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«Ah, people only know what you tell them, Carl.»

«Well, then tell me this, Barry Allen, Secret Service.

How did you know I wouldn’t look in your wallet?»

«The same reason the Yankees always win.

Nobody can keep their eyes off the pinstripes.»

«The Yankees win because they have Mickey Mantle.

No one ever bets on the uniform.»

( Frank chuckles )

«You sure about that, Carl?»

«I’ll tell you what I am sure of.

You’re going to get caught.

One way or another, it’s a mathematical fact.

It’s-It’s like Vegas.

The House always wins.»

«Well, Carl, I’m sorry, but I have to go.»

«Ah. You didn’t call just to apologize, did you?»

( laughing )

«What do you mean?»

«You... you... you have no one else to call.»

( laughing )

«Oh, ho, ho.»

( phone bell dings )

( guffaws )

( humming )

«...Morn and night...»

( melancholy melody playing )

( melody fades )
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Abstract

This thesis studies the spectrum of systems associated to substitutions, in particular the
continuous spectrum. We have based the analysis on the study of the spectral cocycle and
twisted Birkhoff sums (and integrals). These tools have been widely used in many recent
works to ensure quantitative rates of weak mixing and spectrum singularity in settings such
as substitution subshifts, S-adic systems, translations surfaces, deterministic and random
substitutive tilings and interval exchange transformations.

The first results are obtained in the case of suspension flows over Salem type substitutions.
We prove Hölder decays for correlation measures in the spectral parameters belonging to the
algebraic field arising from the Salem number. The proof is based in a fine analysis of the
distribution modulo 1 of the sequence (ηαn)n≥0, where η ∈ Q(α) and α is the corresponding
Salem number.

The second set of results are related to the Thue-Morse substitution. We study the behavior of
the top Lyapunov exponents of the spectral cocycle associated to the Thue-Morse substitution
and its topological factors. We prove that for all topological factors the top Lyapunov
exponent is zero, and we also give the sub-exponential behavior of the twisted Birkhoff sums.
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Résumé

Cette thèse étudie le spectre des systèmes associés aux substitutions, en particulier le spec-
tre continu. Nous avons basé l’analyse sur l’étude du cocycle spectral et des sommes (et
intégrales) de Birkhoff tordues. Ces outils ont été utilisés récemment dans de nombreux
travaux pour assurer des taux quantitatifs de mélange faible et singularité du spectre dans
des contextes tels que les sous-décalages substitutifs, les systèmes S-adiques, les surfaces
de translations, les pavages substitutifs déterministes et aléatoires et les transformations
d’échange d’intervalles.

Les premiers résultats sont obtenus dans le cas des flots de suspension sur les substitutions de
type Salem. Nous prouvons des décroissances de type Hölder pour les mesures de corrélation
sur les paramètres spectraux appartenant au corp algébrique engendré par le nombre de
Salem. La preuve est basée sur une analyse fine de la distribution modulo 1 de la suite
(ηαn)n≥0, où η ∈ Q(α) et α est le nombre de Salem correspondant.

La deuxième série de résultats est liée à la substitution de Thue-Morse. Nous étudions
le comportement des exposants de Lyapunov maximaux du cocycle spectral associé à la
substitution de Thue-Morse et à ses facteurs topologiques. Nous prouvons que pour tous les
facteurs topologiques, l’exposant de Lyapunov maximal est nul, et nous donnons également
le comportement sous-exponentiel des sommes de Birkhoff tordues.
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Chapter 1

Introduction

The aim of this thesis is to study some aspects of the spectrum of substitutions. Substitu-
tions are simple, but rich combinatorial objects appearing naturally in many domains across
mathematics such as symbolic dynamics, number theory, combinatorics of words, Diophan-
tine approximation, and so on. The spectrum of substitutions has been extensively studied
(see for example the book of M. Queffélec [61] for an extensive introduction). Nevertheless,
the continuous part of the spectrum of general substitutions is still not well understood, and
is the focus of this document.

Chapter 1 contains general background necessary for the rest of the chapters: we focus
our attention on results concerning the spectrum of substitution subshifts, self-similar and
generic suspension flows over them. We finish the chapter by describing our results and open
questions associated with them.

In Chapter 2, we study the spectral measures associated to a dynamical system arising from a
primitive substitution having as its Perron-Frobenius eigenvalue a Salem number. We obtain
a Hölder exponent for those measures at points belonging to the algebraic field generated by
the Salem number.

In Chapter 3 we study the invariance by topological conjugacy of the top Lyapunov exponent
of the spectral cocycle, in the simple case of the Thue-Morse substitution. We prove that in
fact, the exponent vanishes almost everywhere and the same holds for any subshift topological
factor.

1.1 Preliminaries

We start by recalling basic definitions and results that give context to the rest of the text.
Many results in this section are classic and some of them are just mentioned vaguely. The
reader may look for formal statements in the references given. We emphasize in definitions
since they will serve as reference for the other chapters.
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1.1.1 Measure preserving transformations and flows

Let (X,B, µ) be a probability space, i.e., B is a σ-algebra and µ(X) = 1.

Definition 1.1 Let T : X −→ X a measurable transformation of X, in the sense that for
each A ∈ B, T−1A ∈ B. We will say µ is T -invariant (or invariant by T , or preserved by
T ) if for each A ∈ B we have µ(T−1A) = µ(A). If T is invertible we will also refer to T as
a Z-action on X.

Definition 1.2 Let H : X × R −→ X be a measurable transformation (for the completion
of the product σ-algebra B ⊗ B(R), where B(R) denotes the Borel σ-algebra). We will say
(H(·, t))t∈R = (ht)t∈R is a flow on X if

• h0 = idX ,

• hs ◦ ht = hs+t for all s, t ∈ R.

We will say µ is invariant by (ht)t∈R if for every t ∈ R, µ is ht-invariant. We will also refer
to (ht)t∈R as an R-action on X.

Definition 1.3 A (measure-theoretic) discrete time (resp. continuous time) dynamical

system is a tuple (X,B, µ, T ) (resp. (X,B, µ, (ht)t∈R)) such that µ is T -invariant (resp.
(ht)t∈R invariant).

Examples 1. Irrational rotation. Fix α ∈ R \Q, and consider X = R/Z and T (x) =
Rα(x) = x + α (mod 1). An invariant Borel probability measure in this case is the
Lebesgue measure Leb.

2. Gauss map. Consider again X = R/Z, T (x) = {1/x} for x 6= 0 and T (0) = 0, where
{x} corresponds to the fractional part of x. An invariant Borel probability is given by

µ(A) =
1

log(2)

∫

A

1

1 + s
ds, for each A ⊆ X Borel.

3. Let X be a compact differentiable manifold, Vol the volume measure (arising from a
volume form) and ht : x 7→ γx(t), where γx is the only solution of

{
γ′ = F (γ(t))

γ(0) = x

where F is a C1 vector field such that Div(F ) is identically zero.

Starting from a positive function f : X −→ R+, there is a canonical way to construct a flow
(ht)t∈R from a transformation T of X. We will show this construction in the next subsection.

In Chapter 3 we will need the next notion of "equality" of dynamical systems. We will only
use this definition for discrete time dynamical systems.

Definition 1.4 Let (X,B, µ, T ), (Y,V , ν, S) be two dynamical systems. We will say that they
are (measurably) conjugate if there exist two measurable sets X̃ ⊂ X, Ỹ ⊂ Y of total mass
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and a bimeasurable map π : X̃ −→ Ỹ such that

π ◦ T = S ◦ π and π∗µ = ν,

where π∗µ is the push-forward of µ, defined by π∗µ(E) = µ(π−1(E)), for every E ∈ V ∩ Ỹ .
If π is measurable and onto, we will say the two systems are semi-conjugate or (Y,V , ν, S)
is a factor of (X,B, µ, T ).

All previous definitions have their topological counterpart, basically changing the words mea-
surable by continuous. We summarize all these notions in the next definition (for discrete
time).

Definition 1.5 Let X be a compact metric space and T : X −→ X a continuous transfor-
mation. We call topological dynamical system the pair (X, T ). We will say two systems
(X, T ), (Y, S) are topologically conjugate if there exists an homeomorphism π : X −→ Y
such that

π ◦ T = S ◦ π.
If π continuous and onto, we will say the two systems are topologically semi-conjugate

or (Y, S) is a topological factor of (X, T ).

A basic notion from topological dynamics is the next one.

Definition 1.6 Let (X, T ) be a topological dynamical system. We say (X, T ) is minimal if
the forward orbit of every point x ∈ X is dense, i.e., O(x) = {T n(x)|n ≥ 0} is a dense subset
of X.

From a topological dynamical system we can always obtain a measure-theoretic dynamical
system by considering the Borel σ-algebra, since the space of invariant measures is always
nonempty, as the Krylov-Bogolyubov theorem shows (see [57]). Now we recall some classical
notions in ergodic theory.

Definition 1.7 We say a dynamical system (X,B, µ, T ) or T (resp. (X,B, µ, (ht)t∈R) or
(ht)t∈R) or µ is

• ergodic if

lim
n→∞

∣∣∣∣∣
1

n

n−1∑

j=0

∫
f ◦ T j(x)g(x) dµ(x)−

∫
f(x)dµ(x)

∫
g(x) dµ(x)

∣∣∣∣∣ = 0,

for all f, g ∈ L2(X,µ).
(

resp. if limt→∞

∣∣∣∣
1

t

∫ t

0

(∫
f ◦ hs(x)g(x) dµ(x)

)
ds−

∫
f(x)dµ(x)

∫
g(x) dµ(x)

∣∣∣∣ = 0

)

• weakly mixing if

lim
n→∞

1

n

n−1∑

j=0

∣∣∣∣
∫

f ◦ T j(x)g(x) dµ(x)−
∫

f(x)dµ(x)

∫
g(x) dµ(x)

∣∣∣∣ = 0,
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for all f, g ∈ L2(X,µ).
(

resp. if limt→∞
1

t

∫ t

0

∣∣(∫ f ◦ hs(x)g(x) dµ(x)
)
−
∫
f(x)dµ(x)

∫
g(x) dµ

∣∣ ds = 0

)

• mixing if

lim
n→∞

∫
f ◦ T n(x)g(x) dµ(x)−

∫
f(x)dµ(x)

∫
g(x) dµ(x) = 0,

for all f, g ∈ L2(X,µ).

(
resp. if limt→∞

(∫
f ◦ ht(x)g(x) dµ(x)

)
−
∫
f(x)dµ(x)

∫
g(x) dµ(x) = 0

)
.

A related, but of different nature, notion is the next one.

Definition 1.8 We say a dynamical system (X,B, µ, T ) (resp. (X,B, µ, (ht)t∈R)) is uniquely

ergodic if µ is the only measure defined on B which is T -invariant (resp. which is (ht)t∈R-
invariant measure).

The nomenclature is justified since a uniquely ergodic system is ergodic (see [57]).

1.1.2 Dynamical systems arising from substitutions

The basic notions of substitutions may be found in the books of M. Queffélec [61] or P. Fogg
[40] with more detail.

Let A be a finite set (we will call it alphabet and its elements letters).

Definition 1.9 A substitution on A is a map ζ : A −→ A+, where A+ denote the set of
finite (nonempty) words on A, such that the image of at least one letter has length at least
two. By concatenation, it is natural to extend a substitution to A+, AN (one-sided sequences)
or AZ (two-sided sequences).

In particular, the iterates ζn(a) = ζ(ζn−1(a)) for a ∈ A, n ≥ 1, are well-defined. In general,
we will take as alphabet the set {1, . . . , d}, for some d ≥ 2.

Examples 1. Fibonacci substitution. Let A = {1, 2},

ζ(1) = 12, ζ(2) = 1.

2. Tribonacci substitution. Let A = {1, 2, 3},

ζ(1) = 12, ζ(2) = 13, ζ(3) = 1.
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3. Holton-Zamboni substitution. Let A = {1, 2, 3, 4},

ζ(1) = 12, ζ(2) = 14,

ζ(3) = 2, ζ(4) = 3.

4. Bufetov-Solomyak substitution. Let A = {1, 2, 3},

ζ(1) = 1112, ζ(2) = 123, ζ(3) = 2.

5. Thue-Morse substitution. Let A = {0, 1}

ζ(0) = 01, ζ(1) = 10.

For a word w ∈ A+, denote its length by |w| and by |w|a the number of symbols a found in
w. A particular class of substitutions is the one that images of letters have the same length.

Definition 1.10 We will say a substitution ζ over A is of constant length if there exists
q ≥ 2 such that |ζ(a)| = q, for every a ∈ A.

An important object associated to substitutions is its "abelianization" defined in the next
definition.

Definition 1.11 Let A = {1, . . . , d} and ζ a substitution over A. We will call substitu-

tion matrix associated to a substitution ζ the d × d matrix with integer entries defined by
Mζ(a, b) = |ζ(b)|a. A substitution is called primitive if its substitution matrix is primitive.

Example Let ζ be the Holton-Zamboni substitution defined in the examples above. Then
its substitution matrix is

Mζ =




1 1 0 0
1 0 1 0
0 0 0 1
0 1 0 0


 ,

and this substitution is primitive.

We recall that a primitive matrix with nonnegative integer entries always has a simple domi-
nant real eigenvalue of modulus greater than 1 admitting a coordinatewise positive eigenvec-
tor by the Perron-Frobenius theorem (see e.g. [61]). This is called the Perron-Frobenius

eigenvalue (resp. Perron-Frobenius eigenvector), and in the context of primitive substi-
tutions, we will call it the Perron-Frobenius eigenvalue (resp. Perron-Frobenius eigenvector)
of the substitution.

Now we define a first class of dynamical systems arising from substitutions.

Definition 1.12 The substitution subshift space associated to ζ is the set Xζ of sequences
x = (xn)n∈Z ∈ AZ such that for every i ∈ Z and k ∈ N exist a ∈ A and n ∈ N such that
xi . . . xi+k is a subword of some ζn(a).

5



Note that for any power of a primitive substitution, the substitution subshift space does not
change, i.e., Xζk = Xζ for any k ≥ 1. In particular, considering a suitable power of the
substitution, we may always suppose there is a fixed point of the substitution: there exists
u ∈ Xζ such that ζ(u) = u. If for some letter a ∈ A, ζ(a) starts with the letter a, then, for
every n ≥ 1, ζn−1(a) is a prefix of ζn(a). Iterating the substitution indefinitely, this produce
a unique one-sided sequence u such that for every N ≥ 1 there exist n ≥ 1 such that u[0,N ]

is prefix of ζn(a). We denote this (one-sided) fixed point by ζ∞(a).

We can decompose Xζ in (one letter) cylinders:

Xζ =
⋃

a∈A
Xa, Xa = {x ∈ Xζ | x0 = a} = [a].

Analogously, for w = w0 . . . wk ∈ A+, define the cylinder [w] = {x ∈ Xζ | x0 = w0, . . . , xk = wk}.
We can endow AZ with the product topology (of the discrete topology in each copy of A).
It is metrizable and makes AZ a compact metric space. The same holds for Xζ , since Xζ is a
closed subspace of AZ.

A classical result is that the (continuous) Z-action on Xζ given by the left-shift T ((xn)n∈Z) =
(xn+1)n∈Z is minimal and uniquely ergodic when ζ is primitive (see [61]). In fact, the only
invariant Borel probability measure µ is characterized, for each cylinder [w] = [w0 . . . wk], by
the frequency it appears in any x ∈ Xζ , i.e.,

µ([w]) = lim
n→∞

N(w, x0 . . . xn−1)

n
,

where N(w, x0 . . . xn−1) is the number of occurrences of w in x0 . . . xn−1. Also, the vector of
positive entries (µ([a]))a∈A is a Perron-Frobenius eigenvector of the matrix Mζ .

A sequence x ∈ AZ is shift-periodic if there exists n ≥ 1 such that x = T n
x. For a primitive

substitution, every point of Xζ is shift-periodic (and Xζ is finite) or every point of Xζ is not
shift-periodic (and Xζ is infinite). We will be interested in the latter case, therefore we will
always assume Xζ does not contain shift-periodic points. In this case, we say the substitution
ζ is aperiodic.

Now we define one of the main dynamical systems we will be dealing with.

Definition 1.13 Let ζ be a primitive aperiodic substitution. The substitution subshift

associated to ζ is the tuple (Xζ ,B(Xζ), µ, T ).

Now we turn to the continuous time counterpart of the substitution subshift. Let start by
recalling how to construct a continuous time dynamical system from a discrete time one and
from a positive function. Let (X, T ) be topological dynamical system, with T invertible and
f : X −→ R+ a positive function.

Definition 1.14 Consider F : X × R −→ X × R defined by F (x, t) = (T (x), t − f(x)).
The suspension flow of (X, T ) with roof function f , is the topological dynamical system

6



(Xf , (ht)t∈R) defined by

Xf = (X × R)/ ∼,

ht(x, t
′) = (x, t′ + t) (mod ∼),

where ∼ is the equivalence relation defined by (x, t) ∼ (x′, t′) if and only if F n(x, t) = (x′, t′),
for some n ∈ Z.

We may endow (Xf , (ht)t∈R) with its Borel σ-algebra B(Xf ) and an invariant measure µ. In
fact, one can construct an invariant measure on Xf for the flow from an invariant measure
on X for the transformation T (see [57], Chapter 3). Therefore, we also refer as suspension
flow to the tuple (Xf ,B(Xf ), µ, (ht)t∈R).

We will identify Xf with a fundamental domain (see for example [58], Chapter 3). We will
take as fundamental domain

D = {(x, s) ∈ X × R | 0 ≤ s < f(x)} .
With this identification, the flow ht (for t ≥ 0) acts by increasing the second coordinate of
a point (x, s) until it arrives to the "top" of its suspension: the point (x, f(x)), where we
identify this point by the relation ∼ to (T (x), 0) ∈ D (see Figure 1.1). We will make no
further reference to the fundamental domain, and we will simply denote it by Xf .

For the particular case of substitution dynamics, we will focus our attention on the piecewise
constant functions on Xζ , where ζ is a primitive aperiodic substitution on A. Let ~p = (pa)a∈A
be an entrywise positive vector, with components indexed by A.

Definition 1.15 Consider f : Xζ −→ R+ defined by f(x) = pa, for any x ∈ Xa. The
suspension flow of Xζ with roof vector ~p is the suspension flow (Xf

ζ , (ht)t∈R) and it will be

denoted by (X~p
ζ , (ht)t∈R).

A special choice for ~p is the normalized (positive) Perron-Frobenius eigenvector of the sub-
stitution matrix MT

ζ .

Definition 1.16 Let ~p = (pa)a∈A be the positive normalized Perron-Frobenius eigenvector of
MT

ζ . We call (X~p
ζ , (ht)t∈R) the self-similar suspension flow.

Once again, we may again decompose a suspension flow in cylinders:

X
~p
ζ =

⋃

a∈A
X~p

a, X~p
a =

{
(x, s) ∈ X

~p
ζ

∣∣∣ x0 = a
}
.

1.1.3 Conjugacy and semi-conjugacy of substitution subshifts

In this subsection we recall some results and questions related to the (semi-)conjugacy of
substitutions subshifts. A good reference is the recent work of F. Durand and J. Leroy [35].
Let us recall the general definition of a subshift.
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[1] [2] . . . [d]

Xζ

X
~p
ζ

p1

p2

pd

(x, s)

(Tx, 0)

Figure 1.1: Suspension flow over a substitution subshift defined by ζ with a piecewise constant
roof function defined by the positive vector ~p = (pa)a∈A, representing the heights of the
rectangles. The arrows indicate the action by the flow (ht)t∈R.

Definition 1.17 Let A be a finite set. A closed subset X ⊆ AZ (or the pair (X, T )) is called
a subshift if T (X) ⊆ X, where T as always denote the left-shift. If X = Xζ, for some
substitution ζ on A, we will say X is a substitution subshift.

The first natural general question we could ask is the next decision problem.

Question 1.18 Let ζ, σ be substitutions on A,B respectively. Decide whether the associated
subshifts are conjugate. What about semi-conjugacy?

Passing to topological dynamics makes this problem much more accesible since topological
factors maps to a subshift have a simple form by the Curtis-Hedlund-Lyndon theorem. Before
state the results in this direction, let us recall two results related to the decision problem
of conjugacy and semi-conjugacy in substitution dynamics. The first due to F. Durand, B.
Host and C. Skau and the second one to F. Durand.

Theorem 1.19 ([34]) All subshift (topological) factors of substitution systems are substitu-
tion subshifts.

Theorem 1.20 ([33]) There exist finitely many subshift (topological) factors of a substitution
subfhift up to topological conjugacy.

In the topological setting, we have next two problems.

Question 1.21 Let ζ, σ be substitutions on A,B respectively. Decide whether the associated
subshifts are toplogically conjugate. What about topological semi-conjugacy?

Question 1.22 Let ζ be a substitution on A. Give the complete list (modulo conjugacy)
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of substitution subshifts topologically conjugate to (Xζ , T ). Give the complete list (modulo
conjugacy) of substitution subshifts topologically semi-conjugate to (Xζ , T ).

The first question has been recently answered by F. Durand and J. Leroy, in the more
general setting of uniformly recurrent morphic subshifts, which includes aperiodic primitive
substitutions as a particular case.

Theorem 1.23 ([35]) For two uniformly recurrent substitution subshifts (X, T ) and (Y, T ′),
it is decidable whether they are semi-conjugate. Moreover, if (Y, T ′) is aperiodic, then there
exists a computable constant r such that for any topological factor π : X −→ Y there exist
k ∈ Z and a factor π′ : X −→ Y of radius less than r, such that π = (T ′)k ◦ π′.

It is tempting to think we may list all factors from a given substitution system by considering
all possible radii, but the radius r in the last result depends strongly on the factor system.

On the other hand, in the constant length case, this is partially solved: it is possible to give
the list of all factors of constant length (see [27, 35]). Nevertheless, a conjugate system is not
necessary of constant length, as it is shown by the next result of M. Dekking.

Theorem 1.24 ([30]) There exist infinitely many non constant length, primitive, injective
substitutions with Perron-Frobenius eigenvalue equal to 2, topologically conjugate to the Thue-
Morse substitution.

In Chapter 3 we will study some aspects of factors of the substitution subshift arising from
the Thue-Morse substitution defined above. Examples of conjugate substitution systems to
the Thue-Morse subshift which are not constant length are given in [30].

Example Consider the substitutions ζ1, ζ2 and ζ3 defined below. Both ζ1, ζ2 are topologically
conjugate to the Thue-Morse substitution, and ζ3 is topologically semi-conjugate.

ζ1 : 0 7→ 01, 1 7→ 20, 2 7→ 10;

ζ2 : 0 7→ 012, 1 7→ 02, 2 7→ 1;

ζ3 : 0 7→ 01, 1 7→ 00.

