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Résumé
L’entropie topologique est connue pour être une mesure de la complexité d’un

système dynamique donné par l’itération d’une fonction continue. Pour les fonc-
tions complexes dans tous les cas étudiés, elle s’avère constante, donc dans la
dynamique complexe un autre concept est pris en compte, le concept d’entropie
du cœur. Pour les polynômes complexes, l’entropie du cœur peut être considérée
comme l’entropie topologique restreinte à l’arbre de Hubbard. Dans cette thèse,
nous généralisons la notion d’entropie du cœur pour la famille transcendante des
fonctions cosinus λ cos z avec λ ∈ C tel que la fonction ait des orbites critiques
bornées.
Nous montrons que dans tout espace de fonctions cosinus avec une combinatoire

uniformément bornée, l’entropie du cœur est uniformément bornée et continue.
Cependant, dans l’espace global des paramètres complexes, l’entropie du cœur est
illimitée même localement : dans un voisinage de chaque paramètre λ ∈ R tel que
λ > 1 nous trouvons une séquence de paramètres périodiques tendant vers λ avec
l’entropie du cœur tendant à ∞.

Mots clés. Entropie du cœur, cosinus, fonction entière, dynamique transcen-
dante.
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Abstract
Topological entropy is known to be a measure of complexity of a dynamical

system given by iteration of a continuous map. For complex maps in all studied
cases it turns out to be constant, so in complex dynamics another concept is
considered, the concept of so-called core entropy. For complex polynomials the
core entropy can be viewed as the topological entropy restricted to the Hubbard
tree.
In this thesis, we generalize the notion of core entropy for the transcendental

family of cosine maps λ cos z with λ ∈ C such that the map has bounded combi-
natorics.
We show that in every space of cosine maps with uniformly bounded combina-

torics core entropy is uniformly bounded and continuous. However, in the global
complex parameter space core entropy is unbounded even locally: in a neighbor-
hood of every parameter λ ∈ R such that λ > 1 we find a sequence of periodic
parameters tending to λ with core entropy tending to ∞.

Keywords. Core entropy, cosine map, entire function, transcendental dynam-
ics.
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Résumé substanciel
L’entropie topologique est connue pour être une mesure de la complexité d’un

système dynamique donnée par l’itération d’une fonction continue. Pour les fonc-
tions complexes dans tous les cas étudiés, elle s’avère constante, donc dans la
dynamique complexe un autre concept est pris en compte, le concept d’entro-
pie du cœur. Pour les polynômes complexes, l’entropie du cœur peut être définie
comme l’entropie topologique restreinte à l’arbre de Hubbard. Dans cette thèse,
nous généralisons la notion d’entropie de noyau pour la famille transcendante des
fonctions cosinus λ cos z avec λ ∈ C telle que la fonction ait des orbites critiques
bornées.
Dans le Chapitre 2, nous montrons que dans chaque espace des applications

cosinus avec des combinatoires uniformément bornées, l’entropie du cœur est uni-
formément bornée et continue.
Nous décrivons les propriétés combinatoires de la fonction cosinus dans la Sec-

tion 2.2. Nous définissons la partition statique du plan complexe donnée par une
fonction cosinus et explorons les représentants combinatoires des fonctions cosi-
nus complexes. Ces représentants sont appelés adresses externes et ce sont des
séquences symboliques obtenues à partir de l’adresse d’une orbite critique rela-
tive à la partition statique. Les fonctions cosinus avec des valeurs critiques non
échappantes correspondent à des adresses externes uniformément bornées. Nous
désignons par SB un espace d’adresses externes uniformément bornées .
Nous définissons l’entropie du cœur d’une application cosinus post-critiquement

finie dans la Section 2.3 et étendons plus tard ce concept aux espaces d’adresses
externes uniformément bornées. Nous obtenons le théorème suivant pour l’entropie
du cœur (des énoncés et des bornes précis peuvent être vus par exemple dans
l’introduction).
Théorème. L’entropie du cœur d’une adresse externe uniformément bornée est

uniformément bornée.
Nous prouvons dans la Section 2.6 un résultat de continuité pour l’entropie du

cœur. Les principaux outils sont décrits dans les Sections 2.4 et 2.5, ce qui implique
le théorème suivant.
Théorème. L’entropie du cœur est continue sur chaque espace d’adresses ex-

ternes uniformément bornées SB.
Dans le Chapitre 3, nous discutons d’une relation entre les résultats ci-dessus

et l’espace global des paramètres complexes. Nous observons le phénomène d’illi-
mité locale de l’entropie du cœur à proximité des paramètres échappents. Dans la
Section 3.2, nous utilisons l’expansivité de cosinus et la combinatoire non bornée
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aux paramètres échappents. Nous montrons l’existence de paramètres prépério-
diques avec des propriétés spécifiques. Ces propriétés sont suffisantes pour obtenir
l’entropie du cœur divergente.
Théorème. Il y a des paramètres échappents λ0 tels que l’entropie du cœur est

non bornée dans chaque voisinage de λ0.
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1 Introduction
The topological entropy of a dynamical system shows how quickly orbits of

different points diverge. In [MP77] Misiurewicz and Przytycki showed that for
smooth self-maps of topological degree d on compact manifolds topological entropy
is at least log d. Later Lyubich in [L83] proved that for rational functions of
degree d on the Riemann sphere the topological entropy is equal to log d. For
transcendental entire functions the topological entropy is always turns out to be
infinite, as was observed independently in [Wen05] by Wendt and [BFP] by Benini,
Fornæss and Peters.
The results above show that topological entropy measured on the Riemann

sphere cannot distinguish holomorphic maps of given degree, but another con-
cept can be helpful, the concept of core entropy. This notion was introduced by
William Thurston motivated by the theory of interval dynamics. For example,
for a real quadratic polynomial the topological entropy restricted to the interval
containing the critical orbit is not necessarily equal to log 2. The idea of restriction
of the topological entropy to an interesting set from dynamical point of view is the
concept of core entropy. For post-critically finite complex polynomials usually the
Hubbard tree is considered as the “core”. Core entropy for quadratic polynomials
was studied independently in [Ti1] by Tiozzo and in [DS] by Dudko and Schleicher.
It was proved that core entropy can be extended from the set of post-critically fi-
nite quadratic polynomials to a continuous function on the parameter space. In
[GT] Gao and Tiozzo obtained a similar result for complex polynomials of higher
degree.
Invention of homotopy Hubbard trees for transcendental entire functions by

Pfrang in [Pfr1] gave a motivation to study the notion of core entropy for tran-
scendental entire maps. The first essential steps were done by Haßler in [H1] for
exponential functions. Complex exponential maps can be considered as a tran-
scendental generalization of unicritical polynomials. For example, same as for
unicritical polynomials the core entropy of exponential maps is at most log 2.
Although the Hubbard tree is important for understanding the concept of core

entropy, it was observed that core entropy can be computed purely combinatorially,
without actual using the Hubbard tree (see [MeSch], [G1], [H1] or [Ju] for details).
In this thesis we consider another transcendental family, which is in some sense

opposite to the exponential family. It is the one-dimensional cosine family{
gλ(z) = λ

ez + e−z

2 = λ cosh(z) = λ cos(iz) | λ ∈ C∗
}

11



Maps in this family have infinitely many critical points of degree 2 (instead of one
“critical” point of infinite degree for exponentials). All critical points are mapped
to two critical values ±λ and in one more iteration the latter are mapped to cosh λ,
so essentially we have one critical orbit. The entire maps λ cosh(z) and µ cos(w)
are conjugated taking w = iz and µ = iλ. We use cosh only for convenience
and for underlining analogies with exponential maps (for example, escaping points
under iterations of exp and cosh tend to infinity horizontally, while for cos they
escape vertically).
Chapter 2 deals with the definition of core entropy for cosine maps, bounds on

core entropy and continuity of core entropy.
We define core entropy for cosine maps with non-escaping critical values. As we

want to do this combinatorially, we use the symbolic space of uniformly bounded
external addresses SB = {(s0s1s2s3 . . . ) | sj ∈ B}, where B is a bounded alphabet
(see Section 2.2 for precise definitions). In Section 2.3 we define core entropy for
parameters corresponding to post-critically finite maps using the intuition for Hub-
bard trees. Equivalently, we can compute core entropy as the exponential growth
rate of the number of precritical points of order n or as the largest eigenvalue of
the transition matrix for edges of the Hubbard tree.
In Section 2.6 we extend the definition of core entropy to the whole SB.
The first result of this thesis can be stated as follows. It contrasts with the stan-

dard uniform bound log 2 for exponential functions and unicritical polynomials.

Theorem A (Bounded core entropy for bounded alphabet). Let s = (s0s1s2 . . . ) ∈
SB, |sj| 6 b be a uniformly bounded external address. Then its core entropy is
bounded:

h(s) 6 log(8b+ 6).

We do not claim the latter bound to be best possible, but we expect that any
better upper bound has to of the kind log(k1b+ k2). It is an outcome of construc-
tions in Section 2.3 and if we allow unbounded combinatorics, then there exist
sequences with unbounded core entropy.
The central result of Chapter 2 is the following.

Theorem B (Continuity of core entropy along uniformly bounded addresses).
Core entropy is continuous on the space of uniformly bounded external addresses
SB for each bounded alphabet B.

Chapter 3 rises the question of relation between the previous results and the
global complex parameter space. One can observe that near escaping parameters
the combinatorics cannot be uniformly bounded and this allows to prove local
unboundedness of core entropy. We do this for parameters escaping on the real
ray R+.

Theorem C (Locally unbounded core entropy at escaping parameters). Let λ0 ∈
R+ such that λ0 > 1. Then there exists a sequence λn ∈ C with λn → λ0 such that

12



the core entropy of gn(z) = λn cosh(z) tends to infinity:

h(gn)→∞.

The cosine family thus differs from all families previously investigated in the
sense that core entropy is not bounded even locally.

