S(x),S(xobs)

)≤ ε are considered “close enough" to xobs. The summary
statistics S(x) are primarily introduced as a way to handle feature extraction, whether
it is for dimensionality reduction or for data normalization. For the present study, the
components of the vector S(x) are flux ratios from the SED x, chosen for normalization
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purposes. Mathematically speaking, p(m = 1|xobs) ies thus approximated by

p̂(m|xobs) =

N∑
i=1

1{mi = m}1
{

d
(
S(xi ),S(xobs)

)≤ ε}
N∑

i=1
1
{

d
(
S(xi ),S(xobs)

)≤ ε} . (2.8)

The resulting algorithm, named basic ABC model choice, is given in Table 2.2. Finally,
note that, if k is the number of simulations close enough to xobs, the last step of
Table 2.2 can be seen as a k-nearest neighbor (k-nn) method predicting m based on
the features (or covariates) S(x).

The k-nn can be replaced by other machine learning algorithms to obtain sharper
results. Indeed, the k-nn is known to perform poorly when the dimension of S(x)
is larger than 4. For instance, Pudlo, Marin, Estoup, et al. (2016) decided to rely on
the method called Random Forest Breiman, 2001. The machine learning based ABC
algorithm is given in Table 2.3. All machine learning models given below are clas-
sification methods. In our context, they aim at separating the simulated datasets x
depending on the SFH (m = 0 or 1) that was used to generate them. The machine
learning model is fitted on the catalog of simulations (mi ,θi

m , xi ), that is to say, it
learns how to predict m based on the value of x. To this purpose, we fit a function
p̂(m = 1|x) and perform the classification task on a new dataset x ′ by comparing the
fitted p̂(m = 1|x ′) to 1/2: if p̂(m = 1|x ′) > 1/2, the dataset x ′ is classified as generated
by SFH m = 1; otherwise, it is classified as generated by SFH m = 0. The function
p̂(m = 1|x ′) depends on some internal parameters not explicitly shown in the notation.
For example, this function can be computed with the help of a neural network. A
neuron here is a mathematical function that receives inputs and produces an output
based on a weighted combination of the inputs; each neuron processes the received
data and transmits its output downstream in the network. Generally, the internal
parameters (φ,ψ) are of two kinds: the coordinates of φ are optimized on data with a
specific algorithm, and the coordinates of ψ are called tuning parameters (or hyper-
parameters). For instance, with neural networks ψ represents the architecture of the
network and the amount of dropout; φ represents the collection of the weights in the
network.

The gold standard machine learning practice is to split the catalog of data into three
parts: the training catalog and the validation catalog, that are both used to fit the
machine learning models, and the test catalog that is used to compare the algorithms
fairly and get a measure of the error committed by the models. Actually each fit
requires two catalogs (training and validation) because modern machine learning
models are fitted to the data with a two step procedure. We detail the procedure for
a simple dense neural network and refer to Appendix B for the general case. The
hyperparameters we consider are the number of hidden layers, the number of nodes
in each layers, and the amount of dropout. We fix a range of possible values for each
hyperparameters (see table 2.5). We select a possible combination of hyperparameters
ψ, and train the obtained neural network on the training catalog. Once the weights φ
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Table 2.3. – Machine learning based ABC model choice algorithm that aims at com-
puting the posterior probability of two statistical models in competition
to explain the data

Input and output: same as Table 2.2
1 Generate N simulations (mi ,θi

m , xi ) from the joint distribution
p(m)p(θm |m)p(x|θm ,m)
2 Summarize all simulated datasets (photometric SED) xi with S(xi ) and store all
simulated (mi ,θi

m ,S(xi )) into a large catalog
3 Split the catalog into three parts: training, validation and test catalogs
4 Fit each machine learning method on the training and validation catalogs to
approximate p(m = 1|S(x)) with p̂ψ̂(m = 1|x)
5 Choose the best machine learning method by comparing their classification errors
on the test catalog
6 Return the approximation p̂(m = 1|xobs) computed with the best method

are optimized on the training catalog, we evaluate the given neural network on the
validation catalog and associate the obtained classification error with the combination
of hyperparameters used. We follow the same training and evaluating procedure for
several hyperparameters combinations ψ, and we select the one obtaining the lowest
classification error. At the end of the process, we evaluate the classification error on
the test catalog using the selected combination of hyperparameters ψ̂

The test catalog is willingly left out during the training and the tuning of the machine
learning methods. Indeed, the comparison of the accuracy of the approximation re-
turned by each machine learning method on the test catalog ensures a fair comparison
between the methods, on data unseen during the fit of p̂ψ̂(m|x).

In this pilot study, we tried different machine learning methods and compared their
accuracy:

— logistic regression and linear discriminant analysis Friedman, Hastie, and Tibshi-
rani, 2001, that are almost equivalent linear models, and serve only as baseline
methods,

— neural networks with 1 or 3 hidden layers, the core of deep learning methods,
that have proved to get sharp results on various signal datasets (images, sounds)

— classification tree boosting with XGBoost, see Chen and Guestrin, 2016, which is
considered as state-of-the-art methods in many applied situations, and is often
the most accurate algorithm when correctly calibrated on a large catalog.

We did not try Random Forest since it cannot be run on a simulation catalog of size as
large as the one we are relying on in this pilot study (N = 4×106). Indeed the motivation
of the proposed methodology is to bypass the heavy computational burden of MCMC
based algorithms to perform statistical model choice. In this study, Random Forest
was not able to fulfill this aim unlike the classification methods given above.
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Table 2.4. – Prior range of the parameters used to generate the simulation table of
SEDs with redshift between 0.5 and 1.

Parameter Value
Delayed-τ SFH

ag e (Gyr)
[
0.5; 9

]
τmai n (Gyr)

[
0.1; 10

]
Flexible delayed-τ SFH

ag e (Gyr)
[
0.5; 9

]
τmai n (Gyr)

[
0.1; 10

]
ag e f lex (Myr) 10, 100, 450
logrSFR

[
-6; 6

]
Dust attenuation

AV
[
0.1; 4

]

2.3.4. Building synthetic photometric data
To compute or fit galaxies’ SEDs with CIGALE, one has to provide a list of prior

values for each model’s parameters. The comprehensive module selection in CIGALE
allows to specify entirely the SFH and how the mock SED is computed. The list of prior
values for each module’s parameters specifies the prior distribution p(θm |m). CIGALE
uses this list of values or ranges to sample from the prior distribution by picking values
on θm on a regular grid. This has the inconvenient of: being very sensitive to the
number of parameters (if d is the number of parameters, and if we assume 10 different
values for each parameter, the size of the grid is 10d ); producing simulations that are
generated with some parameters that are equals. Instead, in this study, we advocate
in favor of drawing values of all parameters at random from the prior distribution,
which is uniform over the specified ranges or list of values. The ranges for each model
parameters are chosen to be consistent with those used by Ciesla, Elbaz, Schreiber,
et al., 2018. In particular, the catalog of simulations drawn at line 1 in Table 2.3 follow
this rule. Each SFH (the simple delayed-τ or the delayed-τ + flex) is then convolved
with the stellar population models of Bruzual and S. Charlot, 2003. The attenuation
law described in S. Charlot and Fall, 2000 is then applied to the SED. Finally CIGALE
convolves each mock SED into a COSMOS-like set of filters described in Table 2.1.

2.4. Application to synthetic photometric data
We first applied our methodology on simulated photometric data to evaluate its

accuracy. The main interest of such synthetic data is that we control all parameters
(flux densities, colors, physical parameters). The whole catalog of simulations was
composed of 4×106 simulated datasets. We split this catalog at random into three
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Table 2.5. – Calibration and test of machine learning methods

Method Tuning parameter Explored range Best value Error rate (%)
Logistic regression ; 30.27

Linear Discriminant Analysis ; 30.43

k-nearest neighbors k [3600, 180000] 5000 23.79

1-layer neural network dropout [0.1, 0.5] 0.2 22.51
nodes in each layer [16, 256] 128 —

3-layer neural network dropout [0.1, 0.5] 0.2 21.06
nodes in each layer [16, 256] 128 —

Tree boosting (XGBoost) number of trees (nround) [100, 1000] 400 20.98
depth of each tree (max_depth) [4, 15] 12 —

learning rate (eta) [0.01, 0.2] 0.1 —
The best value of each tuning parameter was found by comparing error rates on the
validation catalog.
The error rate given in the last column is computed on the test catalog.

parts, as explained in Sect. 2.3.3, and add an extra catalog for comparison with CIGALE:

— 3.6×106 sources (90%) to compose the training catalog,

— 200,000 sources (5%) to compose the validation catalog,

— 200,000 sources (5%) to compose the test catalog,

— 30,000 additional sources to compose the extra catalog for comparison with
CIGALE.

The size of the extra catalog is much smaller to limit the amount of computation time
required by CIGALE to run its own algorithm of SED fitting.

2.4.1. Calibration and evaluation of the machine learning
methods on the simulated catalogs

In this section, we present the calibration of the machine learning techniques and
their error rates on the test catalog. We then try to interpret the results given by our
methodology.

As described in Sect. 2.3.3, we trained and calibrated the machine learning methods
on the training and validation catalog. The results are given in Table 2.5. Neither
Logistic regression nor Linear Discriminant Analysis have tuning parameters that
need to be calibrated on the validation catalog. The error rate of these techniques are
about 30% on the test catalog. But the modern machine learning methods (k-nearest
neighbors, neural networks and tree boosting) have been calibrated on the validation
catalog. The best value of the explored range for ψ were found by comparing error
rates on the validation catalog and are given in Table 2.5. The error rates of these
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methods on the test catalog vary between 24% and 20%. Thus, it is clear that there is a
significant gain to use non-linear methods. But we see no obvious use in training a
more complex algorithm (such as a deeper neural network) for this problem, although
it could become useful when increasing the number of photometric bands and the
redshift range. Finally, we favor XGBoost for our study. Indeed, while neural networks
could probably be tuned more precisely to match or exceed its performances, we find
XGBoost easier to tune and to interpret.

Machine learning techniques that fit p̂ψ̂(m|x) are often affected by some bias and
may require some correction Niculescu-Mizil and Caruana, 2012.Such classification
algorithms compare the estimated probabilities of m given x and return the most
likely m given x. The output m can be correct even if the probabilities are biased
towards 0 for small probabilities or towards 1 for large probabilities. A standard
reliability check shows no such problem for our XGBoost classifier. To this aim, the
test catalog is divided into 10 bins: the first bin is composed of simulations with a
predicted probability p̂(m = 1|xobs) between 0 and 0.1, the second with p̂(m = 1|xobs)
between 0.1 and 0.2. . . The reliability check procedure ensures that the frequency of
the SFH m = 1 among the k-th bin falls within the range [(k −1)/10;k/10], because
the p̂(m = 1|xobs) predicted by XGBoost are between (k −1)/10 and k/10.

We studied the ability of our methodology to distinguish the SFH of the simulated
sources of the test catalog. The top panel of Fig. 2.4 shows the distribution of p̂(m =
1|xobs) when x varies in the test catalog. Naively, a perfect result would have half of the
sample with p = 1 and the other half with p = 0. In fact, when m = 0, the SFH m = 1 is
also suitable since the models are nested. In this case, Occam’s razor favors the model
m = 0, and p̂(m = 1|xobs) must be less than 0.5, see Sect. 2.3.2. On the contrary, for the
SEDs solely explained by the SFH model m = 1, p̂(m = 1|xobs) is close to 1.

The distribution (Fig. 2.4, bottom left panel) has two peaks, one centered around
p = 0.2 and one between 0.97 and 1. This peak at 0.2, and not 0, is expected when
one of the model proposed to the choice is included in the second model. In the
distribution of the p̂(m = 1|xobs), 20% of the sources have a value higher than 0.97 and
52% lower than 0.4. In the right panels of Fig. 2.4, we show the distribution of rSFR for
the galaxies x with p̂(m = 1|xobs) > 0.97. With a perfect method, galaxies with rSFR ̸= 1
should have p̂(m = 1|xobs) = 1. Here we see indeed a deficit of galaxies around p = 1,
however the range of affected rSFR goes from 0.1 to 10. Therefore, the method is not
able to identify galaxies having a variability of its SFR if this variability is only 0.1 to 10
times the SFR before the variability began. In other words, the method is sensitive to
| logrSFR| > 1. This is confirmed by the distribution of rSFR for galaxies with p < 0.40
(Fig. 2.4, bottom panel). However, there are sources with a | logrSFR| > 1 associated
with low values of p̂(m = 1|xobs). The complete distribution of rSFR as a function of
p̂(m = 1|xobs) is shown in Fig. 2.4.
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Figure 2.4. – Study of the statistical power of p̂(m = 1|xobs) to detect short-term varia-
tions with respect to the value of rSFR. Top left panel: Joint distribution of
p̂(m = 1|xobs) and rSFR. Bottom left panel: Distribution of p̂(m = 1|xobs)
obtained with x coming from the test catalog. Right panels: Marginal
distributions of rSFR for mock sources with p̂(m = 1|xobs) > 0.97 (top
right panel) and for mock sources with p̂(m = 1|xobs) < 0.4 (bottom right
panel).

2.4.2. Importance of particular flux ratios
We try to find which part of the dataset x influences the most on the choice of SFH

given by our method. The analyse of x relies entirely on the summary statistics S(x),
the flux ratios. Hence, we tried to understand which flux ratios are most discriminant
for the model choice. We wanted to check that the method is not based on a bias of our
simulations and wanted to assess which part of the data could be removed without
losing crucial information.

We use different usual metrics e.g. Friedman, Hastie, and Tibshirani, 2001; Chen
and Guestrin, 2016 to assess the importance of each flux ratio in the machine learning
estimation of p̂(m = 1|x). Those metrics are used as indicators of the relevance of each
flux ratio for the classification task. As expected, the most important flux ratios for our
problem involve the bands at shortest wavelength (FUV at z < 0.68 and NUV above, as
FUV is no longer available), normalized by either Ks or u. This is expected as these
bands are known to be sensitive to SFH e.g., Arnouts, Le Floc’h, Chevallard, et al., 2013.
We see no particular pattern in the estimated importance of the other flux ratios. They
are all used for the classification and removing any of them decreases classification
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Table 2.6. – Input parameters used in the SED fitting procedures with CIGALE.

Parameter Value

delayed-τ SFH
ag e (Gyr) [0.5;9], 15 values linearly sampled
τmai n (Gyr) [0.1;10], 15 values linearly sampled

Flexible delayed-τ SFH
ag e (Gyr) [0.5;9], 15 values linearly sampled
τmai n (Gyr) [0.1;10], 15 values linearly sampled
ag e f lex (Myr) 10, 100, 450
logrSFR [−6;6], 12 values linearly sampled

Dust attenuation
AI SM

V [0.1;4], 10 values linearly sampled

accuracy, except for IRAC1/Ks whose importance is consistently negligible across
every considered metric.