The last substitution shows the subtlety in considering measurable and topological factors:
the subshift associated to ζ3 is a topological factor of the Thue-Morse subshift. The former
is also measurably conjugate to the odometer in two symbols (which is also a topological
factor of Thue-Morse), but those systems are not topologically conjugate. In fact, the action
on the odometer is an isometry and the one in the subshift is an expansive transformation.

1.1.4 Number theoretic preliminaries

Here we recall some number-theoretic notions which will play an important role in the study
of the spectrum of substitutions. As a reference, see for example [15, 23].
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Diophantine approximation

We start defining two important classes of real numbers.

Definition 1.25 We call α ∈ R a Pisot-Vijayaraghavan number or PV number if α
is a real algebraic integer greater than 1 all of whose Galois conjugates are less than 1 in
absolute value.

Definition 1.26 We call α ∈ R a Salem number if α is a real algebraic integer greater
than 1 whose Galois conjugates have absolute value no greater than 1 and at least one of
which has absolute value exactly 1.

This definition actually forces that the inverse α−1 is a Galois conjugate of α, and the rest
of them are on the unit circle. These numbers come up in many areas in mathematics, in
general because of some remarkable arithmetic properties they enjoy. A nice survey on Salem
numbers is [64]. We state two main features which will be essential for us. Denote as usual
by {x} the fractional part of x, and ||x||R/Z = min({x}, 1−{x}) the distance to the integers.

Let us recall two Diophantine properties of these sets of numbers: The first result is due
independently to C. Pisot and T. Vijayaraghavan.

Theorem 1.27 ([59, 68]) Let α > 1 be an algebraic number. Are equivalent:

• α is a PV number.

• There exists η ∈ Q(α) \ {0} such that limn→∞||ηαn||R/Z = 0.

Theorem 1.28 (cf. [23], Theorem 3.9) Let α be a Salem number and ε > 0, then there
exists η = η(ε) ∈ Q(α) different from zero such that

||ηαn||
R/Z

< ε,

for all n ≥ 0.

These results are surprising since a theorem due to H. Weyl says that almost surely, the
sequences (ηαn)n≥0 are uniformly distributed modulo 1 (in fact, there exist three variants
depending on α, η and (α, η), see [23], Chapter 1).

Let us focus on Salem numbers, which is the case of the Perron-Frobenius eigenvalues of
substitution matrices studied in Chapter 2. We will see that the behavior of the sequence
(ηαn)n≥0 modulo 1 is intimately related with the spectrum of the dynamical system associated
to a substitution, which arises naturally the number α as its Perron-Frobenius eigenvalue.

The next result is due to C. Pisot and R. Salem.

Theorem 1.29 ([60]) Let α be a Salem number. Then the sequence (αn)n≥1 (mod 1) is dense
in [0, 1] but is not uniformly distributed modulo 1.

In spite of the above result, S. Akiyama and Y. Tanigawa showed in [2] that the sequence
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For the second one we need a definition first.

Definition 1.33 Let P (X) ∈ C[X]. The Mahler measure of the polynomial P (X) =
a(X − α1) . . . (X − αd) is defined by

m(P ) = |a|
d∏

j=1

max(1, |αj|).

For an algebraic number α with minimal polynomial P , we usually write m(α) = m(P ).

Question 1.34 (Lehmer problem) Is there any c > 1 such that c ≤ m(P ) for all P ∈ Z[X]
which are not a product of cyclotomic polynomials?

D. H. Lehmer found the smallest known Mahler measure, given by the polynomial

L(X) = X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1

Due to a result of C. J. Smyth, for non-palindromic polynomials, a lower bound for the
Mahler measure is given by m(ρ), ρ being the plastic number, the only real solution of
P (X) = X3−X− 1. For a Salem number α, α−1 is always a Galois conjugate, and therefore
the minimal polynomial is palindromic. Since for a Salem number the Mahler measure of its
minimal polynomial coincides with it, Lehmer problem is in particular asking if the set of
Salem numbers is bounded away from 1. The strong Lehmer conjecture asserts it is the case,
and in fact one can take c = m(L), implying the largest real root of L is in fact the smallest
Salem number.

Digits sum and Thue-Morse polynomials

Chapter 3 is devoted to the top Lyapunov exponent of the spectral cocycle (see subsection
1.1.6) of the Thue-Morse substitution and its topological factors. As it is well-known, there
is an arithmetic characterization of the fixed points of the Thue-Morse substitution involving
the function s2 (defined below) over the nonnegative integers that sums the digits of the base
2 expansion. We develop some of these connections in the present subsection.

Definition 1.35 Let k be a nonnegative integer. Define the sum of digits function s2 :
Z≥0 −→ Z≥0 by s2(k) = k0 + · · ·+ kn−1, where k = k0 + k12 + · · ·+ kn−12

n−1 (ki ∈ {0, 1}) is
the base 2 expansion of k.

Proposition 1.36 Let u be the (one sided) Thue-Morse word, i.e., u = ζ∞(0), where ζ
is the Thue-Morse substitution over {0, 1}. Then, for every k ≥ 0,

uk = s2(k) (mod 2).

Let us consider the next sums on the Thue-Morse word associated with the indicator functions
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f = 1[0], g = 1[1] and a parameter ω ∈ [0, 1). We use the notation e(x) := e2πix.

Sf
2n(ω,u) =

2n−1∑

k=0

1[0](T
k
u)e(kω), (1.1)

Sg
2n(ω,u) =

2n−1∑

k=0

1[1](T
k
u)e(kω). (1.2)

This is a particular case of a twisted Birkhoff sum, a notion we will define in subsection 1.1.5.
For reasons we will clarify later, we are interested in the asymptotic growth of the twisted
Birkhoff sums. Note that adding both sums yields simply a (bounded) geometric sum for
ω 6= 0. Fortunately, the difference has been well studied: by the arithmetic characterization
of the Thue-Morse word we have

Sf
2n(ω,u)− Sg

2n(ω,u) =
2n−1∑

k=0

(−1)s2(k)e(kω) =: pn(ω).

The trigonometric polynomials pn(ω) are called Thue-Morse polynomials. Lot of attention
has been given to the asymptotics of Lp norms of pn: an ingredient in the proof of a prime
number theorem for the sum of digits function due to C. Maduit and J. Rivat in [55] is the
asymptotic

||pn||1 ∼ 2nδ, with δ = 0.40325...

See for example [62] for related questions. We will be interested in the asymptotics of pn
for fixed ω as n goes to infinity. Apparently contradictory with the latter result, the growth
is sub-exponential almost everywhere for the Lebesgue measure. The next result gives an
explicit sub-exponential bound, and is a consequence of a bounded iterated logarithm law for
the map x 7→ 2x. The classical setting ensure such a law works with bounded observables,
which is not our case. But the result holds due to a deep result of J. Dedecker, S. Gouëzel
and F. Merlèvede [28]. More details on this are found in Chapter 3.

Proposition 1.37 (M-M.) There exists a positive constant B such that for almost all ω,
there is a positive integer n0(ω) such that for all n ≥ n0(ω),

max(|pn(ω)|, |pn(ω)|−1) ≤ eB
√

n log log(n).

In consequence, the twisted Birkhoff sums of the Thue-Morse substitution will have, almost
surely, a sub-exponential growth. We will also study in Chapter 3 a generalization of the
twisted Birkhoff sum (which we will call twisted correlation) for which we can find similar
estimates. We summarize those results in subsection 1.3.

In order to study twisted correlations sums, we have used some results about the solution
set of the equation s2(k + a)− s2(k) = d, a ∈ N and d ∈ Z. Denote by Sa,d its solution set.
To change between words and numbers represented by digits consider the next notation: k2

denotes the word associated to the digits of k in base 2, i.e., if k = k0 + · · ·+ kn−12
n−1 then

k2 = k0 . . . kn−1 ∈ {0, 1}∗. Similarly, for a word w = w0 . . . wn−1 ∈ {0, 1}∗, denote by w2 the
number w0 + · · ·+ wn−12

n−1.
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Lemma 1.38 (cf. [38]) There exists a finite set of words Pa,d = {pda(1), . . . , pda(s)} ⊂ {0, 1}∗,
such that

k ∈ Sa,d ⇐⇒ k2 ∈
s⋃

i=1

[pda(i)].

1.1.5 Some notions on spectral theory

Here we develop some of the background in spectral theory of unitary operators associated
to dynamical systems. The focus on the definition of the spectral measures, specially relevant
in Chapter 2. References for spectral theory of dynamical systems are [61, 48, 36, 47]. We
use again the notation e(x) = e2πix.

General spectral theory, Koopman representations and eigenvalues

Let (H, 〈·, ·〉) be a separable Hilbert space and V : H −→ H a bounded linear operator.

Definition 1.39 We call V a normal operator if V V ∗ = V ∗V , where V ∗ denotes the adjoint
operator. V is called an isometry if V V ∗ = idH. Finally, V is called unitary if it is an
isometry and normal.

The existence and definition of spectral measures in the next theorem is a consequence of the
Bochner-Herglotz theorem. Since in Chapter 2 we will study the spectral measures of the
self-similar suspension flow over a substitution subshift, we will restrict ourselves to recall
mostly the spectral theory of R-actions. Similar statements are valid for Z-actions (see [61]),
and in more generality, for second countable locally compact Abelian groups (see [47]).

Let (Vt)t∈R be a one-parameter group of unitary operators in a Hilbert space H continuous
in the strong operator topology.

Theorem 1.40 Let u, v ∈ H. There exists a finite complex measure νu,v with support in R,
called spectral measure, such that

ν̂u,v(−t) :=

∫

R

e2πitωdνu,v(ω) = 〈Vtu, v〉.

We denote the diagonal measures νu,u by νu. Moreover, there exist a unitary equivalence

W between the action of Vt on the cyclic space Hu = cl ({Vtu | t ∈ R}) and the multiplication
operator Mt : f 7→ e(·t)f on L2(R, νu) and such that Wu = 1; that is, W is a unitary operator
such that the next diagram commutes.

Hu Hu

L2(R, νu) L2(R, νu)

Vt

W W

Mt
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Note that a diagonal measure is a positive measure. In the special case we are considering
the indicator function f = 1

X
~p
a

(for a ∈ A), we will denote νf by νa and we will call it
correlation measure.

Spectral measures allow us to make a unitary equivalence between the action of Vt on the
cyclic space generated by some function f ∈ H and the multiplication operator on L2(R, νf )
by the character e(t·). By an induction argument, it is possible to decompose the whole
space:

Theorem 1.41 (cf. [48]) There exists a family of diagonal spectral measures on R, ordered
(by absolute continuity relation) as

ν1 ≫ ν2 ≫ · · · ≫ νn ≫ . . . ,

such that the action of Vt on H is unitarily equivalent to the action of the multiplication
operator Mt defined below:

Mt :
⊕

i≥1

L2(R, νi) −→
⊕

i≥1

L2(R, νi)

(fi)i≥1 7−→ (e(t·)fi)i≥1

The decomposition is unique modulo the measures type (same null-sets). The type of ν1 is
called the maximal spectral type, denoted in general by νmax.

Consider the system (X,B, µ, (ht)t∈R) arising from the continuous R-action of a flow (ht)t∈R.
We associate the Hilbert space L2(X,µ).

Definition 1.42 We call the Koopman representation of (ht)t∈R the representation U :
R −→ B(L2(X,µ)) (the set of bounded linear operators) defined by U(t)(f) = Ut(f) = f ◦ht.

For any t ∈ R, the operator Ut is unitary since the flow is invertible and measure preserving.

Definition 1.43 We call spectrum of the system (X,B, µ, (ht)t∈R) the Gelfand spectrum of
its Koopman representation, i.e., the set of approximate eigenvalues

σ(U) = {ω ∈ R | ∃(fn)n≥1 ⊂ L2(X,µ), ||fn|| = 1 : ||Ut(fn)− e(tω)fn|| → 0, ∀t ∈ R}.

In particular, if the sequence (fn)n≥1 is constant, we recover the classic notion of eigenvalue:

Definition 1.44 We say ω ∈ R is an eigenvalue of (X,B, µ, (ht)t∈R) if there exists f ∈
L2(X,µ) (called eigenvector or eigenfunction) such that for all t ∈ R, Ut(f) = e(tω)f
(in L2(X,µ)). On a discrete time system (X,B, µ, T ), one takes ω ∈ [0, 1) and the analogous
condition is f ◦ T = e(ω)f .

The set of all eigenvalues is called the discrete spectrum of the system, and is usually
denoted by σdisc. Note that ω = 0 is always an eigenvalue with a constant function as
eigenvector. In general, the discrete spectrum is exactly the set of atoms of the maximal
spectral type.
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To finish this subsection, let us recall the connection of eigenvalues with some of the definitions
of ergodic theory introduced in subsection 1.1.1.

Proposition 1.45 (cf. [47]) The system (X,B, µ, (ht)t∈R) is ergodic if and only if 1 is a
simple eigenvalue of the system. The system (X,B, µ, (ht)t∈R) is weakly mixing if and only
if 1 is the only eigenvalue of the system. If the system (X,B, µ, (ht)t∈R) is ergodic, then all
eigenvalues are simple.

Continuous spectrum and spectral measures

We can always decompose the maximal spectral type in its discrete part and continuous part:

νmax = νdisc + νcont.

The set of eigenvalues provides a first invariant to distinguish two measures, since νdisc is
essentially a sum of Dirac deltas corresponding to eigenvalues of the system. The complement
of the set of eigenvalues is called the continuous spectrum of the system. Instead of
studying the set σ(U) \ σdisc, we will study the measure νcont.

A second invariant to distinguish two measures comes from the decomposition of νcont into
an absolutely continuous part and a singular continuous part respect to the natural Lebesgue
measure on R. Then

νmax = νdisc + νabs + νsing.

We will make use of a third invariant defined below.

Definition 1.46 Let ν be a a positive measure on the real line. The local lower dimension

of ν at a point ω ∈ R is defined by

d(ν, ω) = lim inf
r→0+

log(ν([ω − r, ω + r]))

log(r)
.

Let us make a connection with ergodic theory. Given a function δ : R+ −→ [0, 1) satisfying
limr→0+ δ(r) = 0. Call (ht)t∈R δ-partially weakly mixing, if there exists a constant C and
unit f ∈ L2(X,µ) such that for all unit g ∈ L2(X,µ) and all R > 0,

1

R

∫ R

0

∣∣∣∣
∫

f g ◦ ht dµ−
∫

f dµ

∫
g dµ

∣∣∣∣ dt ≤ Cδ(1/R).

We say the measure ν is δ-continuous at ω if there exist C, r0 > 0 such that

ν([ω − r, ω + r]) ≤ Cδ(r), ∀ 0 < r ≤ r0.

If the measure is δ-continuous at every ω, we will say it is δ-continuous. The next theorem
due to Y. Last shows a relation between the two notions above (see also the second reference
from the work of O. Knill for the discrete time case).
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Theorem 1.47 ([52, 49]) If there exists a spectral measure νf which is δ-continuous, then
(ht)t∈R is δ-partially weakly mixing. If (ht)t∈R is δ-partially weakly mixing, then there exists
a spectral measure νf which is

√
δ-continuous.

Obviously, if the maximal spectral type is δ-continuous at every ω 6= 0, then (ht)t∈R is
weakly mixing. If δ is an explicit function, this phenomenon will be called quantitative or
effective weak mixing.

Twisted Birkhoff sums and twisted correlations

The study of the spectral measures for substitution subshifts and its suspension flows will be
done by studying the growth rate of the next kind of sums (resp. integrals).

Definition 1.48 Let (X,B, µ, T ) (resp. (X,B, µ, (ht)t∈R)) be a discrete time (resp. contin-
uous time) dynamical system. Let f a measurable function, x,∈ X, ω ∈ [0, 1) and N ≥ 1
(resp. ω ∈ R and R > 0). The twisted Birkhoff sum (resp. twisted Birkhoff integral)
associated to f is defined by

Sf
N(x, ω) =

N−1∑

k=0

f(T kx)e(kω)

(
resp. Sf

R(x, ω) =

∫ R

0

f(ht(x))e(ωt)dt

)
.

The next generalization of this definition will be used in Chapter 3.

Definition 1.49 Let (X,B, µ, T ) be a discrete time dynamical system, f a measurable func-
tion. Let a1 < · · · < at positive integers and ω ∈ [0, 1). The (accumulated) twisted correlation
Cf

N(a1, . . . , at, ω, x) (at time N , of parameters a1, . . . , at and ω) of f at a point x ∈ X is de-
fined by

Cf
N(a1, . . . , at, ω, x) =

N−1∑

k=0

f(T kx)f(T k+a1x) . . . f(T k+atx)e(kω).

We will see in Chapter 3 that the twisted Birkhoff sums of topological factors of the Thue-
Morse substitution may be expressed as a sum of twisted correlations on the Thue-Morse
subshift.

Let us state one result due to A. Hof that enlight the connection between spectral measures
of the system (X,B, µ, (ht)t∈R) and its twisted Birkhoff integrals.

Proposition 1.50 ([43, 18]) Let Ω be a continuous increasing function on [0, 1) with Ω(0) =
0, ω ∈ R and f ∈ L2(X,µ). Suppose there exist C,R0 > 0 such that

sup
x∈X

∣∣∣Sf
R(x, ω)

∣∣∣ ≤ CRΩ(1/R) for all R ≥ R0.

Then

νf ([ω − r, ω + r]) ≤ π2C

4
Ω(2r) for all r ≤ (2R0)

−1.
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1.1.6 Cocycles

Definition 1.51 Let (X,B, µ, T ) be a dynamical system and d ∈ N. We call cocycle (of
dimension d) over (X,B, µ, T ) or (X, T ), a sequence of maps A = (A (·, n))n≥1, where
A (·, n) : X −→ Md(C), satisfying the relations

A (x, n+m) = A (T n(x),m)A (x, n), ∀m,n ∈ N, x ∈ X.

Example Let Md be a differentiable manifold of dimension d and f and automorphism of
it. The application p ∈ M 7→ Dfp ∈ L(TpM,Tf(p)M) defines a cocycle over M . Indeed, the
chain rule give us for v ∈ TpM ,

Dm+nfp(v) = Dmffn(p) D
nfp(v).

Let ζ be a substitution over A = {1, . . . , d} and let ζ(a) = w1 . . . wka . Note that the transpose
of the substitution matrix MT

ζ defines an endomorphism of Rd/Zd, denoted by this same
matrix. In [21], A. I. Bufetov and B. Solomyak introduced the next cocycle, which will play
an important role for studying the spectral measures of subshifts arising from substitution
and their suspension flows.

Definition 1.52 The spectral cocycle is the cocycle over (Rd/Zd,MT
ζ ) given by

Cζ(ξ, 1)(a, b) =
ka∑

j=1

δwjb e(ξw1 + · · ·+ ξwj−1
), ξ = (ξ1, . . . ξd)

T ∈ Rd/Zd

Cζ(ξ, n) = Cζ((M
T
ζ )

n−1ξ, 1) . . .Cζ(ξ, 1).

The spectral cocycle is suitable for studying the spectrum of suspension flows over substi-
tution subshifts: if ~p is the positive vector defining the suspension and ω ∈ R, we will set
ξ = ω~p (mod Zd). We refer the reader to [21] for some results that justify this decomposition.

Example Following [21], let ζ be the substitution defined on A = {1, 2, 3} by

ζ(1) = 121321, ζ(2) = 2231, ζ(3) = 31123.

Then, denoting zj = e(ξj),

Cζ(ξ, 1) =



1 + z1z2 + z21z

2
2z3 z1 + z21z2z3 z21z2

z22z3 1 + z2 z22
z3 + z1z3 z21z3 1 + z21z2z3


 .

If we want to study the Z-action, we can consider ~p = ~1 = (1, . . . , 1)T and the decompo-
sition ξ = ω~p. If the substitution is of constant length q, the endomorphism given by the
substitution matrix acts on ω~p in (R/Z)d in the same way the q-times map acts on ω in R/Z.
Similar is true in the case of the self-similar flow: the action of the endomorphism on ω~p is
just the multiplication by the Perron-Frobenius eigenvalue of the substitution (since ~p is the
left-eigenvector of the substitution matrix), which leaves a cocycle on R. In both latter cases
we will refer to the cocycle over R or R/Z as the restricted spectral cocycle.
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Remark The spectral cocycle may be defined to study S-adic systems (see for example [14]
for background), which include substitution subshifts as a particular case; and the corre-
sponding suspension flows over them. Other systems for which it may be used are interval
exchange transformations and translation flows on flat surfaces (for background, see for ex-
ample [67]), since it is an extension of the well studied Rauzy-Veech cocycle. This is explained
in detail in [21], and we refer to this paper for the interested reader.

Let us recall the Furstenberg-Kesten theorem in complete generality. Denote log+(x) =
max(log(x), 0).

Theorem 1.53 Let A = (A (·, n))n≥1 be a cocycle over (X,B, µ, T ) such that log+(||A (1)||) ∈
L1(X,µ). Then the limit

χ+(x) = lim
n→∞

1

n
log(||A (·, n)||),

exists for µ-almost x ∈ X, χ+ ∈ L1(X,µ), χ+ is T -invariant and
∫

X

χ+(x)dµ(x) = lim
n→∞

1

n

∫

X

log(||A (x, n)||)dµ(x) = inf
n∈N

1

n

∫

X

log(||A (x, n)||)dµ(x).

In particular, if T is ergodic, χ+ is almost everywhere equal to a constant χ+(A ) and

χ+(A ) = lim
n→∞

1

n

∫

X

log(||A (x, n)||)dµ(x) = inf
n∈N

1

n

∫

X

log(||A (x, n)||)dµ(x).

The function χ+(x) is called the top Lyapunov exponent of the cocycle A . For the null
set where the top Lyapunov exponent is possibly not defined, set

χ+(x) = lim sup
n→∞

1

n
log(||A (x, n)||).

Coming back to substitutions, when considering the function 1[a] (a ∈ A) for Xζ , the associ-
ated diagonal spectral measure is called correlation measure, and is denoted by νa. There
is a relation between the top Lyapunov exponent of the spectral cocycle and the dimension
of the correlation measures proved by A. I. Bufetov and B. Solomyak (see also [21]), which
we state in the next theorem.

If we are studying the Z-action (i.e., ~p = ~1), we will use the next notation for the top
Lyapunov exponent of the spectral cocycle:

χ+
ζ (ω) := lim sup

n→∞

1

n
log(||Cζ(ω~1, n)||), ω ∈ [0, 1).

As a consequence of the Birkhoff-Khinchin ergodic theorem, if ζ is a constant length sub-
stitution, the above is in fact a limit (for almost every point) and it is almost everywhere
constant.