13



2 Combinatorial Continuity of Core
Entropy for Cosine Maps with
Uniformly Bounded Combinatorics

2.1 Introduction and statements of the result
Two main topics of this chapter are: “for maps with bounded combinatorics

core entropy is bounded” and “on a space of uniformly bounded combinatorics
core entropy is continuous”. Section 2.2 explains what we mean by maps with
bounded combinatorics and what combinatorial spaces we consider. Section 2.3 is
focused on describing definitions of core entropy.

Theorem A (Bounded core entropy for bounded alphabet). Let s = (s0s1s2 . . . )
with |sj| 6 b be a uniformly bounded external address. Then its core entropy is
bounded:

h(s) 6 log(8b+ 6)

The main ingredient of the proof is to show that the number of precritical points
of generation 6 n cannot grow faster than a multiple of (8b+6)n. We show this for
post-critically finite maps in Theorem 2.3.10 and then extend to other parameters
using continuity (which is the second main result). One can observe that it can
be done directly without using continuity.

Theorem B (Continuity of core entropy along bounded addresses). Core entropy
is continuous on the space of uniformly bounded external addresses SB.

In order to prove Theorem B, we need the three main steps:
Claim 1: the growth rate is continuous on the space of labeled wedges.
Claim 2: for post-critically finite maps the definition of core entropy (in terms of

the transition matrix) coincides with the log of the growth rate of the corresponding
wedge h(gλ) = log r(W ).
Claim 3: even if the correspondence from labeled wedges to uniformly bounded

external addresses can be discontinuous at purely periodic addresses, core entropy
is continuous on SB.
Following [Ti1], we introduce labeled wedges for cosine maps to encode the

combinatorics of a map. We do this in Section 2.5. Claim 1 is Theorem 2.5.5. For

14



Claim 2 we use the notion of periodic labeled wedges and the claim is proved in
Theorem 2.5.8.
As one of the last steps, in Lemma 2.6.2 we show that the correspondence from

labeled wedges to external addresses is continuous unless the address is purely
periodic (in sense of Definition 2.2.7). The latter case is covered by Lemma 2.6.4,
which proves Claim 3.

2.2 Combinatorics of the cosine map
2.2.1 Static partition for complex cosine and external addresses
The cosine family {gλ = λ(ez + e−z)/2: λ ∈ C∗} lies in the class of Eremenko-

Lyubich functions, i.e. functions with bounded set of singular values. It means
that one can apply a standard construction for a static partition, fundamental
domains and external addresses for escaping set.
We can use even more explicit construction following [RoS] or [Sch1] and obtain

a partition for the whole plane.
Every map gλ has the set of critical points Ccrit = {iπn, n ∈ Z}; the critical

values are v1 = λ and v2 = −λ.
Introduce a set A given by

A := {z ∈ C : z = tv1 + (1− t)v2; t ∈ [0, 1]}
∪ {z ∈ C : Re(z) = Re(v2), Im(z) > Im(v2)} ;

Define the following sets of indices

ZR := Z× {R}, ZL := Z× {L}, ZS := Z× {R,L}. (2.2.1)

For k ∈ Z by kR or kL we denote (k,R) or (k, L) respectively.
Consider connected components Rj of g−1

λ (C\A), so that

gλ : Rj → C\A

is a conformal isomorphism. These are half-strips of height 2π (Figure 2.1) and
we use the following rule for indices: R(0,R) and R(0,L) are the strips containing 0
on its boundary.
There is an obvious discontinuity when λ crosses vertical ray iR+, because then

0 lies on the boundary of four partition sectors. We can fix the convention for
symbols of partition sectors as on Figure 2.2.

Definition 2.2.1 (Static partition). A partition of the plane obtained from Rj, j ∈
ZS (described above) is called a static partition for gλ.

This partition allows us to introduce a symbolic dynamics: for every z ∈ C with

15



Figure 2.1 – Static partition for gλ

g◦nλ (z) ∈ C\A for all n ∈ N the external address S(z) is the sequence of symbols
of the strips containing z, gλ(z), g◦2λ (z) . . . .
Remark. In fact, as λ ∈ C∗ one can consider the universal cover of this parameter
space λ = exp ζ with ζ ∈ C. In this case there is no discontinuities if we move
ζ, but corresponding labels jL and jR in the right and in the left half-planes can
move far from each other. This corresponds to the way how we introduce abstract
external addresses, because we allow the external address of a critical ray landing
at zero to have the first symbol not necessarily 0R or 0L (details can be seen in
the next subsections).
We shall note two important types of symmetries for our family: 2πi-translation

symmetry and central symmetry at the origin. We can see an impact of those
immediately by looking at the external address of λ (our first critical value). If
the address of v1 is s1s2 . . . , then the address of the second critical value v2 is
(−s1)s2 . . . . Here and later by (−s1) for s1 ∈ ZS we denote its “opposite” image
(for example, the opposite to 1L is (−1)R, the opposite to 0R is 0L and so on).
Every external address can be associated with a dynamic ray [RoS](Theorem

4.1) and they all are cyclically ordered in a neighborhood of∞. We will formulate
this order as a lexicographical order on sequences and use this order in further
definitions.
In the next subsection we introduce external addresses purely combinatorially,

i.e. as elements of abstract symbolic space, but it will be useful to remember their
relation to complex maps.

16



Figure 2.2 – One of possible conventions when λ ∈ iR+

2.2.2 Abstract bounded external addresses
Definition 2.2.2 (External address). Let S := ZN∪{0}

S = {(s0s1s2s3 . . . ) : sk ∈ ZS}
be the sequence space over ZS := Z × {R,L} and let σ : S → S, (s0s1s2s3 . . . ) 7→
(s1s2s3 . . . ) be the shift on S. An element s = (s0s1s2s3 . . . ) ∈ S we call an
external address.

There is a natural norm on ZS induced from Z by forgetting the letter label, for
jR, j

′
L ∈ ZS we have |jR| = |j| and |j′L| = |j′|.

Definition 2.2.3 (Bounded external address). Let s = (s1s2s3 . . . ) ∈ S be an
external address. If there is a finite set B ⊂ ZS such that sj ∈ B for all j ∈ N
then we call s a bounded external address over alphabet B (or B-bounded for
shortness). The set of B-bounded addresses we denote as SB.

In this thesis we will use the alphabet B = B(b) containing all symbols whose
norm is bounded by some b ∈ N.

B := B(b) = {t ∈ ZS : |t| 6 b}.

So, if we write s = (s0s1s2 . . . ) ∈ SB it means that |sk| 6 b for all k.

2.2.3 Topology and order in spaces of uniformly bounded
external addresses

The space of B-bounded addresses SB ' BN for every finite b is considered
with the product topology. This topology is generated by cylinder sets p−1

n (k) :=
{s1 . . . sn−1ksn+1 · · · | n ∈ N; sj, k ∈ B}.

17



Convergence of a sequence in SB can be formulated in terms of pointwise con-
vergence: s(n) → s if for every n there is m0(n) so that for all m > m0 we have
s(m)
n = sn.

Remark. As we do not fix a particular b in our statements about bounded external
addresses, one can consider the universal space ⋃SB when b→∞. The question
of the topology on this set is crucial. If one wants to extend the continuity results
from Section 2.6, then this space should be considered with the final (it is also
called the inductive) topology: the finest topology, such that the inclusion maps are
continuous. A sequence of addresses is convergent there if there exists an alphabet
B such that it is convergent in SB. Also, one can try to induce the topology the
complex plane to this set (or, more precisely, to the subset of realizable addresses).
This is a very interesting question on its own. Related to our topic, it leads to
unboundedness of the core entropy function. We will discuss this in Chapter 3.
There is a natural lexicographic order on S (and on SB), which we can induce

from the order on ZS. The order on ZS we define as follows. Denote by 6Z
the standard order for integers (it is an order on each ZL and ZR). For a pair
j1, j2 ∈ ZS we say j1 6 j2 if either j1, j2 ∈ ZR and j1 6Z j2 or j1, j2 ∈ ZL and
j1 > j2 or j1 ∈ ZL and j2 ∈ ZR (see Figure 2.3). We say j1 > j2 otherwise. In
other words, we have just induced the cyclic order near infinity for strips Rj (Rj

are defined in subsection 2.2.1), taking the ray iR+ as a start :

· · · < 2L < 1L < 0L < −1L < · · · < −1R < 0R < 1R < 2R < · · · .

Figure 2.3 – Visualization for the order on the space of external addresses
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2.2.4 Dynamical partition and itineraries
For some maps in the family {gλ = λ(ez + e−z)/2: λ ∈ C∗} we can introduce a

dynamical partition using dynamic rays. We want to use a similar construction in
our combinatorial setting. For this we want to explain the dynamical picture and
use results from [Sch1]. We should underline, that in this chapter we prove conti-
nuity results only in combinatorial parameter space and many known facts about
holomorphic dynamics are used mostly for motivation. Same for this subsection,
we want to use some facts about landing behavior of dynamic rays for cosine com-
plex maps. This we do in order to motivate our work with external addresses as
with addresses of landing rays. Here we do not claim landing properties for actual
holomorphic maps, but only recall some known facts.
For simplicity we assume a map gλ to be post-critically preperiodic. Then

for each critical value v1, v2 there exists at least one dynamic ray ri landing at
vi, i = 1, 2. Lift r1 and r2 under gλ and obtain pairs of rays landing at all critical
points. We call

D := g−1
λ (C\(r1 ∪ r2))

a dynamical partition for gλ. Each connected component of D (homeomorphic
to a strip in C) we call a partition sector. A partition sector lying between critical
points iπ(j − 1) and iπj we denote by Dj (or simply by the corresponding index
j).
For a point z ∈ C with g◦n−1

λ (z) ∈ D for all n ∈ N the sequence of sectors
containing z, gλ(z), g◦2λ (z) . . . is called the itinerary of z with respect to D:

It (z | D) .