We also test if the UVJ selection used to classify galaxies according to their star
formation activity e.g., Stijn Wuyts, Labbé, Franx, et al., 2007; Williams, Quadri, Franx,
et al., 2009 is able to probe the kind of rapid and recent SFH variations we are inves-
tigating in this study. We train an XGBoost classification model using only u/V and
V/J in order to evaluate the benefits of using all available flux ratios. This results in
a severe increase in classification error, going from 21.0% using every flux ratios to
35.8%.

2.4.3. Comparison with SED fitting methods based on BIC
In this section, we compare the results obtained with the ABC method to those

obtained with a standard SED modeling. The goal of this test is to understand and
quantify the improvement that the ABC method brings in terms of accuracy of the
results. We use the simulated catalog of 30,000 sources, described in the beginning of
this section, for which we control all parameters.

The ABC method is also used on this extra catalog. This test is very similar to the
training procedure described in Sect. 2.4.1. Indeed, with this extra catalog, the ABC
method has an error rate of 21.2% compared to 21.0% with the previous test sample.

CIGALE is run on the test catalog as well. The set of modules is the same as those
used to create the mock SEDs, however the parameters used to fit the test catalog do
not include the input parameters that were randomly chosen. This test is intentionally
thought to be simple and represent an ideal case scenario. The error rate that will be
obtained with CIGALE will therefore represent the best result achievable.

To decide whether a flexible SFH was preferable to a normal delayed-τ SFH using
CIGALE, we adopt on whether a flexible SFH is preferred to a normal delayed-τ SFH,
we adopt the method of Ciesla, Elbaz, Schreiber, et al., 2018 described in Sect. 2.2.1.

52



2. Bayesian Model Choice for Star Formation History model Selection – 2.5.
Application on COSMOS data

The quality of fit using each SFH is tested through the use of the Bayesian Information
Criterion (BIC).

In detail, the method that we use is the following: First, we make a run with CIGALE
using a simple delayed-τ SFH which parameters are presented in Table 2.6. A second
run is then performed with the flexible SFH. We compare the results and quality of the
fits using one SFH or the other. The two models have different number of degrees of
freedom. To take this into account, we compute the BIC presented in Sect. 2.3.2 for
each SFH.

We then calculate the difference between BICdel ayed and BIC f lex (∆BIC) and use
the threshold defined by Jeffreys (Sect. 2.3.2) valid either for the BF and the BIC and
also used in Ciesla, Elbaz, Schreiber, et al., 2018: a ∆BIC larger than 10 is interpreted
as a strong difference between the two fits Kass and Raftery, 1995, with the flexible
SFH providing a better fit of the data than the delayed-τ SFH.

We apply this method to the sample containing 15k sources modeled with a delayed-
τ SFH and 15k modeled using a delayed-τ+flexibility. With this criteria, we find that
the error rate of CIGALE, in terms of identifying SEDs built with a delayed-τ+flex SFH,
is 32.5%. This rate depends on the ∆BIC threshold chosen and increases with the
value of the threshold as shown in Fig. 2.5. The best value, 28.7%, is lower than the
error rate obtained from a logistic regression or a LDA (see Table 2.5) but significantly
higher than the error rate obtained from our procedure using XGBoost (21.0%) In this
best case scenario test for CIGALE, a difference of 7.7% is substantial and implies that
the ABC method tested in this study provides better results than a more traditional
one using SED fitting. When considering sources with ∆BIC>10, i.e. sources for which
the method using CIGALE estimates that there is a strong evidence for the flexible
SFH, 95.4% are indeed SEDs simulated with the flexible SFH. Using our procedure
with XGBoost, and the Bayes factor corresponding threshold of 150 Kass and Raftery,
1995, we find that 99.7% of the sources’ SFH are correctly identified. The ABC method
provides a cleaner sample than the CIGALE ∆BIC based method.

2.5. Application on COSMOS data
We now apply our method to the sample of galaxies drawn from the COSMOS

catalog, which selection is described in Sect. 2.2.2. As a result, we show the p̂(m =
1|xobs) distribution obtained for this sample of observed galaxies in Fig. 2.6. We remind
that the 0 value indicates that the delayed-τ SFH is preferred whereas p̂ = 1 indicates
that the flexible SFH is more adapted to fit the SED of the galaxy. As a guide, we
indicate the different grades of the Jeffreys scale and provide the number of sources in
each grade in Table 2.7. The flexible SFH better models the observations of 16.4% of
our sample than the delayed-τ SFH. However, it also means that for most of the dataset
(83.6%), there is no strong evidence for the necessity to increase the complexity of the
SFH, a delayed-τ is sufficient to model the SED of these sources.

To investigate the possible differences in terms of physical properties of galaxies
according to their Jeffreys grade, we divide the sample of galaxies in two groups. The
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Table 2.7. – Jeffreys scale and statistics of our sample.

Grade Evidence against delayed-τ SFH Number %
1 Barely worth mentioning 1,187 9.6
2 Substantial 466 3.8
3 Strong 209 1.7
4 Very strong 90 0.7
5 Decisive 77 0.6

first group corresponds to galaxies withp̂(m = 1|xobs) < 0.5, galaxies for which there
is no evidence for the need of a recent burst or quenching in the SFH, a delayed-τ
SFH is sufficient to model the SED of these sources. We select the galaxies of the
second group imposing p̂(m = 1|xobs) > 0.75, i.e. Jeffreys scale grades of 3, 4, or 5:
from strong to decisive evidence against the normal delayed-τ. In Fig. 2.7 (top panel),
we show the stellar mass distribution of both subsamples. Although the stellar masses
obtained with either the smooth delayed-τ or the flexible SFH are consistent with
each other, for each galaxies we use the most suitable stellar mass: if the galaxy has
p̂(m = 1|xobs) < 0.5 the stellar mass obtained from the delayed-τ SFH is used, and if
the galaxy hasp̂(m = 1|xobs) > 0.75 the stellar mass obtained with the flexible SFH is
used. The stellar mass distribution of galaxies with a delayed-τ SFH is similar to the
distribution of the whole sample, as shown in the middle panel of Fig. 2.7. However,
the stellar mass distribution of galaxies needing a flexibility in their recent SFH shows
a deficit of galaxies with stellar masses between 109.5 and 1010.5 M⊙ compared to
the distribution of the full sample. We note that at masses larger than 1010.5 M⊙ the
distribution are identical, despite a small peak at 1011.1 M⊙. To check if this results is
not due to our SED modeling procedure and the assumptions we adopted, we show
in the middle panel of Fig. 2.7 the same stellar mass distributions using this time
the values published by C. Laigle, McCracken, Ilbert, Hsieh, I. Davidzon, P. Capak,
Hasinger, Silverman, Pichon, Coupon, Aussel, Le Borgne, Caputi, Cassata, Chang,
Civano, Dunlop, Fynbo, Kartaltepe, Koekemoer, Le Fèvre, Le Floc’h, Leauthaud, Lilly,
Lin, Marchesi, Milvang- Jensen, et al., 2016a. The two stellar mass distributions, with
the one of galaxies with p̂(m = 1|xobs) > 0.75 peaking at a lower mass, are recovered.
This implies that these differences between the distributions are independent from
the SED fitting method employed to determine the stellar mass of the galaxies. We
note that when the algorithm has been trained, only ratios of fluxes were provided to
remove the normalization factor out of the method and the mock SEDs from which
the flux ratios were computed were all normalized to 1 M⊙. The stellar mass is at
first order a normalization through, for instance, the LK -M∗ relation e.g., Gavazzi,
Pierini, and Boselli, 1996. Using flux ratios, the algorithm had no information linked
to the stellar mass of the mock galaxies. Nevertheless, applied to real galaxies the
result of our procedure yields two different stellar mass distributions between galaxies
identified as having smooth SFH and galaxies undergoing a more drastic episode (star
formation burst or quenching).
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In the bottom panel of Fig. 2.7, we show the distribution in specific star formation
rate (sSFR, sSFR ≡ SFR/M∗) for the same two samples. The distribution of galaxies
with p̂(m = 1|xobs) < 0.5 is narrow (σ = 0.39 ) and has one peak at logsSFR = −0.32
(Gyr−1 ), clearly showing the MS of star forming galaxies. Galaxies with high probability
to have a recent strong variation of their SFH form a double-peaked distribution with
one peak above the MS formed by galaxies with p̂(m = 1|xobs) > 0.75 (logsSFR = 0.66
), corresponding to galaxies having experienced a recent burst, and a second peak
at lower sSFRs than the MS, corresponding to sources having undergone a recent
decrease of their star formation activity (logsSFR =−1.38 ). In the sample of galaxies
with p̂(m = 1|xobs) > 0.75 , 28% of these sources are in the peak of galaxies experiencing
a burst of star formation activity and 72% seem to undergo a rapid and drastic decrease
of their SFR. One possibility to explain this assymetry could be a bias produced by
the algorithm, as shown in Fig. 2.4, more sources with p̂(m = 1|xobs) > 0.97 tend to be
associated with low values of rSFR than to rSFR > 1. However, in the case of the extra
catalog, this disparity is 47% and 53% for high and low rSFR, respectively.

The distribution of the two samples in terms of sSFR indicates that, to be able to
reach the sSFR of galaxies that are outside the MS, one had to take into account a
flexibility in the SFH of galaxies when performing the SED modeling. This is needed
to recover as much as possible the parameter space in SFR and M∗.

2.6. Conclusions
In this pilot study, we have proposed to use a state-of-the-art statistical method

using machine learning algorithm, the Approximate Bayesian Computation, to deter-
mine the best-suited SFH to be used to measure the physical properties of a subsample
of COSMOS galaxies. These galaxies have been selected in mass (logM∗ >8.5) and in
redshift (0.5 < z < 1). Furthermore, we impose that the galaxies should be detected in
all UV-to-NIR bands with a SNR higher than 10. We verified that these criteria do not
bias the sSFR distribution of the sample.

To model these galaxies, we considered a smooth delayed-τ SFH with or without
a rapid and drastic change in the recent SFH, that is in the last few hundreds Myr.
We have built a mock galaxies SED using the SED fitting code CIGALE. The mock
SEDs have been integrated into the COSMOS set of broad band filters. To avoid large
dynamical ranges of fluxes which is to be avoided when using classification algorithms,
we compute flux ratios.

Different classification algorithms have been tested with XGBoost providing the
best results with a classification error of 20.98%. As output, the algorithm provides the
probability that a galaxy is better modeled using a flexibility in the recent SFH. The
method is sensitive to variations of SFR that are larger than 1 dex.

We have compared the results from the ABC new method with SED fitting using
CIGALE. Following the method proposed by Ciesla, Elbaz, Schreiber, et al., 2018,
we compare the results of two SED fits, one using the delayed-τ SFH and the other
one adding a flexibility in the recent history of the galaxy. The Bayesian Information
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Criterion are computed and compared to determine which SFH provides a better
fit. The BIC method provides a high error rate, 28%, compared to the 21% obtained
with the ABC method. Moreover, since the BIC method requires two SED fits per
analyze of a source, it is much slower than the proposed ABC method: we were not
able to compare them on the test catalog of 200,000 sources and we had to introduce a
smaller simulated catalog of size 30,000 to compute their BIC in a reasonable amount
time.

We use the result of the ABC method to determine the stellar mass and SFRs of
the galaxies using the best-suited SFH for each of them. We compare two samples
of galaxies: the first one is galaxies with p̂(m = 1|xobs) < 0.5, that are galaxies for
which the smooth delayed-τ SFH is preferred, the second one is galaxies with p̂(m =
1|xobs) >0.75, galaxies for which there is a strong to decisive evidence against the
smooth delayed-τ SFH. The stellar mass distribution of these two samples is different.
The mass distribution of galaxies for which the delayed-τ SFH is preferred is similar
to the distribution of the whole sample. However, the mass distribution of galaxies
needing a flexible SFH shows a deficit between 109.5 and 1010.5 M⊙. Their distribution
is however similar to the whole sample’s above M∗ =1010.5 M⊙. Furthermore, the
results of this study also implies that a flexible SFH is needed to cover the largest
parameter space in terms of stellar mass and SFR possible, as seen from the sSFR
distributions of galaxies with p̂(m = 1|xobs) >0.75.
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Figure 2.2. – Stellar mass from C. Laigle, McCracken, Ilbert, Hsieh, I. Davidzon, P.
Capak, Hasinger, Silverman, Pichon, Coupon, Aussel, Le Borgne, Caputi,
Cassata, Chang, Civano, Dunlop, Fynbo, Kartaltepe, Koekemoer, Le Fèvre,
Le Floc’h, Leauthaud, Lilly, Lin, Marchesi, Milvang- Jensen, et al., 2016a as
a function of redshift for the final sample (top panel) and for the rejected
galaxies following our criteria (bottom panel).
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Figure 2.3. – Distribution of stellar mass for the sample before the SNR cut (grey) and
the final sample (green). The red dotted line indicated the limit above
which our final sample is considered as complete. The stellar masses
indicated here are from C. Laigle, McCracken, Ilbert, Hsieh, I. Davidzon, P.
Capak, Hasinger, Silverman, Pichon, Coupon, Aussel, Le Borgne, Caputi,
Cassata, Chang, Civano, Dunlop, Fynbo, Kartaltepe, Koekemoer, Le Fèvre,
Le Floc’h, Leauthaud, Lilly, Lin, Marchesi, Milvang- Jensen, et al., 2016a.
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Figure 2.6. – Distribution of the predictions p̂(m = 1|xobs) produced by our algorithm
on the selected COSMOS data. Sources with a p̂(m = 1|xobs) close to 1
tend to prefer the delayed-τ+flex SFH while sources with lower p̂(m =
1|xobs) favors a simple delayed-τ SFH. The green regions numbered from
1 to 5 indicate the Jeffreys scale of the Bayes factor, 1: Barely worth
mentioning, 2: Substantial, 3: Strong, 4: Very strong, and 5: Decisive
(detailed at the end of Sect. 2.3.2). The percentage of sources in each
grade is provided on the Figure and in Table 2.7.
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Figure 2.7. – Top panel: Comparison of stellar mass distribution, obtained with
CIGALE, for the sample of galaxies with p̂(m = 1|xobs) >= 0.75 (green)
and galaxies with p̂(m = 1|xobs) < 0.5 (grey). Middle panel: Comparison
of stellar mass distribution, obtained by C. Laigle, McCracken, Ilbert,
Hsieh, I. Davidzon, P. Capak, Hasinger, Silverman, Pichon, Coupon, Aus-
sel, Le Borgne, Caputi, Cassata, Chang, Civano, Dunlop, Fynbo, Kartal-
tepe, Koekemoer, Le Fèvre, Le Floc’h, Leauthaud, Lilly, Lin, Marchesi,
Milvang- Jensen, et al., 2016a, for the sample of galaxies with p̂(m =
1|xobs) >= 0.75 (green) and galaxies with p̂(m = 1|xobs) < 0.5 (grey). Bot-
tom panel: Comparison of sSFR distribution for the sample of galaxies
with p̂(m = 1|xobs) >= 0.75 (green) and galaxies with p̂(m = 1|xobs) < 0.5
(grey).
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3.1. Introduction
Importance sampling is a Monte Carlo method that predates Markov Chain Monte