Theorem 1.54 ([18]) Let ζ be an aperiodic primitive substitution on A, with Perron-
Frobenius eigenvalue equal to α. Let χ+

ζ (ω) be the top Lyapunov exponent of the spectral
cocycle at ω ∈ [0, 1). Then for all ω ∈ [0, 1) and a ∈ A,

d(νa, ω) ≥ 2− 2max(0, χ+
ζ (ω)/ log(α))
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In fact, for a full measure subset, taking max is not necessary since χ+
ζ (ω) is in general

(Lebesgue) almost surely nonnegative:

Proposition 1.55 (M-M.) Let ζ be an arbitrary substitution. Then χ+
ζ (ω) ≥ 0 for Lebesgue

almost every ω ∈ [0, 1).

This is proved in Chapter 3, see Proposition 3.11. This is also the case for other suspensions
(i.e., ~p 6= ~1) in a natural situation, as it was mentioned to us by B. Solomyak by personal
communication.

Theorem 1.56 Let ζ be a primitive substitution such that of Mζ has no eigenvalues which are
roots of unity. Then the top Lyapunov exponent of the spectral cocycle is almost everywhere
constant and χ+(Cζ) ≥ 0.

This is also proved in Chapter 3, see Theorem 3.13.

We finish this section by citing a relation between the top Lyapunov exponent of the spectral
cocycle and Question 1.34, found in [5]. A Borwein polynomial is a polynomial with
coefficients in {−1, 0, 1} with non zero constant coefficient. The next result is due to M.
Baake, M. Coons and N. Mañibo.

Theorem 1.57 ([5]) Let ζ be a primitive constant length substitution on {0, 1}. Then

χ+
ζ = log(m(P )),

where P = P (ζ) is an explicit Borwein polynomial.

In particular, it is possible to deduce the top Lyapunov exponent for the Thue-Morse subshift
is zero.

Coming back to the conclusion of this theorem, starting from a Borwein polynomial it is
possible to construct a primitive constant length substitution on two letters, as it is also
shown in [5]. Consequently, the Mahler measure of any Borwein polynomial may be seen as
the top Lyapunov exponent of the spectral cocycle of a substitution subshift. This fact allows
us to write a dynamical analog of Lehmer problem for the class of Borwein polynomials:

Question 1.58 ([5]) Is there any c > 0 such that c ≤ χ+
ζ for all primitive constant length

substitution on {0, 1} with χ+
ζ > 0?

1.2 Recent results

In this section we intend to give a brief (very incomplete) summary of the results concerning
the spectrum of the system (Xζ ,B(Xζ), µ, T ) and its suspension flows by a positive vector ~p.
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1.2.1 Discrete spectrum

Let us start with the case of Z-actions. In the constant length case the discrete part of the
spectrum is never trivial: using the notion of height (see [61]) of a substitution, an explicit
characterization is given by the next theorem proved by M. Dekking and J. C. Martin by
different methods.

Theorem 1.59 ([29, 54]) Let ζ be a primitive aperiodic substitution of constant length equal
to q ≥ 2 and height h. Then the set of eigenvalues of (Xζ ,B(Xζ), µ, T ) is

σdisc = (Z[1/q] +
1

h
Z)/Z.

As an example we have the Thue-Morse substitution: the set of eigenvalues is exactly the set
of dyadic rationals Z[1/2]/Z (a direct calculation is made in [40]).

Another remarkable class of substitutions are the ones which have as its Perron-Frobenius
eigenvalue a PV number. We will call those substitutions of Pisot type or a Pisot substi-

tution. For a Pisot substitution, it is also the case that the discrete spectrum of the subshift
is not trivial. Those associated with the trivial coboundary (see [40]) are given by a result of
B. Host [45].

In the general case, S. Ferenczi, C. Mauduit and A. Nogueira proved the next theorem which
characterize eigenvalues of a primitive aperiodic substitution subshift. Call a generalized

return word of the subshift Xζ any word w = w1 . . . wl−1 appearing in a fixed point u of ζ
such that if wwl is a factor of u, then for N large enough and for every n ≥ N ,

ζn(w1) = ζn(wl), ζn(w1) 6= ζn(wj) ∀ 1 < j < l

For a generalized return word w = w1 . . . wl−1, call the return time sequence the next
sequence of integers (rn(w))n≥1:

rn(w) = |ζn(w1)|+ · · ·+ |ζn(wl−1)|.

Example Following [39], let ζ be the substitution defined on A = {1, 2, 3, 4} by

ζ(1) = 1244, ζ(2) = 23,

ζ(3) = 4, ζ(4) = 1.

Then w = 412 is a generalized return word. Note that

ζ∞(1) = 1244231123412441244 . . .

Then w4 appears in a fixed point and the condition needed is simple to verify.

Theorem 1.60 ([39]) Let ζ be a primitive aperiodic substitution. ω ∈ [0, 1) is an eigenvalue
of the system (Xζ ,B(Xζ), µ, T ) if and only if

lim
n→∞

e2πiωrn(w) = 1,

for every generalized return word w.
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A similar result was proved before by B. Host [45].

For self-similar suspension flows, let us cite a result of M. Barge and J. Kwapisz for the Pisot
case:

Theorem 1.61 ([12]) Let ζ be a primitive aperiodic substitution of Pisot type on A =
{1, . . . , d} such that det(Mζ) = ±1. Then the set of eigenvalues of the self-similar suspension
flow (X~p

ζ ,B(X~p
ζ), µ, (ht)t∈R) is

σdisc =

{
d∑

i=1

kiqi | ki ∈ Z

}
,

where (q1, . . . , qd)
T is the normalized right Perron-Frobenius eigenvector of Mζ.

For general suspension flows see [25, 26] and references therein.

Let us finish commenting the problem of deciding whether σ(U) = σdisc (we say in that
case the spectrum is pure point or pure discrete). An example is given by the Fibonacci
substitution: it is possible to prove that (XζF ,B(XζF ), µ, T ) is measurably conjugate to the
irrational rotation ([0, 1],B([0, 1]),Leb, Rφ) (φ being the golden ratio), which has pure discrete
spectrum.

In [63], G. Rauzy found an explicit measurable conjugacy between the substitution subshift
associated to the Tribonacci substitution and a toral translation, by introducing a domain
exchange on what is now called the Rauzy fractal. This construction can be generalized to
unimodular (such that det(Mζ) = ±1) Pisot type substitutions satisfying a (some) coinci-
dence condition (see [1]). None of these conditions is known to hold in general. Therefore,
the main conjecture is the one we state below. We say a substitution ζ is irreducible if the
characteristic polynomial of Mζ is irreducible over Q.

Conjecture 1.62 (Pisot substitution conjecture) The spectrum of the substitution sub-
shift associated a irreducible Pisot substitution is pure point.

An extensive survey on the Pisot substitution conjecture is [1].

1.2.2 Continuous spectrum

In this subsection we recall some results on the continuous part of the spectrum, that is, we
will study the measure νcont or, more precisely, the continuous part of νf . A first result to
contextualize the spectrum is the next one, proved by F. M. Dekking and M. Keane for the
Z-action, and A. Clark and L. Sadun for the R-action.

Theorem 1.63 ([31],[25]) The dynamical systems (Xζ ,B(Xζ), µ, T ), (X~p
ζ ,B(X~p

ζ), µ, (ht)t∈R)
are never mixing.

Note that in terms of the spectral measures that means there exists f such that ν̂f (t) 9 0
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when |t| → ∞.

In the case of constant length substitutions, a characterizatiom of the maximal spectral type
is done by M. Queffélec (see [61]). In that case the set of eigenvalues is always not trivial.

Now we focus on the purely continuous spectrum, i.e., weakly mixing systems. For Z-actions
it is not enough to ensure weak mixing to have a non PV number as the Perron-Frobenius
eigenvalue of the substitution matrix (see [39]). But it is the case for the self-similar suspen-
sion flows, as shown by B. Solomyak in the next theorem.

Theorem 1.64 ([65]) The self-similar flow (X~p
ζ ,B(X~p

ζ), µ, (ht)t∈R) is weakly mixing if and
only if the Perron-Frobenius eigenvalue of the substitution matrix is not a Pisot number.

For Z-actions the problem of characterize weakly mixing substitution subshifts is completely
solved by the work of S. Ferenczi, C. Mauduit and A. Nogueira [39]. The condition is
much more complicated to state than for the self-similar suspension flow and we omit it
here, although we need to mention it is completely explicit in terms of the Perron-Frobenius
eigenvalue and its Galois conjugates.

Finally, for generic suspensions there is also a simple criterion for weak mixing, although
is not written explicitly. The next result follows from the works of A. Clark and L. Sadun
[25, 26], and the one of M. Barge and B. Diamond [11].

Theorem 1.65 ([25, 26, 11]) The suspension flow (X~p
ζ ,B(X~p

ζ), µ, (ht)t∈R) is weakly mixing
for generic ~p ∈ Rm

+ if the Perron-Frobenius eigenvalue of the substitution matrix is a Salem
number or there exist at least two eigenvalues outside the closed unit disk.

1.2.3 Quantitative weak mixing and finer properties

Having reviewed results concerning weak mixing, we finish this section recalling some results
about quantitative weak mixing and finer properties of the spectral measures, like their
decomposition with respect to Lebesgue measure. Recall that if f = 1

X
~p
a

(for a ∈ A) we will
denote νf by νa and we will call it correlation measure. The next asymptotic was proved by
A. I. Bufetov and B. Solomyak.

Theorem 1.66 ([18]) Let ζ be a primitive aperiodic substitution on A, with at least two
eigenvalues of its substitution matrix outside the closed unit disk. Suppose also the char-
acteristic polynomial is irreducible over the rationals. Then there exists γ ∈ (0, 1) only
depending on ζ such that for all B > 1, a ∈ A and almost every normalized ~p ∈ Rm

+ , there
exist C = C(B, ~p) > 0 and r0 = r0(B, ~p) > 0 such that

νa([ω − r, ω + r]) ≤ Crγ,

for all |ω| ∈ [B−1, B] and 0 < r < r0.

The exponent γ is called a Hölder exponent.
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In the same article, the authors proved for the self-similar suspension flow the next decay for
the correlation measures.

Theorem 1.67 ([18]) Let ζ be a primitive aperiodic substitution on A, with at least two
eigenvalues of its substitution matrix outside the closed unit disk. Then there exists γ ∈ (0, 1)
only depending on ζ such that for all B > 1, a ∈ A, there exist C = C(B) > 0 and
r0 = r0(B) > 0 such that

νa([ω − r, ω + r]) ≤ C log(1/r)γ,

for all |ω| ∈ [B−1, B] and 0 < r < r0.

In this last case, the exponent γ is called a log-Hölder exponent.

As for decomposition of measures, let us cite some results on this aspect. We say a system
(continuous or discrete) has purely singular spectrum (or the action is purely singular)
if the absolutely continuous part of the decomposition of the maximal spectral type is null,
i.e., νabs = 0. The next theorem was also proved by A. I. Bufetov and B. Solomyak.

Theorem 1.68 ([21]) Let ζ be a primitive aperiodic substitution and α its Perron-Frobenius
eigenvalue. Assume the toral endomorphism defined by MT

ζ is ergodic. Then the spectral
cocycle has a constant top Lyapunov exponent χ+(Cζ) and

• χ+(Cζ) ≤ log(α)/2.

• If χ+(Cζ) < log(α)/2 and det(Cζ(·, 1)) 6= 0, then for almost every ~p ∈ Rm
+ the flow

(X~p
ζ ,B(Xζ), µ, (ht)t∈R) is purely singular.

Similar results were obtained by M. Baake and collaborators for the self-similar suspension
flow, see [6, 9, 7]. They involve the concept of diffraction spectrum, but this is closely related
to the spectrum we have defined in this text. More details on these connections in [10]. The
next result is due to M. Baake, F. Gähler and N. Mañibo.

Theorem 1.69 ([7]) Let ζ be a primitive aperiodic substitution, α its Perron-Frobenius
eigenvalue and ~p its normalized Perron-Frobenius eigenvector. If for some ε > 0, χ+

ζ (ω)+ε <
log(α)/2 for Lebesgue almost all ω ∈ R, then the diffraction spectrum of the self-similar
suspension flow (X~p

ζ ,B(Xζ), µ, (ht)t∈R) is purely singular.

Concerning the Z-action, we have the following condition ensuring pure singularity of the
spectrum, due again to A. I. Bufetov and B. Solomyak.

Theorem 1.70 ([20]) Let ζ be a primitive aperiodic substitution such that the substitution
matrix has characteristic polynomial irreducible over Q. Let α be the Perron-Frobenius eigen-
value of ζ. If

χ+(Cζ) < log(α)/2,

then the system (Xζ ,B(Xζ), µ, T ) has purely singular spectrum.

The next result due to A. Berlinkov and B. Solomyak gives also a sufficient condition for
pure singularity of the substitution subshift, but restricted to the class of constant length
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substitutions.

Theorem 1.71 ([13]) Let ζ be a primitive aperiodic substitution of constant length q. If the
substitution matrix Mζ has no eigenvalue whose absolute value equals

√
q, then the maximal

spectral type of the substitution system (Xζ ,B(Xζ), µ, T ) is singular.

The results above are based on dimension estimates of the spectral measures in terms of
the top Lyapunov of the spectral cocycle, like Theorem 1.54. An example of purely singular
spectrum for substitution subshift (Xζ ,B(Xζ), µ, T ) is the Bufetov-Solomyak substitution
(this is proved in [20]).

We finish by remarking a particular case of absolutely continuous component: the classical
example is given by the Rudin-Shapiro substitution:

Example (Rudin-Shapiro substitution). Let A = {1, 2, 3, 4},

ζ(1) = 12, ζ(3) = 42,

ζ(2) = 13, ζ(4) = 43.

When considering the Z-action, there exists f ∈ L2(Xζ , µ) such that νf is equivalent to Leb.
For a proof, see Proposition 5.3.3 in [40].

1.3 Results

In this subsection we summarize the results of the thesis. We start with the results obtained in
Chapter 2 on Salem type substitutions. In [18] the authors ask if a similar result to Theorem
1.67 holds if the Perron-Frobenius eigenvalue of the substitution is a Salem number: we will
call such a substitution of Salem type or Salem substitution. An example of a Salem
substitution is the Holton-Zamboni substitution.

We are not able to prove an analog estimate which holds for every non zero spectral pa-
rameter ω ∈ R. Instead, we had to reduce ourselves to study the local dimension of the
correlation measures on points belonging to Q(α), where α is the Perron-Frobenius eigen-
value of the Salem substitution. For integers l0, . . . , ln, we denote by (l0, . . . , ln) the greatest
common divisor of l0, . . . , ln. Also, for a number η = (l0 + · · · + ld−1α

d−1)/L (with L ∈ N
and l0, . . . , ld−1 ∈ Z) belonging to a number field Q(α), we say it is in reduced form if
(l0, . . . , ld−1, L) = 1.

Theorem 1.72 (M-M.) Let ζ be a Salem type, aperiodic and primitive substitution on A, α
its Perron-Frobenius eigenvalue and ~p the positive (left-)eigenvector of the substitution matrix.
Let X~p

ζ be the corresponding self-similar suspension flow and for any a ∈ A, denote by νa the
correlation measure associated to a. Consider σ0 : Q(α) →֒ C the embedding corresponding
to α 7→ α−1. Fix A,B,C > 1 and suppose |ω| ∈ Q(α) ∩ [B−1, B] satisfies |σ0(ω)| ≤ C and

L ≤ A, where L ∈ N is defined by the expression in reduced form ω =
1

L
(l0 + · · ·+ ld−1α

d−1).
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Then there exist γ = γ(A,B,C), c = c(ζ), r0 = r0(ω) > 0 such that

νa([ω − r, ω + r]) ≤ crγ,

for all 0 < r < r0 and a ∈ A.

This is a pointwise result, but from the estimates from Lemmas 2.23, 2.24 and 2.25 in
Chapter 2, it is possible to obtain uniformity of γ of the last theorem on the variables B,C
for a family of points ω ∈ Q(α) satisfying an arithmetic property, which leaves the exponent
only depending on a "naive height" of the spectral parameter. We state this the next result.

Theorem 1.73 (M-M.) Let ζ be a Salem type, aperiodic and primitive substitution and νa
the correlation measure associated to the letter a ∈ A on the self-similar suspension flow.
There exists κ ∈ Q(α) an explicit positive constant such that the next statement holds: for
fixed A > 1, suppose

• There exists n ∈ {0, . . . , d− 1} such that Tr(Lκωαn) 6≡ 0 (mod L), and
• L ≤ A,

where L ∈ N is defined by the expression in reduced form ωκ =
1

L
(l0 + · · ·+ ld−1α

d−1). Then

there exist γ = γ(A), c = c(ζ), r0 = r0(ω) > 0 such that

νa([ω − r, ω + r]) ≤ crγ,

for all 0 < r < r0, a ∈ A.

The next step is to study how restrictive is the first condition. In fact, we can prove that
except for a finite set of values of L (depending only on α), the condition holds.

Proposition 1.74 (M-M.) Suppose η =
1

L
(l0 + · · · + ld−1α

d−1) ∈ Q(α) is in reduced form

and Tr(Lηαn) ≡ 0 (mod L) for all n = 0, . . . , d− 1. Then L divides E(α), where E(α) is the
least common multiple of the denominators of the dual basis of {1, α, . . . , αd−1} (expressed in
reduced form).

A major difference with Theorem 1.67 is also the dependence of r0. In Theorem 1.67 r0 only
depends on the parameter B, that is, on the absolute value of the spectral parameter. In our
case the dependence is much more subtle, since r0 is related with the convergence of some
Birkhoff sums over a toral translation. In fact, we are not able to give a lower bound for r0
in full generality, but only when deg(α) = 4.

Proposition 1.75 (M-M.) Let A,B,C > 1 and ω ∈ Q(α) \ {0} satisfying the conditions of
Theorem 1.72. Suppose α is a Salem number of degree equal 4 and let α1 = e2πiθ1 be a Galois
conjugate on the unit circle. Then θ1 is Diophantine and if τ is an upper bound for its type,
there exists a constant cα > 0 only depending on α such that r0(ω) appearing in Theorem
1.72 satisfies

r0(ω) > cα/α
A4 max(⌈logα(C/δ)⌉,Hτ ),

where H > 0 is explicit and depends only on the substitution, and δ = δ(A,B,C) > 0 is as
in Theorem 1.72.
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We continue with the results obtained in Chapter 3. The aim is to study the behavior of the
top Lyapunov exponent of the spectral cocycle when passing to a factor (in particular, the
conjugacy class) of a substitutive subshift. We focus our attention on topological dynamics.
As there are no previous results of this kind in the literature to our knowledge, we begin by
analysing the particular example of the Thue-Morse substitution. We have already recalled
that it is known that the top Lyapunov exponent for the spectral cocycle is null almost
everywhere. We show this is the case in fact for any subshift topological factor.

Theorem 1.76 (M-M.) For every topological factor of the Thue-Morse subshift coming from
an aperiodic primitive substitution ζ, we have χ+

ζ (ω) = 0 (Lebesgue) almost surely.

To obtain this theorem, we study the twisted correlation of the indicator functions associated
to the cylinders [0] and [1] on the Thue-Morse word since, as it is shown in Chapter 3, the
twisted Birkhoff sums of topological factors may be expressed as a linear combination of
different twisted correlations on the Thue-Morse word.

The growth of this latter kind of sum is summarized in the next result.

Theorem 1.77 (M-M.) Let 1 ≤ a1 < . . . at and Cf
2n(a1, . . . , at, ω,u) be the twisted correlation

of the function f = 1[0] − 1[1] at the fixed point of the Thue-Morse substitution ζ∞TM(0) = u,
defined by

Cf
2n(a1, . . . , at, ω,u) =

2n−1∑

k=0

(−1)s2(k)+s2(k+a1)+···+s2(k+at)e(kω).

Then,

• if t is even, there exists B > 0 depending only on f such that for almost every ω,

Cf
2n(a1, . . . , at, ω,u) = Oat,ω

(
nteB

√
n log log(n)

)
.

• if t is odd, for every ε > 0 and almost every ω,

Cf
2n(a1, . . . , at, ω,u) = Oat,ω

(
nt+1+ε

)
.

1.4 Future directions

For the self-similar suspension flow over a Salem type substitution, Theorem 1.72 and The-
orem 1.73 give a lower bound for the local dimension of the correlation measures only for
spectral parameters ω belonging to Q(α), different from Theorem 1.67 which holds for every
ω ∈ R.

Question 1.78 Can we find a lower bound for the local dimension of correlation measures of
the self-similar suspension flow over a Salem type substitution for spectral parameters outside
Q(α)?
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Leaving the self-similar realm, it will be interesting to study the correlation measures for
generic suspensions flows over the subsfhift of a Salem type substitution, in the same spirit
of Theorem 1.66.

Question 1.79 Can we get stronger results than Theorem 1.72 and Theorem 1.73 for generic
suspensions over Salem substitutions?

Again, it will be interesting to get a similar result to Theorem 1.72 and Theorem 1.73 for
the subshift associated to a Salem type substitution.

Question 1.80 Do similar results to Theorem 1.72 and Theorem 1.73 hold for Salem sub-
stitutions in the case of Z-actions: does weak mixing imply a Hölder exponent for the spectral
parameters in Q(α)?

In [19, 22, 21], the authors generalize many results from [18] to the S-adic setting. As a
fundamental hypothesis, the cocycles they consider have always a positive second Lyapunov
exponent. In the context of substitutions, this is just the existence of a Galois conjugate of
α outside of the closed unit disk.

Question 1.81 Do similar results to Theorem 1.72 and Theorem 1.73 hold for cocycles with
a vanishing second Lyapunov exponent in the S-adic setting, in the spirit of [19, 22, 21]?

Other direction is to pass to higher dimension, that is substitutive tilings (see [46] for an
introduction). In the work of J. Emme [37], it is proved asymptotic of the spectral measure
at zero for substitutive tilings of Rn, under the hypothesis that the expansion has at least
two eigenvalues outside the closed unit disk. In the paper of R. Treviño [66], under the same
hypothesis and other technical ones, it is proved a result similar to Theorem 1.66 in the
context of random substitutive tiling.

Question 1.82 Extend results to self-similar or generic substitutive tilings of Rn having as
the Perron-Frobenius eigenvalue of the expansion a Salem number.

Concerning Chapter 3, the methods used should apply for some class of substitution related
to automata.

Question 1.83 Is it possible to generalize the methods used to prove Theorem 1.76 to a
whole class of substitutions (such as bijective abelian)?

The proof of Theorem 1.76 and Theorem 1.77 suggest the next conjecture on the top Lya-
punov exponent of the spectral cocycle when considering topological factors, twisted Birkhoff
sums and twisted correlations.

