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Résumé
L’invariance de jauge est un concept fondamental en physique, servant de fondement
mathématique à la dérivation des interactions fondamentales. Dans cette thèse, la
notion d’invariance de jauge est formalisée dans le cadre des automates cellulaires
(AC).

Cette formalisation offre un chemin simple et direct vers les concepts essentiels de
la symétrie de jauge. Usuellement, une symétrie de jauge est tout d’abord motivée par
l’existence d’une symétrie globale. La théorie est ensuite étendue de sorte que cette
symétrie devienne locale. Les AC permettent de formaliser ce processus d’extension de
jauge. Nous montrons dans cette thèse l’équivalence entre l’existence d’une symétrie
globale et l’existence d’une extension de jauge dite "relative". L’universalité des AC
invariants de jauge est ensuite démontrée de deux façons indépendantes : première-
ment via une équivalence avec les AC globalement symétriques, qui sont eux-mêmes
universels, et deuxièmement via une approche entièrement constructive.

Dans le cadre des automates cellulaires quantiques, nous utilisons ici l’invariance de
jauge pour parvenir à une formulation en espace-temps discret de l’électrodynamique
quantique (EDQ) en trois dimensions d’espace. Elle prend la forme d’un circuit
quantique, se répétant à l’infini dans l’espace et le temps, paramétré par un pas de
discrétisation relativiste ∆t =∆x . La stricte causalité de cette théorie est assurée de
façon manifeste, puisque les fils du circuit coïncident exactement avec le cône de
lumière, ce qui d’un point de vue pratique permet aussi d’optimiser la durée de la
simulation en présence de décohérence. De fait, cette construction suit la logique
qui amène à la définition du Lagrangien pour l’EDQ. C’est-à-dire qu’elle démarre par
une marche quantique de Dirac, dont la convergence vers des fermions relativistes
libres est connue. Puis cette marche est étendue au cas multi-particules à travers un
automate cellulaire quantique de telle sorte que les relations d’anti-commutation
des fermions et l’invariance de jauge discrète soient respectées. Pour implémenter
ces contraintes, il est nécessaire d’introduire un champ de jauge. Finalement, une
dynamique électromagnétique est donnée au champ de jauge. Celle-ci peut être vue
comme une marche quantique sur chaque plaquette.

Mots clés : systèmes dynamiques, automate cellulaire, invariance de jauge, électrody-
namique quantique, simulation quantique
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Abstract
Gauge invariance is a fundamental concept in Physics, known to provide mathematical
justification for the fundamental forces. In this thesis, gauge invariance is brought to
the realm of classical and quantum cellular automata (CA).

In a classical setting, it provides a simple yet rigorous route straight to the core
concepts of gauge theories. Usually, gauge theories are built from a theory featuring
a global symmetry, which is then extended to make the symmetry a local one (a.k.a.
gauge-invariant). CA allows for this gauge extension process to be made formal.
We show the equivalence between the pre-existence of a global symmetry and the
ability to perform a "relative" gauge extension. Moreover, gauge invariant cellular
automata are shown to be universal, through two independent proofs: first through
the equivalence with globally symmetric CA which are themselves universal, and
second through an entirely constructive approach.

In the framework of quantum cellular automata (QCA), we use gauge invariance
to construct a discrete spacetime formulation of 3+ 1 quantum electrodynamics
(QED). It takes the form of a quantum circuit, infinitely repeating across space and
time, parameterized by the relativistic discretization step ∆t = ∆x . Strict causality
is manifest as circuit wires coincide with the lightlike worldlines of QED; it follows
that simulation time under decoherence is optimized. The construction replays the
logic that leads to the QED Lagrangian. Namely, it starts from the Dirac quantum
walk, well-known to converge towards free relativistic fermions. It then extends the
quantum walk into a multi-particle sector quantum cellular automata in a way which
respects the fermionic anti-commutation relations and the discrete gauge invariance
symmetry. Both requirements can only be achieved at cost of introducing the gauge
field. Lastly the gauge field is given its own electromagnetic dynamics, which can be
formulated as a quantum walk at each plaquette.

Keywords: dynamical systems, cellular automata, gauge invariance, quantum elec-
trodynamics, quantum simulation
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Introduction

Overview
This thesis may be seen as Physics from a Computer Scientist point of view. Yet, a
Physicist would probably point out that this remains a Computer Science manuscript.
I hope that both would be right. The results presented here aim at lying at the interface
between both disciplines, using vocabulary, concepts and theories from each side,
with the prospect that genuine cross-disciplinarity will be of benefit both Computer
Science (CS) and Physics.

On the one hand, Physics provides CS with novel ideas, symmetries and experiences
which help discover new paradigms. Quantum information and computation is a
clear example of that. On a different scale perhaps, my hope is that gauge invariance,
which is a fundamental symmetry, will eventually yield interesting results and new
paradigms when brought to Computer Science. In short, Physics contributes to
Computer Science.

On the other hand, Computer Science provides a playground for the simulation
of physical systems, which allows for a better understanding of the underlying laws
of nature as well as drawing predictions from them. There are countless examples
of this, from particle physics to astronomy, where simulations were used to predict
or confirm experiments. Cellular automata could be considered as a sandbox in this
playground, ideal for the simulation of problems that can be cast in discrete space
and time. Additionally, Computer Science can also bring about a different viewpoint
or pedagogical approach to the study of some problems. In short, Computer Science
contributes to Physics.

Gauge invariance...

The aspect of Physics under study here are gauge symmetries. Let us introduce
them in a more general context. Modern physics accounts for four fundamental
interactions, namely the electromagnetic, weak, strong and gravitational interactions.
Gauge symmetry provides mathematical justification for these interactions. It requires
of the theory to be invariant under the action of a group of local operators, the keyword
here being “local”. Gauge theories can be defined in both the classical (e.g. for the
gravitational force) and quantum setting. The latter can be found in quantum field
theories (QFT) such as the Standard Model—a model for the electromagnetic, weak
and strong interactions [7].

In the current state of the art, there are usually two ways to simulate gauge theories
(i.e. theories respecting gauge invariance) [8]: (i) using analog simulation, whereby
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a physical system mimics another, or, (ii) through digital simulation, whereby the
evolution of a system is recast as a circuit. In the former, time is continuous and there
is a direct relation between the simulated time (inside the simulation) and the duration
of the simulation (outside the simulation). In the latter however, the evolution is a
circuit, defined through a finite (or countable) number of gates. It thus introduces a
time discretization step. The focus here will be put on the latter.

...in cellular automata

Cellular automata is a classical, discrete space, discrete time, intrinsically local evo-
lution model. It constitutes a well established model of computation in euclidean
space. This thesis will only consider a tiny portion of the vast research field of cellu-
lar automata. The curious reader is recommended one of the many comprehensive
reviews [9, 10, 11]. Starting from a space configuration, that is to say the association
of a state (a.k.a. symbol) in a set Σ to each position in space, it provides a dynamics
through a local circuit applied at every position simultaneously. Locality ensures a
form causality—that is to say no information travels faster than the speed of light—
because the information speed is bound by the circuit speed. Moreover, cellular
automata allow for a complex dynamics to emerge from a local (simple) evolution
rule. Such an emergence is reminiscent of the way a complex physical phenomenon
can be described using a small number of laws. Locality, discrete space and time,
and the emerging complexity of the dynamics makes of cellular automata an ideal
playground for the study of discrete gauge theories, and for their digital simulation.
Cellular automata have a quantum counterpart, namely quantum cellular automata
(QCA) [12, 13] which will also allow for the simulation of discrete quantum gauge
theories.

The work presented here focuses on the definition of gauge invariance in cellular
automata, the study of its properties in a classical setting, and, its use in quantum
settings to simulate quantum electrodynamics (QED).

Scope and aims
Bringing gauge invariance to cellular automata offers many perspectives. In a clas-
sical setting, it contributes to the wealth of symmetries and properties studied for
cellular automata, with the potential to further categorize, understand and use this
computation model in a different context.

In a quantum setting, it provides a new way to define and digitally simulate gauge
theories. This is particularly interesting when considering quantum cellular automata
for the digital simulation of quantum field theories such as QED and quantum chro-
modynamics, two parts of the Standard Model.

12
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Gauge invariance in cellular automata, classical setting.

Cellular automata is a computation model first introduce more than half a century
ago, from the work of Von Neumann [14]. This model is fascinating in that from a
simple definition and construction, it allows complex dynamics and properties to
emerge, and, it retains the essential aspects of the phenomenon that is implemented.
Hence, it provides a natural framework for the study of natural and social phenomena.
There are countless examples of this, such as a model for freeway traffic [15], snow
avalanche [16], or even hydrodynamics [17].

Symmetries and properties in cellular automata. Cellular automata are inherently
homogeneous in that it applies the same local revolution rule everywhere. Considering
this as a computation model, it means that it is intrinsically parallel. Algorithms were
developed to tap into this potential [18, 19]. Global properties and symmetries, often
rooted in physics and mathematics, have also been defined and studied in cellular au-
tomata, allowing for the model to be used in different contexts. For example, concepts
such as energy, potential, flow and conservation laws [20, 21] have counterparts in
cellular automata. So do other essential properties in physics such as reversibility [22,
23] and time-symmetry [24].

Global symmetry: color-blindness. Among these properties and symmetries, the one
closest to gauge-invariance is G–blindness (or color-blindness). In [25] the authors
study G–blind cellular automata, where G is a group of permutation acting on the
space configuration. G–blind cellular automata are globally symmetric under G , i.e.
the global evolution commutes with the application of the same g ∈G at once at every
position. They showed the surprising result that any CA can be simulated by such a
globally symmetric one, when G is the symbol permutations. Globally symmetric CA
are therefore universal [26, 27]: any CA can be simulated by a globally symmetric one.

Local symmetry: Gauge invariance. The first objective here will be to define gauge
invariance in cellular automata. Gauge invariance is similar to G-blindness in that it
asks the evolution to commute with a set of transformations. However, in the case of
gauge invariance the transformations are local: a different g x can now be chosen for
every position x. These transformations are called gauge transformations. Due to the
locality, requiring gauge invariance is stronger than G-blindness. For some sets G such
as the symbol permutation, it even seems impossible to enforce gauge invariance for
nontrivial dynamics: intuitively, all information about the configuration would be lost
in the gauge transformation.

In Physics, the way to do this is to introduce a gauge field, that is to say extend Σ
so that more information can be encoded, either at the nodes (cells) or at the links
between positions. The action of a gauge transformation, and the dependence of
the evolution under the gauge field, are then chosen so that the evolution be gauge
invariant. Asking of a cellular automaton to be extensible into a gauge invariant one is
thus weaker than straight out gauge invariance. This raises a question, because it is
unclear whether the existence of such a gauge extension should be stronger or weaker
than G-blindness. An equivalence between G-blindness and the existence of a specific
type of gauge extension is shown in this manuscript.
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Universality and equivalence. Since G-blind CA are shown to be universal in one
spatial dimension, and, G-blind is equivalent to the existence of a “relative” gauge
extension into a gauge invariant CA: gauge invariant CA also are universal in one
dimension. We give another proof of the universality, without restriction on spatial
dimensions, using absolute gauge extensions. The term absolute refers to a gauge field
being positioned on the lattice sites: the gauge field at position x is used to keep track
of the gauge transformations applied at x, which allows the evolution to effectively
cancel them, and thereby effectively ensure gauge invariance. Another concept, close
to that of universality, is the idea of equivalence. A new symmetry introduces a new
way to compare cellular automata: two distinct cellular automata may be equivalent
up to gauge symmetry. In Physics this redundancy is well known, and the choice of
a specific dynamics is called gauge fixing. These concepts of equivalence and gauge
fixing are formalized, and a preliminary study is conducted here.

Discrete formulation of 3+1 quantum electrodynamics.

Digital simulation of quantum phenomena [28], if done classically, scales exponen-
tially with the size of the system simulated. Hence, in order to scale in size, the use of
quantum mechanics itself is necessary. It may be used for instance in order to find
ground state of Hamiltonians that hold the key to certain molecular structures or
condensed matter properties [29]. In the longer term, however, it may even be used
to simulate the dynamics of these from first principles, based on their constituent
fundamental particles’ dynamics. This has motivated a strand of works on the quan-
tum simulation of quantum field theories (QFT) [30, 31, 8]. All of them rely on a prior
spatial discretization, but some are based on a spacetime discretization, allowing for
a natively discrete account of both relativistic and gauge symmetries. The second
objective of this thesis is to provide a quantum simulation scheme based on a dis-
crete spacetime formulation of 3+1–quantum electrodynamics (QED) using quantum
cellular automata (QCA).

Lattice QFT. Some QFT have well-established discrete counterparts. Lattice gauge
theories appear for instance in condensed matter with applications to quantum error
correction theory (e.g. Kitaev’s toric code [32, 33]). In particle physics, the quantum
simulation of non-Abelian lattice gauge theories, such as chromodynamics, has been
extensively studied [34, 35]. Lattice quantum chromodynamics [36] has been used in
order to obtain numerical values, to then be compared against experimental values
from particle accelerators. This procedure is paradigmatic of the way new physics
is discovered, making simulation take a central role. However, these techniques
are computationally heavy. Finding a way to simulate lattice QFT efficiently and
accurately, using a non-perturbative approach, through a quantum device would be a
game changer.

Continuous-time, analog simulation of QFT. The standard ways to quantum sim-
ulate QFT begin asymmetrically by discretizing space but not time, by means of a
Kogut-Susskind Hamiltonian [37, 38]. Next the matter (fermions) and the gauge field
(bosons) degrees of freedom are encoded as quantum systems on the simulating de-
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vice, whose interactions will mimic those of the Hamiltonian. These interactions are
sometimes implemented as discrete-time unitaries, but even then these are short-time
approximations of the Hamiltonian, as obtained by the Trotter formula under the non-
relativistic ∆t ≪∆x discretization. This approach was recently realized experimentally
on different architectures, for instance using an ion trap architecture [39], or using
Rydberg arrays [40]. Recent, classical but quantum-inspired tensor networks tech-
niques, come to complement this standard approach [41, 42, 43]. These use compact,
approximate description of quantum states [44] such as the multiscale entanglement
renormalization ansatz (MERA) [45, 46], discarding hopefully unwanted information
about the states as they evolve such that the description keeps a manageable size,
whilst attempting to keep track of interesting ingredients, including entanglement.
The tensor network approach, however, mainly focuses on finding low energy states
and will inevitably hit a scalability and precision barrier when dealing with many-body
states and their dynamics.

Relativistic, digital simulation of QFT. In order to quantum simulate QFT in a rel-
ativistic manner, we must place space and time on an equal footing, discretizing
both simultaneously, with parameter ∆t =∆x . Relativistic in this context means that
space and time are considered on an equal basis. This leads to an infinitely repeating
quantum circuit, across space and time, namely a quantum cellular automata (QCA).
The speed of light in the simulated QFT, will then strictly correspond with the ‘circuit
speed’, i.e. the maximal speed allowed by the wires. This contrasts with the earlier men-
tioned analog simulation paradigm, where the∆t ≪∆x assumption yields a non-strict
and much lower speed of light for the simulated QFT, which matches, when things
go well, the Lieb-Robinson bound [47]—a fragile process however [48, 49]. Figure 1
illustrates the circuit and light speed under both simulation paradigms. From a theo-
retical standpoint, relativistic, digital quantum simulation is therefore advantageous:
(i) strict causality is ensured as the circuit wires match the lightlike worldlines of the
simulated QFT ; (ii) space and time are treated on an equal footing as demanded by
special relativity. Those theoretical advantages are expected to transpose in practice,
where a simulation device that suffers from a given typical decoherence time τ, could
simulate the QFT over a period of logical time of the order of τ as well. Experimental
implementation of QCA have already been realized in practice and show promising
results [50, 51].

A natively discrete approach to QFT. In the continuous, relativistic settings, the
standard way to express a QFT is by means of a Lagrangian, i.e. a ‘local cost function’,
which integrated over a possible history provides the action, which is to be minimized.
The use of a particular Lagrangian is justified by means of special relativity and gauge
symmetries. Our aim is instead to express the QFT directly as a family of infinitely
repeating circuits of local quantum gates, parameterized by the time step. In order to
justify the use of a particular QCA we must then, just like in the Lagrangian approach,
begin with a quantum walk (QW) accounting for free fermions and then extend it to
the multi-particle sector QCA by imposing the fermionic anti-commutation relations
as well as discrete gauge invariance, thereby deducing the need for a gauge field. We
can then ‘turn on’ the interaction by providing the gauge field with a simple dynamics.
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Circuit speed Effective light speed
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Figure 1.: (a) In relativistic, digital quantum simulation, the light-like worldlines of the
simulated theory coincides with circuit wires, yielding strict causality. (b)
In non-relativistic, Trotterized analog quantum simulation, light-like world-
lines are approximately recovered through a Lieb-Robinson bound, and are
slower. Thus, the simulation is running slower. As typical decoherence times
match the depth of the circuit, the QFT is simulated over a shorter period.

That is, we must transpose the logics of construction that leads to a particular QFT in
the Lagrangian approach, to a natively discrete setting, whose discretization parameter
can then be made arbitrary small. This ought to provide a rigorous, natively discrete
formulation of QFT.

Two essential advantages of this approach stand out when using it for quantum
simulation of QED. First it is non-perturbative, allowing for the QFT to be simulated
without restriction on the interaction between fields. Second, it offers up to an ex-
ponential a gain in complexity compared to classical methods. Indeed, simulating a
space of size s with ∆x space resolution over d dimensions classically would demand

to have an exponential space O(e sd /∆d
x ) since it grows exponentially with the number

of quantum systems to be simulated. Whereas it can be simulated on a quantum
device in O(sd /∆d

x ).
Closest work. 1+1 QED, also known as the Schwinger model [52], has been recovered

under the relativistic, digital quantum simulation paradigm, by discretizing through
∆t =∆x and following gauge theoretical justifications in [53]. Next, this was general-
ized by [54, 55, 56] in order to allow for arbitrary ∆t ≤∆x , so that both the continuous
spacetime limits (which exists when the interaction is turned off) and the continuous
time discrete space limits (which always exists) may be taken, the latter coinciding
with the Kogut-Susskind Hamiltonian.

From one to three spatial dimensions. Going to higher dimensions poses three
main difficulties, and a possible solution for each is given in this thesis. First, the
implementation of the fermionic anti-commutation relation, e.g. through a Jordan-
Wigner transformation, seems to break locality. Indeed, the phase added when two
fermions (possibly very far apart) exchange positions, without one ever crossing the
other, seems to be fundamentally global. However, with the help of the gauge field,
this fermionic exchange phase can be fully implemented locally.

16



Introduction

Second, in one spatial dimension there is no magnetic contribution to the evolution,
only the fermionic dynamics and an electric contribution. However, going to higher
dimension, a magnetic term (which corresponds to a gauge field dynamics) has to be
defined.

Third, a difference in the fermionic internal degrees of freedom appears between two
and three spatial dimensions. In one and two dimensions, the Dirac equation which
defines the fermionic evolution, is a PDE on a wave function having two complex
amplitudes at each position, corresponding to the internal degrees of freedom for the
fermion. In three spatial dimensions, the Dirac equation is defined on a wave function
having four complex amplitudes at each position. This has to be taken into account in
the QCA formulation of 3+1 QED.

Outline
The first task we set to achieve is the definition of gauge invariance in cellular automata
and the study of its properties. This is done throughout chapter 1.

• Section 1.1 defines cellular automata and its extension with a gauge field.

• Section 1.2 defines gauge invariance as a commutation relation between the
cellular automata and a group of local (gauge) transformations.