Carlo (MCMC). It was and is still used to sample distributions. Importance sampling
targets π(x) with draws from the proposal distribution q(x). A draw x is weighted
with π(x)/q(x) to correct the discrepancy between q and π. When π ≪ q , these
algorithms are unbiased. Moreover, when the density of the target π(x) is known up
to a constant, we normalized the weights by their sum, which introduce a small bias
that has been well studied (see, e.g. Christian P Robert, Casella, and Casella, 1999).
Unlike MCMC, importance sampling is an embarrassingly parallel algorithm that can
easily be distributed on CPU cores or clusters. Moreover, importance sampling does
not require to sort the wheat from the chaff by finding the limit of the warm-up or
burn-in period. And, since it is not based on local moves, it may be able to discover the
different modes of the target. It has therefore received a recent interest, in particular
when considering algorithms that calibrates the tuning parameters of the algorithm
to the target (M. F. Bugallo, V. Elvira, Martino, et al., 2017).
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The efficiency of importance sampling depends heavily on the choice of the pro-
posal. Many adaptive algorithms (M.-S. Oh and Berger, 1992; M.-S. Oh and Berger,
1993) have been proposed to calibrate the proposal based on past samples from the
target. Thus a temporal dimension is introduced in these algorithms to adapt the
tuning parameters of the proposal distribution: at time t , draws x are sampled from a
distribution qt (x) = q(x|θt ) whose parameter θt is adapted on past results. However
these algorithms suffer from numerical instability and sensibility to the first proposal
used at initialization. For instance, Liu (2001, Section 2.6) claimed that such algo-
rithms were unstable. Indeed estimating large covariance matrices from weighted
samples can lead to ill-conditioned estimation problems (see, e.g., El-Laham, Victor
Elvira, and M. Bugallo, 2018). And Cornuet, Marin, Mira, et al. (2012) asserted that the
initial distribution of their algorithm has a major impact on the accuracy of adaptive
algorithms. They talked about the “what-you-get-is-what-you-see” nature of such
algorithms: these methods have to guess which part of the space is charged by the
target based on points of this space that have been previously visited. Several schemes
have been introduced to initialise the first proposal distribution. The initialization
method proposed by Cornuet, Marin, Mira, et al. (2012, Section 4) requires multidi-
mensional simplex optimization, hence requires many evaluations of π(θ) that are
then discarded. On the other hand, Beaujean and Caldwell (2013) runs a complete
Metropolis-Hastings algorithm that can miss several modes of the target since it is
based on local moves.

Numerical instability may come from the fact that the adaptive algorithm can be
trapped around a point of the space that better fits the target than previously visited
points. When such phenomenon occurs, the algorithm misses important parts of the
core of the target: the learnt proposal distribution becomes concentrated around this
point, and the rest of the space to sample is eliminated forever. When the space to sam-
ple is of moderate or large dimension, numerical instability becomes a major problem.
Many ideas were proposed to tackle the issue including tempering and clipping (M. F.
Bugallo, V. Elvira, Martino, et al., 2017). Tempering can be implemented as replacing
the target π(x) by π(x)β, with β< 1. It eases the discovery of the core of the target since
it extends the part of the space that is charged by the target. Thus, tempering can
smooth the bridge from the first proposal q1(x) to the target π(x). Clipping (Ionides,
2008; Koblents and Miguez, 2015; Vehtari, Simpson, Andrew Gelman, et al., 2021) of
the importance weights is a non linear transformation of the weights that decreases
the importance of points with high w(x) = π(x)/qt (x). The most common way to
implement clipping as a variance reduction method (which introduce a bias) is the
truncation that deals with the degeneracy as follows. If w(x) > S where S is a threshold
that needs to be calibrated, the weights w(x) are replaced by some value (e.g., by S).
Otherwise, they are left unchanged. As noted by Koblents and Miguez (2015) and M. F.
Bugallo, V. Elvira, Martino, et al. (2017), this transformation of the weights flattens
the target distribution. Therefore, truncation is redundant with tempering. Finally, in
order to increase computational efficiency, schemes have been introduced to recycle
the successive samples generated at every iterations. In this vein, Cornuet, Marin,
Mira, et al. (2012) and Marin, Pudlo, and Sedki (2019) considered the whole set of
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draws from the different proposals calibrated at each stage of the algorithm as drawn
from a mixture of these distributions to significantly increase their efficiency.

In this paper, we propose an adaptive importance sampling whose sensitivity to the
first proposal, and numerical instability are highly reduced. We have tried to design
our algorithm to keep control on the number of evaluations of the (unnormalized)
target density. In many situations where we are interested by sampling the posterior
distribution, the target density is indeed a complex function of the parameters x and
the data. For instance, an extreme case is a Gaussian model whose average µ(x) is
a blackbox function which carries a physical model of the reality given the value of
the parameters x. Thus, the time complexity of our algorithm should be assessed
in number of evaluations of the proposal density. We relied on a simple form of
tempering to adapt the proposal distribution. Nevertheless tempering was not enough
to stabilize the algorithm on spaces of large dimension. In our algorithm, at each
stage after initialization, our new proposal distribution is calibrated to approximate a
tempered version of the target contaminated with draws from the previous proposal.
Both tricks (tempering and contamination with previous proposal) avoid focusing
too quickly on the few points with high w(x) = π(x)/qt (x). At least, they keep the
variance of the proposal large enough to take time to explore the space to sample
before exploiting the points with high importance weights.

3.2. Calibration of importance sampling
We propose here a new strategy to walk on the bridge from the first proposal q1(x)

to a proposal qT (x) well adapted to the target π(x) in terms of effective sample size. In
order to adapt the proposal gradually, we introduce a sequence of temporary targets:

π̂1(x), . . . , π̂T (x)

which are intermediaries between the first proposal q1(x) and the target π(x). The
precise definition of these temporary targets, given in Section 3.2.2, is paramount to
the succes of the algorithm. They are based on a tempering wβ of the importance
weights w . As described in Section 3.2.1, the tempering

(i) eases the discovery of the area charged by the real target π(x),
(ii) temporarily removes the problems due to large queues of the target,

(iii) allows us to design a diagnostic based on the final of β.

To this non-linear transformation of the weights, we add an anti-truncation, defined
as ŵβ = wβ∨ s, that pulls up all tempered weights wβ less than a threshold s to this
single value, see Section 3.2.2. This anti-truncation

(iv) performs a contamination of the temporary target by the last proposal,
(v) helps to stabilize numerically the algorithm and

(vi) allows us to explore new directions in large-dimension spaces.

Both β and s are automatically calibrated at the end of stage t of the algorithm, as
explained in Section 3.3.1. The new proposal qt+1(x) is tuned to fit the temporary
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π̂t (x) with the EM algorithm as given in Section 3.2.3. The whole algorithm is given in
Figure 3.1.

Figure 3.1. – The tempered, anti-truncated multiple importance sampling (TAMIS)
algorithm

3.2.1. The tempering
Let us assume that, given all past draws Ft−1, a set xt ,1, . . . , xt ,Nt of size Nt has been

drawn independently from a distribution qt (x) = q(x|θt ) picked among a parametric
family Q of laws. The importance weights at this stage are

wt ,i =
π(xt ,i )

qt (xt ,i )
. (3.1)

We can replace the target π(x) by the distribution of density

πβ,t (x) ∝π(x)βqt (x)1−β (3.2)

with inverse temperature β ∈ (0,1) as proposed by R. M. Neal (2001) in his Annealed
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importance sampling. When β = 0, (3.2) is the proposal distribution that served
to draw the xt ,i ’s: πβ=0,t (x) = qt (x). When β = 1, (3.2) is the target distribution:
πβ=1,t (x) =π(x). Moreover, β 7→ KL(π∥πβ,t ) decreases from KL(π|qt ) to 0, see Proposi-
tion 3 in Appendix C. If we use the xt ,i ’s to targetπβ,t (x), the unnormalized importance
weights become

πβ,t (xt ,i )

qt (xt ,i )
∝ π(x)βqt (x)1−β

qt (xt ,i )
=

(
π(x)

qt (xt ,i )

)β
= wβ

t ,i . (3.3)

Such weights had been use in the past, for instance by Koblents and Miguez (2015)

who relied on the xt ,i ’s weighted with the wβ

t ,i ’s to get a sample from πβ,t (x) and to
tune a qt+1(x) = q(x|θt+1) that approximates πβ,t (x). It is also explored by Korba and
Portier (2022) as a regularization strategy.

3.2.2. Anti-trunctation and temporary targets
There are many ways to contaminate this weighted sample with draws from qt (x).

The first idea is to add N ′
t new draws xt ,Nt+1, xt ,Nt+2 . . . with all weights equal to s

to the above weighted sample. This idea may add a non negligeable amount of
computational time when the dimension of x is large. Another idea to contaminate
this weighted sample with qt (x), is to change the weights. We introduce a deterministic

contamination based on the value of wβ

t ,i . Indeed, the xt ,i ’s weighted with

ŵβ

t ,i = s ∨wβ

t ,i (3.4)

form an approximation of the distribution with density

π̂β,t (x) ∝ sqt (x)1{x ∈ E }+πβ(x)q1−β
t (x)1{x ̸∈ E }, where E = {x : πβ(x)/qβt (x) ≤ s}.

(3.5)
An easy computation gives us the weights of the mixture as follows.

Lemma 1. Let qE
t (x) denotes the normalized probability density of qt (x) knowing x ∈ E

and πĒ
β,t (x) the normalized probability density of πβ,t (x) = πβ(x)q1−β

t (x) knowing
x ̸∈ E.

We have
π̂β,t (x) =λqE

t (x)+ (1−λ)πĒ
β,t (x)

where λ= s
∫

E qt (x)dx = 1−∫
Ē π

β(x)q1−β
t (x)dx.

Note that the scheme is different from the Safe Importance Sampling one (Delyon
and Portier (2021), Owen and Zhou (2000)) as the anti-truncation contaminates the
target with the current proposal qt instead of q0, and specifically in E . We apply in
(3.4) a non-linear transformation of the weights. Yet it is the inverse of truncating
the importance weights and we refer to these transformed weights as anti-truncated
weights. Unlike the common truncation of the weights that replaces all weights larger
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than S by S, the anti-truncation we propose in (3.4) replaces all weights smaller than s
by s. Actually, we do not need to truncate large values since we relied on tempering to
remove the degeneracy of the weights. However the sample drawn from qt (x) with

weights wβ

t ,i may not be of sufficient size to approximate (3.2) correctly, even ifβ is well
calibrated. If we trust that qt (x) is a decent sampling distribution, the anti-truncated,
tempered weights fight against the degeneracy of the weights in importance sampling
(tempering) and keep part of the old proposal (qt ) to keep exploring the space from it
(anti-tempering). At the end of each stage t (except the final one), the future proposal
distribution qt+1(x) = q(x|θt+1) is calibrated on the temporary target given by (3.5).
The anti-truncated, tempered π̂β,t (x) defined in (3.5), is a continuous bridge from

— the real target π(x) to

— the freshly used proposal qt (x) = q(x|θt ).

The tempered target πβ,t (x) =πβ(x)q1−β
t (x) is already such a continuous bridge. But,

when β is fixed, the anti-truncated, tempered π̂β,t is in-between the tempered πβ,t

and the freshly used proposal qt (x) in terms of Kullback divergence as given by Propo-
sition 2. Let us recall first that, if both f and g are probability densities, then the
Kullback divergence is defined as

KL( f ||g ) =
∫

f (x) log
f (x)

g (x)
dx.

If f and g are unnormalized probability densities, we will still denote by KL( f ||g ) the
Kullback divergence between their normalized versions.

The following proposition is proved in Appendix D.

Proposition 2. When s ≤ 1, we have

0 = KL
(
πβ,t

∥∥πβ,t
)≤ KL

(
πβ,t

∥∥π̂β,t
)≤ KL

(
πβ,t

∥∥qt
)

3.2.3. Updating the proposal
The family of proposals we recommend for TAMIS is composed of Gaussian mix-

ture models, with diagonal covariance matrix for each component. The density of a
distribution q(x|θ) ∈Q is defined as

q(x|θ) =
K∑

k=1
pk ϕ(x|µk ,Σk )

where ϕ(x|µ,Σ) is the multivariate Gaussian density with mean µ and covariance
matrix Σ. This family is parametrized by θ = (p1, . . . ,pK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK ).

The future proposal distribution qt+1(x) ∈Q is set by using the EM algorithm. Let us
assume that qt (x) = q(x|θt ) ∈Q is the Gaussian mixture with parameter θt . We tune
qt+1(x) = q(x|θt+1) ∈Q, that is to say, we pick θt+1 with the help of the xt ,i ’s weighted

with ŵβ

t ,i as given in (3.4). After resampling this sample occording to their weights
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ŵβ

t ,i , we resort to iterations of the EM algorithm, starting from θt , to get θt+1. Because
of well known properties of the EM algorithm (see, e.g., Fruhwirth-Schnatter, Celeux,
and Christian P Robert, 2019), we have that

KL
(
π̂β,t

∥∥qt+1
)< KL

(
π̂β,t

∥∥qt
)
.

3.3. Practical aspects of the TAMIS algorithm
We can now discuss pratical aspects of the proposed algorithm, based on numerical

results that demonstrate the typical behavior of the method.

3.3.1. Choosing the inverse temperature β and the
anti-truncation s

The inverse temperature β has to be chosen at each stage of the algorithm (except
the last one). We follow the path open by by Beskos, Jasra, Kantas, et al. (2016) to chose

β. To ensure that the xt ,i ’s weighted with ŵβ

t ,i is a sample that can approximate π̂β,t ,
we set β automatically at each stage with

βt = sup
{
β ∈ (0,1) : ESS(β) > ESSmin

}
, where ESS(β) =

(
Nt∑

i=1
wβ

t ,i

)2/ Nt∑
i=1

w 2β
t ,i . (3.6)

The function β 7→ ESS(β) is continuously decreasing (see Proposition 4 of the Ap-
pendix). Hence the optimization problem stated in (3.6) can be solved easily by a
simple one-dimensional bisection method and do not require a new sampling step,
contrary to Korba and Portier (2022)’s adaptive regularization scheme. Note that the
weights ŵβ related to the temporary target (3.5) are used only to calibrate the next
proposal qt+1(x) — this is an important difference with the algorithm proposed by
Koblents and Miguez (2015). Hence the value of ESSmin should be fixed such that the
fit of qt+1(x) with the EM algorithm provides stable estimates with an iid sample of
size ESSmin.

A good choice of ESSmin is paramount to get numerical stability in our algorithm. If
ESSmin is much larger than really needed, the algorithm will remain stable numerically.
But convergence to the target will be slow down: as the tempering will be more
aggressive at each stage, more iterations will be needed to move from the first proposal
q1(x) to the target π(x). The typical effect of changing the value of ESSmin is studied
in Figure 3.2. For example, if Q is the set of mixtures of K Gaussian densities with
diagonal covariances, the update of the proposal with EM steps require to calibrate
K d mean paramaters and K d variance parameters. Thus, we should have 2K d ≪
ESSmin ≤ Nt .