Question 1.84 May the top Lyapunov exponent of the spectral cocycle increase when passing
to (measurable, topological) factors? Is it invariant by (measurable, topological) conjugacy?
Does the growth of the twisted Birkhoff sums dominates the growth of the twisted correlations?

Finally, another natural aspect to look at is the rest of the Lyapunov spectrum of the spectral
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cocycle: a strong improvement of the Furstenberg-Kesten theorem is Oseledets theorem (see
for example [57], Chapter 3).

Question 1.85 For general substitutions, what can we say about the rest of the Lyapunov
spectrum? What dynamical information can we deduce from the rest of the Lyapunov spectrum
of the spectral cocycle?
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Chapter 2

Modulus of continuity for spectral

measures of suspension flows over Salem

type substitutions

The content of this chapter has been submitted for publication.

Substitutions appear as natural objects in many different research areas such as symbolic dy-
namics, number theory, combinatorics of words, Diophantine approximation, and so on. For
instance, the study of the spectrum of dynamical systems arising from substitutions has left
longstanding open problems. One of the most important is the Pisot substitution conjecture,
which asserts that if a substitution is irreducible and of Pisot type, then the corresponding
subshift has pure discrete spectrum (see [1]).

A continuous counterpart is found studying tilings of the Euclidean space, and similar ques-
tions for the spectrum emerge again in this case. A suspension flow of a substitution subshift
can be seen as a special kind of tiling of the real line. Previous work on this type of systems
are the papers of Clark and Sadun [25], [26] and Barge and Diamond [11]. By relating the
eigenvalues of the system with the eigenvalues of the matrix representing the cohomological
action of the substitution map, it is possible to conclude that generic tile suspensions over
non Pisot irreducible substitutions are weakly mixing. In this case, the spectral measures
do not have any atoms (except for the trivial one at the origin), and moduli of continuity
of these measures are linked with rates of weak mixing (see [49]). Decay rates of spectral
measures also give information on its absolutely continuous and singular components.

In the weak mixing case, the work of Bufetov and Solomyak [18] analyses the case in which
the Perron-Frobenius eigenvalue of the substitution matrix has at least one conjugate out-
side the closed unit disk. They prove a Hölder decay of the spectral measures for a typical
suspension flow (if the characteristic polynomial of the substitution matrix is irreducible),
and a log-Hölder one for a self-similar suspension flow with this hypothesis. In both cases,
for spectral parameters away from the origin. They have broadened many of the tools used
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in that article from this simple setting to more complex systems such as the ones associated
to Bratelli-Vershik diagrams or translations flows on flat surfaces (see [19],[22]). A different
approach in this last setting to this problem is found in [41], and the study for higher rank
actions is in [66].

The main objective of this paper is to study the spectrum of the self-similar suspension flow
when the substitution is of Salem type, i.e., when the dominant eigenvalue of the substitution
matrix is a Salem number. This is a question raised in [18]. This could be thought as a limit
case, since we do not have homoclinic points (which give rise to eigenvalues in the Pisot case)
nor an unstable subspace ensuring the absence of atoms (e.g., if there is a different conjugate
of the Perron-Frobenius eigenvalue of the substitution matrix outside the unit disk). Instead,
it acts as an isometry on the invariant subspace complementary to the subspace generated
by the eigenvectors associated to the dominating eigenvalue and its inverse.

Salem substitutions arise naturally in the study of Veech groups: on each non arithmetic
primitive Veech surface of genus two, there exists a pseudo-Anosov diffeomorphism whose
dilatation is a Salem number of degree 4. The associated interval exchange transformation
(by zippered rectangles) is self-similar and is (more precisely, the loop in its Rauzy diagram)
defined by a substitution of Salem type (see [17]). Explicit examples appear in [17] and [3].

The difference between the analogous result in [18] and ours is reflected in the complicated
dependence we have found on the parameters controlling the decay of the spectral measure. In
fact, we are only able to find this decay when the spectral parameter belongs to the number
field generated by the principal eigenvalue, as we show in the next result. For integers
l0, . . . , ln, we denote by gcd(l0, . . . , ln) the greatest common divisor of l0, . . . , ln. Also, for a
number η = (l0 + · · ·+ ld−1α

d−1)/L (with L ∈ N and l0, . . . , ld−1 ∈ Z) belonging to a number
field Q(α), we say it is in reduced form if gcd(l0, . . . , ld−1, L) = 1.

Theorem 2.1 Let ζ be a Salem type, aperiodic and primitive substitution on A, α its Perron-
Frobenius eigenvalue and ~p the positive (left-)eigenvector of the substitution matrix. Let X~p

ζ be
the corresponding self-similar suspension flow and for any a ∈ A, denote by νa the correlation
measure associated to a. Consider σ0 : Q(α) →֒ C the embedding corresponding to α 7→ α−1.
Fix A,B,C > 1 and suppose |ω| ∈ Q(α) ∩ [B−1, B] satisfies |σ0(ω)| ≤ C and L ≤ A, where

L ∈ N is defined by the expression in reduced form ω =
1

L
(l0 + · · · + ld−1α

d−1). Then there

exist γ = γ(A,B,C), c = c(ζ), r0 = r0(ω) > 0 such that

νa([ω − r, ω + r]) ≤ crγ,

for all 0 < r < r0 and a ∈ A.

Under an arithmetic condition there is a uniform dependence of γ on the variables B,C, as
we state in our second result.

Theorem 2.2 Let ζ be a Salem type, aperiodic and primitive substitution and νa the correla-
tion measure associated to the letter a ∈ A on the self-similar suspension flow. Let κ ∈ Z[α]
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be the explicit positive constant of Lemma 2.9. Fix A > 1 and suppose

• There exists n ∈ {0, . . . , d− 1} such that Tr(Lκωαn) 6≡ 0 (mod L), and

• L ≤ A,

where L ∈ N is defined by the expression in reduced form ωκ =
1

L
(l0 + · · ·+ ld−1α

d−1). Then

there exist γ = γ(A), c = c(ζ), r0 = r0(ω) > 0 such that

νa([ω − r, ω + r]) ≤ crγ,

for all 0 < r < r0, a ∈ A.

The first condition above is generic, in the sense that the complement of the set of ω’s
satisfying it, is contained in a finite union of lattices of Q(α), according to

Proposition 2.3 Suppose η =
1

L
(l0 + · · · + ld−1α

d−1) ∈ Q(α) is in reduced form and

Tr(Lηαn) ≡ 0 (mod L) for all n = 0, . . . , d − 1. Then L divides E(α), where E(α) is the
least common multiple of the denominators of the dual basis of {1, α, . . . , αd−1} (expressed in
reduced form).

An important difference with the results in [18] is the complex dependence of r0 > 0 on ω, in
both Theorem 2.1 and 2.2. A lower bound is derived explicitly when deg(α) = 4, but it does
not have a simple expression in terms of the spectral parameter. We will summarize this in
Proposition 2.29.

The proof of Theorems 2.1 and 2.2 is based in the distribution modulo 1 of the sequence
(ωαn)n≥0. The link between a modulus of continuity for the spectral measures and the
distribution modulo one of such a sequence may be seen from Lemma 2.9 and Proposition
2.8. S. Akiyama and Y. Tanigawa showed in [2] that the sequence (αn)n≥1 is not far from
being uniformly distributed modulo 1. We recall this result in Theorem 2.11 . We are able
to prove a similar result for the sequences (ωαn)n≥0, for ω ∈ Q(α).

Theorem 2.4 Denote J(δ) = [δ, 1−δ], for δ < 1/2. Let α be a Salem number of degree d and

η =
1

L
(l0+ · · ·+ ld−1α

d−1) ∈ Q(α), with L ≥ 1 and l0, . . . , ld−1 ∈ Z. Consider σ0 : Q(α) →֒ C

the embedding corresponding to α 7→ α−1. Assume gcd(l0, . . . , ld−1, L) = 1. Then there exists
an explicit δ = δ(L, |η|, |σ0(η)|) > 0 such that

lim
N→∞

# {n ≤ N | {ηαn} ∈ J(δ)}
N

≥ 1/2.

This result is easily deduced from Corollary 2.21 and from Lemmas 2.22, 2.23, 2.24 and 2.25.

The rest of the paper is organized as follows. In Section 2 we provide a background material
around substitutions, spectral theory of dynamical systems, algebraic number theory and
harmonic analysis. In particular, we recall the definition of special trigonometric polynomials
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used in the proof of Theorems 2.1 and 2.2. Section 3 sketches the proof of the two main
theorems since it is rather technical in full generality. Section 4 is devoted to the proof
of Theorems 2.1, 2.2 and Proposition 2.3. Finally, in Section 5 we study the nature of r0
appearing in both main results, ending with the proof of Proposition 2.29.

2.1 Background

2.1.1 Dynamical systems arising from substitutions

The basic notions of substitutions may be found in [61, 40] with more detail. Let us start
by fixing a positive even integer d ≥ 4 and a finite alphabet A = {1, . . . , d}. A substitution
on the alphabet A is a map ζ : A −→ A+, where A+ denote the set of finite (nonempty)
words on A. By concatenation, it is natural to extend a substitution to A+, to AN (one-sided
sequences) or AZ (two-sided sequences). In particular, the iterates ζn(a) = ζ(ζn−1(a)) for
a ∈ A, are well defined.

Example (see [44]) Let A = {1, 2, 3, 4} and define ζ by

ζ(1) = 12, ζ(3) = 2,

ζ(2) = 14, ζ(4) = 3.

For a word w ∈ A+ denote its length by |w| and by |w|a the number of symbols a found in w.
The substitution matrix associated to a substitution ζ is the d×d matrix with integer entries
defined by Mζ(a, b) = |ζ(b)|a. A substitution is called primitive if its substitution matrix is
primitive.

Example Let ζ be the substitution defined in Example 2.1. Then its substitution matrix is

Mζ =




1 1 0 0
1 0 1 0
0 0 0 1
0 1 0 0


 ,

and this substitution is primitive.

The substitution subshift associated to ζ is the set Xζ of sequences (xn)n∈Z ∈ AZ such that
for every i ∈ Z and k ∈ N exist a ∈ A and n ∈ N such that xi . . . xi+k is a subword of some
ζn(a). A classical result is that the Z-action by the left-shift T ((xn)n∈Z) = (xn+1)n∈Z on this
subshift is minimal and uniquely ergodic when ζ is primitive. From now on we only consider
primitive and aperiodic substitutions, which means in the primitive case that the subshift is
not finite.

Now we turn to the continuous counterpart of the substitution subshift. The study of the
discrete part of the spectrum of the suspensions over substitutions (not only the self-similar
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case) is done in the article [25]. For a primitive substitution ζ, denote by ~p = (pa)a∈A a
positive Perron-Frobenius left-eigenvector of Mζ . For convenience, we will normalize the
vector ~p in such a way that its components belong to Z[α] (it is enough to multiply for
some positive integer). This allows us to assume the constant κ appearing in Lemma 2.9
belongs to Z[α] (see the remark below Lemma 2.9). Set F : Xζ × R −→ Xζ × R defined by
F (x, t) = (T (x), t− px0).

Definition 2.5 The self-similar suspension flow is the pair (X~p
ζ , (ht)t∈R) given by

X
~p
ζ = (Xζ × R)/ ∼,

ht(x, t
′) = (x, t′ + t) (mod ∼),

where ∼ is the equivalence relation defined by (x, t) ∼ (x′, t′) if and only if F n(x, t) = (x′, t′),
for some n ∈ Z.

We will identify X
~p
ζ with a fundamental domain (see for example [58], Chapter 3). We will

take as fundamental domain

D =
{
(x, t) ∈ X

~p
ζ × R | 0 ≤ t < f(x)

}
.

We will make no further reference to the fundamental domain, and we will simply denote it
by X

~p
ζ . We may decompose

X
~p
ζ =

⋃

a∈A
X~p

a, X~p
a =

{
(x, t) ∈ X

~p
ζ

∣∣∣ x0 = a
}
.

Once again, this flow is uniquely ergodic and the only (Borelian) measure invariant for the
flow (ht)t∈R will be denoted als by µ. Our results will concern the spectral measures (we recall
its definition in the next subsection) associated to the indicator functions of this partition
(in measure), i.e., f = 1

X
~p
a
, for each a ∈ A.

2.1.2 Spectral theory

We define the main objects of study of this work, namely, the spectral measures associated
to the self-similar suspension flow. We restrict ourselves to stating a dynamical version of
the spectral theorem taken from [48]. A more extensive introduction may also be found in
[61, 40].

Theorem 2.6 Let f, g ∈ L2(X~p
ζ , µ). There exists a complex measure νf,g with support in R,

called spectral measure, such that for all t ∈ R

ν̂f,g(−t) :=

∫

R

e2πitωdνf,g(ω) = 〈U tf, g〉
L2(X~p

ζ ,µ)
,

where U tf(y) = f(ht(y)) for y ∈ X
~p
ζ.
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We will denote νf,f by νf , and for f = 1
X
~p
a

we will write νf = νa. The measure νa will be called
the correlation measure associated to a. To study the asymptotics of spectral measures, we
look into a special kind of Birkhoff integral.

Definition 2.7 Let f ∈ L2(X~p
ζ , µ), (x, s) ∈ X

~p
ζ, ω ∈ R, R > 0. The twisted Birkhoff integral

associated to f is defined by

Sf
R((x, s), ω) =

∫ R

0

e−2πiωtf(ht(x, s))dt.

The relation between these two concepts is clarified by the next proposition.

Proposition 2.8 ([18]) Denote GR(f, ω) =
1

R
||Sf

R(·, ω)||2L2. Suppose there exists 0 < γ < 1

such that GR(f, ω) ≤ CR2γ−1, for some constant C > 0 and R ≥ R0. Then there exists
r0 > 0 (depending only on R0) such that for every 0 < r ≤ r0 holds

νf ([ω − r, ω + r]) ≤ π2Cr2(1−γ).

Finally, the problem of finding bounds for the twisted Birkhoff sums may be addressed
solving a problem on Diophantine approximation, according to the next lemma. We denote
the distance of x ∈ R to the nearest integer by ||x||

R/Z
= min({x} , 1− {x}) , where as usual

{x} = x− ⌊x⌋ denotes the fractional part of x.

Lemma 2.9 ([18]) Let ζ be a primitive substitution (with α being its Perron-Frobenius eigen-
value and ~p the eigenvector normalized as before) and X

~p
ζ the corresponding self-similar sus-

pension flow. Let a ∈ A and f be the indicator function of X~p
a. Then there exist λ ∈ (0, 1),

C1 > 0 and κ ∈ Z[α] an explicit positive constant, all depending only on the substitution ζ,
such that

|Sf
R((x, s), ω)| ≤ C1R

⌊logα(R)⌋∏

n=0

(1− λ||ωκ αn||2
R/Z

),

for all R > 0, (x, s) ∈ X
~p
ζ and ω ∈ R.

Remark As we remarked before, if ~p ∈ (Z[α])d, then we may assume κ ∈ Z[α], since by
definition κ = 〈Ab(w), ~p〉, where w is an appropriate return word and Ab(w) its population
vector indexed by A with components (Ab(w))a = |w|a. More details in [18].

2.1.3 Salem numbers

Recall the definition of a Salem number : a real algebraic integer greater than 1 having all its
Galois conjugates inside the closed unit disk, with at least one conjugate on the unit circle.
This definition actually forces that the inverse is a conjugate, and the rest of them are on
the unit circle. For a survey on Salem numbers see [64]. We will say a primitive substitution
is of Salem type if the dominant eigenvalue is a Salem number. An example of substitution
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of Salem type is the one of Example 2.1.1.

We now state some results regarding Salem numbers.

Proposition 2.10 (see [23]) Let α be a Salem number and ε > 0, then there exists η =
η(ε) ∈ Q(α) different from zero such that

||ηαn||
R/Z

< ε,

for all n ≥ 0.

In fact, in [70] there is a characterization of numbers η ∈ R such that lim supn||ηαn||
R/Z

< ε,
with ε ≤ δ1(α) = 1/L (α), where L (α) denotes the length of α, i.e., the sum of the absolute
values of the coefficients of its minimal polynomial. Proposition 2.10 shows the difficulty
to find a universal exponent for the spectral measure as in [18] in the case of Salem type
substitutions, at least by the methods we are using.

A classical result states that the sequence (αn)n≥1 is dense but not uniformly distributed. In
spite of this result, S. Akiyama and Y. Tanigawa showed in [2] that the sequence (αn)n≥1 is
not far from being uniformly distributed modulo 1.

Theorem 2.11 ([2]) Let α be a Salem number of degree d = 2m + 2 ≥ 8 and J = [a, b] ⊆
[0, 1], then

∣∣∣∣ limN→∞

# {n ≤ N | {αn} ∈ J}
N

− (b− a)

∣∣∣∣ ≤ 2ζ (m/2) (2π)−m(b− a),

where ζ denotes the Riemann zeta function.

For degree d = 4 and d = 6 there are similar estimates we omit here. An extension of this
work is the heart of the proof of Lemmas 2.22, 2.23, 2.24 and 2.25, which is the essential step
to prove Theorems 2.1 and 2.2.

Proposition 2.12 (see [23]) Let α be a Salem number of degree d = 2m+2 and e2πiθ1 , . . . , e2πiθm

the conjugates on the upper-half of the unit circle. Then 1, θ1, . . . , θm are rationally indepen-
dent.

Let us recall the notion of trace of an algebraic number: for an algebraic number η ∈ Q(α)
define

Tr(η) :=
∑

σ:Q(α)→֒C

σ(η),

where the sum runs over all embeddings of Q(α) in C. In particular, for an algebraic integer
η we have Tr(η) ∈ Z.

Finally, we state a classic inequality about evaluation of integer polynomials on algebraic
numbers. For P (X) = a0+· · ·+adX

d ∈ Z[X] the (naive) height of P is defined as Height(P ) =
max(|a0|, . . . , |ad|).
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Lemma 2.13 ([42]) Let ξ be an algebraic integer and Q ∈ Z[X] of degree at most n ≥ 1
such that Q(ξ) 6= 0. Let ξ1, . . . , ξd be the other conjugates of ξ and m the number of i′s such
that |ξi| = 1. Then

|Q(ξ)| ≥
∏

|ξi|6=1||ξi| − 1|

(n+ 1)m
(∏

|ξi|>1|ξi|
)n+1

Height(Q)d
.

2.1.4 Polynomial approximation of functions

One of the main technical tools we use is a family of trigonometric polynomials (Selberg
polynomials) which approximate the indicator function 1

J
of an interval J ⊂ [0, 1]. A

detailed reference is found in [56]. In order to introduce it, we define also several other
families, starting with the well-known Fejer kernel.

Definition 2.14 The Fejer kernel of degree N − 1 is defined by

∆N(z) =
∑

0≤|k|≤N−1

(
1− |k|

N

)
e2πikz

Definition 2.15 The Vaaler polynomial of degree N is defined by

VN(z) =
1

N + 1

N∑

k=1

f

(
k

N + 1

)
sin(2πkz),

where the function f is given by f(x) = −(1−x) cot(πx)−1/π and satisfies for every ξ < 1/2
the inequalities

|f(x)| ≤





πξ

sin(πξ)

1

πx
+

1

π
if 0 < x ≤ ξ,

1− ξ

sin(π(1− ξ))
+

1

π
if ξ < x < 1.

(2.1)

Definition 2.16 The Beurling polynomial of degree N is defined by

BN(z) = VN(z) +
1

2N + 1
∆N(z).

The Beurling polynomials provide approximation to the sawtooth function s(x) = {x}− 1/2
if x /∈ Z, and s(x) = 0 if x ∈ Z. The Vaaler lemma (see [56]) ensures the choice of
these polynomials is optimal in certain sense. If we denote by 1

J
the periodic extension

to R of the indicator function of some interval J = [a, b] ⊆ [0, 1], we have the equality
1

J
(z) = b− a+ s(z − b) + s(a− z). This fact justifies the next definition.
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Definition 2.17 The Selberg polynomials of degree N of an interval J = [a, b] ⊆ [0, 1] are
defined by

S+
N(z) = b− a+ BN(z − b) + BN(−z + a),

S−
N(z) = b− a− BN(−z + b)− BN(z − a).

These polynomials satisfy for all N ≥ 1,

S−
N ≤ 1

J
≤ S+

N (2.2)

2.1.5 Bessel functions

We will denote by J0(x) the Bessel function of order zero, that is, the unique solution to




xy′′ + y′ + xy = 0

y(0) = 1

y′(0) = 0.

We summarize two classic properties used later in the next

Proposition 2.18 (see [16]) For x ≥ 0,

J0(x) =

∫ 1

0

eix cos(2πt)dt, |J0(x)| ≤ min

(
1,

√
2

πx

)
.

To finish this background section, we prove an equality involving the Bessel function which
will be used repeatedly in the technical calculations from Lemmas 2.22 to 2.25, to calculate
the integral of the Beurling polynomial.

Proposition 2.19 Let H1, . . . , Hm be positive real numbers and

z(x1, . . . , xm) = 2
m∑

j=1

Hj cos(2πxj),

with every xj ∈ [0, 1]. Then, for every integer k ≥ 1, we have
∫

(R/Z)m
e2πikz(x1,...,xm)dx1 . . . dxm =

m∏

j=1

J0(4πkHj).

Proof.

∫

(R/Z)m
e2πikz(x1,...,xm)dx1 . . . dxm =

m∏

j=1

∫

R/Z

e4πikHj cos(2πxj)dxj

=
m∏

j=1

J0(4πkHj).
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2.2 Outline of the proof

In this section we sketch the basic steps forward the proof of Theorem 2.1 and Theorem 2.2
in a simpler case to fix ideas, and leave the formal proof to the next section.

By Lemma 2.9, we are interested in the distribution of the sequence (ωκαn)n≥0 modulo 1.
Let us outline the strategy when η = ωκ belongs to Z[α]. Let α be a Salem number of degree
d = 2m + 2 and α1 = σ1(α) = e2πiθ1 , . . . , αm = σm(α) = e2πiθm the Galois conjugates on
the upper half of S1. Denote the embeddings of Q(α) in C by σj, where σ0(α) = α−1 and
σj(α) = αj = e2πiθj for j = 1, . . . ,m. In this case, for all n ≥ 0

Tr(ηαn) = ηαn + σ0(η)α
−n + 2Rn,

where Rn =
∑m

j=1|σj(η)| cos(2πnθj + φj) for some φj ∈ R. Since ηαn ∈ Z[α], we have
Tr(ηαn) ∈ Z. This implies

{ηαn}+ 2Rn (mod 1) −→ 0, as n → ∞.