The itinerary of v1 = λ we call the kneading sequence of gλ, It (v1 | D).
Remark. One can extend the definition of itineraries to a broader set, to points
being mapped eventually to the boundary of partition sectors. The details can be
seen e.g. in [Pfr1]. We will use only boundary symbols for critical points, for a
point iπj we use ∗j.
Remark. A construction of a dynamical partition can be made in a much broader
family of entire maps, the details are in [MB].

2.2.5 From external addresses to kneading sequences
Now we want to relate static and dynamical partitions with each other. We do

this combinatorially, i.e. in terms of sequences (external addresses and itineraries),
but the intuition we use is from complex maps.
For post-critically finite quadratic polynomials the whole combinatorics of a

map can be reconstructed from a ray landing at the critical value. Similar to this
case, we want to consider each external address in s = (s0s1s2s3 . . . ) ∈ SB as the
address of a ray. Unlike for polynomials, we have many critical points and thus
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we prefer to interpret this address as the address of the ray landing at the critical
point 0.
According to this encoding, the address of the first critical value v1 then should

be equal to σ(s) = (s1s2s3 . . . ), the address of the second critical value v2 is equal
to ((−s1)s2s3 . . . ). Recall, by writing (−s1) we mean the opposite symbol of s1
obtained by adding negative sign to the integer part and switching R to L or L to
R with the letter part.
We can introduce addresses of (combinatorial) rays landing at all even critical

points
Ceven := {js = js1s2s3 . . . , j ∈ ZS};

and rays landing at odd critical points

Codd := {js′ = j(−s1)s2s3 . . . , j ∈ ZS.}

Their union, the set of all rays landing at all critical points (we call them critical
rays for short), is linearly ordered (as a subset of linearly ordered SB).
For a given address s ∈ SB we want to group critical rays into pairs and define

a dynamical partition of the space of external addresses.
If (s0s1s2s3 . . . ) lands at 0 from the right with s0 = lR then (−l)Ls1s2s3 . . . lands

at zero from the left. Due to 2πi-translation invariance we have (l+ 1)Rs1s2s3 . . .
and (−l + 1)Ls1s2s3 . . . land at critical point 2πi. Similarly, by induction, we get
(l + k)Rs1s2s3 . . . and (−l + k)Ls1s2s3 . . . land at 2πik, k ∈ Z.
In order to simplify the notations, a critical ray (jRs1s2s3 . . . ) corresponding

to critical point 2πik we denote by r(2k,R). We observed that k and jR are
related via s0 = lR, and for cases when it matters, we write r(2k, jR), where
jR = (k + l)R. We also use similar notation for left critical rays r(2k, L) or
r(2k, j′L), where j′L = (k − l)L.
We group even critical rays into pairs of the kind r(2k,R) and r(2k, L) or more

explicitly:

r(2k, (l + k)R) and r(2k, (−l + k)L) (2.2.2)

In order to recover ray pairs for odd critical points we use the fact that the set of
rays Ceven ∪ Codd is linearly ordered. Moreover, for two consecutive rays r(2k, jR)
and r(2k + 2, (j + 1)R) from Ceven there is exactly one ray j′R(−s1)s2s3 . . . from
Codd lying between them (j′R is either equal to (j + 1)R if s1 > (−s1) and to
jR if s1 < (−s1)). This unique ray we call the ray landing at (2k + 1)πi from
right and use the notation r(2k + 1, j′R) or r(2k + 1, R). The pairs of critical rays
corresponding to 2k + 1 are formed by:

r(2k + 1, (l + k + 1)R) and r(2k + 1, (−l + k)L), if s1 > (−s1);
r(2k + 1, (l + k)R) and r(2k + 1, (−l + k + 1)L), if s1 < (−s1).

(2.2.3)

For the case if s0 = l′L we can introduce same notations with a substitution
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(−l)R by l′L.
Now we are ready to introduce the dynamical partition induced by the address

s ∈ SB for the space of external addresses.

Definition 2.2.4 (Dynamical partition). Let s ∈ SB be a bounded external ad-
dress and r(k,R), r(k, L) with k ∈ Z be addresses of critical rays described above.
For j ∈ Z we define a partition sector Dj as follows:

Dj(s) := {t ∈ S | r(j − 1, R) < t < r(j, R)} ∪ {t ∈ S | r(j, L) < t < r(j − 1, L)}

The union of all partition sectors is called the dynamical partition of S with respect
to s and is denoted by D(s).

Symbolic sequences with respect to a dynamical partition are called itineraries.

Definition 2.2.5 (Itinerary). For a given external address t ∈ S such that σn(t) ∈
D(s) for all n > 0 we can denote the itinerary of t with respect to s

It (t | s) = (u0u1u2u3 . . . ), uk ∈ Z,

where uk is the index of the partition sector Duk
containing σ◦k(t).

If two addresses t(1), t(2) ∈ S lie in different partition sectors, then we call them
separated. This is related to the fact that there is at least one critical ray pair
lying “between” them. This can be formulated in terms of the order on S.

Definition 2.2.6 (Combinatorial separation). For given two addresses t(1), t(2) ∈ S
with t(1) 6 t(2) we say that a pair r(m,R), r(m,L) separates t(1) and t(2) if either

t(1) < r(m,L) < t(2) < r(m,R)

or
r(m,L) < t(1) < r(m,R) < t(2).

The definition is symmetric, if t(1) > t(2), then we can write same inequalities for
pair t(2), t(1).

We can consider all critical ray pairs separating two given points, it will be
important for the notion of labeled wedges, details are in the section 2.6.
Similarly as for polynomials, the itinerary of the critical value w.r.t. the dynam-

ical partition we call the kneading sequence ν(s):

ν(s) = It (σ(s) | s) .

The kneading sequence for B-bounded external address is well-defined unless it
is purely periodic.
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Definition 2.2.7 (Purely periodic external addresses). A B-bounded external
address is called purely periodic of period p if there exists p ∈ N and a critical ray
r ∈ Ceven ∪ Codd so that σp(s) = r.

Remark. The meaning of purely periodic external addresses is that the critical
orbit eventually hits a critical point (it cannot points of a ray tail because the
latter consists of escaping points). Of course, this subfamily of bounded addresses
contains addresses with the property σp(s) = s (they correspond to the parameters
when the critical orbit eventually hits 0), but we want to consider the full subfamily,
because tracking exactly zero ray was a convention, not necessity.
We want to define the kneading sequence (u1, u2, u3, . . . ) for a purely periodic

address. Symbols for the kneading sequence are defined for all n being non-divisible
by p. It remains to define upm, when there is r(k,R) such that σpm(s) = r(k,R).
In this situation we use a special symbol ∗k mentioned before on p. 19, therefore
the kneading sequences for purely periodic addresses are defined as well.
The union of Z with all boundary symbols {∗k, k ∈ Z} is called the extended

alphabet Z. We consider a natural order 6Z on Z given by j <Z ∗j <Z j + 1 for
all j ∈ Z. We also consider a norm on Z induced from Z, where the norm of an
integer is equal to its absolute value and the norm of ∗k is equal to |k|.
In section 2.6 we require the following useful lemma about purely periodic ad-

dresses and we want to prove it here.

Lemma 2.2.8. Let s be a purely periodic sequence of period p with σ◦p(s) =
r(j, R). Assume s(n) ↑ s with s(n)

0 , s0 ∈ ZR. Then for every m ∈ N there exists n0

so that for all n > n0 the first symbol of It
(
σ◦mp(s(n)) | s(n)

)
is equal to j − 1.

Proof. Denote by r(n)(i, R), i ∈ Z corresponding critical rays of s(n) from the right.
We want to show that eventually we have:

r(n)(j − 1, R) < σ◦mp(s(n)) < r(n)(j, R).

Consider two cases when j = 2k and j = 2k + 1. For certainty, we assume
s1 > −s1 (the symmetric case is similar). Using 2.2.2 and 2.2.3 we can write the
following expression for critical rays 2k − 1, 2k and 2k + 1 of s:

r(2k + 1, R) = r(2k + 1,(l + k + 1)R) = (l + k + 1)R(−s1)s2s3 . . . ;
r(2k,R) = r(2k,(l + k)R) = (l + k)Rs1s2s3 . . . ;

r(2k − 1, R) = r(2k − 1,(l + k)R) = (l + k)R(−s1)s2s3 . . . .

For the case when j = 2k in order to prove that σ◦mp(s(n)) < r(n)(2k,R) we
should observe that there exists n0 so that for all n > n0 at least first 1 + mp
entries of s(n) and s coincide. Denote by t = t(n) the place of the first different
symbol between s(n) and s (note that t > 1 +mp).
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We have that the entries of s(n) and s between 1 and t − 1 coincide, thus the
entries of σ◦mp(s(n)) and σ◦mp(s) = r(2k,R) between 1 and t − 1 −mp are same
too. As s(n) < s we have that s(n)

t < st. Now look at the corresponding (t−mp)-th
entries of σ◦mp(s(n)) and r(n)(2k,R). For the first address it is equal to s(n)

t , for
the second it is equal to s(n)

t−mp = st−mp = st (the first equality is because first
t− 1 entries must coincide and the second is because of periodicity of s), therefore
σ◦mp(s(n)) < r(n)(2k,R).
The other part of the inequality r(n)(2k − 1, R) < σ◦mp(s(n)) is easier because

the second symbol of r(n)(2k− 1, R) is equal to (−s1), while the second symbol of
σ◦mp(s(n)) is equal to s(n)

1+mp = s1+mp = s1 > (−s1) (we look at the second symbols
because the first ones are equal to (l + k)R).
When j = 2k + 1 we again consider n > n0 so that at least mp + 1 sym-

bols coincide and the first different symbol is on t-th position. The inequality
r(n)(2k,R) < σ◦mp(s(n)) holds since the first symbol of r(n)(2k,R) is equal to
(l + k)R, while for σ◦mp(s(n)) it is equal to s(n)

mp = smp = s0 = (l + r + 1)R.
The inequality σ◦mp(s(n)) < r(n)(2k+ 1, R) holds if we note that first t− 1−mp

symbols are equal and the symbols on (t−mp)-th position are different and equal
to s(n)

t and s(n)
t−mp respectively. We have s(n)

t < s
(n)
t−mp as in the previous case.