The value of s that set the amount of anti-truncation is more easy to tune. We chose

68



3. Tempered, Anti-truncated Multiple Importance Sampling – 3.3. Practical aspects
of the TAMIS algorithm

s to be the quantile of order τ of the tempered weights:

st = quantileorder=τ
(
wβ

t ,1, . . . , wβ

t ,Nt

)
. (3.7)

Although the required number of iterations may be suboptimal, the value τ = 0.4
appears to be a universal compromise, working flawlessly in every numerical example
considered in this paper. Lower values of τpicked in (0,0.1) can speed up the algorithm
in low dimensional problems, but can induce instability. Hence, we strongly advocate
for the almost universal τ= 0.4, see Figure 3.3.

3.3.2. Numerical diagnostics
In order to assess the convergence of the algorithm we monitor the inverse tempera-

ture and the estimated Kullback-Leibler divergence along iterations. Following Cappé,
Douc, Guillin, et al., 2008, we estimate the Kullback-Leibler divergence between the
target density and the mixture proposal using the Shannon entropy of the normalised
IS weights. Indeed since the normalised perplexity exp

(
H t ,N

)
/N is a consistent estima-

tor of exp(−K L(π||qt ),where H t ,N =−∑Nt
i=1ωi ,t logωi ,t (Cappé, Douc, Guillin, et al.,

2008), we simply estimate K L(π||qt ) ≈ ∑Nt
i=1ωi ,t l ogωi ,t + log Nt . Note that this esti-

mate is upper bounded by log Nt , leading to an obvious bias when K L(π||qt ) is large
or Nt small. However this bias does not practically prevent the use of this estimate as
a monitoring tool.

We show in Figure 3.4 the typical evolution of both the inverse temperature β and
the estimated KL divergence along iteration. The inverse temperature starts increasing
slowly during the first iterations, followed by a strong acceleration until it stabilises.
The estimated KL divergence on the other hand starts with a plateau at its upper
bound (log Nt ), then drops to a much small value as β reaches it maximum.

In some cases, β does not reach 1, nor does the estimated KL divergence reach
0. Indeed if the target density can’t be well approximated by any proposal in Q,
K L(π||qt ) never reaches 0. This behaviour is also observed on targets of very high
dimension regardless of the proposal distribution family (see Section 3.4.2). Even in
those pathological cases, the convergence of TAMIS can be simply assessed by the
sharp increase of β followed by its stabilization (or the sharp decrease of the estimated
KL).

3.3.3. Stopping criterion and recycling
When the iterative algorithm is stopped at time T , we end with a set of weighted

simulations:

xt ,i ∼ qt (·) = q(·|θt ), with weight wt ,i =
π(xt ,i )

qt (xt ,i )
.
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Table 3.1. – Parameter tuning and monitoring experiments

Experiment E3.1 E3.2 E3.3

Dimension d = 50 d = 50 d = 1,000

Target N (50,5)⊗d N (50,5)⊗d N (10,5)⊗d

Proposals Gaussian mixture with 5 components Gaussian

Draws Nt = 2,000 Nt = 2,000 Nt = 2,000

ESSmin ∈ {100,200,1400} 300 1,000

τ 0 ∈ {0,0.1, . . . ,0.9,0.95} 0.4

Stop
∑

t ESSt > 10,000 t = 500

As in many iterative importance sampling algorithms such as AMIS Cornuet, Marin,
Mira, et al., 2012, we recycle all these draws and change their weights to

wt ,i =
π(xt ,i )

Q(xt ,i )
, where Q(x) = 1

N1 +·· ·+NT

T∑
t=1

Nt qt (x).

We use the usual effective sample size estimate to assess the quality of the IS sample
given by TAMIS. Thus we suggest stopping the algorithm when the predifined ESS or
the maximal number of iterations is reached. As usual in such adaptive algorithms,
we recycle all particles with their weights after stopping the iterations. This recycling
improve the efficiency of the algorithm. Thus, the ESS of the final sample returned
by the algorithm is underestimated by the sum of the effective sample sizes at each
iteration. Hence, to monitor that we have reached the predefined level, we stop at the
first time where

ESS1+·· ·+ESSt > ESSpredefined

or when we reach the maximal number of iterations.

3.3.4. Parameter tuning and monitoring
We start by illustrating the effect of parameter tuning on TAMIS with the experiments

targeting various multivariate Gaussian distribution as given in Table 3.1. The proposal
at first iteration was a Gaussian mixture with 5 components: each component is
centered around a µk drawn at random from U ([−4,4])⊗d and has covariance matrix
Σk = 200× I50 with large eigenvalues. To approximate de MSE, we ran 20 replicates of
the experiences for each set of parameters.

Figure 3.2 shows Experiment E3.1 described in Figure 3.1 and Figure 3.3 shows
Experiment E3.2. The conclusion is that we should set ESSmin so that the calibration
of the new proposal (i.e., of θt+1) is stable and that τ= 0.4 is a decent value.

To illustrate monitoring in Figure 3.4, we first plot a typical tempering path (ob-
tained on Experiment E3.1 with ESSmin = 100 and τ= 0) along with the estimated KL
divergence. As mentioned in section 3.3.1, the auto calibrated tempering path has
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a rather sigmoid-like shape with a clear transition and stabilization to β = 1, while
the KL-divergence decreases (despite the estimator bias at the beginning) until both
quantities stabilizes together around 1 and 0 respectively.

Finally we illustrate the typical behavior of the monitoring on targets of very high
dimension with Experiment E3.3. The first proposal distribution to initialize TAMIS is
a Gaussian distribution centered at µ drawn from U ([−4,4])⊗d and with covariance
matrix Σ= 100× Id . Figure 3.5 shows that TAMIS provide more than decent results in
high dimension.
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Figure 3.2. – Effect of varying the ESSmin parameter (y-axis) defining the minimum
ESS to be reached for calibration of the interse temperature. As stop-
ping depends on the total estimated ESS, the MSE of the variance (x-axis
on the left) estimation doesn’t depend on ESSmin, but the number of re-
quired iterations (x-axis on the right) before convergence of the sequence
of proposal distributions increases. Increasing ESSmin further than the
minimum required to stabilize the calibration of the new proposal (i.e.,
of θt+1) with the EM step results in an increased computational cost.
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Figure 3.3. – Effect of varying the τ parameter (y-axis) defining the antitruncation
threshold. Except for very high values, the truncation has no detrimental
effect on either the MSE (x-axis on the left) of the estimated variance or
the required number of iterations (x-axis on the right) before convergence
of the sequence of proposal distributions increases. As for ESSmin, once
the calibration of of the new proposal (i.e., of θt+1) with the EM step is
stable, increasing τ further only increases the computational cost.
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Figure 3.4. – Typical evolution of the inverse temperature β (y-axis in red) and es-
timated Kullback-Leibler divergence (y-axis in blue) along iterations
(x-axis). The automatically calibrated β starts by increasing slowly until
a sharp acceleration, followed by stabilization clearly indicating conver-
gence of sequence of proposal distributions. The estimated KL diver-
gence shows the upper bound biais until iteration 20, as detailed in 3.3.2.
Yet its sharp decrease and stabilization mirrors β’s path.
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Figure 3.5. – A very high-dimensional problem : The target is a 1000-dimensional
gaussian distribution, the proposals are gaussian distributions with diag-
onal covariance. (left) Evolution of the inverse temperature β (in red) and
estimated Kullback-Leibler divergence (blue) along iterations. (right) the
L2 distance between the moments of the target and proposal distribu-
tion at each iteration. The temperature doesn’t go to 1 despite the target
distribution belonging to the family of proposal distributions and the
covariance of the proposal doesn’t converge to the real covariance.

3.4. Numerical Experiments
We finally illustrate the good numerical properties of TAMIS relatively to its initial-

ization and to the dimensionality of the problem.

3.4.1. On the effect of initialization
We now compare the effect of a bad initialization on TAMIS, AMIS and N-PMC

with Experiment E4.1 given in Table 3.2. The example considered is the banana
shape target density of Haario et al., also known as the Rosenbrock distribution. Let
σ2 = 100,Σ= diag(σ2,1, . . . ,1),b = 0.03 andΨ(x) = (

x1, x2 +b(x2
1 −σ2), x3, . . . , xd

)
. The

target is the Rosebrock distribution with density

π(x) =ϕ(Ψ(x)|0,Σ).
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Table 3.2. – Initialization and dimensionality

Experiment E4.1 E4.2 E4.3

Dimension d ∈ {20,50} d ∈ {5,10,20,50,100} d ∈ {300,500}

Target Rosenbrock distr. N (50,5)⊗d

Proposal Gaussian mixture with 5 components

Draws Nt = 2,000 Nt = 1,000 Nt = 2,000

ESSmin 100 300 1,000

τ 0.4

Stop t = 20
∑

t ESSt > 1,000

For N-PMC, the inverse temperature sequence is chosen as in Koblents and Miguez,
2015, i.e., βt = 1/(1+e−(t−ℓ)) where ℓ is a tuning parameter we have set to 5.

The first proposal at initialization is a Gaussian mixture model with 5 compo-
nents with covariance matrix all equal to Σ, and centered at random µk drawn from
N (0,Σ0,k /5). We used various covariance matrices Σ, starting from the diagonal ma-
trix diag(200,50,4, . . . ,4) used in Wraith, Kilbinger, Benabed, et al., 2009 and Koblents
and Miguez, 2015. This initial covariance matrix is already adapted to the target and
can be considered as an a priori informed proposal. Then, we used less informed
covariance matrices for Σ:

— diag(200,50,10, . . . ,10),

— diag(200,50,20, . . . ,20), diag(200,50,50, . . . ,50),

— diag(200,100,100, . . . ,100) and

— finally 200× Id which is blind regarding the shape of the target.

Each experiment was repeated 500 times.
Figure 3.6 shows the final ESS. As expected the final ESS after a fixed number of

iterations decreases as the initialization gets worse. Since the dimension is already
high, AMIS fails very frequently even with the first initialization. The tempering
scheme of N-PMC is effective only with a well calibrated initialization, while TAMIS
remains effective and allows the algorithm to converge in every case without any
additional parameter tuning.
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Figure 3.6. – Effective Sample Size (y-axis) of AMIS, N-PMC and TAMIS after 40,000
draws along 20 iterations, with increasingly wide covariance matrix at ini-
tialization (x-axis) in dimension 20 (left) and 50 (right). As expected from
the litterature, AMIS is only performing well with a good initialization
and if the dimension is relatively low. N-PMC is able to correct for bad
initialization with a well chosen tempering path if the dimension is low
enough, while TAMIS performs well in every case.

3.4.2. On the effect of dimensionality
We now consider a simple Gaussian target

N (50,5)⊗d

of Experiment E4.3 of Table 3.2 in high dimension. We only consider TAMIS only, as
both AMIS and N-PMC fail in every case. The initialization of the proposal distribution
is poor for both location and for scale. The proposal distributions are Gaussian
mixture models with 5 components. At initialization, they are centered at random
µk ∼ Unif([−4,4])⊗d and have covariance matricesΣk = 200×Id . The target is therefore
very concentrated and centered very far in the tail of the initial proposal. The other
tuning details are given in Table 3.2.

We plot the MSE when estimating the trace of the covariance matrix along iterations.
We also plot the number of likelihood evaluations required before convergence of the
proposal (assessed by the number of iterations such that K̂L(π||qt ) > 1 in Figure 3.7.

The number of simulations required before convergence increases as expected
with the dimension. But we note that not only is TAMIS able to accurately estimate
scale and location of a very high dimensional target, it does so with the same bad
initialization as previously, with very little tuning required.
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Figure 3.7. – Mean square error (y-axis on the left) of the estimates of the mean and
covariance for increasing dimension (x-axis) and the required number of
iterations (y-axis on the right) before convergence of the proposal to the
target distribution (right).

3.5. Conclusion
We have designed an adaptive importance sampling that is

— robust to poor initialization of proposal and

— robust to high dimension of the space to sample

— efficient in the number of evaluations of the target density and

— does not rely on any gradient computation.

Very few importance sampling algorithm are stable in dimension higher than 100,
and TAMIS is one of them. Therefore, TAMIS can be used to initialize other Monte
Carlo algorithm such as MCMC methods that can lead to more precise estimates when
correctly initialized. The phase transition observed in the decrease of the Kullbuck-
Leibler divergence we monitor remains to be explained theoretically.
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4.1. CIGALE physical modeling
To compute the spectral models, CIGALE constructs composite stellar populations

from simple stellar populations combined with star formation histories.It is followed
by the computation of the emission of ionized gas from massive stars, and attenuates
both the stars and the ionized gas with a specified attenuation curve. Based on an
energy balance principle, the absorbed energy is then re-emitted by the dust in the mid
and far infrared ranges while thermal and non-thermal components are also included,
extending the spectrum far into the radio wavelengths. A large grid of models is finally
fitted to the data and the physical properties are estimated by analyzing the likelihood
distribution.

4.1.1. A modular approach
CIGALE is split into different blocks that are as independent as can be from one

another. Each physical component (stellar populations, nebular emission, attenua-
tion by dust, dust emission, etc.) are handled separately in individual modules, and
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each module is able to be substituted as transparently as possible with an other one
handling the same physical component. For instance it is possible to change the
attenuation law without affecting the rest of the code in any way. The next section
describes those different steps.

Figure 4.1. – The modular approach of CIGALE. The contributions of each physical
component of galaxy emissions are computed sequentially by different
modules, offering different models for each process. It starts by the
combination of a chosen SFH with a SSP to obtain a first spectrum (the
stellar emissions). The nebular emissions are then computed taking
into account the Lyman photons from the stellar emissions. Both those
contributions are then attenuated and re-emitted by dust following an
energy balance principle.

The physical processes at play in galaxies provide us with a natural path to build
models and compute their physical properties.In CIGALE, the models are progressively
computed by a series of independent modules called successively, each corresponding
to a physical component. The typical sequence to build each model is the following :

— Computation of the SFH of the galaxy.

— Computation of the stellar spectrum from the SFH and single stellar population
models.

— Computation of the nebular emission (lines and continuum) from the Lyman
continuum photons.

— Computation of the attenuation of the stellar and nebular emission assuming
an attenuation law.

— Computation of dust emission in the mid-infrared (mid-IR)and far-IR.