This convergence implies the next fact (this is proved formally in Corollary 2.21): let J ⊆ [0, 1]
be an interval. Then

lim
N→∞

# {n ≤ N |{ηαn} ∈ J}
N

=

∫

(R/Z)m
1

J

(
−2

m∑

j=1

|σj(η)| cos(xj)

)
d~x.

The last equality leave us the problem of understanding the integral of the indicator function
of some interval. This is the same strategy used in [2] to prove Theorem 2.11. The extra
difficulty in our case is that we have to manage the parameters |σj(η)|, whereas in [2] they
only work the case η = 1, which implies |σj(η)| = 1 for all j = 1, . . . ,m.

The solution is proving a much weaker inequality (in fact it is not possible to obtain the same
one according to Proposition 2.10): we will see in the next section that for some a suitable
δ > 0, if we consider the interval J(δ) = [δ, 1− δ], then

∫

(R/Z)m
1

J (δ)

(
−2

m∑

j=1

|σj(η)| cos(xj)

)
d~x ≥ 1/2. (2.3)

This is the technical part of the proof, but the strategy is the same as in [2]: we use the family
of Selberg polynomials defined in subsection 2.1.4 to apporximate the indicator function of
an interval. To manage the coefficients |σj(η)| we follow the strategy used in [18], using an
inequality due to Garsia (Proposition 2.13).

Finally, once we have proved 2.3, the proof will be straithforward: an application of Lemma
2.9 and Proposition 2.8 will yield the desired modulus of continuty for the spectral measure.

2.3 Proof of Theorem 2.1 and Theorem 2.2

In this section we give the proof of Theorem 2.1. We begin with fixing the notation and
hypothesis for the rest of this section. Let α be a Salem number of degree d = 2m + 2
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and α1 = σ1(α) = e2πiθ1 , . . . , αm = σm(α) = e2πiθm the Galois conjugates on the upper half
of S1, and σ1, . . . , σm the respective embeddings. Let σ0 : Q(α) →֒ C be the embedding

corresponding to σ0(α) = α−1. Let η =
1

L
(l0 + · · ·+ ld−1α

d−1) ∈ Q(α) \ {0}, with lj ∈ Z and

L ∈ N. We will denote ~x = (x1, . . . , xm) ∈ (R/Z)m.

2.3.1 Preliminary results

We begin with a proposition from [32] (see also [69]).

Proposition 2.20 Consider

U(z) = l0 + · · ·+ ld−1 cos(2π(d− 1)z),

V (z) = l1 sin(2πz) + · · ·+ ld−1 sin(2π(d− 1)z),

φ(z) = arctan(U(z)/V (z)).

Define Rn =
∑m

j=1

√
U2(θj) + V 2(θj) cos(2πnθj − φ(θj)). There exists a positive integer

P ≤ Ld such that for every j ∈ {0, . . . , P − 1} there exists aj ∈ {0, . . . , L− 1} satisfying

{
ηαPn+j

}
+

2RPn+j

L
(mod 1) −→ aj

L
as n → ∞.

Proof. We only sketch the proof, more details in [32]. Note that U(θj) = ℜ(σj(Lη)) and
V (θj) = ℑ(σj(Lη)) and so

√
U2(θj) + V 2(θj) = |σj(Lη)|. By definition of the trace, for every

n ≥ 0
Tr(Lηαn) = Lηαn + σ0(Lη)α

−n + 2Rn. (2.4)

The sequence (Tr(Lηαn) (mod L))n≥0 is purely periodic of period P ≤ Ld, since it satisfies
an integer linear recurrence given by the minimal polynomial of α. Rearranging the first
calculation we conclude

{ηαn}+ 2Rn

L
(mod 1) −→ aj

L
, as n → ∞

where aj ∈ {0, . . . , L− 1} and n ≡ j (mod P ).

Corollary 2.21 Let J ⊆ [0, 1] be an interval and set

R(x1, . . . , xm) =
m∑

j=1

√
U2(θj) + V 2(θj) cos(2πxj).

Then

lim
N→∞

# {n ≤ N |{ηαn} ∈ J}
N

=
1

P

P−1∑

j=0

∫

(R/Z)m
1

J

(−2R(~x) + aj
L

)
d~x.

Proof. By Proposition 2.12, the numbers 1, θ1, . . . , θm are rationally independent, then the
uniform distribution mod Zm of (nθ1, . . . , nθm)n≥1 justifies the last of the next equalities.
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We can ignore the term σ0(η)α
−n in (2.7) since this term goes to zero and the sequences

z
(j)
n =

−2RPn+j

L
+

aj
L

have continuous asymptotic distribution functions.

lim
N→∞

# {n ≤ N |{ηαn} ∈ J}
N

(2.5)

= lim
N→∞

1

N

P−1∑

j=0

# {n ≤ N, n ≡ j (mod P )|{ηαn} ∈ J} (2.6)

=
P−1∑

j=0

lim
N→∞

1

N
#

{
n ≤ N, n ≡ j (mod P )

∣∣∣∣
−2Rn

L
+

aj
L

− σ0(η)α
−n (mod 1) ∈ J

}
(2.7)

=
1

P

P−1∑

j=0

lim
N→∞

1

N/P
#

{
n ≤ N, n ≡ j (mod P )

∣∣∣∣
−2Rn

L
+

aj
L

(mod 1) ∈ J

}
(2.8)

=
1

P

P−1∑

j=0

∫

(R/Z)m
1J

(−2R(~x) + aj
L

)
d~x. (2.9)

For a fixed 1/2 > δ > 0, denote by J(δ) the interval [δ, 1 − δ] ⊆ [0, 1]. Denote Hj =√
U2(θj) + V 2(θj) and H =

∑m
j=1 Hj = max~x∈(R/Z)m |R(~x)|. The next lemmas show that

all integrals in the last corollary are greater than a fixed positive constant for a suitable
choice of δ. We will divide the analysis depending on the size of 2H/L with respect to
δ1(α) := 1/L (α), where L (α) denotes the sum of the absolute values of the coefficients of
the minimal polynomial of α.

Lemma 2.22 Let β = αP and η̃ = ηαj for some j ∈ {0, . . . , P − 1}, in order to have
ηαPn+j = η̃βn for all n ≥ 0. Suppose Tr(Lη̃βn) = 0 (mod L) for all n ≥ 0 and 2H/L <
δ1(β)/2. Then there exists δ = δ(L, |η|, |σ0(η)|) > 0 such that

∫

(R/Z)m
1

J(δ)

(−2R(~x)

L

)
d~x ≥ 1/2.

Remark From the proof of Lemma 2.22 it is easy to deduce that in the dependence of
δ = δ(L, |η|, |σ0(η)|) what is important is an upper bound of L and |σ0(η)|) and both bounds
for |η|.

Proof. Note that by definition β is also a Salem number of degree d, fact that is used
implicitly. Let us follow [18] and write

η̃βn = Kn(η̃, β) + εn(η̃, β), Kn ∈ Z, −1/2 < εn ≤ 1/2.

Let n0 be the smallest nonnegative integer such that |η̃|βn0 ≥ 1. Proposition 2.20 and
2H/L < δ1(β)/2 implies |εn| < δ1(β) for all n ≥ n1, where n1 = ⌈logβ(2|σ0(η̃)|/δ1(β)⌉.
Indeed, |εn| = min({η̃βn}, 1− {η̃βn}). Then, for all n ≥ n1, we have

|εn| =
∣∣∣∣
∣∣∣∣−σ0(η̃)β

−n − 2RPn+j

L

∣∣∣∣
∣∣∣∣
R/Z

≤ |σ0(η̃)|β−n +

∣∣∣∣
2RPn+j

L

∣∣∣∣ < δ1(β).
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Denote n2 = n2(|η̃|, |σ0(η̃)|) = max(n0, n1) and define also the vectors

~εn =




εn
εn+1

...
εn+d−2

εn+d−1




, ~Kn =




Kn

Kn+1

...
Kn+d−2

Kn+d−1




.

As shown in [18], we may prove that if |εn2+n| < δ1(β) for all n ≥ 0, then ~εn2+n = C(β)n~εn2

for all n ≥ 0, with C(β) is the companion matrix of the minimal polynomial of β: let
Xd − cd−1X

d−1 − · · · − c0 be the minimal polynomial of β, then

C(β) =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
c0 c1 c2 · · · cd−1




.

Let ~E1, ~E2, ~e1, . . . , ~em, ~e1, . . . , ~em and ~E ∗
1 , ~E

∗
2 , ~e

∗
1 , . . . , ~e

∗
m, ~e

∗
1 , . . . , ~e

∗
m be the eigenbasis and dual

basis of C(β) respectively. The vectors ~ej, ~e
∗
j are explicitly given by

~ej =




1
βj

...
βd−2
j

βd−1
j




, ~e ∗
j =




c0β
d−2
j

c1β
d−2
j + c0β

d−3
j

...
cd−2β

d−2
j + · · ·+ c1βj + c0

βd−1
j




,

where each βj = σj(β), for j = 1, . . . ,m is a Galois conjugate of β.

Decompose ~εn2+n = B0(η̃, n) ~E1+B1(η̃, n) ~E2+
∑m

j=1 bj(η̃, n)~ej + bj(η̃, n)~ej ( ~E1, ~E2 associated

to β, β−1 respectively). In fact, we can show that ~εn2+n = C(β)n~εn2 for all n ≥ 0 implies
B0(η̃, n2) = 0: since B0(η̃, n2) = 〈~εn2 , ~e

∗
1 〉/〈~e1, ~e ∗

1 〉, for all n ≥ 0

αn|〈~εn2 , ~e
∗
1 〉| = |〈C(β)n~εn2 , ~e

∗
1 〉|

≤ |〈~εn2+n, ~e
∗
1 〉|

≤ ||~εn2+n||2||~e ∗
1 ||2

≤ √
mδ1||~e ∗

1 ||2,

which obviously leads to a contradiction as n goes to infinity if B0(η̃, n2) 6= 0.

The equation for ~εn2+n may be written coordinatewise as

εn2+n = B1(η̃, n2)β
−n + 2

m∑

j=1

|bj(η̃, n2)| cos(2πnθ̃j − φ(θ̃j)),
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where θ̃j = Pθj. From this decomposition and the fact that εn (mod 1) = −σ0(η̃)β
−n −

2RPn+j

L
(mod 1) by equality 2.4, we deduce that Hj = |bj(η̃, n2)|.

Denote z(~x) = 2
∑m

j=1|bj(η̃, n2)| cos(2πxj). Set a = δ, b = 1 − δ for δ > 0 a parameter we
will choose later suitably to satisfy the conclusion of the lemma. We face now the task to
establish bounds for the integrals of Selberg polynomials, and we do it in the same manner
as in [2]. In the calculations below we write z = z(~x), bj = bj(η̃, n2) and all integrals are over
(R/Z)m. Let us start by the Beurling polynomial of degree N :

∫
BN(−z + a)d~x =

∫
VN(−z + a) +

1

2(N + 1)
∆N+1(−z + a)d~x

=

∫
1

N + 1

N∑

k=1

f

(
k

N + 1

)
sin(2πk(−z + a))d~x

+

∫
1

2(N + 1)



1 +

∑

0<|k|≤N+1

(
1− |k|

N + 1

)
e2πik(−z+a)



 d~x

=
−1

N + 1

N∑

k=1

f

(
k

N + 1

)
sin(2πka)

m∏

j=1

J0(4πk|bj|)
︸ ︷︷ ︸

=(1)

+
1

2(N + 1)



1 +

∑

0<|k|≤N+1

(
1− |k|

N + 1

)
e2πika

m∏

j=1

J0(4πk|bj|)





︸ ︷︷ ︸
=(2)

,

where we used Proposition 2.19 in the last equality. Let us denote g =
(∏m

j=1|bj|
)1/m

and

define for each nonnegative integer l the number kl = ⌊g−1l⌋. By the AM-GM inequality,

g ≤ 1

m

m∑

j=1

|bj| =
1

m

2H

L
<

δ1(β)

2m
< 1.

From now on, we will consider N of the form ⌊g−1T ⌋, for each T ∈ N. We use below the
inequality for the Bessel function from Proposition 2.18.

|(2)| ≤ 1

2(N + 1)

{
1 + 2

N+1∑

k=1

(
1− k

N + 1

) m∏

j=1

|J0(4πk|bj|)|
}

≤ 1

2(N + 1)

{
1 + 2

T−1∑

l=0

kl+1∑

k=kl+1

(
1− k

N + 1

) m∏

j=1

|J0(4πk|bj|)|
}
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≤ 1

2(N + 1)



1 + 2

k1∑

k=1

(
1− k

N + 1

) m∏

j=1

|J0(4πk|bj|)|︸ ︷︷ ︸
≤1

+ 2
T−1∑

l=1

kl+1∑

k=kl+1

(
1− k

N + 1

) m∏

j=1

|J0(4πk|bj|)|︸ ︷︷ ︸
≤1/

√
2π(k|bj |)1/2





≤ 1

2(N + 1)




1 + 2g−1 +

2

(
√
2π)m

T−1∑

l=1

kl+1∑

k=kl+1

(kg)−m/2

︸ ︷︷ ︸
≤ l−m/2





≤ 1

2(N + 1)




1 + 2g−1 +

2

(
√
2π)m

T−1∑

l=1

l−m/2 (kl+1 − kl)︸ ︷︷ ︸
≤ g−1





≤ 1

2(N + 1)

{
1 + 2g−1 +

2g−1

(
√
2π)m

O(
√
T )

}

= O(1/
√
T ),

where the constant implicit in the O sign does not depend on η̃ nor n2. Similarly,

∫
BN(z − b)d~x =

1

N + 1

N∑

k=1

f

(
k

N + 1

)
sin(2πkb)

m∏

j=1

J0(4πk|bj|) +O(1/
√
T ).

Having estimated the integral of the Beurling polynomials, we continue with the Selberg
ones:

∣∣∣∣
∫

BN(z − b) + BN(−z + a)d~x

∣∣∣∣
≤∣∣∣∣∣

1

N + 1

N∑

k=1

f

(
k

N + 1

)
(sin(2πkb)− sin(2πka))

m∏

j=1

J0(4πk|bj|)
∣∣∣∣∣+O(1/

√
T )

=∣∣∣∣∣
2

N + 1

N∑

k=1

f

(
k

N + 1

)
sin(2πkδ)

m∏

j=1

J0(4πk|bj|)
∣∣∣∣∣

︸ ︷︷ ︸
=(3)

+O(1/
√
T ).

Fix ε > 0 and let us take ξ < 1/2 such that πξ/ sin(πξ) ≤ 1 + ε (recall the definition and
property of f in Definition 2.15). Then, for T big enough, we obtain

(3) ≤ 2

N + 1

N∑

k=1

∣∣∣∣∣f
(

k

N + 1

)
sin(2πkδ)

m∏

j=1

J0(4πk|bj|)
∣∣∣∣∣
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≤ 2

N + 1




k1∑

k=1

∣∣∣∣f
(

k

N + 1

)∣∣∣∣ |sin(2πkδ)|︸ ︷︷ ︸
≤2πkδ

m∏

j=1

|J0(4πk|bj|)|︸ ︷︷ ︸
≤1

+

⌊ξT ⌋∑

l=1

kl+1∑

k=kl+1

∣∣∣∣f
(

k

N + 1

)∣∣∣∣
︸ ︷︷ ︸
≤|f(lg−1/(N+1))|

|sin(2πkδ)|︸ ︷︷ ︸
≤1

m∏

j=1

|J0(4πk|bj|)|︸ ︷︷ ︸
≤1/

√
2π(k|bj |)1/2

+
T−1∑

l=⌊ξT ⌋+1

kl+1∑

k=kl+1

∣∣∣∣f
(

k

N + 1

)∣∣∣∣ |sin(2πkδ)|︸ ︷︷ ︸
≤1

m∏

j=1

|J0(4πk|bj|)|︸ ︷︷ ︸
≤1/

√
2π(k|bj |)1/2




≤ 4πδ

N + 1

k1∑

k=1

(
πξ

sin(πξ)

N + 1

πk
+

1

π

)
k

+
2

(
√
2π)m(N + 1)

⌊ξT ⌋∑

l=1

∣∣∣∣f
(

lg−1

N + 1

)∣∣∣∣
kl+1∑

k=kl+1

(kg)−m/2

︸ ︷︷ ︸
≤ l−m/2

+
2

(
√
2π)m(N + 1)

T−1∑

l=⌊ξT ⌋+1

(
1− ξ

sin(π(1− ξ))
+

1

π

) kl+1∑

k=kl+1

(kg)−m/2

︸ ︷︷ ︸
≤ l−m/2

≤ 4(1 + ε)δg−1 +O(1/T ) +
2g−1

(
√
2π)m(N + 1)

⌊ξT ⌋∑

l=1

(
πξ

sin(πξ)

(N + 1)g

πl
+

1

π

)
l−m/2

+O(1/
√
T )

≤ 4(1 + ε)δg−1 +

2(1 + ε)ζ

(
m+ 2

2

)

π(
√
2π)m

+O(1/
√
T ),

where ζ denotes the Riemann zeta function. In the same manner,

∣∣∣∣
∫

BN(−z + b) + BN(z − a)d~x

∣∣∣∣ ≤ 4(1 + ε)δg−1 +

2(1 + ε)ζ

(
m+ 2

2

)

π(
√
2π)m

+O(1/
√
T ).

It may be checked that

2ζ

(
m+ 2

2

)

π(
√
2π)m

≤
√
2ζ(3/2)

π2
< 0.4 for all m ≥ 1. Since ε > 0 was

arbitrarily chosen, by taking T → ∞ we conclude by means of 2.2 that
∣∣∣∣
∫

(R/Z)m
1

J(δ)
(z(~x))d~x− |J(δ)|

∣∣∣∣ ≤ 4δg−1 + 0.4,

which implies

1− 2δ − 0.4− 4δg−1 ≤
∫

(R/Z)m
1

J(δ)
(z(~x))d~x.

To estimate g, notice that |bj| = |〈 ~Kn2 , ~e
∗
j 〉|/|〈~ej, ~e ∗

j 〉|. The numerator of this fraction is a
polynomial in βj with integer coefficients, of degree at most d − 1 (in particular non zero,
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since βj is of degree d) and height at most Kn2 (except for multiplication by a constant only
depending on β), and the denominator only depends on β. From Lemma 2.13, we obtain
g ≥ c|η̃|−dβ−n2d for some explicit constant c = c(β) depending on β = αP and, by the bound
on the period, it may be changed to a dependence on α and L. We may solve the inequality
1/2 < 1−2δ−0.4−4δc−1|η̃βn2 |d for some δ = δ(|η̃|, |σ0(η̃)|), which will satisfy the conclusion.
In fact, just notice that
∫

(R/Z)m
1

J(δ)
(z(~x))d~x = lim

N→∞

# {n ≤ N | |εn(η̃, β)| > δ}
N

= lim
N→∞

1

N/P
#

{
n ≤ N, n ≡ j (mod P )

∣∣∣∣∣

∣∣∣∣
∣∣∣∣
−2Rn

L

∣∣∣∣
∣∣∣∣
R/Z

> δ

}

= lim
N→∞

1

N/P
#

{
n ≤ N, n ≡ j (mod P )

∣∣∣∣
−2Rn

L
(mod 1) ∈ J(δ)

}

=

∫

(R/Z)m
1

J(δ)

(−2R(~x)

L

)
d~x.

The dependence of δ on (|η̃|, |σ0(η̃)|) may be changed to a dependence on (L, |η|, |σ0(η)|),
since |η| ≤ |η̃| ≤ |η|αP ≤ |η|αLd

and |σ0(η̃)| ≤ |σ0(η)|.

Lemma 2.23 Let β and η̃ as in Lemma 2.22. Suppose Tr(Lη̃βn) = 0 (mod L) for all n ≥ 0
and 2H/L ≥ δ1(β)/2. Then there exists δ = δ(L) > 0 such that

∫

(R/Z)m
1

J(δ)

(−2R(~x)

L

)
d~x ≥ 1/2.

Proof. The calculations are analogous. The details are found in the Appendix.

Lemma 2.24 Let β and η̃ as in Lemma 2.22. Suppose Tr(Lη̃βn) = l 6= 0 (mod L) for all
n ≥ 0 and 2H < 1. Then

∫

(R/Z)m
1

J(1/L)

(−2R(~x) + l

L

)
d~x ≥ 1/2.

Proof. From Proposition 2.20 and 2H < 1 we can deduce {η̃βn} ∈ [(l − 1)/L, (l + 1)/L] for
all n ≥ n0, for some n0 ≥ 0. Since l 6= 0 we have three cases: J(1/L) ∩ [(l − 1)/L, (l + 1)/L]
is equal to [(l− 1)/L, l/L] (if l = L− 1) or [l/L, (l + 1)/L] (if l = 1) or [(l− 1)/L, (l + 1)/L]
(otherwise). In any case,

∫

(R/Z)m
1

J(1/L)

(−2R(~x) + l

L

)
d~x = lim

N→∞

# {n ≤ N |{η̃βn} ∈ J(1/L)}
N

≥ 1/2.

Lemma 2.25 Let β and η̃ as in Lemma 2.22. Suppose Tr(Lη̃βn) = l 6= 0 (mod L) for all
n ≥ 0 and 2H ≥ 1. Then there exists a δ = δ(L) > 0 such that

∫

(R/Z)m
1

J(δ)

(−2R(~x) + l

L

)
d~x ≥ 1/2.
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Proof. The calculations are analogous. The details are found in the Appendix.

2.3.2 Conclusion

Proof of Theorem 2.1: let κ ∈ Z[α] be the positive constant appearing in Lemma 2.9 and fix
A,B,C > 1 for the rest of this section. Define

Bκ = κB, Cκ = |σ0(κ)|C.

According to Lemmas 2.22, 2.23, 2.24 and 2.25 above (see also the remark below Lemma
2.22), we can find an explicit δ = δ(A,Bκ, Cκ) > 0 such that

∫

(R/Z)m
1

J(δ)

(−2R(~x) + aj
L

)
d~x ≥ 1/2,

for all j = 0, . . . , P − 1. In particular, by Corollary 2.21 there exists N0 ≥ 1 such that for all
N ≥ N0, |η| ∈ [B−1

κ , Bκ], |σ0(η)| ≤ Cκ and L ≤ A:

# {n ≤ N |{ηαn} ∈ J(δ)}
N

≥ 1/3.

Note that if η = ωκ, then |ω| ∈ Q(α)∩ [B−1, B] and |σ0(ω)| ≤ C. Assume also η is in reduced
form, and its denominator L is less or equal to A, which implies the denominator of ω in
reduced form is less or equal to A. By Lemma 2.9, considering R ≥ R0 := αN0+1 we obtain

sup
(x,s)∈X~p

ζ

|Sf
R((x, s), ω)| ≤ C1R(1− λδ2)logα(R)/3

= C1R(αlogα(1−λδ2))logα(R)/3

= C1R
1+logα(1−λδ2)/3

= C1R
γ̃, γ̃ = γ̃(A,B,C) ∈ (0, 1).