Therefore we obtain for j = 2k the address of σ◦mp(s(n)) lies between r(2k−1, R)
and r(2k,R); also for j = 2k + 1 the address of σ◦mp(s(n)) lies between r(2k,R)
and r(2k + 1, R), so the first symbol of the itinerary is equal to j − 1.

We can also formulate the same lemma for the case when σ◦p(s) = r(j, L).
Lemma 2.2.9. Let s be a purely periodic sequence of period p with σ◦p(s) = r(j, L).
Assume s(n) ↓ s with s(n)

0 , s0 ∈ ZL. Then for every m ∈ N there exists n0 so that
for all n > n0 the first symbol of It

(
σ◦mp(s(n)) | s(n)

)
is equal to j − 1.

Proof. We use the symmetry at critical points. The partition sectors Dj−1(s(n))
and Dj−1(s) are contained between critical points ∗j−1 and ∗j, but in the right-half
plane ∗j lies in the upper part of the boundary (and s(n) from below), while in the
left-half plane ∗j liest in the bottom part of the boundary. We need to change the
sign of inequalities for the proof, but the arguments are same.

Remark. One can obtain a symmetric lemmas stating that if s(n) ↓ s with
s

(n)
0 , s0 ∈ ZR (or s(n) ↑ s with s(n)

0 , s0 ∈ ZL), then the first symbol of the itineraries
of σ◦mp(s(n)) eventually becomes to be equal to j.
The following lemma gives relation between alphabets of external addresses and

corresponding kneading sequences.
Proposition 2.2.10 (Bounded external address implies bounded kneading se-
quence). Let B = {t ∈ ZS : |t| 6 b}. If s = (s0s1s2 . . . ) ∈ SB (is an external
address over alphabet B) then the corresponding kneading sequence ν(s) lies in the
space of kneading sequences over extended alphabet B := {a ∈ Z : |a| 6 4b+ 2}.
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Proof. Assume s0 = jR ∈ ZR (the other case is symmetric) and let r(2k, jR)
be a ray landing at point ∗2k from the right. Then, from equality 2.2.2, we have
2k = 2(j−l). If the second ray landing from the left is r(2k, j′L), then 2k = 2(j′+l).
It means if jR, j′L ∈ B (i.e. |j| 6 b), then |2k| 6 4b.
Similarly for odd critical points, applying equality 2.2.3 for r(2k+1, jR) we have

2k+ 1 = 2(j− l) (or 2(j+ l) + 1) and for r(2k+ 1, j′L) we have 2k+ 1 = 2(j+ l) + 1
(or 2(j+ l)) . As previously, case distinction is obtained from the value of s1. Thus
if j 6 b we obtain |2k + 1| 6 4b+ 1.
Finally, in order to reconstruct the n-th entry of the kneading sequence we have

to look at “neighboring” critical rays r1, r2 of σ◦n(t). The first entry of at least
one ray must coincide with the first entry of σ◦n(t), therefore the corresponding
partition sector contains critical point ∗m on its boundary with |m| 6 4b+ 1. The
claim follows from an observation that for eachm the critical point ∗m lies between
sectors m an m+ 1, therefore the norm of the entry is bounded by 4b+ 2.

2.3 Core entropy for post-critically finite cosine
2.3.1 Topological entropy
Let (X, d) be a compact metric space and f : X → X be a continuous function.

A subset E ⊂ X is called (n, ε)-separated if for all x, y ∈ E, x 6= y and for 0 6 j < n
we have d (f ◦j(x), f ◦j(y)) > ε.

Definition 2.3.1 (Topological entropy). Let K ⊂ X be a compact subset of X.
Denote by rn(ε,K) the largest cardinality of an (n, ε)-separated set of K. The
topological entropy of f with respect to K is defined as

htop(f,K) = lim
ε→0

lim sup
n→∞

1
n

log rn(ε,K)

The topological entropy of f with respect to the whole space X we denote as
htop(f) := htop(f,X).

Topological entropy is preserved under topological conjugation.
Remark. One can define the topological entropy in terms of (n, ε)-spans, but the
definitions are equivalent (details are in e.g. [dMvS]).
There is an equivalent definition for the topological entropy in terms of open

covers. Let U be an open cover of X, denote by N(U) the smallest cardinality of
a subcover of U (it is always finite by compactness of X). If U ,V are two covers
of X, then U ∨ V = {U ∩ V | U ∈ U , V ∈ U} their common refinement. Let
Un = U ∨ f−1(U) ∨ . . . ∨ f−n(U), where f−k(U) = {f−k(U) | U ∈ U}.
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Definition 2.3.2 (Topological entropy, alternative). The topological entropy of f
with respect to cover U is defined as:

h(f,U) = lim
n→∞

1
n

logN(Un)

The topological entropy of f is defined as the supremum over all covers of X:

h(f) = sup
U
h(f,U).

The equivalence of the definitions can be obtained taking U as an open cover
with all elements of diameter at most ε and Lebesgue number 2δ, because in this
case we have:

rn(ε,X) 6 N(Un) 6 rn(δ,X).

The following lemma states a standard and quite useful equality for the topo-
logical entropy, the proof can be found e.g. in ([dMvS], Lemma7.2).

Lemma 2.3.3 (Entropy of iterates). If f : X → X is a continuous map of a
compact metric space X then

h(f ◦m) = m · h(f).

In the next subsection we want to work with the topological entropy on a graph
(to be more precise, on the Hubbard tree) and for this we introduce some notions
and results from [LM93].

Definition 2.3.4 (Horseshoe). Let f be a continuous map of a graph into itself.
An interval I and its s subintervals J1, . . . , Js with disjoint interiors are called an
s-horseshoe for f if every Jj maps onto the whole I. We denote this s-horseshoe
by (I; J1, . . . , Js).

Theorem 2.3.5 ([LM93], Theorem A). If a continuous map f of a graph into
itself has an s-horseshoe then h(f) > log s.

The topological entropy is an important notion in the context of core entropy,
because one can define core entropy as a restriction of the topological entropy of a
map to its Hubbard tree (the “core” of the map). Hubbard trees for maps in our
family are discussed in the next section.

2.3.2 (Homotopy) Hubbard trees for post-critically finite cosine
Hubbard trees is a well-studied object for post-critically finite polynomials. It

can be viewed as a minimal compact invariant tree in C containing all critical
orbits (see details e.g. in [BFH] and [Poi1]).
For some transcendental entire maps (for example, post-singularly finite expo-

nential maps) a Hubbard tree fails to be invariant, see the details in [PRS] and it is
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more natural to consider so-called Homotopy Hubbard Trees, which are introduced
in [Pfr1].

Definition 2.3.6 (Homotopy Hubbard Tree). Let f be a post-singularly finite
entire function. A Homotopy Hubbard Tree for f is a finite embedded tree H ⊂ C
such that:
— the post-singular set P (f) is contained in H and all endpoints of H are

contained in P (f);
— H is forward invariant up to homotopy relative to P (f);
— the induced self-map of H is expansive.

The following theorem states existence and uniqueness of the Homotopy Hub-
bard Tree for a given psf-map.

Theorem 2.3.7 ([Pfr1], Theorem B). Let f be a post-singularly finite entire func-
tion. Then f has a Homotopy Hubbard Tree and this tree is unique up to homotopy
relative to the post-singular set P (f).

In [Pfr1] it was also observed that a logarithmic singularity (i.e. existence of finite
asymptotic values) is the only obstacle for a Homotopy Hubbard Tree to be actually
invariant (i.e. to be the Hubbard Tree). As cosine maps do not have a logarithmic
singularity, we expect for post-singularly finite cosine maps to have actual Hubbard
Trees. In the thesis the actual invariance is not an issue, because notions in the
next subsection work even for the case of trees defined up to homotopy relative to
the post-critical set.

2.3.3 Definitions of core entropy for pcf maps
In this section we want to define core entropy for post-critically finite cosine

maps.
Let gλ = λ(ez + e−z)/2 be a pcf cosine map and H be its (Homotopy) Hubbard

Tree.

Definition A (On the (Homotopy) Hubbard Tree). Core entropy of gλ is defined
as the topological entropy with respect to the (Homotopy) Hubbard tree:

h(gλ) = htop (gλ, H)

Note that even for the case of homotopy trees, the definition does not depend
on a particular tree in the class, because of the following Lemma from [Pfr1].

Lemma 2.3.8 ([Pfr1], Lemma 4.13). Let F, F̃ : H → H be induced self-maps of
H. There exists a homeomorphism θ : H → H that restricts to a conjugation of F
and F̃ on the set of marked points. More precisely, θ |VF

: VF → VF̃ is a bijection
satisfying

θ−1 ◦ F̃ ◦ θ(v) = F (v) for all v ∈ VF .
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Conjugacy of different induced maps on the set of vertices of the Hubbard tree
is sufficient to obtain the same entropy, because on each edge connecting two
neighboring vertices the induced map is injective.
The next definition is partially related to the result of [MS] stating that for

f : I → I piecewise monotone maps of the interval the topological entropy is equal
to the exponential growth rate of turning points of f ◦n (which are the points where
the function changes its monotone behavior from growth to decay and vise versa).
If we interpret turning points of f ◦n as critical points (or precritical for f), then the
motivation for the next definition is obvious. Recall, that a point z is precritical
of order n if f ◦n(z) is a critical point.

Definition B (Count of precritical points). Core entropy of gλ is defined as

h(gλ) = lim sup
n→∞

1
n

logN(n),

where N(n) is the number of precritical points of order 6 n on H.