— Redshifting of the model and computation of the absorption by the intergalactic
medium (IGM).
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In practice, the models are progressively computed by successively applying these
different modules, each adding a different physical component (spectrum and asso-
ciated physical parameters). For each model these individual spectral components
and the combined spectrum are stored individually to ease the subsequent computa-
tion (e.g. to account for the differential reddening between younger and older stellar
populations, we need to store these populations separately) and allow the user to
easily retrieve the contribution from each physical component. For quantities that are
more conveniently computed from the full restframe spectrum, in particular those
that are directly measured observationally from the spectrum (e.g. line equivalent
widths, UVslopeβ, colors, etc.), a special module can be added prior to redshifting
to calculate them on the rest-frame spectrum. We describe here how each of these
different physical components are modeled and parametrized

4.1.2. The different steps
4.1.2.1. Star Formation History

The first step is to compute the SFH. For each time step (1Myr) between the age
of the galaxy t0 and the current time t , CIGALE computes the corresponding SFR
described by the model. The code then divides each time step in 10 bins of 0.1Myr
and spreads the star formation uniformly in those bins. This spread is necessary to
account for stellar evolutionary events too short to be properly modeled by greater
time steps used in the SSP models. Finally, each SFH is automatically normalized so
that the total mass of stars formed during the life of the galaxy is 1 M⊙, and is rescaled
to fit the observation after the complete modeling of the SED.

4.1.2.2. Stellar populations

The next step is to compute the intrinsic stellar spectrum, i.e the spectrum corre-
sponding to the stellar emissions only. Now that we have the mass of stars at each time
step, we can choose a Single Stellar Population (SSP) model. CIGALE relies on two
pre-computed libraries of SSPs, the one from Bruzual & Charlot (2003) ( Bruzual and
S. Charlot, 2003 ; module bc03) and the one from Maraston (2005) (Claudia Maraston,
2005 ; module m2005). Each SSP library is available for a few values of metallicities
(0.0001, 0.0004, 0.004, 0.008, 0.02, and 0.05 for ; and 0.001, 0.01, 0.02, and 0.04 for
respectively) as well as two initial mass functions (IMFs) (Salpeter(1955) - Salpeter,
1955 and Chabrier (2003) for Bruzual & Charlot (2003) ; and salpeter(1955) and Kroupa
(2001) (Kroupa, 2001) for Maraston (2005)). The spectrum of the composite stellar
populations,is then computed by combining the SFH with the grid containing the
evolution of the spectrum of an SSP with steps of 1Myr.
Since we need to take into account the difference in reddening between young popu-
lations and old populations S. Charlot and Fall, 2000 during the dust attenuation step
of the modeling process, the spectra of old and young stars are computed separately.
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4.1.2.3. Nebular Emissions

After the first spectrum has been computed by combining the SFH and the SSP,
the contributions due to the nebular emissions can be added. Once again CIGALE
relies on a pre-computed database. This database has been generating using CLOUDY
13.01( Ferland, Korista, Verner, et al., 1998, Ferland, Porter, van Hoof, et al., 2013) to
compute nebular templates based on Inoue, 2011 contains relative intensities of 124
lines from Hii regions from Heii at 30.38 nm to [Nii] at 205.4µm These templates are
parametrized according to a ionisation parameter U, and the metallicity Z (assumed
to be the same as the stellar metallicity) . After having selected a given template (based
on U, and Z), which gives line luminosities normalized to the ionizing photon lumi-
nosity, the spectrum of emission lines is computed. Each line has a Gaussian shape
with a given width. Those lines are then multiplied by the ionizing photon luminosity
which was computed with the intrinsic stellar spectrum. However two main processes
affect the ionisation rate of the surrounding gas :

— A fraction of the Lyman continuum can simply escape from the galaxy. This
fraction ( fesc ) varies from one galaxy to the other (Inoue, Iwata, and Deharveng,
2006 ; Hayes, Schaerer, Östlin, et al., 2011).

— Another fraction ( fdust ) can be absorbed by dust (Inoue, 2001), which results in
some dust heating handled by the dust emission models.

Those two processes result in a downscaling factor (Inoue, 2011):

k = 1− fdust − fesc

1+α1(Te )/αB (Te )× ( fdust + fesc )

with α1 = 1.54×10−19m3s−1 and αB = 2.58×10−19m3s−1(Ferland, 1980)
The hydrogen nebular continuum is computed in the same way as the emission lines ;
and the other elements continua are considered negligible.

4.1.2.4. Attenuation laws

Galaxies contain dust, and this dust is very efficient at absorbing short-wavelength
radiation. The energy absorbed from the UV to the NIR is then re–emitted in the
mid– and far-IR. CIGALE is based on this energy balance The vast literature focussed
studying attenuation laws in galaxies (e.g. Wild, Stéphane Charlot, Brinchmann,
et al., 2011;Steidel, Strom, Pettini, et al., 2016; Lo Faro, Buat, Roehlly, et al., 2017;
Buat, Boquien, Małek, et al., 2018), shows the need for the attenuation laws to be
highly flexible in order to properly model the diversity of observed curves. CIGALE
implements two ways of modelling attenuation curves: the one of S. Charlot and Fall,
2000 , and flexible laws inspired from the starburst curve (Calzetti et al. 2000).
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Charlot & Fall (2000) The idea behind this first model is to assume two different
attenuation curves to take into account both the birth dust cloud of young stars and the
Interstellar medium. Both attenuation curves have the same general parametrization :

A(λ) ∝λδ

with δ = −1.3 for the birth cloud attenuation and δ = −0.7 for the ISM attenuation.
Young stars are affected by both attenuation processes, while old ones are only affected
by the ISM attenuation.

Starburst curve A second approach is to resort to an empirical starburst attenu-
ation curve (D. Calzetti, Armus, Bohlin, et al., 2000 ; Leitherer, Daniela Calzetti, and
Martins, 2002) and to allow for some flexibility by modifying the slope δ and adding a
UV bump( parametrized by its central wavelengthλ0, width γ and amplitude E). The
resulting attenuation curve is given by

A(λ) ∝ kλ×
( λ

550nm

)δ+Dλ

with

Dλ =
Eλ2γ2

(λ2 −λ2
0)2 +λ2γ2

4.1.2.5. Dust emission

The modeling of dust emission is a very active domain of research, requiring a high
level of flexibility. CIGALE implements three different sets of models: the Dale et al.
(2014)empirical templates (Dale, Helou, Magdis, et al., 2014), the Draine & Li (2007)
and 2014 models (Draine, Dale, Bendo, et al., 2007,Draine, Aniano, O. Krause, et al.,
2014), and the Casey (2012) analytic model (C. M. Casey, 2012).

dale 2014 The dust templates of Dale et al. (2014) are based on a sample of nearby
star-forming galaxies originally presented in Dale and Helou, 2002. This model excels
by its simplicity : a single quantity α is used to parametrize the star-forming compo-
nent a power law slope of the dust mass distribution over heating intensity. However
this simplicity comes at a cost : the PAH emissions show very little diversity with
varying α,which can be problematic for some galaxies which are known to have only
little PAH emission ( e.g. Engelbracht, Gordon, Rieke, et al., 2005)

dl2007 and dl2014 The main feature of the Draine & Li (2007) templates is to divide
the dust emission into two components.

— The dust illuminated by a single radiation field Umi n, modelling the diffuse
dust emission heated by the general stellar population.
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— The dust illuminated with a variable radiation field going from Umi n to Umax
through a power–law parametrized by α, modelling the dust linked to star-
forming regions.

Those two components represents relative fraction γ and 1−γ of the total dust mass.
Finally the mass fraction of the PAH, is set as a parameter qpah. Those models are
very flexible and can account for very different physical conditions with a variety of
radiation fields and a variable PAH emission, at the cost of a broader parameter space
to explore during the fit to an observation. For the purpose of this section, the Draine
& Li (2014) templates mainly extends the range of possible parameter values.

casey2012 Finally CIGALE also implements the analytic model of Casey (2012). the
module depends on three parameters: the temperature and the emissivity index of the
dust, and a mid-IR power law index. While less physically motivated than the Draine
& Li (2007) models and not based on observations as the Dale et al. (2014)templates,
the Casey (2012) models are very flexible but do not include PAH emissions.
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Figure 4.2. – Illustration of the difference between the different attenuation mod-
els: dale2014 (top–left), dl2007 (top–right), dl2014 (bottom–left), and
casey2012 (bottom–right). Each color corresponds a different set of pa-
rameters. The solid lines represent the total SED, summing up the differ-
ent components specific to each model (e.g diffuse and star-forming for
the two Draine and Li models). The smoothness of the SED resulting from
casey2012 is due to the absence of PAH emissions in the model.Figure
extracted from Boquien, Burgarella, Roehlly, et al., 2019.

4.1.2.6. Redshifting

The final step of CIGALE’s modelling pipeline is the ’redshifting’ module. The
spectrum is redshifted and dimmed by multiplying the wavelengths by 1+ z and
dividing the spectrum by 1+ z. Finally he model of Meiksin, 2006 is used to account
for the IGM absorption.

4.1.3. Statistical Inference
CIGALE allows users to model each physical process at play in galaxies’ light emis-

sions. From this modeling we obtain spectra, which can then be compared to observa-
tions to infer the different physical properties of interest thanks to a simple statistical
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model. CIGALE currently implements photometric SED fitting via a grid-based impor-
tance sampling approach :

— The user selects the modules they wish to use for each physical component.

— The user sets a list of values for each parameter of each module.

— CIGALE creates the grid of every possible combination of parameter values.

— CIGALE computes the spectra associated with each set of parameters.

— CIGALE computes the likelihood of each set of parameters by computing the χ2

distance from the observation to each simulation.

However this approach suffers from the exponential growth of the number of spectra
to compute with the number of free-parameters. This means the user has to either
restrict the number of values for each parameter, use simpler physical models, or set
some parameters to a fixed value altogether. When dealing with a vague prior knowl-
edge but highly informative data, this necessary relative coarseness of the sampling
grid leads to biases and poor uncertainty estimates.

4.2. Neural Network approximations
As the goal of this work is to provide an effective methodology for Bayesian infer-

ence, we need the posterior distribution sampling algorithm to efficiently explore
the parameter space. In particular, in order to use the TAMIS algorithm described
in chapter 3, we need to be able to sample randomly from a proposal distribution
without worrying about a grid of precomputed values. However leaving the parameter
grid makes it difficult to use CIGALE directly as implemented.

Indeed several modules (Nebular and SFH/BC03 in particular) exploit the efficiency
of a grid. The Nebular module for instance relies on using a precomputed database
of emission lines calculated by CLOUDY which simply cannot be supplemented on
the fly. An other problem is that the computational efficiency of CIGALE in general
relies on the combination of its modularity and the grid sampling. Assuming we want
to use 4 modules, with 3 free-parameters in each and 5 values for each parameter :
The complete grid has size 53∗4 and we have to compute that many ( 244,140,625)
spectra. But the intrinsic computation of each module only have 53 = 125 different
sets of parameters. Storing those results allows CIGALE to exponentially reduce the
number of actual computations, but requires the grid to do so.
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We therefore propose to approach this process of physical modeling using some
neural networks approximations. In order to control the interpretability of errors and
the modularity of CIGALE as a whole, we only use approximations for certain modules
(see Fig. 4.3). These new "deep" modules must be able to be as interchangeable as
possible with the original modules, be used both for grid use and for randomized
use, and keep the inputs and outputs of the original modules. This allows them to fit
naturally into the CIGALE simulation process and not to require new learning of a
"global" approximation neural network in the event of customization of one of the
modules by a user. The learning itself is also simplified since the parameter space
from which we construct the learning set remains small and the approximation errors
easily identified at the level of each module.
We now describe the chosen approximation method which is similar to the one pre-
sented in Alsing, Peiris, Leja, et al., 2020

Figure 4.3. – Our proposed approach to extend CIGALE’s framework : combining
Neural Network approximations replacing the expensive or unwieldy
computation steps while keeping the exact physical modules as much
as possible. This reduces the computational cost, and allows for inter-
polation of precomputed values while retaining CIGALE’s modularity
and explainability, confining the approximation and black-box aspects to
specific part of the model.

4.2.1. Methodology
Whether to approximate full spectra (e.g the young and old stellar emissions) or only

a few hundred emission lines (Nebular), we implement a two-step approximation: We
first perform a Principal Component Analysis (below PCA) on the target in order to
reduce the dimension of the problem - therefore the number of values to approximate
- and we train a neural network to estimate the PCA coefficients using the physical
properties as input.
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This two-step process allows for the use of a very simple neural network (fully con-
nected with few neurons) which avoids the infamous difficulty of tuning a deep Neural
Network with complex architecture despite advances in automatic hyper-parameter
tuning (e.g Bergstra and Bengio, 2012 ; Bengio, 2012 ; Lam, Ling, Leung, et al., 2001 ;
Golovin, Solnik, Moitra, et al., 2017)

Figure 4.4. – The two-step Neural network approximations we use to replace specific
modules of CIGALE. A PCA reduction is first performed on the spectra
composing the training set. A Neural network is then trained to approx-
imate the PCA coefficients corresponding to each spectrum using the
physical parameters as input. The approximated spectrum is then com-
puting inverting the PCA reduction. Figure adapted from Alsing, Peiris,
Leja, et al., 2020

4.2.2. Star population contributions
We start by focusing on the biggest computational burden regarding our work with

the current CIGALE implementation : The computation of the stellar contributions
from the combination of SFH and the SSP. It is also one of the easiest step to replace
as none of its inputs depend on the result of a previous computation. The use of the
modules modeling the SFH and the SSP being done jointly for the simulation of the
stellar contribution, we choose to create a single joint approximate model taking both
of SFH and SSP parameters as input. This single model approximate all the quantities
necessary for the downstream modules of CIGALE:

— the spectrum of the young stellar population
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Table 4.1. – CIGALE parameters used to generate the first train set for our Stellar emis-
sions neural approximator. All parameters are sample uniformly in the
reported interval, except for τmai n which is sample in log scale to account
for the non linearity of its effect on the SED.

Parameter Values
Delayed SFH

ag emai n (Myr)
[
500;10000

]
τmai n (Myr)

[
102;105

]
τbur st (Myr)

[
100;10000

]
fbur st

[
0;0.0.5

]
ag ebur st (Myr)

[
1;500

]
’bc03’

I MF C habr i er
Met al l i ci t y 0.0001,0.0004,0.004,0.008,0.02,0.05

— the spectrum of the old stellar population

— The number of ionizing photons nl y used to rescale emission lines.

A first training set is created by simulating 400,000 spectra with CIGALE from the
following distribution distribution described in table 4.1.

After checking for potential systematic errors (specific parts of the parameter space
where the error approximation is greater), we produce a second 400,000 spectra
sample with CIGALE, oversampling the small values of ag ebur st . This new training
sample (described in is table 4.2) is combined to the first one, and our neural PCA
approximation is learned on the joint training set. This modification in the parameter
distribution of the training set might introduces biases to be studied in a future work
but participate to the increased accuracy of the estimator (Fig 4.5)
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Table 4.2. – CIGALE parameters used to generate the second train set for our Stellar
emissions neural approximator. It is coupled with the set presented in 4.1
to oversample regions in the parameter space where the neural network
errors are too important.