A modulus of continuity for the correlation measure νa (a ∈ A) may be derived from the
last inequality using Proposition 2.8: for γ̃ = γ̃(A,B,C) = 1 + logα(1 − λδ2)/3 we have by
Proposition 2.8,

νa([ω − r, ω + r]) ≤ π2C1r
2(1−γ̃) =: crγ,

for all 0 < r ≤ r0, for some r0 > 0 and c > 0, the last one only depending on the substitution.
We have proved Theorem 2.1.

Proof of Theorem 2.2: in view of the uniform dependence of δ on the variables B,C in
Lemmas 2.24 and 2.25, similar calculations as the ones we did before lead to an exponent
γ = γ(A) > 0 only depending on A: Corollary 2.21 and the existence of some aj∗ 6= 0 (since
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Tr(Lκωαn) 6≡ 0 (mod L) for some n ∈ N by hypothesis), yields

lim
N→∞

# {n ≤ N |{ηαn} ∈ J(δ)}
N

=
1

P

P−1∑

j=0

∫

(R/Z)m
1

J(δ)

(−2R(~x) + aj
L

)
d~x

≥ 1

P

∫

(R/Z)m
1

J(δ)

(−2R(~x) + aj∗

L

)
d~x

≥ 1

2Ad
.

This means there exists N0 ≥ 1 such that for all N ≥ N0

# {n ≤ N |{ηαn} ∈ J(δ)}
N

≥ 1

3Ad
.

Proceeding in the same way as before, we arrive to the conclusion of Theorem 2.2.

2.4 Proof of Proposition 2.3

Let Q be the minimal polynomial of α and L a positive integer. Consider the set RL of
η/L ∈ Q(α), with η ∈ Z[α], such that

• η = l0 + · · ·+ ld−1α
d−1 ∈ Z[α], gcd(l0, . . . , ld−1, L) = 1,

• ∀n ≥ 0 Tr(ηαn) = 0 (mod L).

We will prove these sets are empty except maybe for the divisors of L. With this end, let us
note that

PL :=
{
η = l0 + · · ·+ ld−1α

d−1 ∈ Z[α] | gcd(l0, . . . , ld−1, L) = 1, Tr(ηαn) = 0 (mod L)

for all n ≥ 0}
⊆ {η ∈ Z[α] | Tr(ηαn) = 0 (mod L) for all n ≥ 0}
⊆ ML := {ρ ∈ Q(α) | Tr(ραn) = 0 (mod L) for all n ≥ 0}.

Let {w0, . . . , wd−1} be the dual basis (respect to the trace form) of {1, α, . . . , αd−1}. We claim
ML is a free Z-submodule of Q(α) with basis {Lw0, . . . , Lwd−1}. The Z-basis of ML is found
solving

Tr(αiwj) = δij, for i, j = 0, . . . , d− 1 ⇐⇒ wj = π1(V
−1ej+1),

where δij denotes the Kronecker delta, V is the Vandermonde matrix associated to the d
Galois conjugates of α, π1 denotes projection onto the first coordinate and {e1, . . . , ed} is the
canonical basis of Rd. These equations yield the Z-linear independence of the wi’s (form the
Z-linearity of the trace). Alternatively, the wj’s can be calculated as (see [51], Chapter 3,
Proposition 2)

wj =
mj

Q′(α)
,
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where
Q(X)

X − α
= m0 + · · ·+md−1X

d−1, mj ∈ Z[α].

Let us observe from this last equation that the denominator of Q′(α)−1 expressed in reduced
form is a common denominator for all wj’s, a fact that will be used later. Finally, to prove
the Lwj’s generate ML, let ρ ∈ ML. Let Θ : Q(α) →֒ R2 × Cm ∼= Rd be the Minkowski
embedding Θ(ρ) = (ρ, σ0(ρ), σ1(ρ), . . . , σm(ρ))

T . By definition, for some p1, . . . , pd ∈ Z we
have

VΘ(ρ) = (Lp1, . . . , Lpd)
T ,

⇐⇒ Θ(ρ) = LV −1(p1, . . . , pd)
T = p1LΘ(w0) + · · ·+ pdLΘ(wd−1)

⇐⇒ ρ = p1Lw0 + · · ·+ pdLwd−1.

This completes the proof of the claim. Each wj can be expressed as ηj/E (possibly not
in reduced form) with ηj ∈ Z[α] and E only depending on α (observation last paragraph).
Suppose L ∤ E, and let l > 1 be some factor of L which is not a factor of E. Then, for every
Z-linear combination of the Lwj’s, the coefficients of the numerator of this linear combination
(written in the canonical basis of the number field) will have l as a common factor, i.e., none
of these Z-linear combinations will belong to PL (because of the coprimality condition). In
consequence, this set is empty and RL is empty too. This yields the conclusion of Proposition
2.3.

2.5 Dependence of r0

The aim of this section is to prove Proposition 2.29, which provides a lower bound for r0
appearing in Theorems 2.1 and 2.2. To accomplish this we will find an upper bound for the
error in the approximation of the integrals of Corollary 2.21. We are only able to do this
in the case deg(α) = 4. First, let us recall the notion of type of a real number: for a real
number θ we say its type is at most τ ≥ 1 if there exists a positive constant c(θ) such that
for every p ∈ Z and q ∈ N we have

|qθ − p| ≥ c(θ)

qτ
.

The set of real numbers satisfying an inequality like the one above for some τ ≥ 1 is called
the set of Diophantine numbers.

We use a general bound for linear forms in logarithms to show that θ1 is Diophantine. We
summarize this calculation in the next

Lemma 2.26 Let α1 = e2πiθ1 be an algebraic number on the unit circle which is not a root of
unity. Then θ1 is Diophantine and its type is bounded from above by some explicit constant
τα1.
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Proof. Let us denote by pq the nearest integer to qθ1, i.e., ||qθ1||R/Z = |qθ1 − pq|. Note that

|αq
1 − 1| = |e2πiqθ1 − e2πipq |

≤ 2π|qθ1 − pq|.

Now we use Theorem 2.2 from [24] to deduce that for every q ∈ Z \ {0} holds log|αq
1 − 1| ≥

−τα1 log(eq), for some explicit constant τα1 > 1 depending only on α1, which finally implies

|qθ1 − pq| ≥
e−τα1

2πqτα1
=:

cα1

qτα1
.

In other words, the type of θ1 is ≤ τα1 .

As we have already mentioned, our aim is to understand how fast is the approximation of the
integrals appearing in Corollary 2.21 by Birkhoff sums. The classic way to do this is to use
the Koksma-Hlawka inequality for integrals of dimension greater than one. Unfortunately,
the integrand of the integrals in Corollary 2.21 are given by the functions

F (x1, . . . , xm) = 1
J

(−2R(x1, . . . , xm) + aj
L

)
,

j = 0, . . . , P − 1, which we do not expect to have bounded variation in the sense of Hardy
and Krause (see [50]). So we restrict ourselves to dimension 1 (m = 1, so deg(α) = 4),
where we can prove that the variation of this function is bounded explicitly. This reduces
ourselves to the classic result of Koksma which we recall next. We start with the definition
of discrepancy.

Definition 2.27 Let N ≥ 1 and (un)n≥1 ⊂ [0, 1]. The discrepancy of the sequence un is
defined by

DN(un) = sup
0≤a<b≤1

∣∣∣∣∣
1

N

N∑

n=1

1
[a,b]

(un)− (b− a)

∣∣∣∣∣ .

By allowing only sets of the form [0, b] in the definition of DN , we obtain the star-discrepancy
D∗

N . It follows the obvious inequality D∗
N(un) ≤ DN(un).

It is known that the discrepancy of the sequence (nθ̃1)n≥1, where θ̃1 = Pθ1, is bounded as

DN(nθ̃1) ≤ DN−1/τ ,

where τ is any strict upper bound for the type of θ̃1 and D is an absolute constant. This
fact is derived from the Erdős-Turan inequality (see [50]). The inequality above holds if

we replace the upper bound for the type of θ̃1 by an upper bound for the type of θ1, since
θ̃1 = Pθ1. Now we recall the Koksma inequality.

Theorem 2.28 (see [50]) Let F : [0, 1] −→ R be a function of bounded variation V (F ) <
+∞. For any sequence (un)n≥1 ⊆ [0, 1] and N ≥ 1, holds

∣∣∣∣∣
1

N

N∑

n=1

F (un)−
∫

F (x)dx

∣∣∣∣∣ ≤ V (F )D∗
N(un).
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Now we use the Koksma inequality for every function Fj(x) = 1
J(2δ)

(−2R(x) + aj
L

)
(j =

0, . . . , P − 1), where δ = δ(A,B,C) is the one obtained from Lemmas 2.22 to 2.25 for fixed
A,B,C > 1. Note by replacing δ for 2δ in these lemmas, we can conclude that the integral
of each Fj is greater or equal to 2/5: it is enough to look at the inequalities at the end of the
proofs (in the case of Lemma 2.24 this is not true, but changing δ for δ/2 of course yields
the same result).

Also, it is not difficult to see that the variation of Fj is less or equal to 8H (recall H is
defined in the paragraph below the proof of Corollary 2.21). Define n0 := ⌈logα(|σ0(η)|/δ)⌉
and Nj = # {1 ≤ n ≤ N | n ≡ j (mod P )} ≥ ⌊N/P ⌋. This allows us to affirm that for any
N > n0 and j = 0, . . . , P − 1

∫

R/Z

1
J(2δ)

(−2R(x) + aj
L

)
dx− 8DH

⌊N/P ⌋1/τ − n0

⌊N/P ⌋
≤

#

{
n0 < n ≤ N, n ≡ j (mod P )

∣∣∣∣
−2Rn + aj

L
(mod 1) ∈ J(2δ)

}

⌊N/P ⌋
≤

#

{
n0 < n ≤ N, n ≡ j (mod P )

∣∣∣∣
−2Rn + aj

L
− σ0(η)α

−n (mod 1) ∈ J(δ)

}

⌊N/P ⌋
≤

# {n0 < n ≤ N, n ≡ j (mod P )|{ηαn} ∈ J(δ)}
⌊N/P ⌋

≤
# {1 ≤ n ≤ N, n ≡ j (mod P )|{ηαn} ∈ J(δ)}

⌊N/P ⌋ .

Let us add these inequalities for j = 0, . . . , P − 1 and multiply by ⌊N/P ⌋/N both sides,
yielding

1

P

P−1∑

j=0

∫

R/Z

1
J(2δ)

(−2R(x) + aj
L

)
dx− 1

N/P
− 8DH

(N/P )1/τ
− n0

N/P

≤
# {1 ≤ n ≤ N |{ηαn} ∈ J(δ)}

N
.

Since each integral term in the left-hand side is greater than 2/5 we conclude the right-hand
side is greater than 1/3 as soon as N ≥ N0, with N0 defined by any integer solution to

8DH

(N0/P )1/τ
+

n0

N0/P
+

P

N0

< 1/15.

In particular, we may choose any N0 ≥ P max (45n0, (360DH)τ , 45). In this manner, for

η = ωκ =
1

L
(l0 + · · · + ld−1α

d−1) ∈ Q(α), we conclude that we can take r0 = r0(ω) in
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Theorem 2.1 as
r0 =

cα
αP max(⌈logα(|σ0(η)|/δ)⌉,Hτ )

,

for certain explicit constant cα > 0, deduced from the relation R0 = αN0+C2+1 and Lemmas
2.8, 2.9. With this we have proved

Proposition 2.29 Let A,B,C > 1 and ω ∈ Q(α)\{0} satisfying the conditions of Theorem
2.1. Suppose α is a Salem number of degree equal 4 and let α1 = e2πiθ1 be the Galois conjugate
on the upper half of the unit circle. Then θ1 is Diophantine and if τ is an upper bound for
its type, there exists a constant cα > 0 only depending on α such that r0(ω) appearing in
Theorem 2.1 satisfies

r0(ω) >
cα

αA4 max(⌈logα(C/δ)⌉,Hτ )
,

where H =
√
U(θ1)2 + V (θ1)2 (see Corollary 2.21 for definition of U and V ) and δ =

δ(A,B,C) > 0 comes from any of Lemmas 2.22 to 2.25.

Almost identical calculations lead to an expression bounding r0(ω) in the case of Theorem
2.2, so we omit them.

2.6 Appendix

In this section we give the details of the proof of Lemmas 2.23 and 2.25.

Proof of Lemma 2.23: let a = δ, b = 1− δ for δ > 0 a parameter we will choose later suitably
to satisfy the conclusion of the lemma. Let z(~x) = −2R(~x)/L. Then

∫
BN(−z + a)d~x =

∫
VN(−z + a) +

1

2(N + 1)
∆N+1(−z + a)d~x

=

∫
1

N + 1

N∑

k=1

f

(
k

N + 1

)
sin(2πk(−z + a))d~x

+

∫
1

2(N + 1)



1 +

∑

0<|k|≤N+1

(
1− |k|

N + 1

)
e2πik(−z+a)



 d~x

=
−1

N + 1

N∑

k=1

f

(
k

N + 1

)
sin(2πka)

m∏

j=1

J0

(
4πkHj

L

)

︸ ︷︷ ︸
=(1)

+
1

2(N + 1)



1 +

∑

0<|k|≤N+1

(
1− |k|

N + 1

)
e2πika

m∏

j=1

J0

(
4πkHj

L

)


︸ ︷︷ ︸
=(2)

.

From the hypothesis follows that there exists j∗ ∈ {1, . . . ,m} such that 2Hj∗/L ≥ δ1(β)/2m.
Set g = Hj∗/L and note g−1 ≤ 4mδ1(β)

−1 = h−1. Define for each nonnegative integer l the
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number kl = ⌊h−1l⌋. From now on, we will consider N of the form ⌊h−1T ⌋, for each T ∈ N.
We use below the inequality for the Bessel function from Proposition 2.18.

|(2)| ≤ 1

2(N + 1)

{
1 + 2

N+1∑

k=1

(
1− k

N + 1

) m∏

j=1

∣∣∣∣J0
(
4πkHj

L

)∣∣∣∣

}

≤ 1

2(N + 1)

{
1 + 2

T−1∑

l=0

kl+1∑

k=kl+1

(
1− k

N + 1

) m∏

j=1

∣∣∣∣J0
(
4πkHj

L

)∣∣∣∣

}

≤ 1

2(N + 1)




1 + 2

k1∑

k=1

(
1− k

N + 1

) m∏

j=1

∣∣∣∣J0
(
4πkHj

L

)∣∣∣∣
︸ ︷︷ ︸

≤1

+ 2
T−1∑

l=1

kl+1∑

k=kl+1

(
1− k

N + 1

) m∏

j=1

∣∣∣∣J0
(
4πkHj

L

)∣∣∣∣
︸ ︷︷ ︸

≤1/
√
2π(kg)1/2





≤ 1

2(N + 1)




1 + 2h−1 +

√
2

π

T−1∑

l=1

kl+1∑

k=kl+1

(kg)−1/2

︸ ︷︷ ︸
≤ l−1/2





≤ 1

2(N + 1)




1 + 2h−1 +

√
2

π

T−1∑

l=1

l−1/2 (kl+1 − kl)︸ ︷︷ ︸
≤ h−1





≤ 1

2(N + 1)

{
1 + 2h−1 +

√
2h−1

π
O(

√
T )

}

= O(1/
√
T )

Similarly,

∫
BN(z − b)d~x =

1

N + 1

N∑

k=1

f

(
k

N + 1

)
sin(2πkb)

m∏

j=1

J0

(
4πkHj

L

)
+O(1/

√
T ).

Having estimated the integral of the Beurling polynomials, we continue with the Selberg
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ones:

∣∣∣∣
∫

BN(z − b) + BN(−z + a)d~x

∣∣∣∣
≤∣∣∣∣∣

1

N + 1

N∑

k=1

f

(
k

N + 1

)
(sin(2πkb)− sin(2πka))

m∏

j=1

J0

(
4πkHj

L

)∣∣∣∣∣+O(1/
√
T )

=∣∣∣∣∣
2

N + 1

N∑

k=1

f

(
k

N + 1

)
sin(2πkδ)

m∏

j=1

J0

(
4πkHj

L

)∣∣∣∣∣
︸ ︷︷ ︸

=(3)

+O(1/
√
T ).

Fix ε > 0 and let us take ξ < 1/2 such that πξ/ sin(πξ) ≤ 1 + ε (recall the definition and
property of f in Definition 2.15). Then, for T big enough, we obtain

(3) ≤ 2

N + 1

N∑

k=1

∣∣∣∣∣f
(

k

N + 1

)
sin(2πkδ)

m∏

j=1

J0

(
4πkHj

L

)∣∣∣∣∣

≤ 2

N + 1




k1∑

k=1

|f
(

k

N + 1

)
| |sin(2πkδ)|︸ ︷︷ ︸

≤2πkδ

m∏

j=1

∣∣∣∣J0
(
4πkHj

L

)∣∣∣∣
︸ ︷︷ ︸

≤1

+

⌊ξT ⌋∑

l=1

kl+1∑

k=kl+1

|f
(

k

N + 1

)
|

︸ ︷︷ ︸
≤|f(lh−1/(N+1))|

|sin(2πkδ)|︸ ︷︷ ︸
≤1

m∏

j=1

∣∣∣∣J0
(
4πkHj

L

)∣∣∣∣
︸ ︷︷ ︸

≤1/
√
2π(kg)1/2

+
T−1∑

l=⌊ξT ⌋+1

kl+1∑

k=kl+1

|f
(

k

N + 1

)
| |sin(2πkδ)|︸ ︷︷ ︸

≤1

m∏

j=1

∣∣∣∣J0
(
4πkHj

L

)∣∣∣∣
︸ ︷︷ ︸

≤1/
√
2π(kg)1/2




≤ 4πδ

N + 1

k1∑

k=1

(
πξ

sin(πξ)

N + 1

πk
+

1

π

)
k

+

√
2

π(N + 1)

⌊ξT ⌋∑

l=1

|f
(

lh−1

N + 1

)
|

kl+1∑

k=kl+1

(kg)−1/2

︸ ︷︷ ︸
≤ l−1/2

+

√
2

π(N + 1)

T−1∑

l=⌊ξT ⌋+1

(
1− ξ

sin(π(1− ξ))
+

1

π

) kl+1∑

k=kl+1

(kg)−1/2

︸ ︷︷ ︸
≤ l−1/2
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≤ 4(1 + ε)δh−1 +O(1/T ) +

√
2h−1

π(N + 1)

⌊ξT ⌋∑

l=1

(
πξ

sin(πξ)

(N + 1)h

πl
+

1

π

)
l−1/2

+O(1/
√
T )

≤ 4(1 + ε)δh−1 +

√
2(1 + ε)ζ

(
3

2

)

π2
+O(1/

√
T ),

where ζ denotes the Riemann zeta function. In the same manner,

∣∣∣∣
∫

BN(−z + b) + BN(z − a)d~x

∣∣∣∣ ≤ 4(1 + ε)δh−1 +

√
2(1 + ε)ζ

(
3

2

)

π2
+O(1/

√
T ).

It may be checked that

√
2ζ(3/2)

π2
< 0.4. Since ε > 0 was arbitrarily chosen, by taking

T → ∞ we conclude by means of 2.2 that

∣∣∣∣
∫

(R/Z)m
1

J(δ)
(z(~x))d~x− |J(δ)|

∣∣∣∣ ≤ 4δh−1 + 0.4,

which implies

1− 2δ − 0.4− 4δh−1 ≤
∫

(R/Z)m
1

J(δ)
(z(~x))d~x.

Then, by solving 1/2 < 1− 2δ − 0.4− 16δmδ1(β)
−1, we obtain the desired δ = δ(L).

Proof of Lemma 2.25: let a = δ, b = 1− δ for δ > 0 a parameter we will choose later suitably

to satisfy the conclusion of the lemma. Let z(~x) =
−2R(~x) + l

L
. As before, we have

∫
BN(−z + a)d~x =

−1

N + 1

N∑

k=1

f

(
k

N + 1

)
sin(2πka)

m∏

j=1

J0

(
4πkHj

L

)

︸ ︷︷ ︸
=(1)

+
1

2(N + 1)



1 +

∑

0<|k|≤N+1

(
1− |k|

N + 1

)
e2πika

m∏

j=1

J0

(
4πkHj

L

)


︸ ︷︷ ︸
=(2)

.

From the hypothesis follows that there exists j∗ ∈ {1, . . . ,m} such that Hj∗ ≥ 1/2m. Set
g = Hj∗/L and note g−1 ≤ 2mL = h−1. Define for each nonnegative integer l the number
kl = ⌊h−1l⌋. From now on, we will consider N of the form ⌊h−1T ⌋, for each T ∈ N. The same
calculations of the proof above lead to (2) = O(1/

√
T ). We conclude in the same manner
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that
∣∣∣∣
∫

BN(z − b) + BN(−z + a)d~x

∣∣∣∣
≤∣∣∣∣∣

1

N + 1

N∑

k=1

f

(
k

N + 1

)
(sin(2πkb)− sin(2πka))

m∏

j=1

J0

(
4πkHj

L

)∣∣∣∣∣+O(1/
√
T )

=∣∣∣∣∣
2

N + 1

N∑

k=1

f

(
k

N + 1

)
sin(2πkδ)

m∏

j=1

J0

(
4πkHj

L

)∣∣∣∣∣
︸ ︷︷ ︸

=(3)

+O(1/
√
T ).

And once again, the same calculations as in the proof above lead to

∣∣∣∣
∫

(R/Z)m
1

J(δ)
(z(~x))d~x− |J(δ)|

∣∣∣∣ ≤ 4δh−1 + 0.4.

Then, by solving 1/2 < 1− 2δ − 0.4− 8δmL, we obtain the desired δ = δ(L).

57



58



Chapter 3

Lyapunov exponents of the spectral

cocycle for topological factors of the

Thue-Morse substitution

The content of this chapter will be submitted for publication.

This paper continues the work of [18, 21] around the spectral cocycle defined explicitly in [21].
The study of this extension of the Rauzy-Veech cocycle has given fruitful results as effective
rates of weak mixing for several classes of systems such as interval exchange transformations
[4], linear flows on translations surfaces of genera higher or equal than 2 [41] and special sus-
pension flows over more general S-adic systems (including substitutions) [19, 21, 22]. Other
consequences are the nature of the spectral measures involved, specifically, sufficient and
necessary conditions for purely singular spectrum [13, 21, 20].