If the interval joining two points on the Hubbard tree contains one precritical
point of order n and no other precritical points of smaller order, then each of n−1
forward images of the interval is contained in one sector of the dynamical partition
and n-th image is mapped into few sectors. This information about separation is
preserved for homotopy trees as well.
For the third definition we can construct the transition matrix for the edges of

H in the following way. The set of edges of H is finite, thus by numbering the
edges, the map f on H can be described as a matrix A with entries 0 or 1, such
that the j-th column is showing where j-th edge is mapped.

Definition C (Growth rate of transition matrix). Let A be the transition matrix
for the edges of H. Then core entropy of gλ is defined as

h(gλ) = log ξ,

where ξ is the largest eigenvalue of A.

Remark. In fact, both definitions B and C can be generalized purely in combina-
torial terms (avoiding explicit use of the Hubbard Tree). Definition C is generalized
in [G1] for polynomials (not necessarily pcf) using Thurston’s entropy algorithm. In
[H1] there is a similar algorithm for generalization of Definition B for exponential
maps.
The following theorem is quite standard in the context of the topological entropy

on graphs.

Theorem 2.3.9 (Equivalence of definitions). Let gλ be a post-critically finite co-
sine map. Then the values of core entropy computed with respect to definitions A,
B and C are equal.
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Proof. Equivalence of definitions A and C can be obtained from results of [G1].
Post-critical case is covered there, therefore we have that the topological entropy
on the Hubbard tree of a polynomial is equal to the output of Thurston’s entropy
algorithm (for pcf maps it coincides with the largest eigenvalue of the transition
matrix). Hubbard trees of postricitally finite cosine maps are also finite and the
induced maps are of finite degree.
Equivalence of definitions A and B is a consequence from [A97].

The following theorem gives an upper bound for core entropy for pcf-maps. In
next sections we will generalize this result for the whole space of uniformly bounded
combinatorics SB.

Theorem 2.3.10 (Bounded core entropy for bounded combinatorics). Let B =
{t ∈ ZS : |t| 6 b} and let gλ be a postcritically finite cosine map, so that its
corresponding external address s ∈ SB. Then its core entropy is bounded

h(gλ) 6 log(8b+ 6).

Proof. Proposition 2.2.10 shows an upper bound (4b+2) for the number of different
symbols of the kneading sequence corresponding to a given external address. This
means, that the points of the postcritical set can separated by critical points iπk
only with k 6 4b + 2, thus there are 8b + 5 such critical points. If we denote the
number of edges of H by T , then we can trivially estimate the number of precritical
points of order 6 n:

N(n) 6 T · (8b+ 6)n.

The reason for this bound is inductive: precritical points of order 1 can subdivide
T initial points into at most T (8b + 6) intervals, precritical points of order 2 can
subdivide T (8b + 6) intervals into at most T (8b + 6)2 intervals and so on. Using
Definition B, the statement follows.

Remark. The bound if the latter theorem is not best possible, but we can observe
that any upper bound has to be at least the logarithm of a linear function on b.
For example, core entropy of parameters with periodic kneading sequences (0∗b)
is equal to log(b− 1).

2.4 Graphs with bounded cycles
The following section is a collection of tools required for Section 2.5 about labeled

wedges for cosine maps.
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2.4.1 Preliminaries from graph theory
In this and in the next section we work with graphs as purely combinatorial

objects. By a graph G we mean a pair (V,E), where V is a set of vertices (finite
or countable) and E is a set of pairs of vertices, which called edges. As we mostly
interested in directed graphs, we assume that elements of E are ordered pairs;
every edge e ∈ E has a source s(e) ∈ V and a target t(e) ∈ V .
A finite sequence of edges (e1, e2, . . . , en) with t(ej) = s(ej+1) for every j from 1

to (n− 1) is called a (finite) path. In case if a path has additionally t(en) = s(e1)
then we call it closed.
A length of a path is called its combinatorial length, i.e. the number of edges it

consists of.
A closed path is called a simple cycle if it has no self-intersections, i.e. the only

repeated vertices are the first and the last vertices. A multi-cycle is a finite union
of simple cycles with disjoint vertex support (i.e. set of visited vertices).
For a vertex v ∈ V we define its outgoing degree as the cardinality of all edges

having their source at v; the corresponding set of outgoing edges we denote as
Out(v). An outgoing degree for the whole graph is defined as a supremum of
outgoing degrees over all vertices.

Definition 2.4.1 (Graph with bounded cycles). A graph G has bounded cycles
if it has:
— bounded outgoing degree;
— for every n bounded number of simple cycles of length n.

2.4.2 Growth rate and spectral determinant
Definition 2.4.2 (Growth rate). Let Γ be a graph with bounded cycles, C(Γ, n)
be the number of closed paths in it. We define the growth rate of Γ as

r = lim sup
n

(C(Γ), n)) 1
n

Also for Γ we denote the spectral determinant in the following way:

P (t) =
∑

γ multicycle
(−1)C(γ)tl(γ) (2.4.1)

where l(γ) is the length of the multicycle, C(γ) is the number of connected
components of γ.
Let K(Γ, n) be the number of multicycles of length n in Γ and

σ(Γ) = lim sup
n

(K(Γ, n)) 1
n
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Theorem 2.4.3 ([Ti1], Theorem 2.3). Suppose σ(Γ) 6 1; then the formula 2.4.1
defines a holomorphic function P (z) in the unit disk |z| < 1, and moreover the
function P(z) is non-zero in the disk |z| < r−1; if r > 1, we also have P (r−1) = 0.

Lemma 2.4.4 ([Ti1], Lemma 2.5). If Γ is a finite graph, then its growth rate
equals the largest real eigenvalue of its adjacency matrix.

2.4.3 Weak covers of graphs
Let Γ1,Γ2 be two locally finite graphs. A graph map π : Γ1 → Γ2 maps vertices

to vertices and edges to edges so that if vertices u, v are linked in Γ1 then π(u), π(v)
are linked in Γ2.
A graph map π is called a weak cover of graphs if it is surjective on the set of

vertices and the induced map Out(v)→ Out(π(vi)) is bijective for every vertex v.

Lemma 2.4.5 ([Ti1], Lemma 5.3). Let π : Γ1 → Γ2 be a weak cover of graphs with
bounded cycles, and S 6= ∅ a finite set of vertices of Γ1.

1. Suppose that every closed path in Γ1 passes through S. Then for each n we
have the estimate

C(Γ1, n) 6 n ·#S · C(Γ2, n)

which implies
r(Γ1) 6 r(Γ2)

2. Suppose that G is a set of closed paths in Γ2 such that each γ ∈ G crosses
at least one vertex w with the property that: the set Sw := π−1(w) ∩ S is
non-empty, and any lift of γ from an element of Sw ends in Sw. Then there
exists L > 0, which depends on S, such that for each n we have

#{γ ∈ G : l(γ) = n} 6 n
L∑
k=0

C(Γ1, n+ k).

Lemma 2.4.6 ([Ti1], Lemma 5.4). Let Γ1,Γ2 be finite graphs, and π : Γ1 → Γ2 a
weak cover. Then the growth rate of Γ1 equals the growth rate of Γ2

2.5 Wedges and their properties
2.5.1 Wedge as an object encoding combinatorics of a map
A formal definition of a wedge will be given in the next subsection; here we would

like to give a conceptual explanation for this object. As it was explained previously
in Definition C, for post-critically finite maps core entropy may be computed from
the transition matrix: if we write all possible pairs of points of post-critical set
and how they map to each other, then the leading eigenvalue of this matrix should
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give us core entropy. In case if post-critical set is infinite, we cannot directly apply
the same idea, but it can be useful to consider all possible pairs of points of P (gλ)
and to encode how they map to each other.
Every map gλ(z) = λ cosh(z) has two critical values ±λ, but essentially there

is only one critical orbit since both critical values jump to λ cosh(λ). If there is
a Hubbard tree H, we can denote an interval joining g◦iλ (0) and g◦jλ (0) in H by
an unordered pair of integers (i, j) (here we assume i, j > 2, for the remaining
case we use 1+ to denote λ and 1− to denote −λ). As critical points of gλ are
iπk, k ∈ Z and we want to use positive integers to denote points of the critical
orbit, we denote critical points by ∗k-symbol. For example, a critical point located
in −3π we denote as ∗−3.
If an interval (i, j) on H does not contain any critical point, then gλ maps it to

the interval (i+ 1, j + 1). In case if this interval contains some critical points, we
can track each subinterval separately.
For example, if an interval (4, 5) (i.e. the one joining g◦4λ (0) and g◦5λ (0)) is sepa-

rated by three critical points, say ∗5, ∗6 and ∗7, then we have the following:
— first subinterval between points g◦4λ (0) and ∗5 will be mapped to (1−, 5). It

is so, because the forth critical value is mapped to the fifth; critical point ∗5
(which is odd) is mapped to 1−. We write (1−, 5) but not (5, 1−) because of
our convention to use unordered pairs of integers.

— Second subinterval between critical points ∗5 and ∗6 is mapped to (1−, 1+).
Intervals (1−, 1+) and (1+, 1−) are considered as ordered pairs as only excep-
tions (it will be important later).

— Third subinterval joining ∗6 and ∗7 is mapped to (1+, 1−).
— Forth subinterval from ∗7 to g◦5λ (0) is mapped to (1−, 6).
This example can make a construction of a wedge more natural and more clear.
Note that at this moment we distinguish all iterates of the orbit. In case of

(pre)-periodic parameters, we can introduce an equivalence relation on a wedge
and obtain so-called (pre)-periodic wedge. Details can be found in subsection
2.5.4.