Parameter Value
Delayed SFH

ag emai n (Myr)
[
500;10000

]
τmai n (Myr)

[
102;105

]
τbur st (Myr)

[
100;10000

]
fbur st

[
0;0.0.5

]
ag ebur st (Myr)

[
1;10

]
’bc03’

I MF C habr i er
Met al l i ci t y 0.0001,0.0004,0.004,0.008,0.02,0.05

Figure 4.5. – Heatmaps of the spectra approximation errors (y-axis) as a function of
ag ebur st (x-axis) on the test set. Left : after training on the first training set
only. There is a clear explosion of the errors for very low values of ag ebur st .
Right : After training on the completed training set. The catastrophic
errors for low ag ebur st have been greatly reduced.
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Figure 4.6. – Error of the Stellar emissions approximation. Top : the true and approx-
imated spectrum for the 50th percentile and 99th percentile of errors.
Bottom : The relative error of both approximations. The clear error in-
crease at low wavelengths is due to both a large variability in the training
set and a flux magnitudes lower than the ones at higher wavelength.
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Figure 4.7. – Error of the Stellar emissions approximation. Top : The relative flux
error (y-axis) along wavelength (x-axis) across the entire test set The red
line is the mean of the distribution and the 5th and 95th percentiles are
in blue.Bottom : The relative error of the number of ionizing photons
estimations. In both cases the black lines represents a 5% relative error.
As seen in Fig. 4.6, the error greatly increase at very low wavelength.
However we expect to mitigate this error as the number of ionizing photos
in directly estimated instead of being derived from the spectrum

The module implementing this approximation is able to process 10,000 about 500
times faster than the original, with the actual spectra computation being about 103

times faster as presented in table 4.3.
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Table 4.3. – Wall-clock time (in seconds) for the original modules( sfhdelayed and bc03)
and their ’deep’ counterpart to process 10,000 SEDs using CIGALE, with
random input parameters, on a single CPU core.

Step Original Deep Approximation
Computation time

Spectra computation ∼ 4300 ∼ 4
Other 5 5
Total ∼ 4300 ∼ 9

4.2.3. Nebular emissions
We replace the CIGALE database pre-computed by CLOUDY by an approximation.

For this we use the 3MDB database developed by Morisset, Delgado-Inglada, and
Flores-Fajardo, 2015 1.
We start by removing the lines with negligible flux (for which the median ratio with Hβ

is less than 1e−4) . The variable "age" is first normalized, then all the input parameters
are normalized while the fluxes of the lines are normalized by the flux values in Hβ.
The database is then split 80-20 into training and testing, then the training set is again
split 80-20 into training and validation.
A dimension reduction by PCA is then performed on the values of the lines (still nor-
malized by Hβ) in the training and validation sets (the decomposition being learned
only on the training set), keeping a number of components such that the percentage
of explained variance reaches 99.95%.
Finally, we use scikit-optimize (Head, Kumar, Nahrstaedt, et al., 2021) combined with
scikit-learn (Pedregosa, Varoquaux, Gramfort, et al., 2011 )to learn a neural network
taking the 5 CLOUDY parameters as input and estimating the values of the associated
lines transformed by the PCA. The neural network is a multilayer perceptron com-
posed of 4 layers of 8 to 256 neurons. We use a hyperbolic tangent as the activation
function and L-BFGS as the optimizer. The setting of the number of neurons per layer
is performed Bayesian optimization of the MSE error on the validation set (specifically
by Gaussian process Bandit optimization, Srinivas, A. Krause, Kakade, et al., 2010
;Golovin, Solnik, Moitra, et al., 2017).

When calling the Deep-nebular module, a set of parameter sets corresponding to
the CLOUDY parameters is read, the PCA components are estimated by the network.
These estimated values are then retransformed by inversion of the PCA into the values
of the flux of the lines normalized by the value of the flux of Hβ and logQ,the number
of ionizing photons emitted per second. The flux in Hβ and l ogQ are estimated
separately by another neural network trained in a similar way (without PCA).
Once these approximate values have been estimated, they are managed exactly as

1. https://sites.google.com/site/mexicanmillionmodels
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for the standard Nebular module (fraction escaped or absorbed, width of the lines,
multiplication by the number of photons of the Lyman continuum).
The approximation errors for each supported line in the dataset is presented in Fig.
4.8

The nebular continuum is considered negligible compared to the stellar continuum
and is not implemented for the moment.
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Figure 4.8. – For each line supported by our CLOUDY approximation (x-axis), boxplots
of the absolute relative error (normalized by Hβ)
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5.1. Introduction
Our goal is to propose an inference model to fit physical parameters to each ob-

served galaxy spectrum. For each galaxy, we have a spectrum x represented by a vector
of N positive real numbers x1 . . . xN . Those numbers are measures of the flux density
at wavelengths λi , i = 1, . . . N . The xi can come either from spectroscopy, or from
broadband photometry (in which case we consider the flux density integrated over
the filter’s width).
Since the resolution of spectroscopic measurement is far greater than the number of
broadband filter, our observed x is composed of many more points from spectroscopy
(several thousands) than from photometry (about 5 to 30). Those spectroscopic data-
points are probing a small part of the spectrum wavelength with a high-resolution,
whereas the broadband filters can be collectively covering the spectrum from UV to
FIR , but with a very low resolution.
We assume that the physical model is implemented as a blackbox. This blackbox takes
as input a parameter of physical properties θ and outputs the corresponding theoreti-
cal spectrum S(θ). From this physical model and an observed spectrum xobs , we wish
to perform Bayesian inference and estimate the posterior distribution p(θ|xobs) and
its marginal likelihood p(xobs), given a prior distribution p(θ).
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The main modeling questions are the way to handle

— nuisance parameters,

— the difference in the spectrum sampling resolution due to the different types of
measurements,

— the plausible differences and imprecisions regarding the estimated redshift when
dealing with high-resolution measurements,

— the specific treatment of emission lines,

— the missing (censored) values expressed as upper or lower limits on an observed
flux.

The next section explores each of those problems.
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5.2. A general SED fitting Bayesian Model
As is usual in the SED fitting literature (Walcher, Groves, Budavári, et al., 2011 ;

Roehlly, Burgarella, Buat, Giovannoli, et al., 2011 ; Boquien, Burgarella, Roehlly, et al.,
2019 ; G. Kauffmann, T. M. Heckman, S. D. M. White, et al., 2003), we assume the
likelihood to be Gaussian with variance Σ and mean α×S(θ):

— Σ is most often diagonal;

— S(θ) is the spectrum corresponding to physical parameters θ. S is a black-box,
highly non-linear function encoding the physical modeling;

— α is a scaling factor linked to the mass of the galaxy and considered here as a
nuisance parameter.

Therefore the likelihood is

p(x|θ,α) = 1

(2π)N /2 |Σ|1/2
exp

[
−1

2
(x −α×S(θ))⊤Σ−1 (x −α×S(θ))

]
(5.1)

We propose to integrate it out over the nuisance parameter as is common in Bayesian
inference, hence to consider

p(x|θ) =
∫

p(x|θ,α)p(α)dα

However since computing exactly this quantity would require numerical integration
over the α space, spanning several orders of magnitudes, for each evaluation of the
likelihood, we rely on a Laplace approximation (Tierney and Kadane, 1986). Indeed
as the profile likelihood is extremely concentrated around its unique maximum, the
prior distribution p(α) to cover galaxies of greatly varying sizes, and the number of
observed datapoints is large (especially due to the spectroscopy). If we set

α̂θ = argmax
α

p(x|θ,α)

= xTΣ−1S(θ)

S(θ)TΣ−1S(θ)

the Laplace approximation leads to

p(x|θ) =
∫

p(x|θ,α)p(α)dα

≈ p(x|θ, α̂θ)N− 1
2 .

This derivation also justifies the use of the maximum profile likelihood in CIGALE,
when the number of observed datapoints along the spectrum is large enough.
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5.3. Redshift, covariance and binning
As the redshift z shifts the wavelengths λi , the direct comparison of theoretical and

observed spectrum wavelength by wavelength would require perfect calibration of
the estimated z as well and the exact same sampling resolution between the obser-
vation and the simulation, especially around the emission and absorption lines. To
avoid all those complications with a minimum of approximation and computation
cost, we propose to integrate the spectroscopic density fluxes over wavelength bins.
The number and width of the bins would become tuning parameters of the model,
reducing furthermore the computational cost of each likelihood evaluation.
Let us assume that we have nbins, and that, for bin number j we have observed N j

fluxes x j
1 , . . . , x j

N j
over wavelength bandwidth of size ∆λ j

1, . . . ,∆λ j
N j

. We consider the
average

B j = 1∑N j

i=1∆λ
j
i

N j∑
i=1
∆λ

j
i x j

i . (5.2)

Likewise on the expected fluxes α̂θS(θ), we can compute an expected average B j (θ).
Since the vector of all observed fluxes is a Gaussian vector, the random variable B j

is Gaussian and
B j ∼N

(
B j (θ),ΣB j

)
where

Σ j =
N j∑
i=1

N j∑
l=1
∆λ

j
i ∆λ

j
l Cov

(
x j

i , x j
l

)
.

Moreover

Cov(B j ,Bk ) = Cov

 1∑NB j

i=1 ∆λ
j
i

NB j∑
i=1
∆λ

j
i x j

i ,
1∑NBk

i=1 ∆λ
k
i

Nk∑
i=1
∆λk

i xk
i


= 1

(
∑NB j

i=1 ∆λ
j
i )(

∑NBk
i=1 ∆λ

k
i )

Cov

NB j∑
i=1
∆λ

j
i x j

i ,
NBk∑
i=1
∆λk

i xk
i


= 1

(
∑NB j

i=1 ∆λ
j
i )(

∑NBk
i=1 ∆λ

k
i )

NB j∑
i=1

NBk∑
l=1
∆λ

j
i ∆λ

k
l Cov

(
x j

i , xk
l

)

98



5. Bayesian spectro-photometric SED Fitting – 5.4. Combining spectroscopy and
photometry

5.4. Combining spectroscopy and photometry
The number of datapoints is far greater in spectroscopy than in photometry. Not tak-

ing this disparity into account would result in a fitting procedure completely neglecting
the general shape of the spectra to concentrate only in the small scale variation in the
spectroscopy. It is therefore necessary to consider both contributions to the likelihood
separately and to weight them adequately. This weighting could take several forms,
we propose to consider a model of the form

p(x|θ) = p(xspectro|θ)Pspectro p(xphoto|θ)Pphoto (5.3)

where the weights Pspectro and Pphoto are new hyperparameters of the model. Intuitive
choices for those hyper-pameters could be Pspectro = Pphoto = 1 (not accounting for
the nature of measurements), or follow the relative wavelength coverage of each data
type:

Pphoto =
∆λphoto

∆λtotal
, Pspectro =

∆λspectro

∆λtotal
(5.4)

or

Pphoto = 1, Pspectro =
∆λspectro

∆λphoto
.

As we separated the likelihood into two weighted terms, we need to reformulate the
computation method for α. An easy computation leads to

α̂θ = argmax
α

p(x|θ,α)

= argmax
α

p(xspectro|θ,α)Pspectro p(xphoto|θ,α)Pphoto

=
PphotoxT

photoΣ
−1
photoSphoto(θ)+PspectroxT

spectroΣ
−1
spectroSspectro(θ)

PphotoSphoto(θ)TΣ−1
photoSphoto(θ)+PspectroSspectro(θ)TΣ−1

spectroSspectro(θ)

The latter can again be plugged into the Laplace Approximation

p(x|θ) =
∫

p(x|θ,α)p(α)dα

≈ p(x|θ, α̂θ)N− 1
2 .

5.5. Emission lines
We expect emission lines bring a crucial amount of information about certain

parameters (especially about the metallicity and nebular properties), but they are
neglected by the previously detailed likelihood model. Indeed as they span relatively
narrow wavelengths, their contribution to the likelihood is significantly affected by
the number of spectroscopic measurements probing the continuum. Two possible
solutions would be to either identify the lines in the spectroscopy and consider them
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as separate inputs (e.g Boquien, Burgarella, Roehlly, et al., 2019, Franzetti, Scodeggio,
Garilli, et al., 2008, Bowman, Zeimann, Nagaraj, et al., 2020 ) or simply let them be
binned with the rest of the spectroscopy.

5.6. Censored photometric values
In some cases, the photometric fluxes are only partially known. Depending on

the observation instruments characteristics, we may have lower or upper bounds
for a given flux : the galaxy has been observed, but the measurement is outside the
measurement range of the instrument (either too low, resulting in an upper bound, or
too high, resulting in a lower bound).
To account for those censored values, we split the fluxes in three categories, namely:

— not censored when x j ∈ [L j ,U j ] the measurement range,

— below the lower bound when x j < L j

— avove the upper bound when x j >U j

In the two last cases, the contribution of the j th measurement to the likelihood is
p(x j < L j |θ) when below the lower bound and p(xi > Ui |θ) when above the upper
bound.
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5.7. Sampling algorithm
Once the statistical model is chosen, we need to be able to compute the posterior

distribution. This is necessary to perform either model choice through the compu-
tation of the marginal likelihoods and/or the associated Bayes factor, or to perform
parameter estimation. Since our likelihood model is based on the numerical compu-
tation of spectrum for each likelihood evaluation, we have a few constraints regarding
the sampling algorithm to use.

— Most of the computational cost in the model evaluation is due to CIGALE, that is
to say the numerical computation of α̂θS(θ) for a new value of θ

— We do not have access to the gradient of α̂θS(θ), so we cannot compute the
gradient of the likelihood either.

— If most of the physical parameters of interest can be continuously sampled, some
of them are discrete in nature.

— As the intent is to fit a large sample of observed SEDs, we cannot rely on tuning
the initialization manually for each one.

— The computation of α̂θS(θ) is time consuming but highly parallelizable over
different values of θ.

Those constraints make impractical the use of most Monte Carlo algorithms com-
monly used in Bayesian inference such as MCMC. The unavailability of the gradient
prevents the use of Hamiltonian Monte Carlo (Duane, Kennedy, Pendleton, et al.,
1987 ; R. Neal, 2011) and its variants (Homan and Andrew Gelman, 2014; Carpenter,
Andrew Gelman, Hoffman, et al., 2017) ; the lack of initialization tuning would make
most Importance Sampling schemes unreasonably expensive (Liu, 2001; Beaujean and
Caldwell, 2013 ; Cornuet, Marin, Mira, et al., 2012) ; more sequential algorithms - like
Metropolis-Hastings Metropolis and Ulam, 1949; or the Gibbs sampler S. Geman and
D. Geman, 1984 ; Casella and George, 1992 - would not benefit from the parallelization
; and finally Sequential Monte Carlo methods would require tuning a Markov kernel
for both continuous and discrete parameters (Doucet, Smith, Freitas, et al., 2001)
The TAMIS algorithm presented in chapter 3 is perfectly suited to accommodate all
those constraints. This section presents the sampling methodology for both continu-
ous and discrete parameter spaces using TAMIS.