• Section 1.3 shows that gauge invariant cellular automata are intrinsically univer-
sal and their connection to G–blindness.

• Section 1.4 defines the notion of equivalence in cellular automata and of gauge
fixing to choose a specific dynamics amongst the equivalent ones.

The second task we set to achieve is the formulation of 3+1 QED in the context of QCA.
This is done throughout chapter 2.

• Section 2.1 tackles the issue of anti-commutation while staying local. It also
introduces gauge invariance in the specific context of QED.

• Section 2.2 presents a version of QED in two spatial dimensions, with a for-
mulation of the free fermionic dynamics, to which are added the electric and
magnetic terms.

• Section 2.3 extends the previous version to three dimensions, increasing the
number of qubits per site from two to four.

These last two sections make use of appendix A which details the path from one
particle QW to non-interacting QCA.

Finally, chapter 3 presents the conclusion of this thesis and how the results it presents
may serve as starting point of further research.
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Some work, done during the thesis, is not included in this manuscript. It deals with
quantum walks that deform geometry in a semi-classical fashion, see [6].
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1. Cellular automata and gauge
invariance

Cellular automata and gauge invariance are two disjoint fields of study, our first goal
is to define them in a unified framework. A cellular automaton is an evolution rule
acting on space configurations. Gauge symmetry is the invariance of the evolution
(here the cellular automaton) under a group of local transformations called gauge
transformations. Hence, gauge invariance can be informally defined as a commutation
relation between the cellular automaton and the group of gauge transformations.
Section 1.1 formally defines cellular automata and how to extend them to add a gauge
field. Section 1.2 formally defines gauge invariance in cellular automata and the way
the extension can be used to ensure gauge invariance.

From a Physics perspective one usually motivates the demand for a certain gauge
symmetry, from an already existing global symmetry. From a mathematical perspec-
tive, the gauge field that then gets introduced for such purpose is often seen as a
connection between two gauge choices at neighboring points. This raises questions
however, because there is no immediate reason why a gauge symmetry should neces-
sarily arise from an already existing global symmetry (one could ask for a certain ad
hoc gauge symmetry from scratch). Nor is there an immediate reason why a gauge
field should necessarily be interpretable as a connection (a gauge field could be made
to hold absolute instead of relative information about gauge choices). In subsection
1.3.1, we prove an original result relating these two folklore perspectives on gauge
theories using purely combinatorial definitions. Namely, we prove that the CA that
admit relative gauge extension are exactly those that have the corresponding global
symmetry in the first place. The term relative refers to a specific type of gauge ex-
tension for which the gauge field is positioned on the links, i.e. it is interpretable as
a connection. This result coupled with the universality of globally symmetric CA in
one spatial dimension ensures the universality of one dimensional gauge invariant
CA, proven in subsection 1.3.1. This universality result is then shown for any dimen-
sion in subsection 1.3.3 using absolute gauge extension, where absolute refers to the
positioning of the gauge field on the sites instead of the links.

Gauge invariance, as any symmetry, introduces some degree of freedom. Two
symmetric cellular automata, that is to say two cellular automata that have the same
dynamics up to gauge transformations, are in a sense equivalent. This is made formal
in section 1.4.

In this chapter, everything is set up in the classical setting, hence it should be
accessible to anyone with a small background in computer science.
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1. Cellular automata and gauge invariance – 1.1. Cellular automata

EXAMPLE: ILLLUSTRATION OF CORE CONCEPTS

Throughout this chapter, this box will provide illustration of the core concepts.
It can be safely skipped.

1.1. Cellular automata
Notations. Here is a list of notations that will be used when considering cellular
automata:

• Zd : underlying structure of space with dimension d ,

• Π: the directions of space—a.k.a. the ports to the edges for a given position,

• N ⊂Zd : neighborhood,

• Σ,∆: alphabets,

• C : set of all configurations,

• cx for c ∈C and x ∈Zd : shorthand for c(x),

• cx:η for c ∈C , x ∈Zd and η ∈Π: shorthand for c(x : η),

• ct ,x for c ∈ C , t ∈ N and x ∈ Zd : shorthand for
(
F t (c)

)
x , where F is the CA

considered,

• cI for c ∈C and I ⊂Zd : shorthand for c : I −→Σ the configuration restricted to a
set I of specific positions,

A cellular automaton (CA) is a dynamical system which operates on a discrete,
uniform space and evolves in discrete time steps through the application—homoge-
neously across space—of a local operator. Let us make this formal.

1.1.1. Space and alphabet
The discrete, uniform space is the grid Zd with d the spatial dimension. CA can be
defined on more general spaces by replacing the grid by bounded degree graphs,
typically Cayley graphs [57], however this is out of the scope of this manuscript.

The alphabet (a.k.a. state space) Σ is a countable—often finite—set. Each posi-
tion in space is associated to a letter of this alphabet. This association is called a
configuration.
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1. Cellular automata and gauge invariance – 1.1. Cellular automata

Definition 1 (Classical configuration). A classical configuration c over an alphabet Σ
is a function that associates a state to each point in Zd :

c :Zd −→Σ. (1.1)

The set of all configurations will be denoted C and for N ⊂Zd a finite neighborhood,
CN is the set of finite configurations restricted to the subspace N .

A configuration should be seen as a picture of the system at a given time. The
following shorthand notation will be used: cI for the configuration c restricted to the
set I —i.e. c : I −→ Σ—for I ⊂ Zd , and, cx = c(x) with x ∈ Zd for the letter written at
position x. The association of a position and its state is called a cell.

For a neighborhood N , it is useful to introduce its radius as being the highest
coordinate of the elements of the neighborhood.

Definition 2 (Radius of a neighborhood). The radius r of a finite neighborhood N ⊂Zd

is defined as:

r = max
x∈N

{
max

i=0,...,d−1
xi

}
. (1.2)

1.1.2. Evolution
Having described the state of the system at a given time through a configuration, it
is now possible to describe its dynamics. The evolution, in the framework of CA, is
realized through a local rule f that takes as input a configuration restricted to the
neighborhood N of a cell, and outputs the next value of the cell.

f :ΣN −→Σ. (1.3)

Applying this local rule at every position simultaneously defines the evolution of a
configuration.

Definition 3 (Cellular Automaton). A cellular automaton with alphabetΣ, dimension d
and neighborhood N is a function F : C −→C which takes a configuration to another
configuration by applying a local rule f : ΣN −→ Σ at every position synchronously
through:

F (c)i = f (ci+N ) (1.4)

where i ∈Zd .

The notation ct ,x describes the value of a cell at position x and time t .

EXAMPLE: TRANSPORT CELLULAR AUTOMATON

An example of a simple cellular automaton is the transport CA. Two bits are
stored at each position, i.e. Σ = {0,1}2. The first bit is moved in the negative
direction whereas the second is moved in the positive direction.
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Throughout the manuscript, the examples will be given in a block circuit form
often referred to as (Margolus-)Partitioned CA [58]. Using Partitioned CA for
the examples allows for a unified framework throughout the manuscript. This
formalism is intrinsically universal for both reversible CA [59, 60] and quantum
CA [61].
In this formalism, the transport CA can be implemented by the successive ap-
plication of two layers of swap, one layer acting as a transport which exchanges
the second bit at position x with the first bit at position x +1, the other layer
exchanging the two bits at each position. This is illustrated in Fig 1.1
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t

t +1

t +2

x x +1 x +2 x +3

Figure 1.1.: Transport cellular automaton T in the partitioned formalism. The
S gate correspond to the swap S : (a,b) 7→ (b, a). The black ‘bit’ at
position x +2 is transported to position x at time t +2.

Using the partitioned formalism, each gate having as many inputs as outputs,
it is easy to check the reversibility of the CA. This will also be useful in the
quantum setting were the local gates will be unitaries.

1.1.3. Extension
In order to introduce gauge invariance in the framework of cellular automata, extend-
ing the previous definition of CA will be required. This extension consist in encoding
information on the links, and not only on the vertices of the graph induced by Zd . To
each vertex x is associated the outgoing edge ports x : η where η denotes a direction
(η and −η are two opposite directions). Defined in this way, η can be considered as
a port number for the vertex x. The set of directions is denoted by Π. Let ∆ be a
countable—often finite—set.

Definition 4 (Extended configuration). An extended configuration c over alphabet
Σ and ∆ is a function that associates an element of Σ and |Π| elements (one for each
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1. Cellular automata and gauge invariance – 1.1. Cellular automata

outgoing edge) of ∆ to each point in Zd :

c :Zd −→Σ×∆Π. (1.5)

Essentially, the extended configurations act both on every vertex (with alphabetΣ) and
on each end of every edge (with alphabet ∆). Hence, for a configuration c, position x
and direction η, cx ∈Σ and cx:η ∈∆. In Physics, the edge configuration is called gauge
field.

We denote by cv the vertex configuration and ce the edge configuration such that c
is fully describe by (cv ,ce ) and

cv : Zd −→Σ (1.6)

ce : (Zd ,Π) −→∆. (1.7)

Similarly, let C = C v ×C e where C v = ΣZd
are the vertex configurations and C e =

∆Z
d×Π the edge configurations.

Remark 1. In most instances, a single value for each edge would be sufficient. In those
cases one can add the requirement that cx,η = cx+η:−η and consider that the value indeed
lives on the edge between vertices x and x +η.

Although one can directly define an extended CA, one will often start from a simple
dynamics and want to extend it, to obtain a symmetry such as gauge invariance or
allow for more complex dynamics to emerge. In that case, the initial dynamics should
still be seen in the extended CA, for instance when the edge configuration is empty,
where empty means that it is uniformly equal to a specific state ϵ in ∆.

Definition 5 (Extended cellular automaton). Let ∆ be a countable set and F a CA over
alphabet Σ. An extension F ′ of F is a CA over alphabet Σ×∆Π such that there exists
ϵ ∈∆ for which the evolution F ′ applied on an extended configuration c, with cx:η = ϵ
for every position x and direction η, gives F ′(c)v = F (cv ).

Notice that when the edge configuration does not evolve in time, the condition
holds for any time step. In such case, F is a sub-automaton of F ′ [62].

EXAMPLE: EXTENSION OF THE TRANSPORT CA

In order to illustrate the concept, let us extend the transport CA. It has alphabet
Σ= {0,1}2. First the configuration is extended so that it stores information on
the port. For the sake of simplicity and clarity, we choose ∆ to be the smallest
unit of information, that is to say a bit: ∆= {0,1}.
Then the dynamics has to be extended. One possibility consists in adding up
the port value to the bit being transported. That is to say, the first bit at position
x +1 will be summed to the bit on port x +1 : −1 and the result is stored in the
first bit at position x. The same goes for the second bit in the other direction.
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The port bits are left unchanged. This is done by changing the first layer of gates
with a new operator S′ which acts as follows:

S′ : (cx ,cx:+1,cx+1:−1,cx+1) 7→ (cx+1 + cx+1:−1,cx:+1,cx+1:−1,cx + cx:+1) (1.8)

where a : +1 and b : −1 denote the bit values stored on the ports. It is indeed an
extension because the port configuration where all bits are at 0 plays the role of
the empty configuration of definition 5 for which the dynamics is simply the
usual transport. This dynamics is illustrated in figure 1.2.
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Figure 1.2.: Extension T ′ of the transport CA.

In this figure, the first bit at position x+2 is first transported to position x+1 but
is then cancelled by the port bit at position x +1 : −1 and is not transported to
position x at time t+2. However, the port bit at position x+1 : −1 is also summed
with the first value at position x which explains the black ‘bit’ at position x and
time t +1. This illustrates that new dynamics are possible through the use of
extension.

1.2. Gauge invariance

1.2.1. Global symmetry
A CA is said to be globally symmetric whenever its global evolution is invariant under
the application of an alphabet permutation—i.e. the application of the same permu-
tation on every cell. Globally symmetric CA are also known as G-blind CA [25] with G
a group of permutations over Σ. For a permutation g ∈G , let g denote its application
at every position simultaneously: g (c)i = g (ci ).

Definition 6 (Globally symmetric). Let F : C v → C v be a CA and G a group of per-
mutations over Σ. F is said globally G-symmetric if, for any g in G, F commutes with
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g —i.e. F ◦ ḡ = ḡ ◦F .

An intuition on globally G-symmetric CA can be given through the designation
color-blind CA. If Σ encodes for a color, then a globally symmetric CA is impervious to
a change in color for G the color permutations.

EXAMPLE: GLOBALLY SYMMETRIC TRANSPORT

Let g be the permutation which flips both bits of a state:

g : (a,b) 7→ (ā, b̄) (1.9)

where 0̄ = 1 and 1̄ = 0. Then the transport C A is globally G-symmetric, for
G = {I d , g }, because it does not depend on the color: it only moves the bits.
Figure 1.3 illustrates this global symmetry.
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(a) Without global transformation
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(b) With global transformation

Figure 1.3.: The transport CA globally symmetric, both figures show the same
dynamics (a bit moving to the left) with opposite colors.

1.2.2. Local symmetry

EXAMPLE: ANALOGY

The intuition behind gauge invariance may be better explained with an analogy.
Say Alice wants to measure a distance. She can choose any unit she likes, be it
the meter, the kilometer, the mile, or any other distance unit. What matters is
that she knows the gauge used for her measurement. Then take Bob who also
wants to measure a distance. He, too, has many units available. When Alice and
Bob want to share their respective measurements, the first solution that comes
to mind is for them to fix a specific gauge (a.k.a. unit) and require they both use
the same (see figure 1.4a). However, this is not stable since a change of gauge
for Alice would mean that Bob will either have to also change unit, or worse, he
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may misinterpret the data he receives from Alice (see figure 1.4b). The simplest
solution is for Alice and Bob to store the conversion rate between their units.
When one changes its unit, it shares the information with the other so that both
can update their conversion rate. Such model can be called gauge invariant,
that is to say, impervious to a change in gauge locally, be it for Alice or Bob. This
is illustrated in figure 1.4c.

Alice (m) Bob (m)

I measured 2
2m

I measured 3
3m

(a) No gauge

Alice (km) Bob (m)

I measured 2
???

(b) Problem with no gauge

Alice (cm) Bob (m)

I measured 2
0.02m

I measured 3
300cm

10−2102

(c) Relative gauge

Alice (cm) Bob (ft)

I measured 2
2cm

I measured 3
3ft

cmft

(d) Absolute gauge

Figure 1.4.: Illustration of the analogy. The unit of measurement is given beside
the name of each party, the gauge field when there is one is in the
box above their head.

At this point, one may wonder why not just send the unit at the same time
as the measurement, this should also give the required gauge invariance as
illustrated in figure 1.4d. The reason for that is that it requires a fixed reference,
and it may not be possible to define such fixed reference. For instance, in
quantum electrodynamics (which we will come to in the next chapter), the
difference of gauge is only a phase which cannot be measured in the absolute
but only relative to another phase. In such cases, one can only store a relative
information—i.e. the ratio between the gauges of Alice and Bob—and not an
absolute information—i.e. the unit itself.

Coming back to cellular automata, what is measured is the configuration at a given
position in space, that is to say an element of the alphabet Σ. A gauge is the way such
element is measured. For instance if Σ has two elements, the first may be mapped
to 0 and the second to 1, or the other way around, changing the ‘meaning’ of the
measurement. In our case Alice at position x may measure using a specific permuta-
tion of Σ as gauge, while Bob at position x +η measures using another permutation.
Gauge information, be it absolute or relative, is then stored using the alphabet ∆ on
the edge they share, at x : η for Alice and x +η : −η for Bob. In order for a CA to be
gauge invariant, its evolution must not depend on the specific choice of gauge of Alice
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of Bob. That is to say, the CA has to commute with gauge transformations. Let us make
this formal.

Local transformation. A CA is said locally symmetric whenever its global evolution
is invariant under the application of a local function at every position. The first
difference with globally symmetric CA is that the function is now allowed to differ
from one position to the next. The second difference is that it can also act on the
surrounding cells.

Definition 7 (Local transformation group). Let N ⊂Zd be a finite neighborhood and
g be a permutation over CN . g x : C −→C will denote the function that acts as g on
the cells at {x + y, y ∈N }, and trivially everywhere else. A local transformation group
G is a group of bijections over CN , such that for any g ,h ∈ G and any x ̸= y ∈ Zd ,
g x ◦hy = hy ◦ g x .

This permutation condition makes it irrelevant to consider which local transfor-
mation gets applied first, so that the product g xhy be commutative. Verifying this
condition can be done by checking over a hypercube with length twice the diameter
of the neighborhood.

Definition 8 (Gauge transformation). Consider G a group of local transformations. A
gauge transformation is a function γ :Zd −→G. It is interpreted as acting over c ∈C as
follows:

γ(c) = (
∏

x∈Zd

γx)(c), (1.10)

where γx is short for γ(x)x , the local transformation γ(x) ∈G applied at position x. Γ
will denote the set of gauge transformations.

Notice how an element γ ∈ Γmay be thought of as a configuration over the alphabet
G . Thus, γx is an element of G which can be applied on a finite configuration, while
γx is its natural extension which can be applied onto a full configuration.

EXAMPLE: GAUGE TRANSFORMATION

In the transport CA, the alphabet is Σ= {0,1}2. Let the transformation g flips
both of the bits simultaneously. Hence, for G = {I d , g }, a gauge transformation
is the application of either g or the identity at every position. This is illustrated
in figure 1.5.
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g g

c

γ(c)

x x +1 x +2 x +3

Figure 1.5.: Gauge transformation

Gauge invariance. Global symmetry in CA amounts to being ‘insensitive’ to a set of
global transformations. A locally symmetric CA, which is referred to as gauge invariant
cellular automata (GICA) is a CA ‘insensitive’ to gauge transformations: performing γ
before F amounts to performing some γ′ after F .

Definition 9 (Gauge invariant cellular automaton). Let F be a CA, G be a local gauge
transformation group, and Γ be the corresponding set of gauge transformations. F is
Γ-gauge invariant if and only if there exists a CA Z over the alphabet G, such that for
all γ ∈ Γ:

Z (γ)◦F = F ◦γ. (1.11)

The reason why γ′ must result from a CA Z , instead of being left fully arbitrary, is
because F is deterministic, shift-invariant and causal, from which it follows that γ′, if
it exists, can be computed deterministically, homogeneously and causally from the
γ applied before. Thus, the above is demanding a weakened commutation relation
between the evolution F and the set of gauge transformations Γ. In practice, in
Physics in particular, Z is often taken to be the identity making gauge invariance a
commutation relation. This will be the case in our examples.

EXAMPLE: TRANSPORT NOT GAUGE INVARIANT

Under the gauge transformations spanned by the local transformation group G
previously defined, the transport CA is not gauge invariant. This is illustrated in
figure 1.6 where the two configurations after the evolution are not related by a
gauge transformation. That is to say, for any γ′, the following holds: γ′◦T ̸= T ◦γ.
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(b) With a gauge transformation

Figure 1.6.: Transport CA not gauge invariant

1.2.3. Gauge extension
In Physics, one usually begins with a theory that explains how matter freely propa-
gates in the absence of forces and which is not gauge invariant. For instance, in the
case of electrons this theory is the Dirac equation, the group of gauge transformation
considered is the group U (1) of rotations, and the Dirac equation is not U (1)–gauge
invariant. Next, one enriches the initial theory with an additional information, known
as the gauge field, to make the resulting theory gauge invariant. In the case of the
electron, the U (1)–gauge invariance is obtained thanks to the addition of the electro-
magnetic field. The resulting theory can still account for the free propagation of the
matter field, but the presence of the gauge field also allows for richer behaviors, e.g.
electromagnetism.