One of the main motivations of this article is to explore the behavior of the spectral co-
cycle under conjugacy and semi-conjugacy of the substitution subshifts involved. We have
restricted our study to the Thue-Morse substitution. A special property of the Thue-Morse
substitution is that we may represent its twisted Birkhoff sums as a product, namely

pn(ω) =
n−1∏

j=0

2 sin(π{ω2j}).

Lot of attention has been given to the undertanding of the asymptotics of Lp norms of pn:
part of the proof of a prime number theorem for the sum-of-digits function, due to Maduit
and Rivat in [55], uses the asymptotic

||pn||1 ∼ 2nδ, with δ = 0.40325...

A survey with the link between these products and the Thue-Morse sequence is found in [62].
We will be interested in the asymptotics of pn for fixed ω as n goes to infinity. Apparently
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contradictory with the latter result, the growth is sub-exponential for generic ω. This will
imply, in particular, that the top Lyapunov exponent of the spectral cocycle for the Thue-
Morse substitution vanishes, which is a known fact (see [5]). In fact, this will be the case for
all factors of the Thue-Morse subshift, which is our main result.

Theorem 3.1 For every topological factor of the Thue-Morse subshift coming from an ape-
riodic primitive substitution ζ we have χ+

ζ (ω) = 0 almost surely.

We organize the paper as follows: in Section 2 we recall several notions around substitutions
and dynamics, in particular, those related to the Thue-Morse sequence. In addition, we recall
the definition of the spectral cocycle, the twisted Birkhoff sum and define its generalization:
the twisted correlation. To finish, we state a result about asymptotic laws of expanding maps
of the unit interval which will be essential for our estimates.

Section 3 begins with two general results about the top Lyapunov exponent of the spectral
cocycle. It continues with fine estimates for the twisted Birkhoff sums in the Thue-Morse
case (in particular, showing its sub-exponential behavior) and also for its twisted correlations.
For simplicity, the bounds are only shown here in the simplest case. The general case is pre-
sented in the Appendix. Finally, we prove Theorem 3.1 relying on the estimates found before.

3.1 Background

3.1.1 Substitutions

For the basic notions on substitutions we follow [61]. Let us start by fixing a positive integer
m ≥ 2 and a finite alphabet A = {1, . . . ,m}. A substitution on the alphabet A is a map
ζ : A −→ A+, where A+ denote the set of finite (nonempty) words on A. By concatenation,
it is natural to extend a substitution to A+, to AN (one-sided sequences) or AZ (two-sided
sequences). In particular, the iterates ζn(a) = ζ(ζn−1(a)) for a ∈ A, are well defined.

For a word w ∈ A+ denote its length by |w| and by |w|a the number of symbols a found in w.
The substitution matrix associated to a substitution ζ is the m ×m matrix with integer
entries defined by Mζ(a, b) = |ζ(b)|a. A substitution is called primitive if its susbtitution
matrix is primitive. If there exist q ∈ N, q ≥ 2 such that |ζ(a)| = q for all a ∈ A, we say ζ is
a constant length substitution.

The substitution subshift associated to ζ is the set Xζ of sequences (xn)n∈Z ∈ AZ such
that for every i ∈ Z and k ∈ N exist a ∈ A and n ∈ N such that xi . . . xi+k is a subword of
some ζn(a). A classical result is that the Z-action by the left-shift T ((xn)n∈Z) = (xn+1)n∈Z
on this subshift is minimal and uniquely ergodic when ζ is primitive. From now on we only
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consider primitive and aperiodic substitutions, which means in the primitive case that the
subshift is not finite.

Finally, let us recall the definition of conjugacy and semi-conjugacy. We say two subshifts
(X, T ), (Y, T ′) are topologically conjugate if there is an homeomorphism π : X −→ Y
such that π ◦ T = T ′ ◦ π. If π is only onto, then we say X and Y are topologically

semi-conjugate, or that Y is a factor of X.

3.1.2 Thue-Morse sequence

Let ζTM : 0 7→ 01, 1 7→ 10 be the Thue-Morse substitution. This substitution has two fixed
points, namely, u = ζ∞TM(0) and v = ζ∞TM(1). The former one is called the Thue-Morse
sequence. Note v is equal to u after changing the symbols 0’s for 1’s and 1’s for 0’s. Other
characterization of this sequence which we will use along the whole text is the next arithmetic
property valid for all integers k ≥ 0:

uk = s2(k) (mod 2),

where s2(k) is equal to the sum of digits in the binary expansion of k, i.e., if k = k0 + · · ·+
kn−12

n−1 with kj ∈ {0, 1}, then s2(k) = k0 + · · ·+ kn−1.

3.1.3 Conjugacy and factor list of the Thue-Morse subshift

Here we recall some results around conjugate and factor subshifts of the Thue-Morse subshift.
Two general results are the next ones.

Theorem 3.2 ([33]) Subshift topological factors of substitution systems are topologically con-
jugate to substitution subshifts.

Theorem 3.3 ([34]) There exist finitely many subshift topological factors of a substitution
subshift up to topological conjugacy.

Deciding when two substitution systems are topologically conjugate or semi-conjugate (one
is a factor of the other) is a problem recently solved (the conjugacy problem follows from the
second one by coalesence of substitution subshifts).

Theorem 3.4 ([35]) For two uniformly recurrent substitution subshifts (X, T ) and (Y, T ′),
it is decidable wheter they are semi-conjugate. Moreover, if (Y, T ′) is aperiodic, then there
exists a computable constant r such that for any factor π : X −→ Y there exist k ∈ Z and a
factor π′ : X −→ Y of radius less than r, such that π = (T ′)k ◦ π′.

It is tempting to think we may list all factors from a given substitution system, but the radius
r in the last result depends strongly on the factor system. On the other hand, in the constant
length case, this is partially solved: it is possible to give the list of all factors of constant
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length (see [27, 35]). Examples of conjugate substitution systems to the Thue-Morse subshift
which are not constant length are given in [30].

Theorem 3.5 ([30]) There exist infinitely many non-constant length, primitive, injective
substitutions with Perron-Frobenius eigenvalue equal to 2, conjugate to the Thue-Morse sub-
stitution.

Example Consider the substitutions ζ1 and ζ2 defined below. Both are conjugate to the
Thue-Morse substitution. The substitution ζ3 defines a topological factor.

ζ1 : 0 7→ 01, 1 7→ 20, 2 7→ 10;

ζ2 : 0 7→ 012, 1 7→ 02, 2 7→ 1;

ζ3 : 0 7→ 01, 1 7→ 00.

3.1.4 Mixing coefficients and bounded law of iterated logarithm

A major technical tool needed to obtain the bounds of Section 3.3 is a bounded iterated loga-
rithm law for uniformly expanding systems, in the case of observables of unbounded variation.

Following [28], the result comes from the study of some mixing coefficients, definition we recall
next. For a random variable X, set X(0) = X − E(X). For a random vector (X1, . . . , Xk)
and a σ-algebra F , define

φ(F , X1, . . . , Xk) = sup
(x1,...,xk)∈Rk

∣∣∣∣∣∣

∣∣∣∣∣∣
E

(
k∏

j=1

(
1{Xj≤xj}

)(0)
∣∣∣∣∣F
)(0)

∣∣∣∣∣∣

∣∣∣∣∣∣
∞

.

Let S be a bijective bimeasurable map. For a process X = (Xj)j≥0 with Xi = Si ◦ X0 and
σ(X0) ⊂ F . Define

φk,X(n) = max
1≤l≤k

sup
n≤i1<···<il

φ(F , Xi1 , . . . , Xil).

The main importance of these coefficients is that a suitable control on them implies a bounded
law of iterated logarithm if S is a uniformly expanding map (definition in [28]) and f is in
the closure of Mon2(M, ν) (denoted below by Monc

2(M, ν) ), where Mon2(M, ν) is the set of
f such that ν(|f |2) ≤ M2 and f is the finite sum of functions monotonic in some interval
and null elsewhere.

Theorem 3.6 ([28]) Let S be a uniformly expanding map of the unit interval with an ab-
solutely continuous invariant measure ν. Then, for any M > 0 and f ∈ Monc

2(M, ν), there
exists a nonnegative constant A such that

∑

n=1

1

n
ν

(
max
1≤k≤n

∣∣∣∣∣
k−1∑

i=0

(f ◦ Si − ν(f))

∣∣∣∣∣ ≥ A
√

n log log(n)

)
< ∞.
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This convergence implies a bounded law of iterated logarithm: for almost every ω,

lim sup
n→∞

1√
n log log(n)

∣∣∣∣∣
n−1∑

i=0

(f ◦ Si(ω)− ν(f))

∣∣∣∣∣ ≤ A.

3.1.5 Solutions of s2(k + a)− s2(k) = d

Here we briefly recall some results from [38]. Consider the equation s2(k+a)− s2(k) = d, for
a ∈ N and d ∈ Z. Denote by Sa,d its solution set. Note that if d > ⌈log2(a)⌉, then Sa,d = ∅.
Also, d < −n implies Sa,d∩{0, . . . , 2n−1} = ∅. These will be trivial cases of the next lemma.

To change between words and numbers represented by digits consider the next notation: k2

denotes the word associated to the digits of k in base 2, i.e., if k = k0 + · · ·+ kn−12
n−1 then,

k2 = k0 . . . kn−1 ∈ {0, 1}∗. Similarly, for a word w = w0 . . . wn−1 ∈ {0, 1}∗, denote by w2 the
number w0 + · · ·+ wn−12

n−1.

Lemma 3.7 (see [38]) There exists a finite set of words Pa,d = {pda(1), . . . , pda(s)} ⊂ {0, 1}∗,
such that

k ∈ Sa,d ⇐⇒ k2 ∈
s⋃

i=1

[pda(i)].

Denote by ||Pa,d|| the length of the longest word of Pa,d.

Lemma 3.8 For all a ∈ N and d ∈ Z, if the set Pa,d is nonempty, it satisfies

• #Pa,d ≤ 2a.

• ||Pa,d|| ≤ 2⌈log2(a)⌉+ |d|.

Proof. Both claims come direct from the proof of Lemma 3.7: to prove the first, note a
has at most ⌈log2(a)⌉ digits in base 2, which defines 2⌈log2(a)⌉ ≤ 2a possible prefixes for the
words in Pa,d. For the second point, again since a has at most ⌈log2(a)⌉ digits in base 2, the
longest word has a prefix of length at most ⌈log2(a)⌉ followed by a suffix from some P1,d′ ,
and |d′| ≤ ⌈log2(a)⌉+ |d|. In summary, ||Pa,d|| ≤ 2⌈log2(a)⌉+ |d|.

Remark By considering all suffixes to complete shorter words, we may suppose all words
from Pa,d have the same length (of the longest word), i.e., ||Pa,d|| = 2⌈log2(a)⌉ + |d|. Of
course the cardinal of Pa,d will be bigger, but each suffix is of length at most 2⌈log2(a)⌉. In
summary, we may suppose #Pa,d ≤ 2a3.

3.1.6 Spectral cocycle and top Lyapunov exponents

As usual, we use the notation e(x) := e2πix. Following [21], let ζ be a substitution over
A = {1, . . . ,m} and let ζ(a) = w1 . . . wka . The spectral cocycle is the cocycle over (R/Z)m
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with (a, b) ∈ A2 entry given by

Cζ(ξ, 1)(a, b) =
ka∑

j=1

δwj ,b e(ξw1 + · · ·+ ξwj−1
), ξ ∈ (R/Z)m

Cζ(ξ, n) = Cζ((M
T
ζ )

n−1ξ, 1) . . .Cζ(ξ, 1)

(the original definition actually uses a minus sign in the exponentials, but it is just a conven-
tion and it will not affect the calculations). The spectral cocycle is suitable for studying the
spectrum of suspension flows over substitution subshifts: if ~p is the positive vector defining
the suspension and ω ∈ R, we will set ξ = ω~p (mod Zd). We refer the interested reader to
[21] for some results that justify this decomposition.

If we want to study the Z-action, we can consider ~p = ~1 = (1, . . . , 1)T and the decomposition
ξ = ω~p. If the substitution is of constant length q, the endomorphism given by the substitu-
tion matrix acts on ω~p in (R/Z)d in the same way the q-times map x 7→ qx (mod 1) acts on
ω in R/Z. In the latter case we will refer to the cocycle over R/Z as the restricted spectral
cocycle.

Example Let ζTM : 0 7→ 01, 1 7→ 10 be the Thue-Morse substitution. Then, for (ξ0, ξ1)
T =

ω~1,

CζTM
(ω, 1) =

(
1 e(ω)

e(ω) 1

)
,

CζTM
(ω, n) =

(
1 e(2n−1ω)

e(2n−1ω) 1

)
. . .

(
1 e(ω)

e(ω) 1

)
.

The pointwise top Lyapunov exponent of the restricted spectral cocycle Cζ , is defined for
ω ∈ [0, 1) as

χ+
ζ (ω) = lim sup

n→∞

1

n
log||Cζ(ω~1, n)||.

In the case of a constant length substitution, since the q-times map (q ∈ N, q ≥ 2) is an
ergodic transformation for the Lebesgue measure (denoted by Leb), the Furstenberg-Kesten
theorem implies that χ+

ζ (ω) is almost everywhere constant, value we will denote by χ+
ζ .

3.1.7 Twisted Birkhoff sums and twisted correlations

In this subsection we define a special kind sum appearing in the calculations of the top
Lyapunov exponents for factors of Thue-Morse, but whose study might be interesting by
itself. First, we recall the notion of twisted Birkhoff sum:

Definition 3.9 Let (X,µ, T ) be a dynamical system, f a measurable function and ω ∈ [0, 1).
The twisted Birkhoff sum Sf

N(ω, x) (at time N , of parameter ω) of f at a point x ∈ X is
defined by

Sf
N(ω, x) =

N−1∑

k=0

f(T kx)e(kω).

64



This type of sum (or integral in the continuous case) is of major importance in several
recent works like [53, 66, 22, 4] since uniform (on x ∈ X) upper bounds allow to obtain
lower bounds for the dimension of spectral measures of the dynamical systems involved:
substitutions, interval exchange transformations, suspensions over S-adic systems (including
translation surfaces) and higher dimensional tilings.

A generalization of this kind of sum is the next concept.

Definition 3.10 Let (X,µ, T ) be a dynamical system, f a measurable function. Let a1 <
· · · < at positive integers and ω ∈ [0, 1). The twisted correlation Cf

N(a1, . . . , at, ω, x) (at
time N , of parameters a1, . . . , at and ω) of f at a point x ∈ X is defined by

Cf
N(a1, . . . , at, ω, x) =

N−1∑

k=0

f(T kx)f(T k+a1x) . . . f(T k+atx)e(kω).

We will study this concept in the case of the Thue-Morse subshift, for the functions f =
1[0],1[1]. The twisted correlations of these functions will be denoted by C0

N(a1, . . . , at, ω,x),
C1

N(a1, . . . , at, ω,x) respectively, for x ∈ XζTM
. In the case we were considering the fixed

points of Thue-Morse, u,v, we have the simple relation

C0
N(a1, . . . , at, ω,u) = C1

N(a1, . . . , at, ω,v)

C1
N(a1, . . . , at, ω,u) = C0

N(a1, . . . , at, ω,v).

Remark The notation Cf
N(a1, . . . , at, ω,u) is consistent because, although u does not belong

to the subshift XζTM
(u is a one-sided sequence), the sum only takes in account the right-

hand side of a point x ∈ XζTM
, so we only need to consider points in XζTM

with the same
"future" as u and v.

It turns out that better algebraic properties emerge if we consider the function f = 1[0]−1[1],
and the twisted correlation of the former functions may be bounded from above using a finite
combination of twisted correlations of the latter function. For this last function we denote
its twisted correlations by C±

N(a1, . . . , at, ω,x), and for the Thue-Morse sequence is given by

C±
N(a1, . . . , at, ω,u) =

N−1∑

k=0

(−1)s2(k)+s2(k+a1)+...+s2(k+at)e(kω). (3.1)

Of course,

C±
N(a1, . . . , at, ω,u) = (−1)t+1C±

N(a1, . . . , at, ω,v)

Where do these sums come up? They appear naturally when studying the twisted Birkhoff
sums of (topological) factors of the Thue-Morse subshift: by the Curtis-Hedlund-Lyndon
theorem, every factor π comes from a sliding block code π̂ : L2R+1 → B. By Theorem 3.2
factors of substitution systems are conjugate to substitution subshifts. Denoting by σ the
factor substitution, σ∞(a) = w one of its fixed points and x ∈ π−1({w}), we have the next
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relation for f = 1[b]:

Sf
|σn(a)|(ω,w) =

∑

w:π̂(w)=b

|σn(a)|−1∑

k=0

1[w−R...wR]−R
(T k

x)e(kω)

=
∑

w:π̂(w)=b

|σn(a)|−1∑

k=0

1[w−R](T
k−R

x) · . . . · 1[wR](T
k+R

x)e(kω)

Note in the last equality there are some terms depending on negative coordinates, but the
number of terms is bounded (in fact computable according to Theorem 3.4) as n goes to
infinity, so it will no interfer at finding asymptotic bounds. We obtain the twisted Birkhoff
sum at a fixed point in the factor as a sum of different twisted correlations in the Thue-Morse
subshift.

3.2 Results

3.2.1 Top Lyapunov exponent of a general substitution

A simple observation leads to a basic fact about the top Lyapunov exponent of an arbitrary
substitution. Here and in the proof of Proposition 3.14, we use the following simple fact:
consider f(x) = log(|2 cos(πx)|), g(x) = log(|2 sin(πx)|). It is an exercise to check f, g ∈
L1([0, 1],Leb) and both have mean equal to zero.

Proposition 3.11 Let ζ be an arbitrary substitution. Then, χ+
ζ (ω) ≥ 0 for Lebesgue almost

every ω ∈ [0, 1).

Proof. Note that in any line indexed by a, all exponentials 1, . . . , e((|ζn(a)| − 1)ω) appear
as a summand in some entry of this line. From this fact we deduce rapidly,

||Cζ(ω, n)||∞ ≥
∑

b∈A
|Cζ(ω, n)(a, b)|

≥ |1 + . . .+ e((|ζn(a)| − 1)ω)|
= |2 cos(π{|ζn(a)|ω})|/|e(ω)− 1|.

A uniform distribution result may serve to conclude. Alternatively, an elementary argument
is the next one: denote as above f(x) = log(|2 cos(πx)|). We will conclude the proof by
means of the next Borel-Cantelli based argument. Let ε > 0 and Gn(ε) = Gn = {ω ∈
[0, 1)|f({|ζn(a)|ω}) ≥ nε}. Since the Lebesgue measure is invariant for all q-times maps,

Leb(Gn) = Leb ({ω ∈ [0, 1) | f({|ζn(a)|ω}) ≥ nε})
= Leb ({ω ∈ [0, 1) | |f(ω)| ≥ nε})

=
∑

k≥n

Leb

({
ω ∈ [0, 1) | k ≤ |f(ω)|

ε
< k + 1

})
.
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Then,

∑

n≥1

Leb(Gn) =
∑

n≥1

∑

k≥n

Leb

({
ω ∈ [0, 1) | k ≤ |f(ω)|

ε
< k + 1

})

=
∑

k≥1

k Leb

({
ω ∈ [0, 1) | k ≤ |f(ω)|

ε
< k + 1

})

≤
∫ 1

0

|f(x)|
ε

dx < +∞.

From Borel-Cantelli lemma we deduce that for any ε > 0, Leb (lim infn Gn(ε)) = 1. Consid-

ering G =
⋂

i lim infn Gn(1/i) we have Leb(G) = 1 and for any ω ∈ G, limn
f({|ζn(a)|ω})

n
=

0.

In personal communication, B. Solomyak suggested us that the same is true for the general
spectral cocycle in the natural situation that the toral endomorphism is ergodic. The top
Lyapunov exponent in this case is defined by

χ+
ζ (ξ) = lim sup

n→∞

1

n
log||Cζ(ξ, n)||.

Note that we use the same notation for both the restricted spectral cocycle and the general
spectral, we only change the variable ω ∈ [0, 1) to ξ ∈ (R/Z)m. Let us recall a characterization
of χ+

ζ .

Proposition 3.12 Let ζ be a primitive substitution such that Mζ does not have eigenvalues
that are roots of unity. Then χ+

ζ (ξ) is almost everywhere equal to a constant χ+
ζ (Cζ) and

χ+
ζ (Cζ) = lim

n→∞

1

n

∫

(R/Z)m
log (||Cζ(ξ, n)||) dλm(ξ) = inf

n

1

n

∫

(R/Z)m
log (||Cζ(ξ, n)||) dλm(ξ),

where λm is the Haar measure on (R/Z)m.

Proof. This is just an application of the Furstenberg-Kesten Theorem.

From an equidistribution result due to B. Host one can deduce that the top Lyapunov expo-
nent of the general spectral cocycle is a nonnegative number, since all integrals are bounded
from below by χ+

ζ (ω) in the case the characteristic polynomial is irreducible: this follows from
an argument of [20]. If we only know there are no eigenvalues roots of unity, we still have the
result since the logarithmic Mahler measure (in several variables) of an integer polynomial is
nonnegative:

Theorem 3.13 Let ζ be a primitive substitution such that Mζ does not have eigenvalues that
are roots of unity. Then, χ+

ζ (Cζ) ≥ 0.

Proof. Indeed, using the Frobenius norm ||·||F ,

||Cζ(ξ, n)||2F =
∑

a,b∈A
|p(n)a,b (e(ξ1), . . . , e(ξm))|2,
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for some polynomials p
(n)
a,b ∈ Z[X1, . . . , Xm] (in fact the coefficients are equal to 0 or 1, by

definition of the spectral cocycle). Then, for any n ≥ 1,

1

n

∫

(R/Z)m
log (||Cζ(ξ, n)||F ) dλm(ξ) =

1

2n

∫

(R/Z)m
log

(∑

a,b∈A
|p(n)a,b (e(ξ1), . . . , e(ξm))|2

)
dλm(ξ)

≥ 1

nm2

∑

a,b∈A

∫

(R/Z)m
log
(
|mp

(n)
a,b (e(ξ1), . . . , e(ξm))|

)
dλm(ξ)

=
1

nm2

∑

a,b∈A
m
(
mp

(n)
a,b

)

≥ 0,

since the logarithmic Mahler measure of any polynomial in Z[X1, . . . , Xm] is nonnegative.
The proof follows from Proposition 3.12.

3.2.2 The Thue-Morse top Lyapunov exponent

The fact that the top Lyapunov exponent for Thue-Morse is equal to zero is not a new result
(see [5]), but we want to make an explicit calculation to motivate the calculus for the factors.
Set

Xn(ω) =
2n−1∑

k=0

1[0](T
k
u)e(kω)

Yn(ω) =
2n−1∑

k=0

1[1](T
k
u)e(kω).