5.7.1. Sampling the continuous parameters
The proposal distributions used for Adaptive Importance Sampling need to have

larger support than the target distribution and be easily updated. A common choice
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(Cappé, Douc, Guillin, et al., 2008) is to restrict the family of proposal density to
mixtures of Gaussian or Student distributions. As described in chapter 4, nearly all
parameters of interest for Astronomers resorting to SED fitting are physical quantities.
As such, the prior distributions for each parameter has a compact support, and the
value ranges involved varies a lot depending on the specific parameter and its unit ( see
e.g Table 5.3). Since it is easier to tune the proposal distribution from an unconstrained
space, we standardize the intervals and apply a probit transform (see e.g Carpenter,
Andrew Gelman, Hoffman, et al., 2017). The parameter sampling is therefore done in
the unconstrained space. The transform is then inverted to compute the likelihood,
the posterior distribution and the IS weights. Note that if the prior distribution is
uniform over the intervals, the transformed distribution is a Gaussian distribution
centered on the origin. This allows a systematic initialization of TAMIS regardless of
the original parameter spaces.

5.7.2. Sampling the discrete parameters
Since the previously developed TAMIS approach relies on using the EM algorithm

to fit a Gaussian Mixture qt at each iteration, we handle the discrete parameters
separately. This approach prevents the adaptive procedure to exploit correlations
between the different kinds of parameters (as it could through the estimation of
the covariance matrix during the EM step) but remains relevant for obtaining an IS
estimate. However in the specific case of TAMIS it leads to computational problems,
which we present and solve in the following paragraph.
On one hand one could simply not adjust the proposal distribution over the discrete
parameters at all. It would be computationally inefficient, but an IS estimate would
remain valid. However such a scheme is completely inadequate for TAMIS. Let us
consider a realistic use case where we want to fit 10 continuous parameters, and 5
discrete ones. Assume the prior probability over each discrete parameter is uniform
with 6 values each. Let’s assume further that among those 6 values, 3 have a near
0 weight in the posterior distribution. Then in the best case (where the continuous
parameters are sampled directly from the posterior ) 1−35/65 = 97% of any drawn θ
would still have negligible weight. This is not only an enormous computational waste.
Since TAMIS uses the current estimated ESS to tune automatically the tempering path,
this decrease in the ESS biases the TAMIS adaptive step and make extremely difficult
the convergence and its assessment.
In order to adapt the distribution over the discrete parameters for iteration t +1, the
new proposal is the estimated posterior distribution at iteration t contaminated with
a uniform distribution. This is akin to Safe Adaptive Importance Sampling (SAIS, see
e.g Delyon and Portier, 2021). It ensures that the support of the proposal distribution
remains large enough to avoid local optima.
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5.8. Inference
Statistical inference is performed using the weighted sample generated by TAMIS

using the specified statistical model. This specification involves the choice of the
prior distribution and the likelihood hyper-parameters, as inference can be performed
using photometry, spectroscopy or both, with a contribution weighted arbitrarily, and
can include specific emission lines or not. It also involves the choice of a covariance
structure and binning if spectroscopy is used.
From the TAMIS output we use the self-normalized IS estimator of the posterior mean

µ̂=
∑N

i=1ωiθi∑N
i=1ωi

and covariance

Σ̂= 1∑N
i=1ωi

N∑
i=1

ωi (θi − µ̂)T (θi − µ̂)

as well as the 1D credibility intervals.
The Maximum a Posteriori (MAP) is estimated from the empirical maximum in

TAMIS
argmaxp(θi |x)

θi

.

The Maximum Likelihood estimator is approximated in the same way by

argmaxp(x|θi )
θi

.

We also compute the IS estimator of the Marginal Likelihood∑N
i=1ωi

N
.

Finally, for visualization, we perform 2D kernel density estimation of the posterior
density over the continuous parameter space to identify possible complex structures in
the joint distributions (degeneracies, multimodalities). We also draw simple weighted
histograms to visualize the posterior over the discrete parameters.

5.9. Numerical Results
In order to evaluate the performances of our SED fitting tool, we use the dataset

from Villa-Vellez (Villa-Vélez, 2021). This galaxy sample was constructed by combining
photometry from the well-studied COSMOS2015 (C. Laigle, McCracken, Ilbert, Hsieh,
I. Davidzon, P. Capak, Hasinger, Silverman, Pichon, Coupon, Aussel, Le Borgne, Caputi,
Cassata, Chang, Civano, Dunlop, Fynbo, Kartaltepe, Koekemoer, Le Fèvre, Le Floc’h,
Leauthaud, Lilly, Lin, Marchesi, Milvang-Jensen, et al., 2016b) catalog and the FMOS-
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Table 5.1. – Broad bands used in this work

Instrument Band λ (µm)
GALEX NUV 0.229
CFHT u′ 0.355
SUBARU B 0.443
SUBARU V 0.544
SUBARU r 0.622
Suprime Cam i ′ 0.767
Suprime Cam z ′ 0.902
HSC Y 1.019
WFCAM J 1.250
WIRcam H 1.639
WFcam K 2.142
Spitzer IRAC1 3.6
Spitzer IRAC2 4.5
Spitzer IRAC3 4.5
Spitzer IRAC4 4.5

COSMOS (Kashino, Silverman, Rodighiero, et al., 2013 ; Silverman, Kashino, Sanders,
et al., 2015) high-resolution spectroscopy. The sample was carefully selected as to
have good SNR for all fluxes and avoid discrepancies between measurements.
As we need a controlled environment to assess our fit quality, we use those sources
as the base for a catalog of synthetic galaxies. First, the real sources are fit using the
grid implementation of CIGALE. For each galaxy, the best fitting set of parameters is
recovered, and then used to simulate a new synthetic SED. This process ensures that
our test catalog is realistic in terms of the physical parameters used (as estimated from
real observed sources), and the errors of our estimates are easily available (as we know
both the simulator and the true values used for the simulation).
From those synthetic SEDs, we extract both photometric (5.1 )and spectroscopic data
(all the fluxes between 600 et 1800 nm from CIGALE High Resolution spectra). We
denote the 15 photometric measurement xsi m

photo and the spectroscopic ones xsi m
spectr o .

Finally we add a gaussian noise to both data types by setting the Signal-to-Noise Ratio
at 5 for the photometry and 2 for the spectroscopy, and obtain :

xphoto = xsi m
photo × (1+δ1), δ1 ∼N (0,0.22)

xspectr o = xsi m
spectr o × (1+δ2), δ2 ∼N (0,0.52)

We set the data weights Pphoto = Pspectr o = 1, and the number of bins nbi ns = 20.
TAMIS with tuning parameters described in table 5.2. The different steps of our
pipeline are illustrated in figure 5.1 : After binning the spectroscopy (including the
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Table 5.2. – TAMIS parameters used for the SED fitting
Proposal Gaussian mixture with 4 components
Draws Nt = 500
ESSmin 100
τ 0.4
Stop t = 40 or

∑
t ESSt > 600

emission lines), the TAMIS is run as described in sections 5.2 and 5.7 , resulting in the
predictive MAP and complete posterior predictive distribution.
Finally we compare the performances of our fitting procedure using either photo-
metric datapoints alone, spectroscopy alone, or both combined. The three resulting
distributions are plotted in figures 5.3 and 5.2. As expected some parameters are
well constrained using on or the either types, but combining both types yields better
estimates for all parameters.
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Table 5.3. – Prior range of the parameters for the fits

Parameter Value
Delayed SFH

ag emai n (Myr)
[
1000;10000

]
τmai n (Myr)

[
1500;3000

]
τbur st (Myr)

[
100;10000

]
fbur st

[
0;0.2

]
ag ebur st (Myr)

[
10;100

]
’bc03’

I MF C habr i er
Met al l i ci t y 0.0004,0.008,0.05,0.02,0.004

’Nebular’
logU −4.0,−3.5,−3.0,−2.5,−2.0,−1.5,−1.0
zg as 0.004,0.008,0.011,0.022,0.007,0.014
fesc 0
fdust 0

Dust attenuation
E_BV_lines

[
0;2

]
r v 1

’dl2014’
qpah 0.47,1.12,1.77,2.5
umi n 5.0,10.0,25.0
α 2
γ 0.02
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Figure 5.1. – Our proposed SED fitting pipeline. Top Left : The observed spectroscopy
(green) and photometry (blue). Top Right : The spectroscopy is binned in
20 values (including the emission lines).The errors bars are represented to
account for the noise (vertical lines). This is the data used to compute the
likelihood. Bottom Left : the SED corresponding to the MAP is computed
(red). Bottom Right : SEDs are sampled from the posterior predictive
distribution to visualize the prediction uncertainties and assess proper
coverage.
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Figure 5.2. – Comparison of the estimated posterior distributions over the continuous
parameter space using each datatype. Top Left : using only photometry.
Top Right : Using only spectroscopy. Bottom : Using both. The red line
represents the true simulating value.
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Figure 5.3. – Comparison of the estimated discrete distributions over the continuous
parameter space using each datatype. The bars are colored in green if the
MAP estimate is the true simulating value. If the MAP is not the simulating
value, it is colored in red and the true value in blue. Top Left : using only
photometry. Top Right : Using only spectroscopy. Bottom : Using both.
Some parameters are well estimated using only one type of data or the
other, but combining spectroscopy and photometry successfully exploits
the strong suits of both.
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Figure 5.4. – Zoom on the high resolution spectra reconstruction. On the left the
observed noisy spectrum (green) with the MAP estimate (red). On the
right the original spectrum (before adding noise, green) and the MAP
estimate (red). The excellent reconstruction of detailed features despite
the noise level is likely a bias due to a lack of model complexity and both
original and reconstructed spectrum being generated by the same model.
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Figure 5.5. – Comparison of the Mean errors between the simulating value and the
posterior mean estimate obtained using the 3 fitting methods (photome-
try, spectroscopy, or both) for each parameter of interest. As expected,
spectroscopy is able to better constrain the nebular parameters (metal-
licity, logU, zgas), and combining both spectroscopy and photometry
almost always yields lower error.
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6.1. Thesis summary
This thesis develops new statistical tools to perform Bayesian inference in Spectral

Energy Distribution analysis for different use-cases. The first chapter presented an
Approximate Bayesian Computation scheme based on state-of-the art machine learn-
ing algorithms to perform Bayesian Star Formation History model choice on a large
number of similar datasets. The goal was to approximate the posterior probability of
each model given a photometric observation for thousands of galaxies efficiently. The
computation time constraint excluded the use of Monte Carlo integration for each
galaxy separately. We proposed a way to pool all the required simulations under the
prior distribution in a single database and to train a crossentropy minimizing classifier
on this training set. The resulting classifier yields a well calibrated approximation of
the posterior probabilities of each model, with a computational cost being practically
independent of the number of galaxies to study. A practical application on a sample
of galaxies from the COSMOS survey shows strong evidence for the need of a more
flexible SFH model with short-term fluctuation of the star formation rate, especially
for galaxies with lower stellar mass.

The second chapter introduced a new Adaptive Importance Sampling algorithm. At
each step, two simple modifications of the importance weights a new family of auxil-
iary targets. A simple criterion based on effective sample size leads to the automatic-
tuning of the sequence of targets allowing for numerical stability regardless of the
current proposal. This property is of crucial importance when dealing with Bayesian
inference in presence of a vague prior, where the initial proposal distribution cannot
be hand-tuned to the target distribution. This is especially the case when analyzing a
large variety of datasets for which we seek to develop an automatic fitting procedure.
Despite not relying on any gradient computation, the algorithm scales very well with
dimension, with numerical examples considered up to the dimension 1000. Very
few IS based algorithms are able to sample spaces of such high dimension. It is also
extremely efficient in terms of the number of likelihood evaluations required at each
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iteration, making it extremely competitive.

The third chapter presented the details of CIGALE physical modeling and a mod-
ular neural network approximation to reduce the computation time and extend the
range of customizable values. CIGALE is based on a modular downstream pipeline.
Each physical process contributing to the light spectrum of a galaxy is modeled using
customizable modules. This allows users to choose between different models for
each process, or to develop their own and have them interact with the other physical
processes. The pipeline starts by computing the stellar emissions of the galaxy using
a Star Formation History and a Single Stellar Population library. Nebular emissions
are then computed by combining the ionizing photons of the stellar emissions and
pre-computed values for the emission lines and continuum of the different elements.
The effect of dust is then handled by two modules implementing the attenuation and
re-emission of light following an energy-balance principle. Finally the redshift and
IGM are taken into account.
We introduced two neural networks following the methodology of Alsing, Peiris, Leja,
et al., 2020 to reduce the computation time due to the stellar emission model, and
extend the parameter space of the Nebular module to be able to sample continuously
instead of relying on a pre-computed grid. We show a significant increase of the com-
putation speed of the stellar emission and satisfying accuracy on the interpolation of
the Nebular emissions.

The final chapter presented a complete and flexible framework for Bayesian SED
fitting. We proposed a statistical model accounting for the different types of data
available, and a data preprocessing pipeline. Using this statistical model, we com-
bined CIGALE simulations and the TAMIS algorithm to provide a principled approach
to spectro-photometric Bayesian SED fitting. This new tool enjoys the modularity
and customization of CIGALE with state-of-the-art Monte Carlo integration. It sup-
ports both continuous and discrete parameter spaces (or a mix), and the use of both
spectroscopic and photometric measurements. Its use of ease includes flexible hyper-
parameters for the statistical model (including flexible prior specification contrary
to the previous grid sampling), simple stopping criterion, automatic-tuning of the
Monte Carlo scheme and efficient sampling of the parameter space.
We show on simulated spectra that combining spectroscopy with photometry benefits
the parameter estimation, especially regarding metallicity.

6.2. Perspective and Future work
Every contribution of this thesis work can be extended or applied in new ways. This

section proposes a few such avenues.

Bridging the gap between ABC and SOM for SED fitting Self-Organizing Maps
(Kohonen, 1990) are a popular tool in the Astrophysics community (Davidzon, Laigle,
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P. L. Capak, et al., 2019,Masters, Peter Capak, D. Stern, et al., 2015 ; Hemmati, Peter
Capak, Pourrahmani, et al., 2019 ; Geach, 2012). However once the SOM is learned,
several schemes have been proposed to obtain a prediction and potentially derive a
probability distribution to quantify the prediction uncertainty. As the interpretation of
those prediction uncertainty depends on the way they are derived, an idea would be
to reframe this SOM methodology in the ABC setting. This would allow us to obtain a
proper approximation of the posterior distribution, derive a Bayesian analysis pipeline
and formalize the underlying prior elicitations.

TAMIS and the normalizing constant The computation of the posterior normal-
izing constant (i.e the evidence, or marginal likelihood) is an important problem in
a number of tasks. In particular there is significant statistical literature on the link
between the estimation of the normalizing constant in a Bayesian setting and its role
in generative models (Kingma and Welling, 2019 ; Thin, Janati El Idrissi, Le Corff, et al.,
2021 ;Geach, 2012 ). As we showed TAMIS to be both cost effective and scalable to
high-dimensional settings, an interesting avenue would be to study TAMIS’ normaliz-
ing constant estimate and bias, and its possible application within probabilistic deep
neural networks.