In CA, the initial theory is solely concerned with the dynamics on a discrete space
and gauge invariance is not ensured. The theory thus has to be extended, using a
gauge field, so as to recover gauge invariance. But when is it the case that a theory
is a gauge extension of another, exactly? A rigorous definition of the notion of gauge
extension, and of its relative subcase, is provided here in the discrete context of CA.

To gauge extend a CA, one has to meet three requirements: (i) the CA itself has to be
extended; (ii) the gauge transformations should take into account the newly defined
gauge field, and thus need be extended; (iii) the extended CA has to be gauge invariant
relatively to the extended gauge transformations.

Definition 10 (Gauge extension). Let F : C v −→ C v be a CA. Let Γ be a gauge trans-
formation group with neighborhood N and defined through a local transformation
group G over ΣN .

A gauge extension of (F,Γ) is a tuple (F ′,Γ′) with F ′ an extension of F and Γ′ a gauge
transformation group over CN , such that:

• (Extension) there exists a bijection B : Γ′ −→ Γ such that for any gauge transfor-
mation γ′ ∈ Γ′:

γ′(c)v = γ(cv ) (1.12)
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where γ = B(γ′). In short, the action of the gauge transformation on the ver-
tices has an equivalent in the non-extended case that can be separated from the
transformation on the edges (a.k.a. the gauge field).

• (Gauge invariance) F ′ is Γ′-gauge invariant.

Intuitively, the gauge field’s role is to keep track of which gauge transformation
got applied where, so that enough information is stored to ensure gauge invariance.
There are different ways to do this; for instance one could store the ‘gauge’ at each
point, i.e. which gauge transformation has happened at the specific point. Such
choice corresponds to the absolute information from the previous analogy. Another
choice could be more parsimonious and only store the ‘relative gauge’, i.e. the gauge
difference between two neighboring points, which is the relative information in the
analogy.

The standard choice in the Physics literature is to place the gauge field between the
matter cells only—i.e. on the links between two cells. The mathematical justification
for this choice, is precisely that the gauge field may be interpreted as relative informa-
tion between neighboring matter cells. Geometrically speaking, it may be understood
as a ‘connection’ relating two close by ‘tangent spaces’ on a manifold.

A relative extension of a CA is such that there is an equality (or opposition) relation
for the two values stored at the end of each edge. This can be enforced through a
condition which goes as follows: for any configuration c, any position x and any
direction η, ask that cx:η = cx+η:−η. This is the standard convention, which has the
drawback of fixing a space direction: going back to the analogy, the conversion rate
would be stored for Alice, and, Bob would have to know that he should compute the
inverse opposite rate.

We would like here to argue that another convention is possible: cx:η = c−1
x+η:−η.

In that case, the gauge field associated to a site corresponds to the transformation
that needs to be applied in order to communicate with the neighbor—i.e. it is the
conversion rate in the analogy. This avoids the drawback of the first convention since
there is now a symmetry instead of an antisymmetry in the definition—i.e. there
is no privileged space direction. Moreover, such convention allows for an easier
generalization to graphs where a direction of space may not be simple to define.

Using this convention, it is clear that both ends of one link should transform in-
versely to one-another. But why should one be the inverse of the other? In other words,
why should their product be the neutral element? This is quite natural if one think
of them as conversion rates. Still, it is not a necessity for gauge invariance. However,
lifting this restriction introduces an unnecessary degree of freedom. Hence, this re-
striction is a necessity if one demands ’minimal’ gauge invariance. Another reproach
that could be made is that this convention forces every element in∆ to have an inverse.
While for a gauge extension in general this may be a restriction, we shall see that∆=G
(the local gauge transformation group) for relative gauge extensions. Hence, ∆ is a
group and having an inverse for each of its elements is not a constraint.

In the following, the convention where both ends have inverted values is used.
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Definition 11 (Relative gauge extension). Given a CA F and a local gauge transforma-
tion group Γ of neighborhood 0, we say that a gauge extension (F ′,Γ′) of (F,Γ) is relative
when:

1. F ′ and Γ′ act on the restricted space of configurations such that for any c ∈ C ,
x ∈Zd and direction η,

cx:η = c−1
x+η:−η, (1.13)

2. ∆ = G and ϵ = I d—i.e. the alphabet for the vertex configuration is G, and the
neutral element ϵ (from definition 5) is the identity,

3. for every position x : η, a gauge transformation γ ∈ Γ′ acts on the edge as follows:

γ(c)x:η = γx+η ◦ cx:η ◦γ−1
x (1.14)

Thus, relative extension keeps track of the difference of gauge between two neigh-
boring cells, using the gauge field alphabet. Note that the conventions in equations
(1.13) and (1.14) are coherent—i.e. taking the inverse of the gauge transformation of
one end does indeed give the gauge transformation stored at the other end of an edge.

EXAMPLE: RELATIVE GAUGE EXTENSION OF THE TRANSPORT CA

In the relative gauge extension, the set ∆ is the same as the group of local trans-
formations. In the case of our running example, G has only two elements: the
identity and g . Those can be represented by a single bit, just like in the extended
case represented in figure 1.2. There is however the additional constraint that
both port bits pertaining to the same link be equal since g = g−1.
Figure 1.7 illustrates how gauge invariance is recovered when gauge extending
the transport CA. The left part shows the extended CA where the gauge field is set
to the identity everywhere, hence leading to the transport dynamics. The right
of the figure shows that the dynamics is resilient under gauge transformation
since both final configurations (T (c) and T ◦γ(c)) are the same up to a gauge
transformation.
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Figure 1.7.: Relative gauge extension of the transport CA

Here S′ applies the operator stored in the gauge field to its input bits. It yields
the same result as in figure 1.2 since the gauge field simply stores whether to do
a bit flip.

From absolute to relative extension and vice versa. As mentioned before,
there are two intuitive ways to extend CA: an ‘absolute’ extension where the gauge
field is stored on the nodes of the graph (i.e. for any position x and directions η,ζ:
cx,η = cx,ζ), and, a ‘relative’ extension where the gauge field is stored on the links
between nodes (i.e. for any position x and direction η, cx,η = c−1

x+η,−η). In the absolute
case, let ce

x denote the single gauge field per position.
If only considering relative and absolute extensions as different storage mecha-

nism, both extensions are equivalent. To go from absolute to relative extension, one
possibility is to copy ce

x on half of the edges associated with x. An example in a
two-dimensional space is given in figure 1.8a, with cx,µ = cx,ν = ce

x . From relative to
absolute, the gauge field values carried by the edges may instead be gathered on close
by nodes. Figure 1.8b illustrates one possible choice with ce

x = (cx,µ,cx,ν).

32



1. Cellular automata and gauge invariance – 1.2. Gauge invariance

a a 1
a

a

1
a

b b 1
b

b

1
b

c c 1
c

c

1
c

d d 1
d

d

1
d

(a) Absolute to relative

a
b a 1

a

b

1
b

c
d c 1

c

d

1
d

e
f e 1

e

f

1
f

g
h g 1

g

h

1
h

(b) Relative to absolute

Figure 1.8.: Possible mapping between relative and absolute extensions. The middle
circle corresponds to an absolute positioning while the circles on the edges
are for relative positioning.

However, relative gauge extension may be considered as more than just a storage
mechanism, as developed in definition 11. In that case, gauge transformations of
the gauge field are further constrained through equation (1.14) which is not verified
by every gauge extension. In that context, absolute extension becomes a weaker
requirement than relative extension, since it only constrains the positioning of the
gauge field and not how gauge transformations act on it. Any relative extension can
still be made absolute. However, whether any absolute extension can be made relative,
that is to say verify equation (1.14), is left open here.

1.2.4. About Abelian and non-Abelian gauge symmetry.
In Physics, gauge theories are often referred to as Abelian or non-Abelian, which in fact
refers to the commutativity of the local transformation group G . Here, the definitions
were given in the general case, and work in both the Abelian and non-Abelian cases.

EXAMPLE: NON-ABELIAN GAUGE SYMMETRY FOR THE TRANSPORT CA

First, let us extend the alphabet as follows: Σ = {0,1,2}3, i.e. there are two
trits per site instead of two bits. Figure 1.9 illustrates the transport using this
alphabet.
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Figure 1.9.: Transport over a bigger alphabet

Let S(3) be the (non-Abelian) group of permutations over 3 elements. We define
the non-Abelian gauge transformation group G as the operators which apply
the same permutation simultaneously on both trits:

G = {s ⊗ s | s ∈ S(3) } . (1.15)

Through a relative gauge extension of the transport CA, the gauge field stores
the permutation “difference” between a state and its neighbors and changes
under a gauge transformation as in equation (1.14). Figure 1.10 illustrates how
gauge invariance is ensured thanks to this gauge field.
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Figure 1.10.: Non-Abelian gauge symmetry for transport CA

The gauge transformation g = g−1 swaps black and white colors, leaving the
gray untouched. Hence, there are only two gauge field states in the example:
empty for the identity and full for g . Gauge invariance is ensured through S′

which applies the operator stored in the gauge field to its input trits (same
process as in figure 1.2). It yields the same dynamics as in figure 1.9 with an
additional color swaps, consistent with g , at x +1. Why such model is gauge
invariant is formally developed in the next section where a construction is given
to extend any globally invariant CA (which is the case of the transport) into a
relative gauge extended one.
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1.3. Universality
What is the relationship between globally and locally (a.k.a. gauge) invariant cellular
automata? Does a CA have to be globally invariant to have a gauge invariant extension?
These two questions relating different symmetries are most relevant in Physics, where
one may wonder if a local symmetry is always a generalization of an already existing
global symmetry. It is also an interesting question in itself for the construction of GICA.
As it happens, there is a close relation between relative gauge extension and global
symmetry which is explored in subsection 1.3.1.

Other questions regarding gauge symmetry also come into play when considering it
under the light of cellular automata. Are there universal GICA? Given a CA and a gauge
transformation group, can one always extend it into a GICA? If so, is there a minimal
way to do so? This series of questions find answer in subsections 1.3.2 and 1.3.3.

1.3.1. Globally symmetric CA admits a relative gauge
extension

From a Physics perspective, the gauge symmetry comes from an already existing
global symmetry. We show here that there is an equivalence between being globally
G-symmetric and having a relative gauge extension with respect to G .

Theorem 1 (Global symmetry and relative gauge extension). Let F be a CA over alpha-
bet Σ, G a subgroup of the permutations of Σ, and Γ the set of gauge transformations
defined using G as the group of local transformations. Then the following two properties
are equivalent:

1. F is globally G-symmetric

2. (F,Γ) admits a relative gauge extension (F ′,Γ′) with the identity for the gauge field
evolution, such that F ′ commutes with any element of Γ′ (stronger than gauge
invariance because it does not require a Z -map).

Proof.
(1 ⇒ 2) Let f be the local rule of F with neighborhood N . Let F ′ be a CA with
neighborhood N over the extended configurations constrained as given by equation
(1.13). Let the gauge field evolution be the identity. The trick will be for the local rule
on the vertices to encode every element of the neighborhood into the same ‘gauge
basis’.

For y an element in the neighborhood of a position x, we define a path p from x to
y as the sequence of vertices and the directions between these:

p =
[

(x,η0), (x +η0,η1), . . . ,

(
x +

k−1∑
j=0

η j ,ηk

)]
(1.16)

where y = x +∑k
j=0η j .
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The local rule will use the following scheme, starting by an encoding E , followed by
the local rule f applied on the vertex configuration:

c
E−−−−→ c ′v

f−−−−→ c"v (1.17)

For every position y in the neighborhood N , we define py a path from 0 to y . The
encoding of cy goes as follows:

E(cN )y =
∏

(x,η)∈py

c−1
x:η(cy ) (1.18)

where the product order is
∏k

i=0αi =α0 ◦ . . .◦αk .
The encoding applies every gauge transformation in the path to the element at

position y . This, in a sense allows to put every element in the same ‘gauge basis’: the
one at position 0.

Note that we took an arbitrary path, what matters is that this path stays the same
throughout the construction.

One small remark, if N is not connected—i.e. it contains an element such that there
is no path in the neighborhood from 0 to this element—then the encoding would
require taking as input part of the gauge field outside the neighborhood to create
this path. This has no incidence on the logic of the proof itself, it simply requires an
extension of N .

Having defined the encoding, let us define the local rule f ′ such that the edge
configuration stays unchanged, and the vertex configuration follows equation (1.18):{

f ′(cN )v = f ◦E(cN )

f ′(cN )e
0,η = ce

0,η

(1.19)

with η being any direction.
We shall now prove that (F ′,Γ′)—with Γ′ defined through Eq. (1.14)—is a relative

gauge extension of (F,Γ).
The fact that this is indeed an extension (definition 5) comes directly from the fact

that f ′ acts exactly like f for an empty gauge field because the encoding would then
act like the identity.

This extension was defined as relative. What is left to check is that this extension
has the 2 required properties of a gauge extension from definition 10.

• (Extension) Because Γ′ is defined through definition 11, it is immediate that it
verifies the extension property.

• (Gauge invariance) For any γ′ ∈ Γ′ we will check that γ′ ◦F ′ = F ′ ◦γ′.
Let γ′ be a gauge transformation, then it will transform the vertices and edges as
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follows—using equation (1.14) and γ= B(γ′) through definition 10:

cx −→ γx(cx) (1.20)

cx:η −→ γx+η ◦ cx:η ◦γ−1
x (1.21)

with x a position and η a direction.

For y an element of the neighborhood and py the path from 0 to y , one obtains:

E
(
γ(c)N

)
y =

∏
(x,η)∈py

[
γx+η ◦ cx:η ◦γ−1

x

]−1
γy (cy ) (1.22)

= γ0

[ ∏
(x,η)∈py

c−1
x:η(cy )

]
(1.23)

= γ0 ◦E(cN )y . (1.24)

It is apparent here that only γ0 remains. Every other gauge transformation has
been cancelled out, and this is true for every position y in the neighborhood.
Therefore: (

F ′ ◦γ′(c)
)

0 = f ◦γ0 ◦E(cN ) (1.25)

where γ0 is the global transformation for which γ0 is applied at every position—
here constrained to the neighborhood.

Since F is globally G-symmetric, we have that f ◦γ0 = γ0 ◦ f and therefore(
F ′ ◦γ′(c)

)
0 =

(
γ′ ◦F ′(c)

)
0 . (1.26)

Through translation invariance of the CA, this finishes the proof.

(2 ⇒ 1) Suppose that (F ′,Γ′) is a relative gauge extension of (F,Γ), such that F ′ com-
mutes with any element of Γ′, we shall prove that F is globally G-symmetric (with Γ the
gauge transformation group based on G). Let cv be a vertex configuration and e denote
the empty edge configuration—i.e. identity everywhere. For any local gauge trans-
formation g , we write ḡ the global gauge transformation applying g everywhere—g
denotes both the element of G and G ′ depending on the context:

ḡ ◦F ′(cv ,e) = ḡ (F (cv ), a) (Extension 5)

= (ḡ ◦F (cv ), a′) (Extension 10)

where a and a′ are two edge configuration which depend on F ′ and γ̄, their detail does
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not matter here. And

F ′ ◦ ḡ (cv ,e) = F ′(ḡ (cv ), ḡ ◦e ◦ ḡ−1) (Extension 11)

= F ′(ḡ (cv ),e) (1.27)

= (F ◦ ḡ (cv ),b) (Extension 5)

where b is a gauge field configuration which depends on F ′ and g . The G ′-gauge
invariance of F ′ gives ḡ ◦F ′(cv ,e) = F ′ ◦ ḡ (cv ,e) and thus

ḡ ◦F (c) = F ◦ ḡ (c). (1.28)

Therefore, F is globally G-symmetric.

This theorem gives a guideline when looking for relative gauge extensions which is:
first search for a global symmetry. The construction will now be used to prove that
relative gauge extensions of CA are universal in one spatial dimension.

1.3.2. Universality through relative gauge extension
Results in this subsection are only given for dimension 1. A prerequisite is the notion
of intrinsic simulation and intrinsic universality for CA. The idea behind intrinsic
simulation is that a CA A can reproduce the "same behavior" as the simulated CA
B . Intrinsic universality means that A intrinsically simulates any other CA B . More
formal definitions are given in [63, 64].

Remark 2 (Extensions are intrinsic simulations). An extension as defined through
definition 5, with the identity as the gauge field evolution, is an intrinsic simulation.

Indeed, taking the empty configuration for the edges, and having the gauge field
evolve as the identity, means that the extension evolve exactly as the non-extended
CA, hence it is an intrinsic simulation. However, note that using the non-empty edge
configuration, one can get completely different evolutions.

In [25], Salo and Törmä prove that for any alphabet Σ, there exists an intrinsically
universal globally G-symmetric cellular automaton on ΣZ (note that this is a one
dimensional CA), where G is the group of all permutations of σ. They provide a
construction through which any CA can be encoded into a globally symmetric one—
i.e. any single CA can be simulated by a globally symmetric one. The construction
is built through an encoding of the information in the structure of the configuration
rather than the states. A global transformation which preserve the structure will also
preserve the information encoded inside it. Combining this result and theorem 1 gives
a universality result for relative GICA:

Corollary 1 (One-dimensional gauge invariant universal cellular automata). For any
alphabet Σ and subgroup G of the permutations of Σ, there exists an intrinsically
universal one-dimensional G ′-gauge invariant CA F ′ where G ′ is an extension of G
using definition 10.
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Proof. It is enough to show that any single globally symmetric CA can be simulated
by a relative gauge invariant one, as there exists an intrinsically universal globally
symmetric CA [25, Theorem 1] and simulations are composable.

Let F be a globally G-symmetric CA on ΣZ. From theorem 1, (F,G) admits a relative
gauge extension (F ′,G ′) with the evolution of the gauge field being the identity. Thus,
F ′ is a G ′-gauge invariant CA intrinsically simulates F .

Such result is interesting on two accounts: (i) it shows that universality only requires
relative gauge information and does not need any absolute information; (ii) it shows
that relative gauge extensions, which are the ones usually appearing in Physics, are
universal.

This construction is nevertheless limited to one dimension and gauge transforma-
tion of radius 0. It is unknown, to the best of our knowledge, whether this conditions
can be lifted when restricting to relative gauge extensions. However, when not re-
stricted, one can always extend a CA into a gauge invariant one as we will now show.

1.3.3. Universality through absolute gauge extension
We now prove that any CA can be intrinsically simulated by a gauge invariant one,
with respect to any gauge transformation group, acting on any neighborhood. The
construction of this section uses non-relative gauge extensions which allows getting
rid of the prior requirements that there be a global symmetry or that the gauge trans-
formations be of radius 0. The cost of this construction is a 5-fold increase in the
radius of the local rule of the CA.

Intuitively, the gauge field will be used to keep track of every gauge transformation
applied at a specific point in space, allowing for the evolution to counteract any gauge
transformation.

Theorem 2 (Every CA admits a gauge extension). Any CA F and gauge transformation
group Γ admits a gauge extension (F ′,Γ′). Furthermore, the local rule of F ′ acts as the
identity over the gauge field.

Proof. The proof given here is constructive for any CA over Zd .
Let G be a local gauge transformation group of neighborhood N with radius s and

F be a CA of neighborhood N ′ which has radius s′. We denote r the highest radius
between s and s′. In the following we will consider neighborhoods Rk

x = [x −k · r, x +
k · r ]d of each point x ∈Zd , with [a,b] = {n ∈Z | a ≤ n ≤ b}.