In particular, we have

Xn(ω) + Yn(ω) =
2n−1∑

k=0

e(kω) =
e(2nω)− 1

e(ω)− 1
.

Note |Xn(ω) + Yn(ω)| ≤ 2/|e(ω)− 1|. On the other hand,

Xn(ω)− Yn(ω) =
2n−1∑

k=0

(−1)s2(k)e(kω)

=
2n−1∑

k=0

e(s2(k)/2 + kω)

=
1∑

k0=0

· · ·
1∑

kn−1=0

e(k0/2 + · · ·+ kn−1/2 + ω(k0 + k12 + · · ·+ kn−12
n−1))

=
n−1∏

j=0

1∑

kj=0

e(kj/2 + ωkj2
j)
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=
n−1∏

j=0

1 + e(1/2 + ω2j)

= (−2i)ne(ω(2n − 1)/2)
n−1∏

j=0

sin(πω2j)

In particular,

|Xn(ω)− Yn(ω)| =
n−1∏

j=0

2 sin(π{ω2j})

To estimate both Xn and Yn, consider the inequalities

max(|Xn(ω) + Yn(ω)|, |Xn(ω)− Yn(ω)|)
≤

|Xn(ω)|+ |Yn(ω)|
≤

|Xn(ω) + Yn(ω)|+ |Xn(ω)− Yn(ω)|.

Set f(x) = 2 sin(πx). Since T : [0, 1) −→ [0, 1) defined by Tx = 2x (mod 1) is ergodic for
the Lebesgue measure, we have that for almost every ω

1

n
log

n−1∏

j=0

f(T nω) =
1

n

n−1∑

j=0

log(f(T nω))

→
∫ 1

0

log(f(x))dx = 0.

It is not difficult to see the same calculations are valid for the twisted Birkhoff sums at
v = ζ∞TM(1). With this we conclude that almost surely χ+

ζTM
(ω) ≤ 0 and equality follows

from Lemma 3.11.

In fact, we will show finer estimates for the growth of the product pn(ω) :=
∏n−1

j=0 2 sin(π{ω2j}).

Proposition 3.14 There exists a positive constant B such that for almost all ω, there is a
positive integer n0(ω) such that for all n ≥ n0(ω),

max(pn(ω), p
−1
n (ω)) ≤ eB

√
n log log(n),

where pn(ω) =
∏n−1

j=0 2 sin(π{ω2j}).

Proof. Fix ε > 0. Consider the function of the unit interval f(x) = log(2 sin(πx)). One can
check that Leb(f) = 0 and Leb(|f |2) ≤ 22. Set f1, f2 as

f1(x) = 2 log(2 sin(πx)) if x ∈ (0, 1/2] and f1(x) = 0 otherwise,

f2(x) = 2 log(2 sin(πx)) if x ∈ [1/2, 1) and f2(x) = 0 otherwise.
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Then, f =
1

2
f1 +

1

2
f2 and f ∈ Mon2(2,Leb). We may apply Theorem 3.6 to the doubling

map S and the function f : we get for almost every ω there exists n0(ω) ≥ 1 such that for
every n ≥ n0(ω), ∣∣∣∣∣

n−1∑

j=0

f ◦ Sj(ω)

∣∣∣∣∣ ≤ (A+ ε)︸ ︷︷ ︸
=:B

√
n log log(n).

Take exponential to obtain the desired inequality, by noticing that

e|x| = emax(x,−x) = max(ex, e−x).

3.2.3 Upper bounds for twisted correlations

In this subsection we prove upper bounds for the twisted correlations on the Thue-Morse
system. First, we consider the twisted correlation at the fixed point u = ζ∞TM(0) of the
function f = 1[0] −1[1]. This sum was denoted C±

2n(a1, . . . , at, ω,u) and is defined in 3.1. We
start by stating the main result.

Theorem 3.15 Let 1 ≤ a1 < · · · < at positive integers and f = 1[0] − 1[1]. Then,

• if t is even, there exists B > 0, depending only on f , such that for almost every ω,

C±
2n(a1, . . . , at, ω,u) = Oat,ω

(
nteB

√
n log log(n)

)
.

• if t is odd, for every ε > 0 and almost every ω,

C±
2n(a1, . . . , at, ω,u) = Oat,ω

(
nt+1+ε

)
.

Remark The notation Oat,ω means that the implicit constant only depends on at and ω. In
the proof it might seem it depends on all a1, . . . , at, t and ω, but this could be turned into a
dependence only on at and ω since t ≤ at and 1 ≤ a1 < · · · < at.

For simplicity, we will only prove the case t = 1 here. For the general case, see the Appendix.

Since the geometric sum with term e(kω) is bounded for ω 6= 0, we will work instead with

C̃2n(a, ω,u) :=
∑2n−1

k=0 [1 + (−1)s2(k+a)−s2(k)]e(kω): any upper bound for this latter sum, im-
plies the same bound for C±

2n(a, ω,u) by changing the implicit constant in Oat,ω.

Let us recall that if d > ⌈log2(a)⌉, then Sa,d = ∅; and d < −n implies Sa,d∩{0, . . . , 2n−1} = ∅.
We recall also a notation introduced for a word w = w0 . . . wn−1 ∈ {0, 1}∗: denote by w2 the
integer w0 + · · ·+ wn−12

n−1.
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C̃2n(a, ω,u) = 2

⌊n/2⌋∑

d=−⌈log2(a)/2⌉

∑

k∈Sa,−2d

0≤k≤2n−1

e(kω)

= 2

⌊n/2⌋∑

d=−⌈log2(a)/2⌉

∑

k2∈
⋃

i [pa,−2d(i)]
0≤k≤2n−1

e(kω)

= 2

⌊n/2⌋∑

d=−⌈log2(a)/2⌉

#Pa,−2d∑

i=1

2
n−||Pa,−2d||−1∑

k=0

e
((

2||Pa,−2d||k + pa,−2d(i)
2
)
ω
)

= 2

⌊n/2⌋∑

d=−⌈log2(a)/2⌉

#Pa,−2d∑

i=1

e
(
pa,−2d(i)

2
ω
) 2

n−||Pa,−2d||−1∑

k=0

e
(
2||Pa,−2d||kω

)

= 2(e(2nω)− 1)

⌊n/2⌋∑

d=−⌈log2(a)/2⌉

#Pa,−2d∑

i=1

e
(
pa,−2d(i)

2
ω
)

e
(
2||Pa,−2d||ω

)
− 1

Applying the first remark below Lemma 3.7,

|C̃2n(a, ω,u)| ≤ 2a3
⌊n/2⌋∑

d=−⌈log2(a)/2⌉

1

|sin
(
π2||Pa,−2d||+1ω

)
|

≤ πa3
⌊n/2⌋∑

d=−⌈log2(a)/2⌉
||2||Pa,−2d||+1ω||−1

R/Z

Following the second remark,

|C̃2n(a, ω,u)| ≤ πa3
⌊n/2⌋∑

d=−⌈log2(a)/2⌉
||22⌈log2(a)⌉+2d+1ω||−1

R/Z

Now we recall a well-known consequence of Borel-Cantelli lemma.

Lemma 3.16 (see [8], Lemma 6.2.6) Let ε > 0. For almost every x ∈ R there exist d0(x) ∈ N
such that

||2nx||R/Z ≥ 1

n1+ε
,

holds for every n ≥ d0(x).

Then,

|C̃2n(a, ω,u)| = Oa,ω




⌊n/2⌋∑

d=d0(ω)

(2⌈log2(a)⌉+ 2d+ 1)1+ε




= Oa,ω(n
2+ε)
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This finishes the proof for the case t = 1. We have already seen the case t = 0, which is the
case of twisted Birkhoff sums in last section.

To finish this section, we will pass to uniform bounds for the twisted correlations for all points
of the subshift. We relay on the classic prefix-suffix decomposition:

Proposition 3.17 Let ζ be a primitive substitution with Perron-Frobenius eigenvalue θ. For
any x ∈ Xζ and N ≥ 1 there exists n ≥ 1 such that

x[0,N−1] = p0ζ(p1) . . . ζ
n(pn)ζ

n(sn) . . . ζ(s1)s0,

where pi, si are respectively proper prefixes and suffixes of words of {ζ(a)|a ∈ A}. Moreover,
there exists C > 0 such that | log(N)− n log(θ)| ≤ C.

Corollary 3.18 Let C±
N(a1, . . . , at, ω,x) be the twisted correlation over x ∈ XζTM

. Then

• if t is even, there exists B > 0 independent of ω and t such that for almost every ω,

C±
N(a1, . . . , at, ω,x) = Oat,ω

(
log(N)t+1eB

√
log(N) log log log(N)

)
.

• if t is odd, for every ε > 0 and almost every ω,

C±
N(a1, . . . , at, ω,x) = Oat,ω

(
log(N)t+2+ε

)
.

Proof. Following the decomposition from Proposition 3.17, the bound follows simply from
triangle inequality:

|C±
N(a1, . . . , at, ω,x)|

≤
n∑

j=0

δpj ,0|C±
|ζj(pj)|(a1, . . . , at, ω,u)|+ δpj ,1|C±

|ζj(pj)|(a1, . . . , at, ω,v)|

+
n∑

j=0

δsj ,0|C±
|ζj(sj)|(a1, . . . , at, ω,u)|+ δsj ,1|C±

|ζj(sj)|(a1, . . . , at, ω,v)|

=

{∑n
j=0 Oat,ω

(
jteB

√
j log log(j)

)
if t is even,

∑n
j=0 Oat,ω (j

t+1+ε) if t is odd.

≤
{
(n+ 1)Oat,ω

(
nteB

√
n log log(n)

)
if t is even,

(n+ 1)Oat,ω (n
t+1+ε) if t is odd.

By using the second claim of Proposition 3.17, we finish the proof of the corollary.

3.3 Top Lyapunov exponents of factors

In this section we will prove Theorem 3.1. The proof relies on the bounds for the twisted
correlations found in subsection 3.2.3: we will see that the coefficients of the spectral cocycle
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matrices of the semi-conjugate substitutions, correspond to linear combinations of twisted
correlations from the Thue-Morse sequence.

The sketch of the proof has already been shown, but we write down explicitly and rigorously.
Let (Xσ, T ) be an aperiodic topological factor of (XζTM

, T ) arising from the aperiodic primi-
tive substitution σ. By Theorem 3.4, the factor map π : XζTM

−→ Xσ is defined by a sliding
block code π̂ of radius r, where r is a computable constant depending on Xσ. Consider a
point w starting with the block σn(a), for a letter a ∈ A. Choose any x ∈ π−1({w}). Then,
setting f = 1[b], we have

|Cσ(ω, n)(a, b)| = |Sf
|σn(a)|(ω,w)|

≤
∑

w:π̂(w)=b

∣∣∣∣∣∣

|σn(a)|−1∑

k=0

1[w−r](T
k−r

x) · . . . · 1[wr](T
k+r

x)e(kω)

∣∣∣∣∣∣

≤
∑

w:π̂(w)=b

∣∣∣∣∣∣

|σn(a)|−(r+1)∑

k=0

1[w−r](T
k
x) · . . . · 1[wr](T

k+2r
x)e(kω)

∣∣∣∣∣∣
+∆r

In the last sum, there are terms depending on negative coordinates of x, but at most on
the first r negative coordinates, which we leave apart in the term ∆r since they make no
difference in the asymptotic as n goes to infinity.

Consider the next simple relations for F (x) = 1[0](x)− 1[1](x):

1[0](x) =
1

2
[1 + F (x)] ,

1[1](x) =
1

2
[1− F (x)] .

By definition C±
N(a1, . . . , at, ω,x) = CF

N(a1, . . . , at, ω,x). Replacing in the sum above each

factor 1[0](x),1[1](x) by
1

2
[1 + F (x)],

1

2
[1− F (x)] respectively, we are left with a sum of

different twisted correlations (on different sets of parameters ai) of the function F . By the
last remark, we are able to estimate each of them using Corollary 3.18. The formulas from
this corollary implies rapidly that χ+

σ (ω) ≤ 0 almost surely, and Proposition 3.11 again yields
the equality.

3.4 Appendix

3.4.1 Upper bounds for twisted correlations: general case.

Let us begin with the case when t is odd. For every j = 1, . . . , t, consider the set Dj =
{−n, . . . , ⌈log2(aj)⌉} and the decomposition Dj = D0

j ∪ D1
j in even and odd elements re-

spectively. Since the geometric series of the exponentials is bounded for ω 6= 0, we consider
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equivalently

C̃2n(a1, . . . , at, ω,u) = C±
2n(a1, . . . , at, ω,u) +

2n−1∑

k=0

e(kω)

to deduce the upper bound.

C̃2n(a1, . . . , at, ω,u) =
2n−1∑

k=0

(
1 + (−1)s2(k)+s2(k+a1)+···+s2(k+at)

)
e(kω)

=
2n−1∑

k=0

(
1 +

t∏

j=1

(−1)s2(k+aj)−s2(k)

)
e(kω)

= 2
∑

dj∈D
cj
j

c1+···+ct≡20

∑

k∈∩jSaj,dj

0≤k≤2n−1

e(kω).

The first sum in the last equality sums over all elements of each Dc1
1 , . . . ,Dct

t , for all com-
binations of variables c1, . . . , ct ∈ {0, 1} satisfying c1 + · · · + ct ≡2 0 (congruence (mod 2)).
Before continue, we will need a generalization of Lemma 3.7.

Corollary 3.19 Let 1 ≤ a1 < . . . < at positive integers and d1, . . . dt ∈ Z. Then,

k ∈
⋂

j

Saj ,dj ⇐⇒ k2 ∈
⋃

i

[pd1,...,dta1,...,at
(i)],

for some words pd1,...,dta1,...,at
(i) ∈ ⋂j Paj ,dj =: Pd1,...,dt

a1,...,at
.

This can be checked rapidly since all of these words correspond to words of some Paj ,dj which
has the longest words among all these sets, or is empty for the choice of a1, . . . , at, d1, . . . , dt.
The same remark as the one below Lemma 3.7 applies: we may assume all words have the
same length and correspondly we deduce the inequalities of the next

Corollary 3.20 By completing shorter words of Pd1,...,dt
a1,...,at

, if this set is nonempty we have

• #Pd1,...,dt
a1,...,at

≤ 2a3t

• ||Pd1,...,dt
a1,...,at

|| = 2⌈log2(at)⌉+ |dj∗ |, for some 1 ≤ j∗ ≤ t.

Applying the first corollary, we obtain

C̃2n(a1, . . . , at, ω,u) = 2
∑

dj∈D
cj
j

c1+···+ct≡20

∑

k∈∩jSaj,dj

0≤k≤2n−1

e(kω).
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= 2
∑

dj∈D
cj
j

c1+···+ct≡20

#Pd1,...,dt
a1,...,at∑

i=1

2
n−||P

d1,...,dt
a1,...,at

||−1∑

k=0

e

((
2||P

d1,...,dt
a1,...,at

||k + p
d1,...,dt
a1,...,at(i)

2
)
ω

)

= 2(e (2nω)− 1)
∑

dj∈D
cj
j

c1+···+ct≡20

#Pd1,...,dt
a1,...,at∑

i=1

e

(
p
d1,...,dt
a1,...,at(i)

2

ω

)

e
(
2||P

d1,...,dt
a1,...,at

||ω
)
− 1

Taking absolute value,

|C̃2n(a1, . . . , at, ω,u)|

≤ 2a3t
∑

dj∈D
cj
j

c1+···+ct≡20

1

|sin
(
π2||P

d1,...,dt
a1,...,at

||+1ω
)
|

≤ πa3t
∑

dj∈D
cj
j

c1+···+ct≡20

||2||P
d1,...,dt
a1,...,at

||+1ω||−1
R/Z.

According to our second corollary, ||Pd1,...,dt
a1,...,at

|| = 2⌈log2(at)⌉+ |dj∗ | for some j∗, yielding

|C̃2n(a1, . . . , at, ω)| ≤ 2πa3t
∑

dj∈D
cj
j

c1+···+ct≡20

||22⌈log2(at)⌉+|dj∗ |ω||−1
R/Z

To estimate each term in this sum we argue as in subsection 3.2.3: by Lemma 3.16, for almost
every ω there exist d0(ω) such that

||2nω||R/Z ≥ 1

n1+ε
,

for all n ≥ d0(ω). In particular,

|C̃2n(a1, . . . , at, ω,u)| ≤ Oat,ω(1) + 2πa3t

t∑

l=1

∑

dj∈D
cj
j

c1+···+ct≡20
j∗=l

|dj∗ |≥d0(ω)

(2⌈log2(at)⌉+ |dl|+ 1)1+ε

= Oat,ω(n
t+1+ε)

The even case is worked in a similar way: consider

Ĉ2n(a1, . . . , at, ω,u) = C±
2n(a1, . . . , at, ω,u) +

2n−1∑

k=0

(−1)s2(k)e(kω).

Since pn(ω) = Oω(e
B
√

n log log(n)) by Proposition 3.14, it is enough to prove the required upper
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bound for Ĉ2n(a1, . . . , at, ω,u).

Ĉ2n(a1, . . . , at, ω,u)

=
2n−1∑

k=0

(
(−1)s2(k) + (−1)s2(k)+s2(k+a1)+···+s2(k+at)

)
e(kω)

=
2n−1∑

k=0

(
1 +

t∏

j=1

(−1)s2(k+aj)−s2(k)

)
e

(
s2(k)

2
+ kω

)

= 2
∑

dj∈D
cj
j

c1+···+ct≡20

∑

k∈∩jSaj,dj

0≤k≤2n−1

e

(
s2(k)

2
+ kω

)

= 2
∑

dj∈D
cj
j

c1+···+ct≡20

#Pd1,...,dt
a1,...,at∑

i=1

2
n−||P

d1,...,dt
a1,...,at

||−1∑

k=0

Ak,

where

Ak = e



s2

(
2||P

d1,...,dt
a1,...,at

||k + p
d1,...,dt
a1,...,at(i)

2
)

2
+

(
2||P

d1,...,dt
a1,...,at

||k + p
d1,...,dt
a1,...,at(i)

2
)
ω


 .

Let us factorize the terms independent of k in the exponentials Ak, and continue from the
last line.

Ĉ2n(a1, . . . , at, ω,u)

= 2
∑

dj∈D
cj
j

c1+···+ct≡20

#Pd1,...,dt
a1,...,at∑

i=1

e



s2

(
p
d1,...,dt
a1,...,at(i)

2
)

2
+ p

d1,...,dt
a1,...,at(i)

2

ω




︸ ︷︷ ︸
=B

d1,...,dt
a1,...,at

(i)

2
n−||P

d1,...,dt
a1,...,at

||−1∑

k=0

e



s2

(
2||P

d1,...,dt
a1,...,at

||k
)

2
+ k2||P

d1,...,dt
a1,...,at

||ω




= 2
∑

dj∈D
cj
j

c1+···+ct≡20

#Pd1,...,dt
a1,...,at∑

i=1

Bd1,...,dt
a1,...,at

(i)
2
n−||P

d1,...,dt
a1,...,at

||−1∑

k=0

e

(
s2 (k)

2
+ k2||P

d1,...,dt
a1,...,at

||ω

)
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= 2
∑

dj∈D
cj
j

c1+···+ct≡20

#Pd1,...,dt
a1,...,at∑

i=1

Bd1,...,dt
a1,...,at

(i)(−
√
−1)n−||Pd1,...,dt

a1,...,at
||e(ω(2n−||Pd1,...,dt

a1,...,at
|| − 1)/2)

n−||Pd1,...,dt
a1,...,at

||−1∏

j=0

2 sin(πω2||P
d1,...,dt
a1,...,at

||+j)

Taking absolute value,

|Ĉ2n(a1, . . . , at, ω,u)|

≤ 2
∑

dj∈D
cj
j

c1+···+ct≡20

#Pd1,...,dt
a1,...,at∑

i=1

∣∣∣∣∣∣

n−||Pd1,...,dt
a1,...,at

||−1∏

j=0

2 sin(πω2||P
d1,...,dt
a1,...,at

||+j)

∣∣∣∣∣∣

≤ 4a3t
∑

dj∈D
cj
j

c1+···+ct≡20

n−1∏

j=||Pd1,...,dt
a1,...,at

||

2 sin(π{ω2j})

= 4a3t

t∑

l=1

∑

dj∈D
cj
j

c1+···+ct≡20
j∗= l

n−1∏

j=2⌈log2(at)⌉+|dl|
2 sin(π{ω2j}).

From Proposition 3.14 there exists a universal B > 0, such that for almost all ω, pn(ω) =∏n−1
j=0 2 sin(π{ω2j}) ≤ eB

√
n log log(n), for all n ≥ n0(ω), for some n0(ω). In particular,

|
n−1∑

j=l

log(2 sin(π{ω2j}))| ≤ |
n−1∑

j=0

log(2 sin(π{ω2j}))|+ |
l−1∑

j=0

log(2 sin(π{ω2j}))|

≤ B
√

n log log(n) +

max

(
max

1≤k≤n0(ω)
|log(2 sin(π{ω2k}))|, B

√
l log log(l)

)

≤ C(ω)B
√

n log log(n)

This finish the proof of Proposition 3.15.
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Résumé

Cette thèse étudie le spectre des systèmes associés aux substitutions, en particulier le spec-
tre continu. Nous avons basé l’analyse sur l’étude du cocycle spectral et des sommes (et
intégrales) de Birkhoff tordues. Ces outils ont été utilisés récemment dans de nombreux
travaux pour assurer des taux quantitatifs de mélange faible et singularité du spectre dans
des contextes tels que les sous-décalages substitutifs, les systèmes S-adiques, les surfaces
de translations, les pavages substitutifs déterministes et aléatoires et les transformations
d’échange d’intervalles.

Les premiers résultats sont obtenus dans le cas des flots de suspension sur les substitutions de
type Salem. Nous prouvons des décroissances de type Hölder pour les mesures de corrélation
sur les paramètres spectraux appartenant au corp algébrique engendré par le nombre de
Salem. La preuve est basée sur une analyse fine de la distribution modulo 1 de la suite
(ηαn)n≥0, où η ∈ Q(α) et α est le nombre de Salem correspondant.

La deuxième série de résultats est liée à la substitution de Thue-Morse. Nous étudions
le comportement des exposants de Lyapunov maximaux du cocycle spectral associé à la
substitution de Thue-Morse et à ses facteurs topologiques. Nous prouvons que pour tous les
facteurs topologiques, l’exposant de Lyapunov maximal est nul, et nous donnons également
le comportement sous-exponentiel des sommes de Birkhoff tordues.
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