On the biases introduced by the neural network sampling. It is well known
that the construction of the training sample of a Neural Network induces biases (S.
Geman, Bienenstock, and Doursat, 1992, B. Kim, H. Kim, K. Kim, et al., 2018) in
its predictions. As we rely on such a network for the physical simulation used in
the likelihood computation, we expect those biases to influence the shape of the
likelihood, and thus the resulting posterior approximation. A quantification of this
influence is necessary to assess the pertinence of the method proposed in chapter 4.
Assuming this influence is not negligible, deriving a correction of this bias directly on
the posterior approximation would significantly improve the method.

A completely NN likelihood. The approach proposed in 4 has the advantage of
keeping CIGALE’s flexibility, modularity and interpretability, but introduces a lot of
computational overhead. A more efficient method would be to replace the entire
CIGALE pipeline with a single neural network (as proposed in Alsing, Peiris, Leja,
et al., 2020 ) and use it to compute the likelihood. Another possibility would be to
directly train a Neural density estimator (Papamakarios, Pavlakou, and Murray, 2017 ;
Papamakarios, 2019) to approximate the posterior directly. This solution would be less
flexible in terms of the input, would accentuate the Black-box aspect of the process
and require retraining the neural network for each modification of a single module
in the CIGALE pipeline, but would be magnitudes faster and convenient enough
when the problem is to fit millions of observations from the same survey using the
same modeling assumptions. TAMIS would still be useful to explore the parameter
space with few evaluations and the study of a big survey could be done on a personal
computer in a reasonable amount of time.
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Transferring the importance samples. The main disadvantage of our TAMIS
based SED fitting approach when compared to the current grid-based Importance
Sampling is the dependency between the number of spectra simulations required and
the number of galaxies to study. When working with the current version of CIGALE,
the number of simulations only depends on the chosen parameter grid. Once every
simulation is computed and stored, they can be compared with an arbitrary number
of observed SEDs. That is to say, from a statistical point of view, we perform impor-
tance sampling from a common proposal that is the prior and recompute the weight
for each galaxy to analyze. Fitting 1 or 10 observations takes practically the same
time, as the likelihood computation time is negligible once the simulation is done.
This is not the case with TAMIS, as the parameter sampling directly depends on the
observation. This leads to a way more efficient sampling (thousands of simulations
instead of hundreds of millions) for a single observation, but scales linearly with the
number of observations to fit. Since the current extragalactic surveys include millions
of spectra, this linear scaling is problematic.
Nevertheless we could explore the idea to transfer the importance samples from
one fit to the next: If two spectra are close in the observation space, their poste-
rior distributions might be close in the parameter space. Extending this idea, de-
noting x1 and x2 two observations, θ1 ∼ p(θ|x1) and θ2 ∼ p(θ|x2) random variables
from each posterior distribution, we could learn a transformation fx1,x2 (θ1) such that
p( fx1,x2 (θ1)|x2)) ≈ p(θ2|x2). This idea was explored in Paananen, Piironen, Bürkner,
et al., 2019 for the problem of leave-one-out cross-validation. This transformation
would enable a very good initialization of TAMIS requiring less adaptation steps.

Application to new surveys. As the TAMIS-CIGALE combination allows to fit
complex emission models using both spectroscopy and photometry, we will be able
to leverage the data from upcoming observation systems. Such systems include
ESO’s Multi-Object Optical and Near-IR Spectrograph (MOONS) to be installed in the
Very Large Telescope in Chile, as we already collaborate with the MOONS Science
Team to prepare for the data analysis aspect of the program. It is also of interest for
the data analysis of the Subaru Prime Focus Spectrograph (PFS) and the EUCLID
space telescope in which the Laboratoire d’Astrophysique de Marseille is involved.
Developing specific analysis pipelines and models for each program, or combinations
of program, is of crucial importance to successfully learn as much as possible from
those future surveys.
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A. Impact of fluxes SNR on the distribution of
p(xobs|m = 1)
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Figure 1. – Distribution of the predictions p̂(m = 1|xobs) as a function of Ks band SNR
(top panel) and NUV SNR (bottom panel). The different colors are for
different selection in SNR in each panels.

In Fig. 1, we show the distribution of the estimated probability p̂(m = 1|xobs) for the
subsample of COSMOS sources described in Sect. 2.2.2 before applying any SNR cuts.
In this figure, all COSMOS sources with M∗ >108.5 M⊙ and redshift between 0.5 and
1 are used. The 0 value indicates that the delayed-τ SFH is preferred whereas p̂ = 1
indicates that the delayed-τ+flex SFH is more adapted to fit the SED of the galaxy. To
understand what drives the shape of the p̂(m = 1|xobs) distribution, we show in the
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same figure the distributions obtained for different Ks SNR bins (top panel) and NUV
SNR bins (bottom panel). Galaxies with low SNR in either NUV and Ks photometric
band show flatter p̂(m = 1|xobs) distributions. This means that these low SNR sources
yields to intermediate values of p̂(m = 1|xobs) , translating into a difficulty to choose
between the delayed-τ and the delayed-τ+flex SFHs.

B. Parameter tuning for Classification methods
The training catalog is used to optimize the value of φ with a specific algorithm

given ψ, and the validation catalog is used to fit the tuning parameters ψ. To fit φ to a
catalog of simulated datasets

(
mi , xi

)
, i ∈ I , the optimization algorithm specified with

the machine learning model maximizes

∏
i∈I

L
(
p̂(m = 1|xi ); mi

)(
1− p̂(m = 1|xi )

)1−mi

given the value of ψ. Generally, this optimization algorithm is run for several values
of ψ. Then, the validation catalog is used to calibrate the tuning parameters ψ based
on data: the accuracy of p̂ψ(m = 1|x) for many possible values of ψ is computed
on the validation catalog and we select the value ψ̂ that leads to the best results on
this catalog. The resulting output of this two-step procedure is the approximation
p̂ψ̂(m|x), that can be evaluated easily for new dataset x ′. The accuracy of p̂(m = 1|x)
can be measured with various metrics. The most common metric is the classification
error rate on a catalog of

(
m j ,S(x j )

)
, j ∈ J , of |J | simulations. We will rely on this

metric. It is is defined by the frequency at which the datasets x j are not well classified,
i.e.,

1

|J |
∑
j∈J

1
{

m̂ j ̸= m j
}

,
(
1{p̂(m = 1|x j ) ≤ 1/2}

)m j
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C. Results on the tempered targets
Here, we consider that π(x) and qt (x) are normalized densities.
For all β ∈ [0;1], we introduce the normalized density

πβ,t (x) = 1

Ct (β)
πβ(x)q1−β

t (x) where Ct (β) =
∫
πβ(x)q1−β

t (x)dx.

Since the logarithm is a concave function, we have for all β and x,

πβ(x)q1−β
t (x) ≤βπ(x)+ (1−β)qt (x).

Thus, for all β, Ct (β) ≤ 1. Moreover, Ct (0) =Ct (1) = 1.

Proposition 3. The function β→ KL(π∥πβ,t ) is a convex, non increasing function. It
decreases from KL(π|qt ) to 0.

Proof of Proposition 3. Set for all β, k(β) = KL(π∥πβ,t ). We have

k(β) =
∫
π(x) log

π(x)Ct (β)

πβ(x)q1−β
t (x)

dx = (1−β)KL(π∥qt )+ logCt (β).

Hence its first and second derivatives are

k ′(β) =−KL(π∥qt )+ C ′
t (β)

Ct (β)
, k ′′(β) = C ′′

t (β)

Ct (β)
−

(
C ′

t (β)

Ct (β)

)2

. (0.1)

On the other hand, the first and second derivative of Ct (β) are

C ′
t (β) =

∫
πβ(x)q1−β

t (x) log
π(x)

qt (x)
dx =Ct (β)Eβ,t

(
log

π(x)

qt (x)

)
,

C ′′
t (β) =

∫
πβ(x)q1−β

t (x) log2 π(x)

qt (x)
dx =Ct (β)Eβ,t

(
log2 π(x)

qt (x)

)
.

where Eβ,t is the expected value when x ∼πβ,t (x). Thus, using (0.1),

k ′′(β) = Varβ,t

(
log

π(x)

qt (x)

)
≥ 0

and k(β) is a convex function.
Moreover, using (0.1) again, we have

k ′(1) =−KL(π∥qt )+ C ′
t (1)

Ct (1)
=−KL(π∥qt )+

∫
π(x) log

π(x)

qt (x)
dx = 0.

Because of the convexity of k, for allβ ∈ [0,1], k ′(β) ≤ k ′(1) = 0. Thus, k(β) is decreasing
and the proof is completed.
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The proposition given below is similar to the one of Beskos, Jasra, Kantas, et al.,
2016, but the proof we give here deals with finite samples.

Proposition 4. Consider a collection of positive weights wi , i = 1, . . . ,n. The function
β→ ESS(β) defined by

ESS(β) =
(

n∑
i=1

wβ

i

)2 /(
n∑

i=1
w 2β

i

)
is decreasing.

Proof. If x > 0, the derivate of xβ with respect to β is xβ log x. Hence,

d

dβ
ESS(β) =

2g (β)
n∑

i=1
wβ

i(
n∑

i=1
w 2β

i

)2 where

g (β) =
(

n∑
i=1

wβ

i log w j

)
n∑

j=1
w 2β

j −
(

n∑
j=1

w 2β
j log wi

)
n∑

i=1
wβ

i .

Now,

g (β) = ∑
1≤i , j≤n

w 2β
i wβ

j

(
log w j − log wi

)
= ∑

1≤i< j≤n
wβ

i wβ

j

(
log w j − log wi

)(
wβ

i −wβ

j

)
≤ 0,

since, for all a,b > 0,

a2βbβ(logb − log a)+aβb2β(log a − logb) = aβbβ
(
aβ−bβ

)
log

b

a
≤ 0.

D. Proof of Proposition 2
We start with this simple Lemma.

Lemma 5. Let f (x) and g (x) be two densities on the x-space, which partitioned by
E ∪ Ē . Introduce the normalized densities knowing x ∈ E or Ē as

f|E (x) = 1

f (E)
f (x)1E (x), f|Ē (x) = 1

f (Ē)
f (x)1Ē (x)

and likewise for g |E and g |Ē . We have

KL
(

f
∥∥g

)= f (E) KL
(

f|E
∥∥g |E

)+ f (Ē) KL
(

f|Ē
∥∥g |Ē

)+ f (E) log
f (E)

g (E)
+ f (Ē) log

f (Ē)

g (Ē)
.
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Proof. We have

KL
(

f
∥∥g

)= ∫
E

f (x) log
f (x)

g (x)
dx +

∫
Ē

f (x) log
f (x)

g (x)
dx.

Moreover ∫
E

f (x) log
f (x)

g (x)
dx =

∫
E

f (E) f|E (x) log
f (E) f|E (x)

g (E)g |E (x)
dx

= f (E)
∫

E
f|E (x) log

f|E (x)

g |E (x)
dx + f (E) log

f (E)

g (E)

= f (E) KL
(

f|E
∥∥g |E

)+ f (E) log
f (E)

g (E)
.

Likewise, ∫
Ē

f (x) log
f (x)

g (x)
dx = f (Ē) KL

(
f|Ē

∥∥g |Ē
)+ f (Ē) log

f (Ē)

g (Ē)
.

Proof of Propostion 2. Using Lemma 5, KL
(
πβ,t

∥∥∥π̂β,t

)
= KLI +KLI I +KLI I I where

KLI =πβ,t (E)KL
(
πE
β,t

∥∥∥qE
t

)
KLI I =πβ,t (Ē)KL

(
πĒ
β,t

∥∥∥πĒ
β,t

)
= 0

KLI I I =πβ,t (E) log
πβ,t (E)

λ
+ (1−πβ,t (E)) log

1−πβ,t (E)

1−λ .

Likewise, KL
(
πβ,t

∥∥∥qt

)
= KL′

I +KL′
I I +KL′

I I I where

KL′
I =πβ,t (E)KL

(
πE
β,t

∥∥∥qE
t

)
= KLI

KL′
I I =πβ,t (Ē)KL

(
πĒ
β,t

∥∥∥q Ē
t

)
≥ 0 = KLI I

KL′
I I I =πβ,t (E) log

πβ,t (E)

qt (E)
+ (1−πβ,t (E)) log

1−πβ,t (E)

1−qt (E)
.

Moreover, when s ≤ 1, λ= sqt (E) ≤ qt (E), thus KL′
I I I ≥ KLI I I . Finally,

KL
(
πβ,t

∥∥∥π̂β,t

)
= KLI +KLI I +KLI I I ≤ KL′

I +KL′
I I +KL′

I I I = KL
(
πβ,t

∥∥∥qt

)
.

137



Bibliography – D. Proof of Proposition 2

138


	Page de titre
	Affidavit
	Résumé
	Abstract
	Remerciements
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and context
	A primer on galaxy emissions
	Spectral Energy Distribution
	Stellar Emissions
	Nebular emissions
	Dust contributions
	Redshift

	A primer on Bayesian statistics
	Parameter inference
	Model choice and checking


	Bayesian Model Choice for Star Formation History model Selection
	Introduction
	 Constraining the recent star formation history of galaxies using broad-band photometry
	Building upon the method of Ciesla18
	The sample

	Statistical approach
	Statistical modeling
	Bayesian model choice
	The Approximate Bayesian Computation method
	 Building synthetic photometric data

	Application to synthetic photometric data
	 Calibration and evaluation of the machine learning methods on the simulated catalogs
	Importance of particular flux ratios
	Comparison with SED fitting methods based on BIC

	Application on COSMOS data
	Conclusions

	Tempered, Anti-truncated Multiple Importance Sampling
	Introduction
	Calibration of importance sampling
	The tempering
	Anti-trunctation and temporary targets
	Updating the proposal

	Practical aspects of the TAMIS algorithm
	Choosing the inverse temperature  and the anti-truncation s
	Numerical diagnostics
	Stopping criterion and recycling
	Parameter tuning and monitoring

	Numerical Experiments
	On the effect of initialization
	On the effect of dimensionality

	Conclusion

	SED modeling and Neural Approximations
	CIGALE physical modeling
	A modular approach
	The different steps
	Statistical Inference

	Neural Network approximations
	Methodology
	Star population contributions
	Nebular emissions


	Bayesian spectro-photometric SED Fitting
	Introduction
	A general SED fitting Bayesian Model
	Redshift, covariance and binning
	Combining spectroscopy and photometry
	Emission lines
	Censored photometric values
	Sampling algorithm
	Sampling the continuous parameters
	Sampling the discrete parameters

	Inference
	Numerical Results

	Conclusion
	Thesis summary
	Perspective and Future work

	Bibliography
	APPENDIX
	Impact of fluxes SNR on the distribution of p(xobs|m=1)
	Parameter tuning for Classification methods
	Results on the tempered targets
	Proof of Proposition 2