First we use a vertex-centered gauge field, meaning that for any directions η,ν and
position x, cx:η = cx:ν but the two end of an edge can have different gauge field values—
i.e. there is exactly one gauge field value per position. Therefore, ce

x will denote the
only gauge field value for position x and directions are omitted.

Then we choose G as gauge field alphabet and define the effect of a gauge transfor-
mation γx as

γx(ce )x = γx ◦ ce
x (1.29)
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such that the gauge field simply keeps track of every gauge transformation applied
around x. For any other gauge field value, γx has no impact. This condition along with
the extension property of definition 10 fully defines the new gauge transformation
group Γ′.

Next we define a new local rule f ′ over the neighborhood R5
x . The definition below

just states that the local rule applies
∏

i∈R2
x

ce
i
−1 to undo all previous gauge trans-

formations, it then computes the evolution of f , and finally reapplies all the gauge
transformations: {

f ′(cR5
x

)v =∏
i∈R1

x
ce

i ◦ fR2
x

(∏
i∈R4

x
ce

i
−1(cv

R5
x
)R3

x

)
f ′(cR5

x

)e = ce
x

(1.30)

where fR2
x

denotes the function from R3
x to R2

x which computes the temporal evolution
of our automaton.

This local rule can be rewritten globally, using the notation ce to denote both the
gauge field and the gauge transformation which applies ce

x at each position x:

F ′(c)x =
(
ce ◦F ◦ ce−1(cv ),ce

)
x

(1.31)

Let us check that (F ′,Γ′) is a gauge extension:

• (Extended CA 5) When the edge configuration is empty F ′ acts the same as F
over the vertex configuration, and as the identity over the edge configuration.

• (Extension 10) This property was used to define G ′.

• (Gauge invariance 9) For any γ′ ∈ Γ′—where Γ′ is built from G ′ through definition
8—the condition γ′◦F ′ = F ′◦γ′ has to be checked. The reasoning is done globally
to simplify notations and γ= B(γ′) from definition 10:

(
F ′ ◦γ′(c)

)e = (
γ′ ◦F ′(c)

)e (Equation 1.31)

(1.32)(
F ′ ◦γ′(c)

)v = F ′(γ(cv ),γ(ce ))v (Extension 10)

= γ(ce )◦F ◦γ(ce )−1(γ(cv )) (Definition of F ′)

= γ◦ ce ◦F ◦ ce−1 ◦γ−1 ◦γ(
cv)

(Equation 1.29)

= γ◦ ce ◦F ◦ ce−1(cv)
(1.33)

= γ(
F ′(c

)v)
(Definition of F ′)

= (
γ′ ◦F ′(c

))v (Extension 10)
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This theorem allows for any CA to be gauge extended. Hence, there exists an intrin-
sically universal GICA.

Corollary 2 (Gauge invariant universal cellular automata). For any alphabet Σ and
local transformation group G, there exists an intrinsically universal one-dimensional
G ′-gauge invariant CA F where G ′ is an extension of G using definition 10.

Proof. Let F be an intrinsically universal CA and a local transformation group G .
Through theorem 2, there exists F ′,G ′ such that F ′ is a G ′-gauge invariant CA that in-
trinsically simulates F . Through composition of the simulation, F ′ is a gauge invariant
intrinsically universal CA.

1.4. Degrees of freedom
Any symmetry leaves a degree of freedom when it is enforced. For instance, globally
symmetric CA can be defined up to a global transformation without changing the
dynamics itself. In the case of gauge invariance, the degrees of freedom are local,
and this section aims at understanding the degree of freedom it provides through
two notions of equivalence. First, two cellular automata may be equivalent up to a
gauge transformation, i.e. the evolution of one is the composition of the evolution of
the other with a gauge transformation. This equivalence characterizes the degree of
freedom with regard to the evolution. Second, two configurations may be equivalent
up to gauge transformation—i.e. one is the gauge transformed of the other—which
characterizes the degree of freedom with regard to the description of a configuration.

1.4.1. Equivalence of cellular automata and gauge fixing
Given a set of gauge transformations Γ, multiple CA may lead to equivalent dynamics
up to Γ, such CA will be said Γ-equivalent. To define the equivalence, the CA Z from
definition 9 will be specified when stating that a CA is gauge invariant.

Definition 12 (Equivalence of gauge invariant CA). Let F be a gauge invariant CA with
respect to a given Γ and Z . F is simulated by a CA F ′ if and only if for each element
c ∈C there exists γ,γ′ ∈ Γ such that

(γ◦F )(c) = (F ′ ◦γ′)(c). (1.34)

They are equivalent if both simulate each other.

A short version can be stated as follows: F is simulated by F ′ if and only if

∀c ∈C ,∃γ,γ′ ∈ Γ such that (γ◦F )(c) = (F ′ ◦γ′)(c). (1.35)

In practice, F ′ is also gauge invariant with respect to a specific Γ and Z . Adding
a constraint on Z , one may characterize the equivalence of two CA using different
quantifiers and constraints which may be useful for some specific problems.
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Theorem 3 (Equivalence of evolutions). Let F be a gauge invariant CA with respect to
Γ and Z . Let F ′ be another CA over the same alphabet as F . If Z is reversible and F ′ is
gauge invariant with respect to Γ and Z , then these three statements are equivalent:

1. F is simulated by F ′.

2. ∀c,∃γ ∈ Γ such that F (c) = F ′ ◦γ(c).

3. ∀c,∀γ′ ∈ Γ, ∃γ ∈ Γ such that γ◦F (c) = F ′ ◦γ′(c).

Proof. We shall prove the equivalence through three implications.

• Suppose (1), then for c a configuration, we have γ,γ′ ∈ Γ such that (γ◦F )(c) =
(F ′ ◦γ′)(c). But since Γ is a group, it implies that F (c) = (γ−1 ◦F ′ ◦γ′)(c). Since
Z is reversible and F is gauge invariant F (c) = (F ′ ◦ Z−1(γ−1)◦γ′)(c). However,
Z−1(γ−1)◦γ′ is an element of Γ therefore we have proven that (1) implies (2).

• Suppose (2), let c be a configuration and takeγ ∈ Γ such that F (c) = F ′◦γ(c). Since
Γ is a group, for any γ1 ∈ Γ there exists γ3 ∈ Γ such that γ = γ3 ◦γ1. Therefore,
from gauge invariance of F ′, F (c) = Z (γ3) ◦ F ′ ◦ γ1(c) which is equivalent to
Z (γ3)−1 ◦F (c) = F ′ ◦γ1(c) because G is a group. And writing γ2 = Z (γ3)−1 which
is in Γ, we conclude that (2) implies (3).

• The fact that (3) implies (1) is immediate because (3) is a generalization of (1):
both statements differ only by the quantifier before γ. If for any γ the property is
true, then it is also true for one specific γ.

Gauge fixing. With equivalence of CA, one can use many representations for the
same evolution model: two equivalent CA will model the same dynamics up to a gauge
transformation. Therefore, there is a degree of freedom in choosing a specific CA as a
model for a specific dynamics. Choosing this degree of freedom is called gauge fixing.

In other words, the explicit evolution scheme is undetermined because of the gauge
invariance: if a configuration c at times t evolves into a configuration c ′, it is the same
as if it evolved into γ(c ′) for γ a gauge transformation. Gauge fixing is the choice of an
explicit evolution scheme.

EXAMPLE: TWO EQUIVALENT TRANSPORT CA

Instead of the usual gauge invariant transport T ′, one could define the dynamics
T " where the bits are flipped each time they are transported. One can intuitively
see that it is almost the same, except that it completely flips the configuration
with regard to the usual transport CA. In fact, these two automata are equivalent.
This is represented in figure 1.11.
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Figure 1.11.: Equivalent dynamics

The two diagrams both show a bit moving to the left, starting with the same
configuration. However on the right, at each odd time, it looks like a global
transformation has been applied (which corresponds to a gauge transformation
where the same operator γ has been applied everywhere). That illustrates the
possibility to have two equivalent CA. Gauge fixing would be the specific choice
of a dynamics.

1.4.2. Equivalence of configurations
Two configuration may be equivalent up to a gauge transformation.

Definition 13 (Equivalence of configurations). Let c and c ′ be two configurations. They
are said equivalent if there exists a gauge transformation γ such that c ′ = γ(c).

This equivalence implies that there is a redundancy in the state representation. A
simple way to remove this redundancy is to act directly on the equivalence classes
of the gauge transformations, if they exist. Indeed, a GICA maps two equivalent
configurations into two equivalent configuration, by definition of gauge invariance:
for c ′ = γ(c), one has that F (c ′) = F ◦γ(c) = γ′ ◦F (c).

However, when going quantum, such solution does not work any more because of
the superposition of configurations: the superposition of two equivalent configura-
tions that would not interfere normally may do so when considering their equivalence
class. Hence, another approach will be required in that case. It is described in section
2.1.4.2.

In this chapter, gauge invariance was introduced in cellular automata as a commuta-
tion relation (1.11) of the evolution with a group of gauge transformations (definition
8). A notion of (gauge) extended cellular automata was also formalized in definitions 5
and 10. Two types of gauge extension were defined: relative and absolute. The former
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puts a gauge field on the links between sites whereas the latter position it at each site.
Using this distinction, global invariance (definition 6) in a cellular automaton was
shown to be equivalent to having a relative gauge extension (theorem 1). Such result
formalizes the link between global invariance and the possibility to extend the theory
into a relative gauge invariant one. Coupling this equivalence with the universality of
globally symmetric CA in one spatial dimension, the universality of one-dimensional
gauge invariant CA was proven in corollary 1. This universality result was then gener-
alized through a construction using an absolute gauge extension in theorem 2. Finally,
the degrees of freedom left by gauge invariance were studied, and the equivalence
between gauge invariant cellular automata was formalized in definition 12.

From classical to quantum

This chapter explored some classical properties of gauge invariance in cellular au-
tomata. The following chapter will focus on the quantum aspect, and how to use
gauge invariance in quantum cellular automata for simulation purposes.

44



2. Quantum cellular and gauge
invariance

The aim of the present chapter is to define the first natively relativistic discrete space-
time formulation of a ‘real-life’ QFT, namely 3+1 QED. There are three main challenges
to this formulation: the implementation of the fermionic anti-commutation in a local
manner, the definition of a magnetic term which did not appear in one dimension,
the extension of the model to spin-dimension 4 when going from one or two spatial
dimensions to the third.

Implementing the anti-commutation of fermions. Digital quantum simulation has
been very successful at describing relativistic particles in different fields [65, 66, 67],
but only a handful of works deal with interacting QFT with more than one particle
[68, 69, 53, 56]. One of the difficulties is that in order to encode multiple fermions
as qubits, one must enforce the anti-commutation of their creation/annihilation
operators, e.g. through the Jordan-Wigner transformation. However, this method
has all the looks of breaking locality, especially as soon as one considers more than
one dimension of space. This was even formulated as a no-go result [70], stating
that any QCA implementing the fermionic anti-commutation relations in two spatial
dimensions would have very high internal space dimension, as in [71, 72]. But in
the tensor network community, anti-commutation, locality and low internal space
dimensions do coexist, at the cost of introducing a cut-off for the gauge field and
two extra fermions per links, called rishons. And in lattice gauge theory, a solution
where the fermionic degrees of freedom are replaced by bosonic ones at the cost of
introducing two fermionic degrees of freedom, in addition to the bosonic ones, has
been developed [73]. A similar idea, where just the parity of the gauge field is treated
as a fermion, was hinted at in Farrelly’s PhD thesis [74]. The first main contribution of
this chapter is to combine these ideas and formalize them in the discrete spacetime
setting. We introduce no extra field, but replicate the gauge field information once
for each direction, as in the previous chapter. For each direction, its parity provides
a rishon. Then the Jordan-Wigner transform needs only be implemented locally, at
the level of each site. This does allow for a QCA of low internal space dimension,
while enforcing fermionic anti-commutation. Ultimately, the reason why the no-go
result [70] is circumvented is the presence of the gauge field, as well as our focus on
expressing the dynamics in qubit-local manner—the creation/annihilation operators
remain qubit non-local.

Fully discrete magnetic contribution. In QED’s gauge invariant states, the fermions
are the sources of the gauge field lines. In one spatial dimension there is no magnetic
term, lines are confined to the unique dimension, and thus they have no dynamics
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[53]. But in two and three spatial dimension, the Hamiltonian has an added magnetic
term, a.k.a. the plaquette term. The second main contribution of this chapter is to
introduce two possible discrete spacetime counterparts to the plaquette term. The
first proposition works by simply integrating the plaquette term in the Fourier basis.
But it requires a prior cut-off in the gauge field degrees of freedom, and allows for
arbitrary changes in values within that cut-off, even in one time step. The second
proposition takes the form of a local quantum walk (QW)-like evolution in the local
gauge field degrees of freedom of each plaquette. It does not require a prior cut-off
and ensures that gauge field values only change one step at a time. Both constructions
agree in the continuum limit.

Further spin-dimensions. In one and two spatial dimensions, the Dirac equation is a
PDE on a wave function having two complex amplitudes at each site, corresponding
to internal degrees of freedom spin up and down. In the multi-particle settings, and
because there can be no more than one particle in a given state and site, the four
occupation numbers of a site are thus: no fermion, one spin up, one spin down, and,
both a spin up and a spin down. This could be encoded as 2 qubits in the Dirac QCA.
Going to three spatial dimensions, the Dirac equation now requires four complex
amplitudes to encode the fermionic degrees of freedom. In the multi-particle settings,
the number of qubits per site has then to be increased from 2 to 4 qubits, which makes
the QCA a bit more involved. The third main contribution is to provide a construction
of the 3+1 QED QCA that matches the Dirac QW when restrained to the one particle
sector, and implements the electric and magnetic contributions.

The chapter is organized as follows. In section 2.1 we set the conventions and
show how to enforce the fermionic anti-commutation relations while allowing for a
qubit-local definition of the gauge invariant operators that govern the dynamics of
the theory. In section 2.2, we gradually derive the gauge invariant dynamics of the
2+1 QED QCA starting from the Dirac QCA and adding the electric and magnetic
contributions—the simpler, two spatial dimensional case makes the argument clearer.
In section 2.3, we reach the 3+1 QED QCA. Finally, we provide some perspectives.

2.1. Enforcing anti-commutation, locality and
gauge invariance

In QFT, fermionic particles are represented by means of operators that annihilate
them or create them at position x. These are denoted ax and a†

x respectively. Ap-
plying the annihilator on quantum states takes occupation number |1〉x to |0〉x and
produces the null vector otherwise. The creator takes |0〉x to |1〉x and produces the
null vector otherwise. Moreover, these operators are required to have the specific
anti-commutation relations {ax , a†

y } = δx,y where {·, ·} denotes the anti-commutator
and δ the Kronecker delta.

In order to obtain a quantum numerical scheme for a QFT, to be run on a generic
quantum computer or some specific-purpose quantum simulation device, we need
to encode the QFT degrees of freedom as a lattice of qubits. The natural point of
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departure is to interpret the occupation number degrees of freedom at each site
(i.e. |1〉x vs |0〉x), as qubits, thereby obtaining a lattice of qubits. But enforcing the
fermionic anti-commutation whilst remaining qubit-local is non-trivial.

In subsection 2.1.2, the impact of the fermionic anti-commutation relations upon
the qubit-local operators that are needed to express the discrete time dynamics, will
be carefully worked out. In order to obtain them, however, we crucially rely on there
being a gauge field, as demanded by gauge invariance.

2.1.1. Introducing the gauge field
The QED Lagrangian is built by considering the Dirac Lagrangian for free fermions,
and then demanding that it be gauge invariant, under U (1) gauge-transformations.
This is impossible without introducing a new field, the gauge field, which in the case
of QED turns out to be the electromagnetic field.

We will proceed in the same manner in the discrete. One reason for that is that in
numerical analysis, the fact that a numerical scheme conserves the original symme-
tries is desirable and seen as a good sign of numerical stability. The other reason is
more fundamental, as we aim to show that a natively discrete spacetime formulation
of QED is just as legitimate at the Lagrangian formulation, in terms of its justification
through symmetries.

Discrete gauge invariance in the context of classical cellular automata has been for-
malized in chapter 1. Together with the treatment of gauge invariance upon quantum
walks [75, 76, 77, 78] and in lattice gauge theories in general [8], it inspired [53] to
formulate discrete gauge invariance in the context of QCA in the following manner.

Discrete gauge transformations are again based on a group of local transformations,
based upon the U (1) group in the case of QED. Let ϕ :Z→R, we denote by gϕ the dis-
crete gauge transformation which associates, to each position, a local transformation
parametrized by ϕ(x). The local transformation at position x is denoted gx,ϕ and is
defined as

gx,ϕ : |l〉x 7→ e i lϕ(x) |l〉x (2.1)

|l〉y 7→ |l〉y if x ̸= y. (2.2)

Thus, a discrete gauge transformation gϕ is essentially a space-dependent phase, ex-
empt of any regularity requirement, applied at every point of the lattice in accordance
to the occupation number at that point. To be gauge invariant, the evolution of a QCA
must commute with every possible gauge transformation.

The Dirac QCA, which solely describes moving fermions, is not gauge invariant
unless we introduce the gauge field. The argument boils down to the elementary fact
that, as a particle moves from position x to the adjacent position x +η,

|1〉x ⊗|0〉x+η 7−→ |0〉x ⊗|1〉x+η (2.3)

the discrete gauge transformation will trigger a phase ϕ(x) applied beforehand, or

47



2. QCA and gauge invariance – 2.1. Anti-commutation, locality, gauge invariance

a phase ϕ(x + η) applied afterwards. It follows that fermionic transport does not
commute with gauge transformations.

In order to fix this, one needs to introduce a gauge field on the link between x
and site x +η. A gauge field is much like a doorman/bouncer counter. It adds one
whenever a particle crosses the link. Actually, in the present chapter, we will not place
just one bouncer per link, but two. The bouncer at x : η counts positively the number
of fermions leaving x towards the link, and negatively those entering x from the link.
The bouncer at (x +η) : −η counts negatively the number entering x +η from the link,
and positively those leaving x +η towards the link. Now fermionic transport acts as

|1〉x |l〉x:η⊗|−l〉(x+η):−η |0〉x+η 7−→ |0〉x |l +1〉x:η⊗|−l −1〉(x+η):−η |1〉x+η (2.4)

and the discrete gauge transformation triggers a phase (l+1)ϕ(x)−lϕ(x+η) regardless
of whether it is applied before of after the move.

The restriction that the two gauge fields of a link be opposite of signs, as in |l〉x:η

and |−l〉(x+η):−η, is quite natural if we think of them as holding the total number of
fermions that went through the link, ever, and nothing else. Still, this restriction is
not a necessity for gauge invariance. However, lifting the restriction is not a necessity
for gauge invariance either, and in fact it would introduce an unnecessary degree
of freedom: one that is not demanded by gauge invariance. So, this restriction is a
necessity if we further demand ‘minimal’ gauge invariance, i.e. demand the gauge
field to be obtained as a relative gauge extension (definition 11). We impose it across
the grid, except of course at the boundaries, where it becomes vacuous.

Placing two gauge fields per link is non-standard but has several advantages: (i)
each gauge field is well localized on a site, (ii) it gauge transforms in the same way as
the fermions on that site, (iii) this is number conserving, (iv) it will help to implement
the fermionic anti-commutation relations in a qubit-local manner as we will now see.

2.1.2. (Anti-)commuting annihilation and lowering operators
Consider the lattice generated by unit vectors describing the space directions. These
vectors are denoted µ, ν and ρ, in two spatial dimensions, only µ and ν are used.