2.5.2 Definition of a wedge
Denote Σ̃ = {(i, j) ∈ N2, 2 6 i < j} the set of ordered pairs and add to this set

the pairs of kind (1+, j) and (1−, j) for j ∈ N. The obtained set we call the wedge
for cosine map Σ (or just the wedge for short, Figure 2.4):

Σ = Σ̃ ∪ {(1+, j), j > 2} ∪ {(1−, j), j > 2} ∪ {(1+, 1−)} ∪ {(1−, 1+)}

For a point v = (i, j) on the wedge the entry i is called the height of v and j is
its width. If one of the coordinates is 1+ or 1− then the corresponding width or
height is assumed to be equal to 1.
Consider A = {∗−s, ∗(−s+1), . . . , ∗(s−1), ∗s}. We say ∗k is even (odd) if k is even
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Figure 2.4 – Wedge for cosine map

(odd, respectively). A labeling of the wedge is an assignment for every vertex
(i, j) ∈ Σ a label ∅ or (α1, . . . , αr) ∈ Ar, where αj are consecutive symbols of A
(going in the usual or the opposite direction).
The wedge with a labeling is called a labeled wedge (Figure 2.5). A vertex with

the label equal to ∅ is called non-separated and otherwise it is called separated.
Note that we assume 1± + 1 = 2 in further definitions.
Also note that the vertices (1+, 1−) and (1−, 1+) are always separated (the cor-

responding label must contain at least ∗0). Moreover, their labels contain the same
set of points of A, but they are written in opposite direction w.r.t. each other.
Now we can associate a directed graph Γ to a labeled wedge W as follows. The

vertices of Γ are the points of Σ and the edges are defined in the following way:
1. if the vertex (i, j) is non-separated then the only outgoing edge is

(i, j)→ (i+ 1, j + 1)

and this edge we call of upward type.
2. if the vertex (i, j) is separated with a label (α1, . . . , αr) then there are r + 1
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outgoing edges:
(i, j)→ (1α1 , i+ 1)
(i, j)→ (1α1 , 1α2)
(i, j)→ (1α2 , 1α3)

. . .

(i, j)→ (1αr , j + 1)

where 1αj = 1+ if αj is even and 1− if αj is odd. Edges directing to {1±, 1∓}
are called central. Among the edges remained an edge is called forward if it
increases the width and backward if it does not. Note that if i > 2 then we
have exactly one backward and one forward edge for a separated vertex.

Figure 2.5 – Example of a labeled wedge

Remark. Definitions of a labeled wedge and its associated graph were equivalent
for polynomials in [Ti1] and [GT]: given a labeled wedge, we could construct
a graph by the procedure above and vise versa, for every vertex of a graph we
could recover the corresponding label (for quadratic polynomials point 0 was only
critical point; and for polynomials of higher degree the information was encoded
by layers of edges). It is not same in our case. For example, if a pair (3, 5) has
a label (∗0, ∗−1), then there must be three outgoing edges to (1+, 4),(1+, 1−) and
(1−, 6); but having only three such edges we do not know, which label this should
correspond to. This example motivates us to color outgoing edges of a separated
vertex if we want to have equivalent objects (but usually we go in one direction:
from a labeled wedge to its associated graph).
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The topology on the space of labeled wedges is given by the following definition
of convergence for convergence.

Definition 2.5.1 (Convergence of wedges). Let (Wn) be a sequence of labeled
wedges. We say this sequence converges to a labeled wedge W if for every finite
subset of vertices S ⊂ Σ there exists n0, such that for all n > n0 the labels of Wn

and W coincide on S.

Remark. For a given labeled wedge we always have a bound on the number of
outgoing edges for every vertex: #A+1. Later in subsection 2.6.1, when we discuss
the construction of the labeled wedge for a given external address s ∈ SB, number
#A will correspond to the number of symbols of the alphabet for the kneading
sequence (being uniformly bounded on SB in Proposition 2.2.10).

2.5.3 Growth rate on the space of labeled wedges
We need the following combinatorial statement being similar to [Ti1] Proposition

4.2.

Proposition 2.5.2 (Location of closed paths). Let Γ be the graph associated to a
labeled wedge W . Then the following hold:

1. each vertex along any closed path of length n has height at most n;
2. each vertex along any closed path of length n has width at most 2n;
3. for every diagonal D±k = {1±, k + 1} ∪ {(i, i+ k) ∈ Σ : i > 2} there exists at

most one separated vertex, such that it is contained in the support of at least
one closed path.

Proof. 1. Upward edges always increase the height of a vertex, thus a closed
path must contain at least one edge of other type (backward, forward or
central). As the target of this edge has height 1, we obtain there must be at
least one vertex of height 1 along the closed path. Since every edge increases
the height of at most 1, the claim follows.

2. Forward and upward edges always increase the width of a vertex, along each
closed path there must be at least a backward or central edge. By the
previous point, the source of such edge has height 6 n, hence its target has
width 6 n+ 1. The claim follows by the fact that each remaining n− 1 edge
increases the width by at most 1.

3. If a vertex v = (i, j) of the height i > 2 is the target of some edge, then it
must be the upward edge from v1 = (i− 1, j − 1), thus v1 is non-separated.
v1 is also a target of another edge and again it it non-separated and so on.
By induction, we obtain all vertices on this diagonal with lower height are
non-separated, thus we cannot have other separated points on the closed
path.
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Lemma 2.5.3 (Multicycles are determined by only backward and central edges).
Let γ be a multicycle of finite length on the associated graph Γ of a labeled wedgeW ;
B be the set of backward edges of γ; C be the set of central edges of γ (0 6 |C| 6 2)
and F be a set of edges following the central ones (if they exists; |F | = |C|). Then
all remaining edges can be reconstructed from B,C and F .

Proof. The reconstruction process goes in algorithmic way similarly for all edges
of B,C and F .
Let e be an edge from our initial data (i.e. e ∈ B ∪ C ∪ F ). Follow by e and

consider its target. If the obtained vertex is a source of another known edge (from
B,C or F ), then follow by it and consider a new target vertex and so on. If the
target is not a source of any edge from B,C and F , then we shall follow by the
forward edge (if the current vertex of W is separated) or the upward edge (if the
vertex is not).
We do this algorithm until we come back to e (meaning that a simple cycle

containing e is over) and then we pick another edge from B,C and F , such that
we have not yet considered.
As every simple cycle must contain at least one backward or central edge, even-

tually we cover all cycles of the given multicycle.

Remark. A reason to include F to the initial data is the following. Vertices
(1+, 1−) and (1−, 1+) are special: these are only vertices with no outgoing backward
edges and with two outgoing forward edges. Therefore if we come to one of such
points, then we cannot apply the algorithm directly due to multiple choice of
outgoing forward edge. This is why our data includes F (the set of edges following
the central, do not mix with the set of forward edges of γ).

Proposition 2.5.4 (Bound on the number of multicycles). Let W be a labeled
wedge over alphabet A (#A = S) and Γ be the associated graph. Then the number
of multicycles of length n of Γ is bounded by

K(Γ, n) 6 4S2(4n+ 1)
√

4n+2

Proof. Note that items (1), (2) of Proposition 2.5.2 imply that multicycles of length
n are located on a finite part of W with height n and length 2n.
Lemma 2.5.3 says what data for defining a multicycle is necessary: the set of

backward edges B, the set of central edges C and the set F of edges following after
central (if C is non-empty). In our upper bound we count all possible configura-
tions of B, C and F , even those which cannot define a multicycle.
Note that a subset of backward edges is always defined by the set of source

vertices, while for a central edge we need to know both the source and the color.
It is so, because from every separated vertex (except (1±, 1∓)) there is exactly one
outgoing backward edge; while there can be from 0 to S−1 outgoing central edges.
We will use this for counting configurations of B and C.
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Number of possibilities for F is always bounded by 4 because there are only two
possible targets of central vertices (1±, 1∓) and from each there are two possibilities
to pick a forward edge.
Denote by V a set of all possible vertices such that can be a source for a backward

or a central edge of a multicycle of a length n. The estimate goes as follows. We
pick b backward edges, c central edges, pick colors for central edges and pick edges
following the central. We assume all choices to be made independently, therefore
we multiply them. Then sum up over all possible values of b and c and obtain that
the number of multicycles is bounded by

Bmax∑
b=0

Cmax∑
c=0

(
|V |
b

)
·
(
|V |
c

)
· Sc · 4 (2.5.1)

Note that Cmax is always bounded by 2 because along every multicycle there
cannot be more than 2 central edges. Also recall the following combinatorial
inequality:

Bmax∑
b=0

(
|V |
b

)
6 (|V |+ 1)Bmax (2.5.2)

The inequality above is true because every choice of b elements (0 6 b 6 Bmax)
from |V | can be viewed as a correspondence from Bmax elements to |V | possibilities
to be chosen plus one possibility to be not chosen.
Using inequality 2.5.2 for estimate 2.5.1 we obtain

Bmax∑
b=0

Cmax∑
c=0

(
|V |
b

)
·
(
|V |
c

)
· Sc · 4 6 4S2 · (|V |+ 1)Bmax+2

It remains to estimate |V | and Bmax. For V we use item (3) of Proposition 2.5.2;
it says that every diagonal cannot contain more then one separated vertex such
that it is contained in the support of a closed path. In particular, it is applicable to
backward or central edges of a multicycle, therefore |V | is bounded by the number
of diagonals intersecting a multicycle. As it was said in the beginning of the proof,
maximal possible width is bounded by 2n, therefore there are not more than 4n
diagonals. Thus, |V | 6 4n.
A concluding claim is the following: Bmax 6

√
4n. Let e1, . . . , eBmax be the

backward edges along multicycle ordered by increasing height (recall be the height
of an edge we mean the height of its source). Let h1, . . . , hBmax be the corresponding
heights. Note the target of each ej is either (1+, hj) or (1−, hj), thus there cannot
be more than two edges of the same height; it implies that j 6 2hj.