At each lattice site x lies a group of d qubits, each stating whether a fermion in mode
j ∈ 0. . . (d −1) is present at the site. The possible modes correspond to the number of
internal degrees of freedom (e.g. the spin) of the fermions. This encoding captures
the Pauli exclusion principle as there cannot be two fermions in the same mode at the
same site.

Each link (x,η) (where η ∈ {±µ,±ν,±ρ}) has a gauge field attached at both ends:
one at x : η and the other a (x +η) : −η. Each gauge field lives in the Hilbert space of
integers HZ.

The electric counting operator, denoted Ex,η, is the observable corresponding to the
gauge fields, i.e. is acts as Ex,η |l〉x:η = l |l〉x:η and as the identity elsewhere. Following
the restriction that the two gauge fields of a link be of opposite signs, one has Ex,η =
−Ex+η,−η. The lowering operator of the gauge fields is rx,η. It acts as rx,η |l〉x:η =

48



2. QCA and gauge invariance – 2.1. Anti-commutation, locality, gauge invariance

|l −1〉x:η. Most often we need to act on both the gauge fields of a link with Ux,η =
rx,ηr †

x+η,−η. One has Ux,η =U †
x+η,−η—i.e. lowering the gauge field value attached to

one site corresponds to raising on the other site.
The operator Z denotes the parity observable. On a qubit, it acts like the Pauli Z , on

a gauge field it acts as Z |2l〉 = |2l〉 and Z |2l +1〉 =−|2l +1〉.
All the operators described so far are qubit-local. We will now represent the fermi-

onic annihilation ax, j and gauge lowering operators Vx,η of the QFT as products of
these qubit-local operators. These implementations will not be qubit-local, as we
must meet the desired (anti-)commutation relations:

{ax, j , a†
y,k } = δx,yδ j ,k (2.5)

[Vx,η,Vy,ζ] = 0 (2.6)

[Vx,η, ay, j ] = 0 (2.7)

with {·, ·} the anti-commutator, [·, ·] the commutator and δx,y corresponding to Kro-
necker delta.

These commutation relations are commonly implemented by means of the Jordan-
Wigner (JW) transform. This will be the basis for the redefined version of the operators.
However, in 2+1 and 3+1 dimensions, it leads to non-locality of the operators ex-
pressing dynamics if used as is [70]. In order to fix this we use the idea hinted in [74]
and treat the parity of the gauge fields as a fermion. Moreover, we use two gauge fields
per link, so that this parity plays the role of the rishons of lattice gauge theories.

Let ≺ denote a so-called JW order between all the registers, whether qubits or gauge
fields. The sole requirement to make this work is that the registers at any given site be
contiguous, i.e. they follow each other. In what follows, the examples will use, quite
arbitrarily, that for a given site x, the gauge fields are ordered as (x,0) ≺ . . . ≺ (x,d−1) ≺
x : −µ≺ x :µ≺ x : −ν≺ x : ν≺ x : −ρ ≺ x : ρ.

We define fermionic creation and gauge lowering operators based on this order. Let
x be a position, j a mode and η a direction:

a†
x, j = |1〉x, j 〈0| ∏

y≺(x, j )
Zy (2.8)

sx,η = rx,η
∏

y≺x:η
Zy (2.9)

Vx,η =sx,ηs†
x+η,−η (2.10)

=rx,η

 ∏
y∈

[
x:η,x+η:−η

[ Zy

r †
x+η,−η (2.11)

where
[

a,b
[

is short for
[

min{a,b},max{a,b}
[

. When x : η ≺ x +η : −η, this interval
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does not contain x+η : −η and rx+η,−η commutes the Zy s leading to the simplification:

Vx,η =Ux,η
∏

y∈
[

x:η,x+η:−η
[ Zy (2.12)

The following fermionic anti-commutation relations are ensured by the JW trans-
form:

{ax, j , a†
y,k } = δx,yδ j ,k (2.13)

{sx,η, s†
y,ζ} = δx,yδη,ζ (2.14)

{ax, j , s†
y,η} = 0. (2.15)

Since Vx,η composed of two fermion-like operators, equations (2.14) and (2.15)
yield:

[Vx,η,Vy,ζ] = 0 (2.16)

[Vx,η, ay ] = 0. (2.17)

Hence, the (anti-)commutation of equations (2.5), (2.6) and (2.7) are ensured.

2.1.3. Local evolution operators
The annihilator operators a†

x, j are not qubit-local since they have an infinite trail of Z
operators. The lowering operators Vx,η can also be non-local as soon as both ends of
the link are far apart in the JW order. However, these operators are never required by
themselves, except perhaps for some initial state preparation, but Physics does not
demand that state preparation be a local process and a†

x, j could then be understood
as the result of a particle having come from infinity to its current position through
local evolutions.

What matters physically is the evolution be local. One can then consider the opera-
tors allowing to express that: (i) the movement of fermions be that of free fermionic
QCA, (ii) the gauge field induce an interaction between fermions—through the electric
contribution, (iii) the gauge field vibrates—through the magnetic contribution. From
these requirements, we can define the simplest qubit-local gauge invariant operators
(checking for gauge invariance is postponed till subsection 2.1.4):

a†
x, j ax,k (2.18)

a†
x+η, j V †

x,ηax,k (2.19)

E 2
x,η (2.20)

Px,η,ζ =Vx,ηVx+η,ζV
†

x+ζ,ηV †
x,ζ (2.21)

with η,ζ ∈ {µ,ν,ρ} and η ̸= ζ. Eq. (2.18) represents a mass term (i.e. a fermionic only
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operation, local to a site, changing the mode), Eq. (2.19) corresponds to a fermion
hopping term (i.e. a transport), Eq. (2.20) is the squared electric operator defined
previously, and Eq. (2.21) is a plaquette term (i.e. a local vibration of the gauge field).
The QED QCA evolutions will be defined based upon those operators.

The mass term is qubit-local because it involves a pair of fermionic operators acting
on the same site, cancelling out the trail of Z outside this site. The electric term is
qubit-local by definition.

For the hopping term, developing the gauge field operators Vy,γ as pairs sy,γ and

s†
y+γ,−γ on each side of the link, allows for the pairing of an annihilator a with an s on

each site, thus cancelling out the Z outside the sites:

a†
x+η, j V †

x,ηax,k = a†
x+η, j (sx+η,−ηs†

x,η)ax,k (2.22)

= (a†
x+η, j sx+η,−η)(s†

x,ηax,k ) (2.23)

=|1〉x+η, j 〈0|

 ∏
y∈

[
(x+η, j ),x+η:−η

[ Zy

rx+η,−ηr †
x,η

 ∏
y∈

[
(x,k),x:η

[ Zy

 |0〉x,k 〈1|

(2.24)

=|1〉x+η, j 〈0|

 ∏
y∈

[
(x+η, j ),x+η:−η

[ Zy

U †
x,η

 ∏
y∈

[
(x,k),x:η

[ Zy

 |0〉x,k 〈1| . (2.25)

The remaining Z operator are on sites x and x +η. The qubit-locality of the pair
s†

x,ηax,η, which is the local brick from which the hopping term is built, is illustrated in
figure 2.1.

x
ax

ν

µ

(a) ax+ν

x

s†
x,ν

(b) s†
x,ν

x

s†
x,νa†

x

(c) s†
x,νax

Figure 2.1.: Visualization of locality for s†
x,νax . The colored dots and lines corresponds

to Z operators acting on fermions and gauge fields respectively. Each
operator Zy is applied exactly twice which cancels them out except on site
x. Here, only one fermionic mode per site is represented, for clarity.

For the plaquette term—i.e. Eq. (2.21)—notice that it forms a small loop of four
gauge field links. Developing each gauge operator Vy,γ as a pair sy,γ and s†

y+γ,−γ, and
reordering the resulting product of s, one gets two anti-commuting operators per site.

51



2. QCA and gauge invariance – 2.1. Anti-commutation, locality, gauge invariance

Hence, the string of Z cancels out outside the site they act on:

Px,η,ζ =Vx,ηVx+η,ζV
†

x+ζ,ηV †
x,ζ (2.26)

=
(
sx,ηs†

x+η,−η
)(

sx+η,ζs†
x+η+ζ,−ζ

)(
sx+η+ζ,−ηs†

x+ζ,η

)(
sx+ζ,−ζs†

x,ζ

)
(2.27)

=−s†
x+η,−η

(
sx+η,ζs†

x+η+ζ,−ζ
)(

sx+η+ζ,−ηs†
x+ζ,η

)(
sx+ζ,−ζs†

x,ζ

)
sx,η (2.28)

=−
(
s†

x+η,−ηsx+η,ζ

)(
s†

x+η+ζ,−ζsx+η+ζ,−η
)(

s†
x+ζ,ηsx+ζ,−ζ

)(
s†

x,ζsx,η

)
(2.29)

where the minus sign that appears between the second and third line comes from the
anti-commutation of sx,η with the other 7 operators. In order to better understand
the structure of the local, minus signs in this term, it is helpful to break down the
plaquette term into constituent, smaller qubit-local operators. Indeed, let us define
the corner operators cx,η,ζ as

cx,η,ζ = s†
x,ζsx,η (2.30)

= r †
x,ζ

 ∏
y∈

[
x:η,x:ζ

[ Zy

rx,η. (2.31)

These are local to x since the Z are on site x. A corner operator would be the result of a
fermion having come from direction η, passed through site x, and left in the direction
ζ. The plaquette operator can then be redefined as:

Px,η,ζ =−cx+η,ζ,−η cx+η+ζ,−η,−ζ cx+ζ,−ζ,η cx,η,ζ. (2.32)

Thus, equations (2.25) and (2.32) allow the fermionic and bosonic dynamics terms
(left-hand-side of the equations) to be expressed into simpler qubit-local dynamics
(right-hand-side).

Notice that the only dependency of these local evolution operators w.r.t the JW order,
is per-site, and could be made independent from one site to the other.

2.1.4. Gauge invariance
Gauge invariance was introduced in section 2.1.1 to motivate the need for a gauge
field. It remains to be checked that above-defined local evolution operators are gauge
invariant.

2.1.4.1. Gauge invariant operators

Gauge invariance is the commutation with gauge transformations, i.e. with space-
dependent phases proportional to the occupation number. Because the annihilation
and lowering operators act on the occupation number, they individually are not gauge
invariant. However, the local evolution operators combine multiple annihilation and
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lowering operators so that the total occupation number of a site is unchanged (only
the distribution inside the site is modified)—e.g. a fermion leaving site x will reduce
the number of fermions by one, but increase one of the gauge fields at x by one.

In order to formally show this, let us first write the commutation relations for the
individual annihilation operators ax, j

ax, j gϕ = e iϕ(x)gϕax, j (2.33)

a†
x, j gϕ = e−iϕ(x)gϕa†

x, j , (2.34)

the gauge field operators on half-links sx,η

sx,ηgϕ = e iϕ(x)gϕsx,η (2.35)

s†
x,ηgϕ = e−iϕ(x)gϕs†

x,η, (2.36)

and the gauge field operators Vx,η

Vx,ηgϕ = e i (ϕ(x)−ϕ(x+η))gϕVx,η (2.37)

V †
x,ηgϕ = e i (−ϕ(x)+ϕ(x+η))gϕV †

x,η. (2.38)

Based on these commutation relations, we derive those of the local evolution opera-
tors. For the mass term:(

a†
x, j ax,k

)
gϕ = a†

x, j

(
ax,k gϕ

)
(2.39)

= a†
x, j

(
e iϕ(x)gϕax,k

)
(2.40)

= e iϕ(x)
(
a†

x, j gϕ
)

ax,k (2.41)

= e iϕ(x)
(
e−iϕ(x)gϕa†

x, j

)
ax,k (2.42)

= gϕ
(
a†

x, j ax,k

)
. (2.43)

Hence, the mass term is gauge invariant.
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For the hopping term:(
a†

x+η, j V †
x,ηax, j

)
gϕ = a†

x+η, j V †
x,η

(
ax, j gϕ

)
(2.44)

= a†
x+η, j V †

x,η

(
e iϕ(x)gϕax, j

)
(2.45)

= a†
x+η, j e iϕ(x)

(
V †

x,ηgϕ
)

ax, j (2.46)

= a†
x+η, j e iϕ(x)

(
e i (−ϕ(x)+ϕ(x+η))gϕV †

x,η

)
ax, j (2.47)

= e iϕ(x+η)
(
a†

x+η, j gϕ
)

V †
x,ηax, j (2.48)

= e iϕ(x+η)
(
e−iϕ(x+η)gϕa†

x+η, j

)
V †

x,ηax, j (2.49)

= gϕ
(
a†

x+η, j V †
x,ηax, j

)
. (2.50)

Hence, the hopping term is gauge invariant.
The electric term does not change the occupation number, hence it is directly gauge

invariant:

Ex,ηgϕ = gϕEx,η. (2.51)

As for the plaquette term, we start by showing the gauge invariance of the corner
operator:

cx,η,ζgϕ = s†
x,ζsx,ηgϕ (2.52)

= s†
x,ζ

(
e iϕ(x)gϕsx,η

)
(2.53)

= e iϕ(x)
(
s†

x,ζgϕ
)

sx,η (2.54)

= e iϕ(x)
(
e−iϕ(x)gϕs†

x,ζ

)
sx,η (2.55)

= gϕ
(
s†

x,ζsx,η

)
(2.56)

= gϕcx,η,ζ. (2.57)

Since the plaquette term is a product of four corner operators, its gauge invariance is
ensured.

The QCA operators that will be defined in the next sections are linear combination
or exponentials of the hopping, electric and magnetic terms. Therefore, their gauge
invariance is ensured by the individual gauge invariance of those terms.

2.1.4.2. Gauge invariant states

In a gauge theory, gauge transformations should not be observable. Let O be an ob-
servable, ρ a density matrix representing a state and gϕ a gauge transformation. That

gauge transformations should not be observable amounts to asking that Tr
(
Ogϕρg †

ϕ

)
=
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Tr
(
Oρ

)
. There are two common ways to enforce this: namely to restrict the set of ob-

servables to the gauge invariant ones [O , gϕ] = 0, so that Tr
(
Ogϕρg †

ϕ

)
= Tr

(
gϕOρg †

ϕ

)
=

Tr
(
g †
ϕgϕOρ

)
= Tr

(
Oρ

)
or to restrict the set of states to the gauge invariant ones, so

that Tr
(
Ogϕρg †

ϕ

)
= Tr

(
Oρgϕg †

ϕ

)
= Tr

(
Oρ

)
. We opt for the second, demanding that for

every gauge transformation,
gϕρ = ρgϕ. (2.58)

Let us draw the consequences of this demand that the states be gauge-invariant. Any
density matrix ρ is a convex linear combination over pure states. In the case of a
pure state

∣∣ψ〉〈
ψ

∣∣, this commutation relation amounts to forbidding superposition
across any two eigenspaces of a gauge transformation, so that gϕ

∣∣ψ〉〈
ψ

∣∣= e iλ
∣∣ψ〉〈

ψ
∣∣=∣∣ψ〉〈

ψ
∣∣e iλ = ∣∣ψ〉〈

ψ
∣∣gϕ with e iλ the eigenvalue of the eigenspace of gϕ to which |ψ〉

pertains. In other words, |ψ〉 =∑
c∈Sαc |c〉 is a superposition of particular basis states

|c〉, i.e. taken in some subset S such that for all ϕ there exists λ, such that for all
c ∈ S, gϕ |c〉 = e iλ |c〉. Let f (x) denote the sum of the occupation numbers, for both
the fermions and the gauge fields, at each site x of c. Because the λ = ∑

x ϕ(x) f (x)
and ϕ(x) is arbitrary, the gauge-invariance therefore imposes that f (x) be the same
for c ∈ S. Thus, gauge-invariance demands that there exists some fixed, classical
occupation number function f (x), and that pure states be considered physical if and
only if, at each position x, the occupation number operator yields f (x):( ∑

η∈{±µ,±ν,±ρ}
Ex,η+

∑
j∈0...(d−1)

|1〉x, j 〈1|
)
|ψphys〉 = f (x) |ψphys〉 . (2.59)

The physical pure states then form a subspace, call it the f (x)-subspace. The choice
of a particular f (x) can be interpreted physically as the choice of a classical fixed
external charge. Counter-intuitively, the ‘zero total charge’ is usually not associated
to the f (x) = 0 choice, but with the f (x even) = 0 and f (x odd) = d convention, as we
will soon discuss.

Having fixed f (x) and thus S, one may wonder about the operators which allow us to
prepare some basic state c ′ ∈ S given initial basic state c ∈ S, e.g. by creating a fermion.
As seen previously, the fermionic annihilators ax, j is not gauge invariant; it does not
preserve occupation numbers and will take us out of S. Following ideas from [79], each
fermion creation operator a†

x, j could be turned into a gauge invariant state preparation
by accompanying it with a gauge field lowering operator Vx,η, but this changes the
occupation number at position x+η, which in turn has to be compensated by a Vx+η,ζ,
and so on until a boundary (possibly infinitely far) is reached. The following defined a
gauge invariant state preparation:

a†
x, j ,p = a†

x, j

∏
y :η∈p

Vy,η (2.60)

where p is a gauge field path from position x to the space boundary (possibly infinite).
If the lattice is finite, the last operator is understood to be a half-link transformation

55



2. QCA and gauge invariance – 2.1. Anti-commutation, locality, gauge invariance

s, instead of V , since there would be no end to the last link. (Notice that a†
x, j sx,η is

also gauge invariant operator, but disallowed as it breaks the restriction that Ex,η =
−Ex+η,−η, except at the boundary.)

The state preparation a†
x, j ,p follows the prescribed anti-commutation relations.

Indeed, recalling Eq. (2.7), we have that ax, j commutes with any Vy,η, hence a†
x, j ,p

also does. Moreover, within two operators ax, j ,p and ay,k,q , the fermionic parts ax, j

and ay,k anti-commute, while every other pair of operators commutes, enforcing the
fermionic anti-commutation relation (2.5).

Another gauge invariant state preparation is the creation of a gauge field loop, i.e.∏
y :η∈p V †

y,η where p is a cyclic gauge field path, or one that begins and ends at a
boundary.

Pair creation. The state preparation a†
x, j ,p can be understood as ‘bringing a fermion

from infinity’ (or from the boundary) but it does not allow for the creation of an
electron-positron pair in situ.

However, according to the Dirac sea convention, we may take as the zero total
charge states those that lie in the f (x)-subspace where f (x even) = 0 and f (x odd) = d .
Then, the canonical, Dirac sea vacuum is that where all gauge fields are set to zero,
implying that even sites have no fermions and odd sites are full with fermions. For
instance, in 1+1, where d = 2 and representing only fermions for a minute, the state
. . . |00〉x |11〉x+µ . . . is the Dirac sea vacuum for this f (x)-subspace.

Consider acting at an odd site with ax+η, j , mapping |1〉x+η, j into |0〉x+η, j . In order

to remain in the f (x)-subspace, we must compensate this with some V †
x+η,η′ , which

changes the occupation number at x +η+η′ and so on along path p, generating field
lines according to operator ax+η, j ,p , i.e. the exact inverse of the earlier discussed

creation of an electron a†
x, j . It follows that this process can be interpreted as the

creation of a positron. In other words a |1〉x, j at an even site, represents an electron,
but a |0〉x+η, j at an odd site, represents a positron. And so |1〉x+η, j at an odd site,
represents a positron-hole, i.e. the absence of a positron.

Finally, consider the hopping of a fermionic occupation number from an odd to an
even site, mapping

|0〉x,i ⊗|1〉x+η, j 7−→ |1〉x,i ⊗|0〉x+η, j (2.61)

as implemented in a gauge-invariant and anti-commutation compliant manner by
Eq. (2.25). This, therefore, must be interpreted as a positron-hole |1〉x+η, j , moving to x
even to create an electron |1〉x+η, j and leaving a positron |0〉x+η, j behind. This is an
electron-positron pair creation. The reverse evolution is an electron-positron pair
annihilation.
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2.2. 2+1 Quantum Cellular Automaton
Using the previously defined local, gauge invariant operators, it is possible to define
a QCA that accounts for QED in 2+ 1 dimensions. We proceed in three steps, fol-
lowing the same principles as that leading to the QED Lagrangian. First, a gauge
invariant free dynamics for the fermions is defined through a generalization of a Dirac
quantum walk (QW) to multiple walkers. Second, the electric contribution is defined
as one of the simplest gauge invariant operator acting on the gauge field based on
the electric operator. It is found to match the Trotterization of the electric part of
the Kogut-Susskind Hamiltonian [37]. Third, the magnetic part is added as one the
simplest gauge invariant operator acting on the gauge field with the lowering and
raising operators. In fact, two constructions are provided for this magnetic term, both
agreeing in the limit and matching a Trotterization of the magnetic Kogut-Susskind
Hamiltonian.

Before delving into the Physics of the model, let us formally define quantum cellular
automata.

2.2.1. Quantum cellular automata
The quantum configurations differ from classical configurations because they require
a distinguished element of Σ to be called the empty state and such that only a finite
number of cells are not empty.

Definition 14 (Finite unbounded configurations). Consider Σ the alphabet, with 0 a
distinguished element of Σ, called the empty state. A finite unbounded configuration
c over Σ is a function c : Zd −→ Σ, such that the set of the (i1, . . . , id ) ∈ Zd for which
ci1...id ̸= 0, is finite. The set of all finite unbounded configurations will be denoted C f .

The finite unbounded configurations are taken as basis to build the Hilbert space of
configurations which allows for superposition of configurations.

Definition 15 (Hilbert space of configurations). The Hilbert space of configurations is
that having orthonormal basis {|c〉}c∈C f . It will be denoted H .

A QCA then acts on the Hilbert space of configuration with similar constraints as a
classical CA, that is to say in a local, translation-invariant manner:

Definition 16 (QCA). A QCA is a linear operator over H which is translation-invariant,
causal and unitary.

Causality and translation-invariance in this context are formally defined in [12].
Locality is recovered from causality and unitarity as shown in [80].

In practice, to build a specific dynamics, a circuit version of QCA known as parti-
tioned QCA is helpful. It works by partitioning the space into supercells on which a
local unitary operator is applied. In one timestep, this may be done multiple times
with different partitions and unitaries. There is no loss of generality since partitioned
QCA are intrinsically universal [61].

In the following, everything is defined in the context of partitioned QCA.
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2.2.2. Fermionic dynamics
Let us first recall the 2+1 dynamics of the fermionic field, without any electromagnetic
contribution, without any gauge field even, and restricting to the one particle sector.
This is the well-known Dirac quantum walk (QW) [81, 82].

At each lattice site x lies a group of 2 qubits, each stating whether a fermion in mode
j ∈ 0. . .1 is present at the site (remember that in 2+1 dimensions the Dirac Eq. is a
PDE on a wave function having two complex amplitudes, corresponding to the two
modes spin up and down). Again, this encoding captures the Pauli exclusion principle
as there cannot be two fermions in the same mode at the same site. Moreover, as we
focus on the one particle sector first, we temporarily look at the case where only one
of the qubits can be in the state |1〉.

One time-step is divided in three sub steps: a vertical translation, a horizontal
translation and a mass term. Moreover, each translation is decomposed into two
swaps. Each of these terms thus acts on a pair of qubits: on a single site for the mass
and the first swap (S), and across two neighboring sites for the second swaps (T ).
In the one particle sector, the possible input states are |00〉, |01〉 and |10〉. Number
conservation forces |00〉 to be mapped to itself. Without loss of generality we can
assume that this absence of particle triggers no phase. Hence, our two qubit operators
of the Dirac QW are of the form W = 1⊕M where 1 leaves |00〉 unchanged and M is
the unitary acting on the subspace spanned by |01〉 and |10〉. The Dirac QW is given
by:

QW =
[⊗

x
Cϵ

][ ⊗
(x,1),(x+ν,0)

Tν
⊗

x
S

][(⊗
x

Hµ

)( ⊗
(x,1),(x+µ,0)

Tµ
⊗

x
S

)(⊗
x

H †
µ

)]
(2.62)

where Cϵ = 1⊕ e−i mϵY is the mass term, Hµ = 1⊕H with H the Hadamard operator
(such that H Z H = X ), S swaps qubits (x,0) and (x,1), and Tη swaps qubits (x,1) and
(x +η,0). It follows that

⊗
(x,1),(x+η,0) Tη

⊗
x S = 1⊕eϵZ∂η is the displacement operators

in the η direction by a factor ϵ, moving the first qubit in the positive direction and
the second in the negative direction. The X ,Y , Z are Pauli matrices and ∂η the partial
derivatives. Convergence towards the Dirac Eq. is rigorously proven in [81, 82].

With multiple walkers, the Dirac QW becomes the Dirac QCA. The dynamics needs
to be extended to take into account the case where multiple qubits are in state |1〉.
Since the QW gates act on at most two qubits, and due to number conservation, only
the input state |11〉 requires our attention, and it can only be sent to itself, up to a
phase. To find out exactly which phase has to be applied, let us move to the Heisenberg
picture.

The Heisenberg picture is a choice of representation in which the evolution of a
system is described in terms of evolving operators. Essentially, it tells about the future
impact of our past actions. For instance, say that the overall evolution from time t to
time t+1 is governed by a unitary operator W†, e.g. mapping |ψ〉 to |ψ′〉. Then, the past
action of creating a fermion at (x,0) at time t , as implemented by a†

x,0, e.g. mapping

|ψ〉 to a†
x,0 |ψ〉, will have future impact Wa†

x,0W† at time t +1, i.e. |ψ′〉 to Wa†
x,0W† |ψ′〉.
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More specifically consider S the multi-particle sector extension of S which is such
that Sa†

x,0S† = a†
x,1 and Sa†

x,1S† = a†
x,0, i.e. a ‘fermionic swap’. Notice there exists S′

which coincide with S and thus with S in the one-particle sector, but that do not
obey these two equations. We discard them on the basis that S is the ‘rightful non-
interacting extension’ of S, as the future impact of a†

x,0 is a†
x,1 regardless of there being

other particles or not.
It follows that Sa†

x,0a†
x,1S† = Sa†

x,0S†Sa†
x,1S† = a†

x,1a†
x,0 = −a†

x,0a†
x,1. In particular, if

we had |ψ〉 = |00〉 at time t evolving into |ψ′〉 = S |ψ〉 = |00〉 at time t +1, we realize that
the past action of creating two fermions a†

x,0a†
x,1, e.g. mapping |00〉 to |11〉, will have

future impact −a†
x,0a†

x,1, i.e. mapping |00〉 to −|11〉. Thus, S |11〉 =−|11〉 is the rightful
qubit implementation of the fermionic swap, meeting the specifications imposed by
the (anti-)commutation relations hypothesis. In order to build the Dirac QCA from
the Dirac QW, we must proceed in the same manner for each term of the Dirac QW, as
done in Appendix A.

We see that this phase got determined as a consequence of the (anti-)commutation
relations hypothesis discussed in section 2.1, as well as the way we chose to implement
the annihilation operators, under which Jordan-Wigner transform etc., as defined in
that same section. This requires the presence of gauge field, which we had temporarily
ignored for describing the Dirac QW, but we now restore for describing the Dirac QCA.
We use bold fonts to denote the Dirac QCA counterparts of the Dirac QW operators.

When representing a QCA operator U acting on a 2-qubits state, the ordering is as
follows:

|00〉
|01〉
|10〉
|11〉

(2.63)

The mass sub-step acts as Cϵ on the states |00〉, |01〉 and |10〉. And the phase
applied on state |11〉 is c2 + s2 = 1 (using Appendix A). Therefore, the corresponding
QCA unitary which we will denote Cϵ is:

Cϵ =


1 0 0 0
0 c −s 0
0 s c 0
0 0 0 1


|00〉
|01〉
|10〉
|11〉

(2.64)

=Cϵ⊕1 (2.65)

=
(
a1a†

1

)(
a0a†

0

)
+

(
a†

1a1

)(
a†

0a0

)
(2.66)

+ c
[(

a1a†
1

)(
a†

0a0

)
+

(
a†

1a1

)(
a0a†

0

)]
+ s(a†

1a0 −a†
0a1) (2.67)

where c = cos(ϵm) and s = sin(ϵm), and the last line is Cϵ expressed in terms of the
local evolution operator from Eq. (2.18). Note that this operator acts on-site, that is to
say on the two qubits at the same position.
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The transport sub-step takes a right-moving (resp. left-moving) qubit at position
x (resp. x + ϵ) and maps it to the right-moving (resp. left-moving) qubit at position
x+ϵ (resp. x). It does so locally by first swapping the qubits on each site using the gate
S, then moving them through a gate Tη between neighboring sites while changing the
gauge field accordingly:

S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 (2.68)

=
(
ax,1a†

x,1

)(
ax,0a†

x,0

)
−

(
a†

x,1ax,1

)(
a†

x,0ax,0

)
+a†

x,1ax,0 +a†
x,0ax,1 (2.69)

Tη =


1 0 0 0
0 0 K †

η 0
0 Kη 0 0
0 0 0 −1

 (2.70)

=
(
ax,1a†

x,1

)(
ax+η,0a†

x+η,0

)
−

(
a†

x,1ax,1

)(
a†

x+η,0ax+η,0

)
(2.71)

+a†
x,1Vx,ηax+η,0 +a†

x+η,0V †
x,ηax,1 (2.72)

where

Kx,η =

 ∏
y∈

[
x,x:η

[ Zy

Ux,η

 ∏
y∈

[
x+η,x+η:−η

[ Zy

 (2.73)

with Uη the gauge field lowering operator. The equations using fermionic annihilators
and creators are based on the local evolution operators from equations (2.18) and
(2.19). The product of Zy comes from the hopping term defined in Eq. (2.25), with
x : η the link along which the swap takes place. The minus one, when the input is
|11〉, is the exchange phase for crossing fermions. Again full justification is given in
Appendix A.

The transport sub-step of the Dirac QCA is illustrated in figure 2.2.
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u−1 d−1 u0 d0 u1 d1l−1,0 l0,1

Tη Tη

S S S

u−2 d0 u−1 d1 u0 d2l−1,0 l0,1

Figure 2.2.: Transport with d moving left (or down), u moving right (or up) and l the
gauge field (given as a single field for conciseness).

The basis change H is similar to the mass term in that it acts only on a single site
and can be written as a direct sum for the case with 0, 1 or 2 particles as follows:

H = Hµ⊕−1 = 1⊕H ⊕−1 (2.74)

=


1 0 0 0
0 1p

2
1p
2

0

0 1p
2

− 1p
2

0

0 0 0 −1

 (2.75)

=
(
a1a†

1

)(
a0a†

0

)
−

(
a†

1a1

)(
a†

0a0

)
(2.76)

+ 1p
2

[(
a1a†

1

)(
a†

0a0

)
+

(
a†

1a1

)(
a0a†

0

)
+ (a†

1a0 −a†
0a1)

]
. (2.77)

This last equation corresponds to the basis changed expressed using the local evolu-
tion operator (2.18);

The minus one is justified in Appendix A. Since H † = H , we have H† = H.
The complete Dirac QCA is:

DF = CϵTνSHTµSH. (2.78)

It is represented in figure 2.3.

Gauge invariance. Each of the operators constitutive of the Dirac QCA has been
expressed as a linear combination of the local evolution operators given in subsection
2.1.3, which were proven to be gauge invariant in subsection 2.1.4. Therefore, the
Dirac QCA is gauge invariant.

2.2.3. Electric contribution
Let us now define the electric contribution. To do so, we follow the same idea as
in the Lagrangian formalism, which is to take some of the simplest gauge invariant
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t

Tµ

H
S

H

Tµ

H
S

H
Tµ

H
S

H

Tµ

H
S

H

H
S

H

H
S

H
t + ϵ

3

Tν Tν Tν

S S S
S S S

t + 2ϵ
3

Cϵ Cϵ Cϵ

Cϵ Cϵ Cϵ

t +ϵ

Figure 2.3.: The 3 steps of the free evolution in the multi-particle sector. The gauge
field is omitted for clarity.

electric term. We then check that it matches the Trotterization of the Kogut-Susskind
Hamiltonian. The construction proposed here is highly inspired by [53].

A simple electric contribution ought to act on the gauge field according to operator
E . We could also demand that applying it on either side of a gauge field—i.e. (x,η) or
(x +η,−η) gives the same output. However, the electric operator itself does not match
this requirement because Ex,η =−Ex+η,−η. The squared electric term E 2, does. The

squared electric term itself is not unitary, but its exponential e i E 2
, is.

Notice also that the spacetime discretization should impact the amplitude of the
phase: when any of the space or the time discretization parameter goes to zero,
the exponential should tend towards the identity. Taking these considerations into
account, one obtains:

DE = e
i
2 ϵ

2g 2
E E 2

(2.79)

where the ϵ2 comes from the simultaneous discretization in space and time with
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∆x =∆t = ϵ, and gE is the coupling constant as determined experimentally.
Without the electric contribution, the gauge field just keeps track of fermions pass-

ing by, but has no influence upon them. With the electric contribution, the gauge-field
dependent phase, mediates the interaction.

Let us compare the electric contribution with the electric part of the Kogut-Susskind
Hamiltonian [37] for QED:

HE = g 2
E

2
∆x

∑
x

(E 2
x,µ+E 2

x,ν). (2.80)

Integration over a ∆t period of time—i.e. computing e i∆t HE —and Trotterizing to
separate the spatial sum into a product of exponentials, yield DE.

Remark 3 (Truncation of the electric field). If 1
2ϵ

2g 2
E = 2π

k exactly, with k an integer,
then the phase of the electric contribution will wrap up around 2π as soon as E 2 reaches

k. This when ϵ =
√

4π
kg 2

E
. If we restrict ourselves to such values of ϵ, i.e. decreasing

it by augmenting k, then, as far as the electric contribution is concerned, the gauge
field can equally well be represented with a k-dimensional Hilbert space Hk . Indeed,
when E outputs k + l , its square gives k2 +2kl + l 2, and the phase 1

2ϵ
2g 2

E E 2 simplifies
into 1

2ϵ
2g 2

E l 2 because ϵ2g 2
E k(k + 2l )/2 is proportional to 2π. Notice that this k still

goes to infinity when taking ϵ to zero, augmenting proportionally to 1/ϵ2. This idea of
restricting the gauge field to finite-dimensions labelling roots of unity was suggested in
[53]. Truncations in lattice gauge theory simulations were evaluated in [83].

Gauge invariance. The electric contribution is gauge invariant as an exponential
of a gauge invariant operator.

2.2.4. Magnetic contribution
In order to define the magnetic contribution, we follow the same path as for the
electric contribution, that is to say define some of the simplest the gauge field-only
term that is local, unitary and gauge invariant.

Formulation of the magnetic contribution. The word magnetic refers to the
fact that it acts on the gauge field in a way dual to that of the electric operator—i.e.
through lowering or raising the gauge field.

As discussed in section 2.1 operators that are defined solely using the lowering and
raising operators need to form a loop (spatially) in order to both local and ensure
gauge invariance. Indeed, raising the gauge field at one end of a link, implies lowering
it at the other, hence imposing that the magnetic contribution be a loop; the smallest
loop is realized by the plaquette local evolution operator Px,η,ζ of Eq. (2.32).

Since the loop is oriented, one may wish to symmetrize. This is done through a
sum Px,η,ζ+P †

x,η,ζ, but this breaks unitarity. Just like for the electric field, unitarity is
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restored through exponentiation, and the space and time discretization parameters
need be used in the exponential to ensure that it goes to the identity when these go to
zero. Taking these considerations into account, one obtains:

DM = e
i
2 ϵ

2g 2
M (Px,µ,ν+P †

x,µ,ν) (2.81)

with ϵ = ∆t = ∆x and g 2
M /2 a constant. Taking the limit of DM when ϵ goes to zero

yields:

DM = I d + iϵ2 g 2
M

2

(
Px,µ,ν+P †

x,µ,ν

)
+O

(
ϵ4) . (2.82)

Let us compare the obtained magnetic contribution with magnetic part of the
Kogut-Susskind Hamiltonian:

HM = g 2
M

2
∆x

∑
x

(Px,µ,ν+P †
x,µ,ν) (2.83)

where gM = 1
∆x gE

. Integrating this Hamiltonian over a ∆t period of time—i.e. com-

puting e i∆t HM —and Trotterizing to separate the spatial sum leads to the same local
operator DM.

Two formulations in terms of gates. In order to define DM in terms of quantum
gates, one needs to explicitly compute or closely approximate the exponential. We
provide two constructions in order to do so. The first construction is to diagonalize
the plaquette term so that taking its exponential simply amounts to exponentiating
the eigenvalues, that is to say, we go from an electric basis to a magnetic one [84]. The
quantum Fourier transform is used in the diagonalization. The second construction
consist in a more subtle approach were the term P +P † is written as the sum of two
terms P̃ and Q̃ whose exponentials are simple to compute. This second construction
yields a gate formalism reminiscent to that of a QW.

Ordering the operators. Two neighboring plaquette local evolution operators
Px,µ,ν and Px+µ,µ,ν both act on the two gauge fields of the link (x +µ,µ). Therefore,
the order of the operations could have been relevant. However, the plaquette local
evolution operators actually commute. If one insists on not acting simultaneously
with two different operators on a same system, then any arbitrary ordering can be
chosen, such as applying the plaquette local evolution operators at even positions
first, and then at odd positions.

Redefining the states. Before diving into the two constructions, let us introduce a
new way of representing the gauge field affected by a loop of lowering operators, using
U and not V :

Ux,µUx+µ,νU †
x+ν,µU †

x,ν. (2.84)
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Forgetting to denote the second gauge field of each link, which is just the opposite of
the first, the loop applies the following transformation to the four links

|−a −n,−b −n,c +n,n〉 −→ |−a − (n +1),−b − (n +1),c + (n +1), (n +1)〉 . (2.85)

This transformation can be seen as a shift where n is mapped to n +1. We introduce
‘plaquette-like’ states:

|abcn〉 =U aU bU †c |−n,−n,n,n〉 . (2.86)

We have:
Ux,µUx+µ,νU †

x+ν,µU †
x,ν |abcn〉 = |abc,n +1〉 (2.87)

for a,b,c and n integers.
The plaquette local evolution operator of (2.12) and (2.21), is built using the previous

loop of U combined with Z operators. These Z operators only add a plus or minus sign
to the state |abcn〉. However, depending on the Jordan-Wigner order, this sign may
be influenced by the other gauge fields and qubits present at the four sites where the
plaquette term is applied. In order to take this into account, we extend the plaquette-
like state so as to add a qudit |o〉, such that |abcno〉 entirely describes the four sites
affected by the plaquette. We can then let ϕabcno ∈ {0,1} be such

P |abcno〉 = (−1)ϕabcno |abc,n +1,o〉 . (2.88)

Starting from state |abc,0,o〉, one reaches state |abc,n,o〉 by applying the plaquette
operator n times. We can then let ψabcno ∈ {0,1} be such

(−1)ψabcno |abcno〉 = P n |abc,0,o〉 . (2.89)

The ψabcno can be given in explicitly in terms of ϕabcno , so that ψabcno +ϕabcno =
ψabc,n+1,o :

ψabcno =
{ ∑

0≤k<nϕabcko when n > 0∑
n≤k<0ϕabcko when n < 0

(2.90)

This leads to the definition of ‘plaquette states’

|âabcno〉 = (−1)ψabcno |abcno〉 (2.91)

which verify the same relation as that of Eq. (2.87), with V operators instead of U :

P |âabcno〉 = | ãabc,n +1,o〉 . (2.92)

Again, these plaquette states help understand the plaquette local evolution operator
as a shift, which will be useful for both decompositions of the magnetic contribution
in terms of quantum gates.