Bmax
2

2 <
Bmax(Bmax + 1)

2 =
Bmax∑
j=1

j 6
Bmax∑
j=1

2hj 6 2n

The last inequality in the chain above holds because the sum of all heights
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cannot be greater than the length of the whole multicycle.
Combining inequalities above we get the required estimate:

4S2(4n+ 1)
√

4n+2

The following theorem shows that the growth rate is continuous on the space of
labeled wedges (over uniformly bounded alphabet).

Theorem 2.5.5 (Continuity of the growth rate on the space of labeled wedges). If
a sequence of labeled wedges Wn (over alphabet A) converges to W then the growth
rate of Wn converges to the growth rate of W .

Proof. In Proposition 2.5.2 items (1) and (2) give that all multicycles of length
m lie in a finite part of a wedge (of height m and width 2m). It means that for
every k the coefficient of tk in the spectral determinant Pn(t) converges to the
corresponding coefficient of P (t). Proposition 2.5.4 gives an upper bound for the
number of multicycles:

σ(Wn) 6 lim sup
m

(
4S2(4m+ 1)

√
4m+2

) 1
m =

= lim sup
m

exp
(√

4m+ 2
m

log
(
4S2(4m+ 1)

))
6 1. (2.5.3)

Thus applying the Theorem 2.4.3 we obtain that Pn → P uniformly on compacts
of the unit disk. By Rouché’s theorem, smallest real positive root converges to the
smallest real positive root, therefore r(Wn)→ r(W ).

We are almost ready to relate labeled wedges with external addresses, but we
need to look at the special case of periodic wedges.

2.5.4 Periodic wedges and their finite models
For labeled wedges corresponding to post-critically finite maps gλ we should

be able to identify some points on the wedge. We can deal with the following
equivalence relation on {1−, 1+, 2, 3, . . .}: for given p > 1, q > 0 we say that
i ≡p,q j if either min{i, j} 6 q and i = j or min{i, j} > q + 1 and i ≡ j mod p.
For the case when q = 0 we have two different equivalence relations k(p+1) ≡p,0+

1+ 6≡p,0+ 1− and k(p+ 1) ≡p,0− 1− 6≡p,0− 1+.
Such equivalence relations induce equivalence relations on the set of ordered

pairs (i, j) ≡p,q (k, l) iff i ≡p,q k and j ≡p,q l. On the set unordered pairs (which
is the wedge without labeling) the relation is the following: {i, j} is equivalent to
{k, l} if either (i, j) ≡p,q (k, l) or (i, j) ≡p,q (l, k).
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Definition 2.5.6. We call a labeled wedge periodic of period p and pre-period q
if the following holds:

1. Any two pairs (i, j) and (k, l) being equivalent under ≡p,q have the same
label;

2. if i ≡p,q j then (i, j) is non-separated.
A pair (i, j) s.t. i ≡p,q j is called diagonal.
For a labeled wedge of period p and pre-period q we can construct a finite graph

ΓF . The set of vertices is the set of classes of non-diagonal vertices W under
relation ≡p,q. The set of edges ΓF is obtained from the labeling of W , same as
edges of Γ (but now we connect classes of vertices).
The following proposition is an important step towards the proof of Claim 2.

Proposition 2.5.7. Let W be a periodic labeled wedge with associated (infinite)
graph Γ. Then their growth rates are equal r(Γ) = r(ΓF ).
For the proof we introduce an intermediate graph Γ(2) and call it finite 2-cover

of ΓF .
Vertices of Γ(2) is the set of ≡p,q-classes non-diagonal ordered pairs of integers

and the edges are inherited from Γ in the usual way. For example, if a vertex
(2, 6) of a labeled wedge W of period 5 and pre-period 2 is separated with a label
(∗0, ∗1), then there are three edges directing to the vertices (3, 1+), (1+, 1−) and
(1−, 2). The last vertex is (1−, 2) because it is equivalent to (1−, 7) on W under
≡5,2. The graph Γ(2) is introduced mainly in order to remember the information
about backward and forward edges of Γ : backward edges on Γ correspond to edges
on Γ(2) directed to vertices of the kind (i, j) s.t. i > j.

Proof of Proposition 2.5.7. As diagonal vertices are always non-separated, any
non-trivial closed path cannot pass through any diagonal vertex of Γ. Consider
the subgraph ΓND obtained by excluding all diagonal vertices and note that their
growth rates are equal:

r
(
ΓND

)
= r(Γ)

We have the following chain of maps

ΓND → Γ(2) → ΓF .

As they are defined by quotienting with respect to equivalence relations, they
are weak covers of graphs. Since Γ(2) and ΓF are both finite, Lemma 2.4.6 is
applicable, from which we obtain an equality of the growth rate r(Γ(2)) = r(ΓF ).
We can get an inequality r(ΓND) 6 r(Γ(2)) from Lemma 2.4.5 when find a finite

set S through which every closed path goes. We claim that the set of vertices with
the height 1 and the width 6 p+ q + 1 has this property.
Firstly, we should note that vertices along any closed path in ΓND cannot have

the height larger then p + q. For each diagonal D±k = {1±, k + 1} ∪ {(i, i + k) ∈
Σ : i > 2} either
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1. all elements of height 6 p + q are non-separated (thus, by periodicity, all
elements of D±k are non-separated) or

2. there is a separated element of height 6 p+ q. If we denote by i0 6 p+ q the
smallest height of a separated vertex then no other element of D±k of greater
height can lie on any closed path. It is so because all other elements are
non-separated (from Prop.2.5.2 (3)) and the path will never closed up once
it contains a vertex of the diagonal of the height greater then i0.

Every non-trivial closed path in Γ contains backward and/or central edges and
they are directed to the vertices of height 1. Combining with the previous ar-
gument, we obtain that their width cannot be greater then p + q + 1, so ev-
ery closed path passes through S. This concludes the proof of the first estimate
r(ΓND) 6 r(Γ(2)).
In order to prove the other inequality, we shall estimate the number of closed

paths in Γ(2). A closed path in Γ(2) can either contain a backward or central edge,
or not. Denote by G the family of all closed paths in Γ(2) containing at least one
edge with the target whose height it greater or equal then the width (i.e. with at
least one backward or central edge or (2, 1±)). Then for G Lemma 2.4.5 (2) can
be applied, there exists L > 0 s.t.

#{γ ∈ G : l(γ) = n} 6 n
L∑
k=0

C
(
ΓND, n+ k

)
.

The remaining closed paths can be estimated from above by the number of
vertices of Γ(2), because each of them can be recovered from its starting point.
Indeed, if the initial vertex (i, j) is separated, then we follow the forward direction
(1±, j + 1); if (i, j) is not separated, then we follow upward (i+ 1, j + 1).
Therefore we have the following estimate on the number of closed path in Γ(2):

C
(
Γ(2), n

)
= #{paths of length n in G}+ #{remaining path of length n} 6

n
L∑
k=0

C
(
ΓND, n+ k

)
+ #V

(
Γ(2)

)

From the estimate above we obtain r(Γ(2)) 6 r(ΓND).

For a post-critically finite map we can construct an associated labeled wedge
from the corresponding Hubbard tree as it was done in subsection 2.5.1.
The following theorem shows that core entropy for post-critically finite maps is

equal to the logarithm of the growth rate of associated labeled wedge.

Theorem 2.5.8 (Core entropy for post-critically finite maps). Let gλ be a post-
critically finite cosine map, H be its Hubbard tree, W be corresponding labeled
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wedge with the associated graph Γ. Then

h(gλ) = log r (Γ) .

Proof. Proposition 2.5.7 gives that the growth rates of Γ and ΓF coincide. The
transition matrix of H is exactly the adjacency matrix of the finite model ΓF .
Lemma 2.4.4 gives that r(ΓF ) is equal to the largest eigenvalue of the adjacency
matrix, core entropy is equal to the logarithm of it.

2.6 Continuity of core entropy on spaces of
uniformly bounded external addresses

2.6.1 Relation between external addresses and wedges
Now we want to explain how to construct the associated wedge to a given ex-

ternal address s = (s0s1s2s3 . . . ) ∈ SB. This goes very similar to the procedure
of recovering kneading sequences in subsection 2.2.4. As mentioned previously, we
consider v(1) := σ (s) = (s1s2s3 . . . ) as the address of the first critical value and
v(2) := ((−s1), s2s3 . . . ) as the address of the second critical value.
Each of sets Codd = {(js1s2s3 . . . ), j ∈ ZS} and Ceven = {(j(−s1)s2s3 . . . ), j ∈

ZS} has a natural division into pairs of the kind r(k,R) and r(k, L) (this division
depends on s0, the explicit formulas are 2.2.2 and 2.2.3).
Now we want to define a labeling of the wedge corresponding to s. We say that

the label of vertex (1−, 1+) contains ∗m if and only if the ray pair r(m,R), r(m,L)
separates v(1) and v(2) (the definition of separation is given in 2.2.6). Vertices of
the kind (1−, n) are labeled with all points ∗m so that r(m,R), r(m,L) separate
v(2) and σ◦(n)(s); vertices (1+, n) are labeled with all ∗m so that r(m,R), r(m,L)
separate v(1) and σ◦(n)(s). And (i, j) with 2 6 i < j are labeled with all points
separating σ◦(i)(s) and σ◦(j)(s). The order of the critical points coincides with the
direction of moving from σ◦(i)(s) and σ◦(j)(s), therefore it is either coincides with
6Z or it is opposite to 6Z.
Note that periodic addresses (of period p and pre-period q) correspond to peri-

odic labeled wedges (of period p and pre-period q). It it so because according to
Definition 2.5.6 of periodic wedge, for two pairs (i, j), (k, l) with (i, j) ≡p,q (k, l) we
have σ◦i(s) = σ◦k(s) and σ◦j(s) = σ◦l(s), therefore labels must coincide. And for
the second condition, if i ≡p,q j then σ◦i(s) = σ◦j(s), thus (i, j) is non-separated.