The state and plaquette operator are illustrated in figure 2.4.
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(x,µ)

(x,ν)

(x +µ,ν)

(x +ν,µ)

−n

n

−n

n

a b

c

(a) Plaquette state |�abcn〉

(x,µ)

(x,ν)

(x +µ,ν)

(x +ν,µ)

-1

+1

-1

+1 Px

(b) Plaquette operator

Figure 2.4.: Plaquette states and operator represented in the subspace Z4 containing
four gauge field values.

Gauge field truncation. If truncating the gauge field to Hk , one needs | ãabc,k,o〉 =
|ãabc,0,o〉 so that any sign discrepancy in Eq. (2.92) is avoided. This paragraph is just to
overcome this technicality. In terms of phase the condition is that ψabcko =ψabc0o =
0, i.e. that ψabcko = ∑

0≤n<k ϕabcno be even. Each term ϕabcno is actually a sum
ϕabcn +ϕo , where ϕabcn depends on the four links under transformation, whereas ϕo

depends on the other gauge fields and qubits at the four sites, which are not modified
by the plaquette operator. Both of these depend on the JW order chosen. Since ϕo is
constant when acting only using the plaquette term, for an even k its contribution to
the sum

∑
0≤n<k ϕo is even. Additionally, for any n, we have that ϕabc,n =ϕabc,n+2 as

all the parities are equal. As a consequence ϕabc,n +ϕabc,n+1 +ϕabc,n+2 +ϕabc,n+3 is
even. It follows that for k a multiple of 4, the sum

∑
0≤n<k ϕabcn is even. Hence, for

k = 4q , with q an integer, the truncation is valid.
Relying on a specific JW order actually allows for any even k. Indeed, we can enforce

thatϕabcn always be equal to 0: this is the case when (x : −η) and x : η are both inferior
(or both superior) to (x : −ζ) and (x : ζ) for η and ζ two distinct directions. In this
case, the four corner operators that form a plaquette defined in Eq. (2.30) will induce
a phase (−1)ϕabcn through the following Z operators (disregarding the part which
contributes to ϕo):

Zx:ηZx+η:−ηZx+η+ζ:−ηZx+ζ:η. (2.93)

Notice that each link appear twice, hence they do not induce any phase, i.e. we have
that P |âabcno〉 = (−1)ϕo | ãabc,n +1,o〉. Thus, the truncation is well-defined for k even
for that specific JW orders.

2.2.4.1. Quantum circuit implementation through diagonalization

The first construction moves from the electric to the magnetic basis [84]. In other
words, it works by computing the eigenvectors and eigenvalues of the plaquette oper-
ator, so that taking the exponential of the operator simply amounts to exponentiating
the eigenvalues.

A single plaquette local evolution can be seen as a shift operator upon plaquette
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states as illustrated figure 2.4b. That shift amounts to a phase in the Fourier basis,
therefore the Fourier transform diagonalizes the plaquette. To define this Fourier
transform, the state space of the gauge field needs be truncated to Zk , for instance
according to Remark 3, and in accordance with the restriction of subsection (2.2.4).
Then the eigenvectors of a plaquette local evolution are

|abcp〉□ = 1p
k

k−1∑
n=0

e2πi np/k |âabc,n〉 (2.94)

for a,b,c and p integers in 0, ...,k −1. These are the Fourier transform of the |âabc,n〉
states, that can be obtained through a quantum Fourier transform whose circuit
representation is well-known. The corresponding eigenvalues are

λp = e2πi p/k . (2.95)

The eigenvectors of the hermitian conjugate of the plaquette operator are the same
but with eigenvalues λ−p . For the sum of the plaquette and its hermitian conjugate,
the eigenvalues are:

e2πi p/k +e−2πi p/k = 2cos
(
2πp/k

)
. (2.96)

Having found an eigenbasis of the plaquette term, it is now easy to exponentiate it.
Doing so one gets the eigenvalue equation:

exp

(
iϵ2 g 2

M

2
(P +P †)

)
|abcp〉□ = exp

(
iϵ2g 2

M cos
(
2πp/k

)) |abcp〉□ . (2.97)

This defines a diagonal operator Diag that contains the eigenvalues

exp
(
iϵ2g 2

M cos
(
2πp/k

))
. (2.98)

The magnetic evolution for the QCA can thus be written as:

D(0)
M =U †

QFT Diag UQFT (2.99)

where UQFT is the quantum Fourier transform. Hence, Eq. (2.99) thus defines a circuit
of quantum gates for the magnetic term. In this construction, no approximation has
been done, hence the limit is exactly the one given in Eq. (2.82).

2.2.4.2. Quantum walk-like circuit implementation

The second construction uses a reformulation of the plaquette operators to make it
look like a quantum walk. Here we sometime abuse notations and write |�abcn〉 or
even just |ñ〉 to talk about a state |âabcno〉. Indeed, the plaquette term can be divided
into two operators, one which acts as

∣∣2̃n
〉〈 �2n +1

∣∣+ ∣∣ �2n +1
〉〈

2̃n
∣∣ and the other as∣∣ �2n +1

〉〈 �2n +2
∣∣+∣∣ �2n +2

〉〈 �2n +1
∣∣—i.e. the two operators act as shifted swaps between
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pairs of sites. Let P̃ and Q̃ denote those operators:

P̃ = ∑
abc∈Z3

∑
n∈2Z

∣∣∣ ãabc,n +1
〉〈âabc,n

∣∣∣+ ∣∣∣âabc,n
〉〈 ãabc,n +1

∣∣∣ (2.100)

Q̃ = ∑
abc∈Z3

∑
n∈2Z+1

∣∣∣ ãabc,n +1
〉〈âabc,n

∣∣∣+ ∣∣∣âabc,n
〉〈 ãabc,n +1

∣∣∣ . (2.101)

We have that
P̃ +Q̃ = P +P †. (2.102)

P̃ and Q̃ are hermitian, unitary and their eigenvectors are

|+n〉 = 1p
2

(|ñ〉+ |�n +1〉) (2.103)

|−n〉 = 1p
2

(|ñ〉− |�n +1〉) (2.104)

with n even for P̃ and odd for Q̃. The corresponding eigenvalues are plus and minus
one.

Now taking the exponential DP̃ of P̃ , we have, with n even:

exp

(
iϵ2 g 2

Mp
2

P̃

)
|+n〉 = exp

(
iϵ2 g 2

Mp
2

)
|+n〉 (2.105)

exp

(
iϵ2 g 2

Mp
2

P̃

)
|−n〉 = exp

(
−iϵ2 g 2

Mp
2

)
|−n〉 (2.106)

DP̃ |ñ〉 = exp

(
iϵ2 g 2

M

2
P̃

)
|ñ〉 (2.107)

= 1p
2

(
exp

(
iϵ2 g 2

M

2

)
|+n〉+exp

(
−iϵ2 g 2

M

2

)
|−n〉

)
(2.108)

= cos

(
ϵ2 g 2

M

2

)
|ñ〉+ i sin

(
ϵ2 g 2

M

2

)
|�n +1〉 (2.109)

DP̃ |�n +1〉 = i sin

(
ϵ2 g 2

M

2

)
|ñ〉+cos

(
ϵ2 g 2

M

2

)
|�n +1〉 . (2.110)

These equations are identical for DQ̃ when taking n odd.
This is reminiscent of a one dimensional quantum walk with coin(

cos(θ) i sin(θ)
i sin(θ) cos(θ)

)
. (2.111)

Such QW is homogeneous in the ‘tilde’ basis, but at first glance, it seems inhomoge-
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neous in the canonical basis because of the operator∣∣∣ ãabc,n +1,o
〉〈 ãabc,n,o

∣∣∣= (−1)ϕabcno

∣∣∣abc,n +1,o
〉〈

abc,n,o
∣∣∣ (2.112)

which induces a phase ϕabcno , dependent upon n, in the canonical basis. However,
as explained in subsection 2.2.4, this phase can be made independent of n through
a specific choice of JW order, recovering a homogeneous QW even in the canonical
basis.

Using DP̃ and DQ̃, a way to implement the plaquette term is to apply those succes-
sively in one time step:

D(1)
M |ñ〉 = DQ̃DP̃ |ñ〉 . (2.113)

Taking the limit when ϵ goes to zero after applying both the exponential of P̃ and Q̃
to |ñ〉 (where n is even) gives:

D(1)
M |ñ〉 = DQ̃DP̃ |ñ〉 (2.114)

= DQ̃

(
|ñ〉+ iϵ2 g 2

M

2
|�n +1〉+O

(
ϵ4)) (2.115)

= |ñ〉+ iϵ2 g 2
M

2

(|�n −1〉+ |�n +1〉)+O
(
ϵ4) . (2.116)

For n odd, DP̃ would yield the state |�n −1〉 instead of |�n +1〉 (in the second line of the
equation) and DQ̃ the state |�n +1〉 instead of |�n −1〉 (in the third line). Therefore, the
same limit would be reached.

This limit matches the one obtained in Eq. (2.82). Thus, both quantum gate imple-
mentations agree in the limit as D(0)

M = D(1)
M +O(ϵ4).

Gauge invariance. Gauge invariance of the plaquette term has been verified in
section 2.1.4.1. Its exponentiation is a linear combination of them, thus still gauge
invariant.

2.2.5. Complete dynamics
Combining the fermionic dynamics, the electric and magnetic contribution, one
obtains the following complete dynamics for the 2+1 QED QCA:

QCA = DMDEDF (2.117)

where DF (fermionic term) refers to Eq. (2.78), DE (electric term) refers to Eq. (2.79)
and DM (magnetic term) refers to Eq. (2.81) or (2.113) depending on the quantum gate
implementation chosen.
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2.3. 3+1 Quantum Cellular Automaton
This section extends the previous 2+1 QED QCA construction, to reach a 3+1 QED
QCA. In 3+ 1 dimensions, the Dirac Eq. is a PDE on a wave function having four
complex amplitudes, i.e. there are four fermionic modes instead of two. As for the
gauge field, no additional degree of freedom is required, but the third dimension
needs to be taken into account when considering the electronic and plaquette terms.

In the following, to avoid mixing notations, every operator referring to the 3+1 case
will be overlined, e.g. the mass term of the 3+1 Dirac QW is C ϵ. Again those of the
multi-particle sector QCA are in bold, e.g. Cϵ.

2.3.1. Fermionic dynamics
The procedure is the same here as in the 2+1 case: (i) define the 3+1 Dirac QW, (ii)
extend each gate using the Heisenberg picture so that it acts on the full state space
and not just in the one-particle sector—cf. Appendix A.

Let γ j be the following generalized Pauli matrix:

γ0 = Y ⊗ I (2.118)

γ1 = Z ⊗X (2.119)

γ2 = Z ⊗Y (2.120)

γ3 = Z ⊗Z . (2.121)

They respect the anti-commutation relation

{γ j ,γk } = 2δ j ,k I4 (2.122)

with δ j ,k the Kronecker delta.
The state space for the Dirac QW is that of 4 qubits restricted to the one-particle

sector, i.e. there are 5 possible states: |0000〉, |0001〉, |0010〉, |0100〉 and |1000〉. As in
the 2+1 case, state |0000〉 is mapped to itself because of number conservation. Hence,
every operator is of the form 1⊕U where U acts on the remaining four dimensional
subspaces. The Dirac QW has the same structure: a mass term follows transport
operations in each direction, each of these transports being surrounded by a basis
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change [81, 82, 85]:

QW =
(⊗

x
C ϵ

)
(2.123)(⊗

x
Hµ

)( ⊗
(x,1),(x+µ,0)

T µ

⊗
x

S

)(⊗
x

H
†
µ

)
(2.124)

(⊗
x

Hν

)( ⊗
(x,1),(x+ν,0)

T ν

⊗
x

S

)(⊗
x

H
†
ν

)
(2.125)

(⊗
x

Hρ

)( ⊗
(x,1),(x+ρ,0)

T ρ

⊗
x

S

)(⊗
x

H
†
ρ

)
(2.126)

where S swaps qubits (x,0) and (x,1) with (x,2) and (x,3), and T η swaps qubits (x,2)

and (x,3) with (x +η,0) and (x +η,1) so that
⊗

x T η
⊗

x S = 1⊕eϵ(Z⊗I )∂η , transporting
the first two qubits in the positive direction and the last two in the opposite one.

The operators Hη are defined so that:

Hη(1⊕ (Z ⊗ I ))H
†
η = 1⊕γη. (2.127)

One possible choice for them is as follows:

Hρ = 1⊕


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (2.128)

Hµ = Hρ(1⊕H ⊕H) (2.129)

Hν = Hρ(1⊕F ⊕F ) (2.130)

where H is the Hadamard matrix such that H Z H = X and

F = 1p
2

(
1 −i
i −1

)
(2.131)

is a matrix such that F Y F = Z . These last equality can be checked easily when noticing
that F = Y +Zp

2
. Then

F Y F = 1

2
(Y +Z )Y (Y +Z ) (2.132)

= 1

2
(Y Y Y +Y Y Z +Z Y Y +Z Y Z ) (2.133)

= 1

2
(Y +Z +Z + i Z X ) (2.134)

= Z . (2.135)
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The same line of reasoning applies to H = X+Zp
2

. Note that all three Hη are Hermitian.

The derivation of the operators making up the 3+1 QED QCA requires to consider
any configuration for the 4 qubits, hence possibly more than two fermions crossing.

Fortunately, all of these 4-qubit operator can be reexpressed as products of 2-qubit
gates, with the 2 qubits being adjacent in the JW order. Thanks to this, the 2+ 1
methodology and results readily apply, see Appendix A.

The mass term is almost the same as for the 2+1 case. In the 3+1 Dirac QW it has
the form

C ϵ = 1⊕e−i mϵγ0 (2.136)

= 1⊕ (cI4 − i sγ0) (2.137)

= 1⊕


c 0 −s 0
0 c 0 −s
s 0 c 0
0 s 0 c

 (2.138)

= 1⊕ (1⊕X ⊕1)(Cϵ⊕Cϵ)(1⊕X ⊕1) (2.139)

with c = cos(mϵ) and s = sin(mϵ).

The mass term of the 3+1 Dirac QCA is reached by seeking to represent the above
as a circuit of 2-qubit gates. The same sequence of gates as in the QW, although
expended to the multi-particle sector, is applied to the QCA. That is because the QCA
should act as the QW in the one-particle sector.v We thus need to swap the second
and third qubits, then apply the 2+1 mass term Cϵ separately on the first and last two
qubits, and then swap again the second and third qubits.

This is represented in figure 2.5 and the corresponding operator Cϵ is:

Cϵ = (I ⊗S⊗ I )(Cϵ⊗Cϵ)(I ⊗S⊗ I ) (2.140)

where S is the swap defined in Eq. (2.68) and Cϵ is the 2+1D mass term defined in Eq.
(2.64).

S

Cϵ Cϵ

S

Cϵ

Figure 2.5.: Representation of the mass term of 3+1 QED QCA. u, u′ are moving right
(or up) while d and d ′ are moving left (or down).
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The transport term of the 3+1 Dirac QCA needs a similar change as the mass term.
It will move the first two qubits in the η direction while moving the last two in the
direction −η. This is done by first swapping the first two qubits with the last two using
a gate S, then applying a transport operator which will swap these pairs of qubits with
neighboring ones in the η direction using a gate Tη. This is illustrated in figure 2.6 and
corresponds to the operators:

S = (I ⊗S⊗ I )(S⊗S)(I ⊗S⊗ I ) (2.141)

Tη = (I ⊗Tη⊗ I )(S⊗S)(I ⊗Tη⊗ I ) (2.142)

where S and Tη are defined through equations (2.68) and (2.70) respectively

u′
−1 u−1 d ′

−1 d−1 u′
0 u0 d ′

0 d0 u′
1 u1 d ′

1 d1

S

S S

S

S

S S

S

S

S S

S

S

Tη

S S

Tη

Tη

S S

Tη

Tη

u′
−2 u−2 d ′

0 d0 u′
−1 u−1 d ′

1 d1 u′
0 u0 d ′

2 d2

Figure 2.6.: Circuit for the transport term

The basis changes are of two kinds in the 3+1 dimensional case. The first kind is
that of Hρ from (2.128) which exchanges the second and last qubits of the QW. This
can be realized through the operator Hρ represented as a circuit in figure 2.7 and
defined as:

Hρ = (I ⊗S⊗ I )(I2 ⊗S)(I ⊗S⊗ I )). (2.143)

The other two basis change—Hµ and Hν—share a common formalism, the QW

counterpart Hρ(1⊕ H ⊕ H) (resp. Hρ(1⊕F ⊕F )) is simply the operator H (resp. F )

applied independently to the first and last two qubits, followed by the Hρ operator.
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1 2 3 4

S

S

S

Hρ

1 4 3 2

Figure 2.7.: Representation of the basis change Hz

This can be immediately translated into QCA operators:

Hµ = Hρ(H⊗H) (2.144)

Hν = Hρ(F⊗F) (2.145)

(2.146)

where H is defined in Eq. (2.74) and F is the generalization of F using the procedure in
appendix A:

F = 1⊕F ⊕−1 (2.147)

=


1 0 0 0
0 1p

2
−ip

2
0

0 ip
2

−1p
2

0

0 0 0 −1

 . (2.148)

The full fermionic dynamics is therefore:

DF = Cϵ

(
HµTµSH

†
µ

)(
HνTνSH

†
ν

)(
HρTρSH

†
ρ

)
. (2.149)

2.3.2. Electric and magnetic contributions
The electric contribution is exactly the same as in the 2+1D case, i.e. the exponentiated
squared electric operator is applied at every link:

DE = e
i
2 g 2

E E 2
. (2.150)

The magnetic contribution needs to be generalized to take into account the three
dimensions, and thus the three possible directions for the plaquettes. Therefore, the
magnetic contribution of the 3+1 QED QCA is the same as in the 2+1 case, but it
is applied three times: one for each pair of directions. Let DM,η,ζ from Eq. (2.81) or
(2.113) (depending on the formulation one chooses) denote the magnetic contribution
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along the two spatial dimension η and ζ. We now have:

DM = DM,µ,νDM,µ,ρDM,ν,ρ. (2.151)

Again this evolution coincides, in the limit, with the magnetic part of the Kogut-
Susskind Hamiltonian:

HM =g 2
M

2

∑
x

η,ζ∈{µ,ν,ρ}
η ̸=ζ

Px,η,ζ (2.152)

=g 2
M

2

∑
x

(
Px,µ,ν+P †
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)
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x,ν,ρ

)
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(2.153)

2.3.3. Complete dynamics
Combining the 3+1 Dirac QCA of (2.149) with the electric (2.150) and magnetic (2.151)
contributions, one obtains the 3+1 QED QCA:

QCA = DMDEDF. (2.154)

Its gauge invariance is ensured by the same arguments as in the 2+1 case.
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Summary of achievements
Classical setting. In this thesis we formally defined gauge invariance in the context
of cellular automata as a commutation relation between the evolution and a group
of local transformations in equation (1.11). In order to obtain gauge invariance, the
extension of cellular automata was introduced with a distinction between an absolute
extension (definition 10), where the gauge field is added at each position, and a relative
extension (definition 11), where the gauge field is added on the links between the
positions.

In Physics one usually motivates the demand for a certain gauge symmetry from an
already existing global symmetry. Mathematically, the gauge field introduced to ensure
gauge invariance is often seen as a connection between gauge choices at neighboring
points. However, there is no immediate reason for gauge invariance to arise from an
already existing global invariance, nor is there an immediate reason for the gauge field
to be interpretable as a connection. A relation between these two folklore perspectives
was given through theorem 1 where globally invariant (or G–blind) cellular automata
were then shown to be exactly those relatively extensible into gauge invariant ones.

Since globally invariant cellular automata are universal, this provides a first way to
show the universality of gauge invariant cellular automata. The intrinsic universality
was then proven a second time (in theorem 2), through the explicit construction of
an absolute gauge extension. The intrinsic universality of the model is a strong result
since it allows the implementation of the symmetry starting with any given dynamics.

A last contribution in the classical setting, was the formalization and preliminary
study of the degree of freedom induced by the symmetry. Since two cellular automata
can have the same dynamics up to the symmetry, a notion of equivalence was given in
definition 12. This related to the well-known concept of gauge fixing in Physics, which
is the choice of a dynamics among the equivalent ones.

3+1 quantum electrodynamics as a quantum cellular automaton. In the
second chapter of this thesis we constructed a quantum cellular automata (QCA)
accounting for QED in 2+1 and 3+1 dimensions. The construction follows the same
principles used to build the Lagrangian formulation of QED—i.e. free anti-commuting
fermions, gauge invariant, simplest electric and magnetic term. But here spacetime is
discrete, and space and time are treated on equal footing. The evolution is described
in terms of local quantum gates, whose wiring coincide exactly with the speed of light
of the QED. To reach our goal, we needed three contributions.

76



3. Conclusion

The first contribution was the formulation of gauge invariant qubit-local evolution
operators—equations (2.25) and (2.32)—that meet the specifications imposed by
the (anti-)commutation relations (2.5), (2.6) and (2.7) of the fermionic and bosonic
annihilators/lowering operators they are made of. It was, to us, a surprise that this
could be achieved since it is in apparent contradiction with the no-go result of [70].
But, following ideas of [74, 86] the gauge field came to the rescue. This was used to
obtain a 2+1 Dirac QCA, i.e. a generalization of the 2+1 Dirac QW to multiple walkers,
recovering the free fermionic dynamics DF (2.78) which is represented in figure 2.3.

The second contribution was to derive the electric DE (2.79) and magnetic DM (2.81)
contributions, leading to the 2+1 QED QCA in Eq. (2.117). The magnetic contributions
was the most challenging, but in the end two possible quantum circuit representations
were found. The first uses a diagonalization, through a Fourier transform, in order to
exponentiate the plaquette terms (2.99), albeit up to truncation. The second approach
formulates the magnetic contribution in terms of a quantum walk over the gauge field
Hilbert space HZ (2.113) without the need for a truncation. Both approaches lead to
the same continuum limit (2.82) and were checked to correspond to the integration of
the magnetic part of the Kogut-Susskind Hamiltonian.

The third contribution was the extension of the QCA to a 3+1 QED QCA (2.154)
which required, in our model, raising the state space from 2 to 4 qubits per sites
to represent fermions. On paper, this meant working out the consequences of the
anti-commutation relations for fermions, under sophisticated changes of basis. Fortu-
nately, these 4-qubit gates were decomposable as 2-qubit gates which we knew how
to handle. The electric and magnetic contribution were straightforwardly extended
from the 2+1 case. Altogether, the 3+1 QED QCA provides a first, relativistic discrete
spacetime formulation of a quantum field theory.

Discussion
Notice that the distinction between fermions and interacting hardcore-bosons [87, 88]
is wearing thin with this qubit-local model, and yet seems to persist as embodied by
the Z terms of equations (2.25) and (2.30). Moreover, there is nothing fundamental in
the arbitrary choice of local Jordan-Wigner order that remains, any order is essentially
as good as another. Could the same dynamics be defined without such an order? This
is intriguing, and one truly wonders whether the distinction between fermion and
hardcore-bosons is physically observable or can be proven otherwise [73].

In chapter 2, we focused on the dynamics of the fermions and gauge field, without
specifically studying the photonic dynamics. For instance, the quantum circuit does
not inform us on the way the gauge field allow for photonic transport, or what the
effective speed of light would be. A theory of light in the settings of QCA has already
been defined in [89], it would be interesting to look for a connection between this
theory and the excitations of the gauge field in our model.

In the introduction of chapter 2, the advantage of a relativistic quantum simulation
was stipulated. In theory, the circuit simulation of QED presented here could allow
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for a more efficient simulation of QED than Hamiltonian discretization, because of a
hypothesized quadratic gain in the number of gates for the same time-lapse. For the
same decoherence of the simulation device, such gain is significative in the number of
time steps that could be simulated. However, all of this is still at the level of ideas and
intuitions and would benefit from being backed by better theoretical and experimental
arguments.

Looking back at our work in the classical setting, the example of dynamics for
the gauge field were mostly trivial. The gauge field was introduced to ensure gauge
invariance but not used to derive new dynamics. In the quantum version, such
dynamics is in fact the mediator for interaction. In the examples given throughout
chapter 1, the gauge field influences the matter field but not the other way around.
Hence, defining a two-way interaction between gauge and matter field at the classical
level, may hold interesting prospects.

Perspectives
Short-term and midterm research prospects An immediate continuation of
this work would be to further parametrize the QED QCA, making it ‘plastic’ enough
so that we may be able to take a discrete space continuous time limit of the model.
This was first done for QW [54, 55], and used to prove that a 1+1 QED QCA recovers
the Kogut-Susskind Hamiltonian in [56]. Going beyond QED and obtaining a QCA
that implements quantum chromodynamics (QCD) would require non-Abelian gauge
invariance. Gauge invariance was defined in cellular automata for any group of gauge
transformation, be it Abelian or not. Hence, another continuation of this work is to
extend the model to encompass QCD.

In the definition of the extension of a cellular automaton, there is no preferred direc-
tion of space, i.e. the edges are not oriented, and the local evolution rule is symmetric
in all space directions. Such properties hint that relative gauge invariance could be
defined on cellular automata that live on graphs [57], for example on triangular and
tetrahedral spatial discretization of space, as was done for quantum walks [90].

An extension to graphs holds a particular interest for a fundamentally discrete, rela-
tivistic version of QED, defined on a curved space. Going further, it would also allow
for a (quantum) graph dynamics—i.e. a (quantum) dynamics over the structure of the
graph itself [91]—to be coupled with the matter dynamics. In the one particle sector,
an example of this was built, where the space triangulation is dynamically induced by
the quantum walk [6]. Such a coupling between matter and geometry, where the field
(matter and gauge) distribution evolves according to QED, is reminiscent of general
relativity and is thus an interesting perspective which does not seem out of reach.

Back to the classical setting, gauge invariance introduces some degrees of freedom,
both on the choice of the evolution and on the choice of a specific configuration to
describe a physical state. In Physics a canonical way to remove or constrain such
degrees of freedom is gauge fixing—e.g. temporal/Weyl gauge. Gauge fixing was
introduced in this manuscript, but there is no canonical way of doing so. Hence,
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defining a canonical gauge fixing procedure offers a perspective of research. Moreover,
an elegant derivation of Gauss’ law (conservation law) can arise from constraining
these degrees of freedom [92, 86]. Can Gauss’ law find a formulation in terms of
classical CA and be derived through a constraint of the degrees of freedom offered by
gauge invariance?

Long-term applications These two and three-dimensional QED QCA are quantum
circuits. DF, DE and DM can be expressed in terms of standard universal gates such
as CNOT, PHASE, HADAMARD. Thus, the QCA is directly interpretable as a digital
quantum simulation algorithm, to be run on a Quantum Computer. A perspective
is thus the implementation of this QCA on quantum computers. This simulation
scheme is efficient, in that it requires O(sd /∆d

x t/∆t ) gates in order to simulate a
chunk of space of size s, over t time steps with ∆x the space resolution, ∆t the time
resolution, and d the space dimension. The output of this is a quantum state and the
simulation may need to be run multiple times in order to obtain meaningful statistics.

However, classically just the state space itself is an O(e sd /∆d
x ) as it grows exponentially

with the number of quantum systems to be simulated. The classical time complexity

is thus O(e sd /∆d
x t/∆t ). The exponential gain here clearly comes from the fact that

the scheme simulates a multi-particle systems, just like in Hamiltonian-based multi-
particle quantum simulation schemes. Quantum walk-based simulation schemes on
the other hand, are by definition in the one-particle sector, and thus can only yield
polynomial gains.

Gauge invariance is a symmetry. As such it introduces the ideas of equivalence and
degrees of freedom. What if this degree of freedom is used to add redundancy to the
system in a way that it can detect, and potentially correct errors? This idea has already
been studied in the quantum setting [93, 94, 95] where gauge invariance amounts to
invariance under certain local errors. It echoes the question of noise resistance in
cellular automata [96, 97]. Consider that the gauge transformations are defined as
noise which interfere with the evolution of the cellular automata. Gauge extending
the cellular automata would provide a construction for noise resistance.

Gauge symmetry has been studied for almost a century, leading to some of the most
established and successful models in Physics. During the same time period, cellular
automata have also been the subject of countless research projects, leading to theoret-
ical results as well as numerous applications. It is undoubtedly clear that both fields
still have much to offer each on their own. I hope this work convinced you that they
also have much to offer together.
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A. From quantum walk to quantum
cellular automata operators

We explain the process to go from a quantum walk to quantum cellular automata
operators, starting in the 2+1 case.

The QCA gates act on 2 qubits and are number conserving, which constrains them.
Indeed, the evolution for the input |00〉 will always be the identity without loss of
generality, and the evolution for the input |11〉 is only a phase since it is the only state
with occupation number equal to 2. Therefore, any QCA gate W† can be written as
a direct sum W† =W † ⊕e iϕ with W † = 1⊕M the quantum walk gate for one particle
and ϕ a phase to be determined. To find out this phase exactly, we use the Heisenberg
picture.

Let W† = 1⊕M ⊕e iϕ be a QCA gate over two qubits (x,0) and (x,1) with:

M =
(

M00 M01

M10 M11

)
=

(
M00 −e iθM∗

10
M10 e iθM∗

00

)
without loss of generality. (A.1)

The Heisenberg picture describes the future impact of our past actions. Consider the
past action a†

x,1 at t :

a†
x,1 = |1〉x,1 〈0|⊗Zx,0

⊗
y≺(x,0)

Zy (A.2)

= (|10〉〈00|− |11〉〈01|) ⊗
y≺(x,0)

Zy . (A.3)

Its future impact at time t +1 is

Wa†
x,1W† =

[
(M11 |10〉+M01 |01〉)〈00|−e iϕ |11〉(〈01|M∗

00 +〈10|M∗
10)

)] ⊗
y≺(x,0)

Zy (A.4)

=
[
|1〉〈0|⊗

(
M11 0

0 −e iϕM∗
00

)
+

(
M01 0

0 −e iϕM∗
10

)
⊗|1〉〈0|

] ⊗
y≺(x,0)

Zy . (A.5)

=
[
|1〉〈0|⊗

(
e iθM∗

00 0
0 −e iϕM∗

00

)
+

(−e iθM∗
10 0

0 −e iϕM∗
10

)
⊗|1〉〈0|

] ⊗
y≺(x,0)

Zy .

(A.6)

Suppose that theϕwe seek to determine, is equal to θ. With this supposition, the above
simplifies and we have that the future impact of a†

x,1 is just Wa†
x,1W† = M11a†

1+M01a†
x,0.

A contrario, with any other choice of ϕ we would be constructing some W′ which,
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albeit coinciding with W and thus W in the one-particle sector, would for instance
leave a phase between a†

x,1a†
x,0ax,0 and a†

x,1ax,0a†
x,0 in the future impact of a†

x,1. The

future impact of a†
x,1 would again yield a superposition of a particle at (x,0) or at (x,1),

but with a phase depending on another particle being there or not. Such a W′ would
not, therefore, be the ‘rightful non-interacting extensions of W ’ to the multi-particle
sector. Only W is. In other words, we were seeking to determine the ϕ of the last entry
of W; setting it to θ fixes it to its non-interactive value.

The same process can be applied to the evolution a†
x,0 leading to

Wa†
x,0W† = M00a†

x,0 +M10a†
x,1 (A.7)

Wa†
1W† = M01a†

x,0 +M11a†
x,1. (A.8)

Considering as past action the product of these two operators a†
x,0a†

x,1. Its future
impact is

Wa†
x,0W†Wa†

x,1W† = (M00a†
x,0 +M10a†

x,1)(M01a†
x,0 +M11a†

x,1) (A.9)

= M00M11a†
x,0a†

x,1 +M01M10a†
x,1a†

x,0 (A.10)

= (M00M11 −M01M10)a†
x,0a†

x,1. (A.11)

Now, because state |00〉 evolves into |00〉, and because |11〉 = a†
x,0a†

x,1 |00〉, it must

be that |11〉 evolves into (M00M11 − M01M10)a†
x,0a†

x,1 |00〉 = (M00M11 − M01M10) |11〉.
Hence, the phase e iϕ = e iθ applied to |11〉 can simply be written M00M11 −M01M10.

In other words we have that for any QW gate W = 1⊕M acting on qubits that follow
each other in the JW order, the corresponding non-interactive multi-particle extension
QCA gate is

W† =


1 0 0 0
0 M00 M01 0
0 M10 M11 0
0 0 0 M00M11 −M01M10

 . (A.12)

Let us now use this to define the on-site and transport gates of the QCA.

A.1. On-site operators
First consider S = 1⊕ X ⊕ e iϕ with S01 = X10 = 1 and X00 = X11 = 0. We justified in
subsection 2.2.2 that ϕ needs be π. With the above this readily follows from X00X11 −
X01X10 =−1 Therefore S is:

S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 . (A.13)

On-site QW gates that are mere permutations of qubits in the one-particle sector,
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can be extended to the multi-particle sector directly by means as products of S, in the
same way that any permutation can be obtained from local transpositions.

For the mass term and the basis changes, this is not the case, but Eq. (A.12) again
readily applies. As an example, the mass term Cϵ = 1⊕C has C00C11−C01C10 = c2+s2 =
1, which results in the following mass gate for the QCA:

Cϵ =


1 0 0 0
0 c −s 0
0 s c 0
0 0 0 1

 . (A.14)

A.2. Transport operators
In this chapter the transport is implemented in two steps: first swap the qubits on-site
so that the right-moving qubit is on the right-hand side of the site (S), then hop qubits
across adjacent sites (T) whilst changing the gauge field accordingly.

The hopping term T is of the form:

a†
x+ηV †

x,ηax = |1〉x+η 〈0|

 ∏
y∈

[
x+η,(x+η,−η)

[ Zy

U †
x,η

 ∏
y∈

[
x,(x,η)

[ Zy

 |0〉x 〈1| . (A.15)

In the one particle sector, one gets the operator:

Tη = 1⊕T with T =
(

0 K †
η

Kη 0

)
(A.16)

with

Kx,η =

 ∏
y∈

[
x,(x,η)

[ Zy

Ux,η

 ∏
y∈

[
x+η,(x+η,−η)

[ Zy

 . (A.17)

I.e. T plays the same role as M in Eq. (A.12), up to operators updating the gauge field.
The same reasoning applies. Since

T00T11 −T01T10 =−K †
ηKη =−I (A.18)

we have that

Tη =


1 0 0 0
0 0 K †

η 0
0 Kη 0 0
0 0 0 −1

 . (A.19)
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A.3. 3+1 dimensions
In 3+1 dimensions, there are four qubits per site instead of two. A QW operators W
that acted in the one particle sector |0001〉 , |0010〉 , . . ., now needs to be extended to
a QCA operator W that can handle the multi-particle sector |0011〉 , |1110〉 , . . ., which
seems to leave open many more possibilities than in the 2+1 case. However, the 3+1
QW operators we are dealing with easily be decomposed as circuits of 2-qubit gates,
with the qubits following each other in the JW order. So, we extend these two qubit
gates instead, through the same process as in 2+1 dimensions, and then recombine
them to form the extension of the 3+1 QW operator.

The 2-qubit QW operators used will turn out to be same as those of the 2+1 case,
except for 1⊕F which was not defined previously. Its QCA version F is given through
Eq. (A.12):

F =


1 0 0 0
0 1p

2
−ip

2
0

0 ip
2

−1p
2

0

0 0 0 −1

 . (A.20)

Let us first decompose the 4-qubit operators for the 3+1 QW that was given in Eq.
(2.126), as circuits of 2-qubit gates.

C ϵ = 1⊕ (1⊕X ⊕1)(Cϵ⊕Cϵ)(1⊕X ⊕1) (A.21)

S = 1⊕ (I ⊕X ⊕ I )(X ⊕X )(I ⊕X ⊕ I ) (A.22)

T η,ϵ = 1⊕ (I ⊕Tη⊕ I )(X ⊕X )(I ⊕Tη⊕ I ) (A.23)

Hρ = 1⊕ (I ⊕X ⊕ I )(I2 ⊕X )(I ⊕X ⊕ I ) (A.24)

Hµ = Hρ(1⊕ (H ⊕H)) (A.25)

Hν = Hρ(1⊕ (F ⊕F )). (A.26)

These operators are written as a product of direct sums of gates, with the identity
for the null state. The direct sum is used here instead of the tensor, because we are
in the one-particle sector, i.e. besides |0000〉 which is acted upon trivially with the
first 1, the basis states are |0001〉 , |0010〉 , |0100〉 , |1000〉. Notice that each gate on the
right-hand-side acts on neighboring qubits, e.g. a Cϵ acts on |0001〉 , |0010〉 etc. Indeed,
whenever some 4 qubit operator an operator needed to act on non-adjacent qubits in
the JW order, a prior reordering using X was introduced. For instance, the mass term

C ϵ = 1⊕


c 0 −s 0
0 c 0 −s
s 0 c 0
0 s 0 c

 (A.27)

acts on the first and third qubit on the one hand, and on the second and last qubit on
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the other. In order to obtain a circuit of adjacent gates in the JW order, The second and
third qubits are swapped, using the operation 1⊕X ⊕1, allowing for the application
of the 2-qubit mass term on the first and last two qubits separately through Cϵ⊕Cϵ.
The swap is then reapplied such that the initial order is recovered. These swaps can be
understood as crossing of wires in a circuit so that the 2-qubit gates have the correct
input and output. Such swaps correspond, in the multi-particle sector, to the QCA
operator S. Hence, we can extend 1⊕X ⊕1 into 1⊗S⊗1, as this again swaps the two
middle qubits while leaving the rest unchanged. Notice that the operator ⊗ is used
instead of ⊕ since we are no longer in the one particle sector. Similarly, the second
step of the circuit for the mass term is extended into Cϵ⊗Cϵ. In the end, one obtains
the following multi-particle sector, QCA operator for the mass term:

Cϵ = (1⊗S⊗1)(Cϵ⊗Cϵ) (1⊗S⊗1) . (A.28)

The same procedure readily yields the gates that compose the 3+1 QED QCA of section
2.3.1.
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