2.6.2 Core entropy on SB

Motivated by Theorem 2.5.8, we define core entropy on SB.

Definition 2.6.1 (Core entropy on SB). Core entropy of s ∈ SB is equal to the
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logarithm of the growth rate of the corresponding labeled wedge W :

h(s) = log r(W )

We want to prove that core entropy is continuous on SB. In order to do this,
we need a few additional lemmas.

Lemma 2.6.2. Let s(n) be a sequence of B-bounded addresses andWn be a sequence
of corresponding wedges. If s(n) → s and s is not purely periodic (in sense of
Definition 2.2.7), then Wn → W where W is the corresponding wedge to s.

Proof. We want to show that for each vertex (i, j) ∈ Σ there exists n0 = n0(j) so
that for all n > n0 the corresponding labels of Wn and W coincide on (i, j).
Due to the fact that s is not purely periodic we have that the first symbol of the

itinerary of σ◦j(s) is not equal to any star, but equal to a whole number (same for
σ◦i(s)). Thus there exists two consecutive critical rays r1, r2 with r1 < σ◦j(s) < r2.
There exists t0 so that the strict difference of addresses in both inequalities can
be seen in first t0 symbols. Take n0 so that at least j + t0 symbols of s and s(n)

coincide (n0 exists because of convergence of the addresses). Then σ◦j(s(n)) lies
between corresponding rays rn1 , rn2 (and first entries of r1 and rn1 , as well as r2 and
rn2 , coincide). Same can be done for σ◦i(s(n)).
It means for n > n0 a pair separates σ◦i(s(n)) and σ◦j(s(n)) if and only if it

separates σ◦i(s) and σ◦j(s).

The case of purely periodic sequences we treat separately with lemmas below.

Lemma 2.6.3. Let s be a purely periodic B-bounded address of period p. Then
there exist monotone limits of wedges:

lim
s(n)↑s

W (s(n)) = W−(s) lim
s(n)↓s

W (s(n)) = W+(s).

Moreover, each of W−(s),W (s) and W+(s) is a periodic wedge of period p.

Proof. We assume that we are in the case when σ◦p(s) = r(k,R) (the case r(k, L)
is basically same).
Existence of monotone limits we want to show by checking that the labeling

eventually stabilizes for points (i, j) in all three cases: when none of i, j is divisible
by p, when they both divisible by p and when exactly one of i, j is divisible by p.
Note that the equality σ◦i(s) = r(k,R) is possible only if i ≡ 0 mod p, therefore

as in Lemma 2.6.2 we have same continuity for labels of points (i, j) when none of
i, j divisible by p.
If both i, j are divisible by p, then from Lemma 2.2.8 there exists n0 = n0(j) so

that for all n > n0 we have that the first entry of itineraries σ◦i(s(n)) and σ◦j(s(n))
coincide (and equal to k−1 if we have an address from the right and k for addresses
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from the left). Similarly if s(n) ↓ s, then the first symbol of itineraries σ◦i(s(n)) and
σ◦j(s(n)) are k for addresses from the right and k − 1 for addresses from the left.
In both cases we obtain that if i, j are divisible by p then labels of (i, j) eventually
become empty (this shows that some of diagonal vertices eventually become to be
non-separated, it is required for the proof that limiting wedges are periodic).
Now consider the case when exactly one number i or j is divisible by p, assume

i for simplicity of notations. Denote by m ∈ Z the first symbol of the itinerary
of σ◦j(s) (it is not a star because j is not divisible by p and same for σ◦j(s(n))
for large n ). From Lemma 2.2.8 we get that the first symbol of the itinerary of
σ◦i(s(n)) eventually stabilizes to k − 1 (for addresses from the right and to k for
addresses from the left), thus the labels for (i, j) eventually stabilize too.
It remains to show that all three wedges W−(s),W (s) and W+(s) are purely

periodic of period p. W (s) is purely periodic by construction. For each W−(s)
and W+(s) we know that from convergence of addresses for every m ∈ N there
exists n0 so that the first symbol of itineraries σ◦i(s(n)) and σ◦i+mp(s(n)) become
to be equal, and same for σ◦j(s(n)) and σ◦j+mp(s(n)), therefore labels of (i, j) and
(i + m1p, j + m2p) eventually becomes to be equal. We showed before, that the
diagonal vertices of the kind (m1p,m2p) are non-separated, but the same is true
for all other diagonal vertices (i, i + mp) (because the itineraries stabilize again).
ThereforeW−(s) andW+(s) are periodic. Note that the equivalence relation ≡p,0+
corresponds to the case when σ◦p(s) equals to the address of an even critical ray
and ≡p,0− corresponds to an odd critical ray.

Lemma 2.6.4. Let s be a purely periodic B-bounded address of period p. Then
the finite models of W−(s),W (s) and W+(s) are isomorphic. As a consequence,
their growth rates are equal.

Proof. From the construction in Lemmas 2.6.2 and 2.6.3 we observe that the labels
of (i, j) of the periodic wedgesW−(s),W (s) andW+(s) coincide when none of (i, j)
divisible by p or both (i, j) are divisible by p.
Let i = mp be divisible by p (the case for j is same) and the first symbol of

the itinerary of σ◦mp(s) is equal to ∗k (it means that either σ◦p(s) = r(k,R) or
σ◦p(s) = r(k, L), consider the case of r(k,R)). Denote by l ∈ Z the first symbol of
the itinerary of σ◦j(s) (it cannot be equal to any star since j is not divisible by p).
If l > k+1 then the label of (mp, j) for wedgeW−(s) is equal to {∗k, ∗k+1, . . . , ∗l−1}
and for the wedges W (s) and W+(s) it is equal to {∗k+1, . . . , ∗l−1} (or empty set
when l = k + 1).
On the associated graphs there are l−k+1 (or l−k respectively) outgoing edges

but they differ only in first two edges. Consider the case when l = k+1, then there
are two outgoing edges from (mp, j) for W−(s) (they are directed to (1±,mp+ 1)
and (1±, j+ 1), the sign depends whether k is even or odd) and only one outgoing
edge for W (s),W+(s) going to (mp + 1, j + 1). But the vertex (1±,mp + 1) is
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diagonal and the vertices (1±, j+1) and (mp+1, j+1) are equivalent under ≡p,0±,
therefore the finite models are isomorphic.
The case when l > k+ 1 adds to all W−(s),W (s),W+(s) several more outgoing

central edges directed to vertices (1±, 1∓), but the argument is same: one of the
edges of W−(s) goes to a diagonal vertex, while the next edges are correspondent
to each other.
When l 6 k we observe that the label of (mp, j) for wedges W−(s),W (s) are
{∗k−1, . . . , ∗l+1 and for W+(s) it is ∗k, ∗k−1, . . . , ∗l+1. The argument for isomor-
phism between W−(s),W (s),W+(s) is same.

Now we are ready to prove the main theorem.

Theorem 2.6.5. Core entropy is continuous in the space of uniformly bounded
sequences.

Proof. For points which are not purely periodic Lemma 2.6.2 proves the conti-
nuity of the transition between external addresses to the space of labeled wedges
and Theorem 2.5.5 gives the continuity for wedges. The case of purely periodic
sequences is covered by Lemma 2.6.4.

By continuity, we can extend Theorem 2.3.10 about a bound on core entropy to
the whole space SB.

Theorem 2.6.6. For each s ∈ SB we have

h(s) 6 log(8b+ 6).

Proof. Every address in SB can be approximated by (pre-)periodic ones, so the
statement follows from Theorems 2.3.10 and 2.6.5.
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3 Local Unboundedness of Core
Entropy at Escaping Parameters

3.1 Introduction and statement of the result
Core entropy of a post-critically finite complex polynomial can be defined as

topological entropy restricted to the Hubbard tree H of the polynomial. It can
be computed as the largest eigenvalue of the transition matrix of edges of H or,
equivalently, as the exponential growth rate of precritical points on H. More
details can be seen e.g. in [G1], [Ju], [DS] or in Chapter 2. Another interpretation
of core entropy can be viewed in the context of biaccessibility dimention of the
Julia set, details are in [MeSch] and [DS]. One can get a motivation to explore
the core entropy of transcendental maps due to existence of Homotopy Hubbard
Trees proven in [Pfr1]. A generalization of the notion of core entropy was done
for the family of exponential maps in [H1]. We want to focus on a (complex-)one-
dimensional family of cosine maps{

gλ(z) = λ
ez + e−z

2 = λ cosh(z) = λ cos(iz) | λ ∈ C∗
}

In the previous chapter several definitions of core entropy are discussed for this
family. One of the results gives an upper bound for core entropy depending on the
uniform bound for the combinatorics of a map. Moreover, it was proven that core
entropy is continuous along sequences with uniformly bounded combinatorics. A
natural question to ask is how this relates to the complex parameter space.
In this chapter we show that core entropy can be unbounded even locally in the

complex parameter space (in contrast to the continuity result mentioned above).
We prove that in a neighborhood of every real parameter λ ∈ R+ with λ > 1 there
exists a sequence of periodic parameters with the diverging core entropy.

Theorem C. Let λ0 ∈ R+ such that λ0 > 1. Then there exists a sequence λn with
|λn − λ0| → 0 and core entropy of gn(z) = λn cosh(z) tends to infinity:

h(gn)→∞.

An important step for the proof of the main theorem is to show existence of
parameters λn with prescribed combinatorics: first n points of the orbit of λn are
close to the corresponding points of the orbit of λ0 and thus grow at exponential
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rate, but the (n+ 1)-st iterate of λn “jumps” to value λn + 2πikn with kn very big.
This construction together with control on kn are sufficient to make core entropy
tending to infinity.

3.2 Growing entropy
3.2.1 Existence of parameters
In this subsection we show existence of parameters λn → λ0 with the property

g◦n+1
λn

(λn) = λn + 2πikn. A rough explanation of the idea of our construction is
the following (the precise statements are given afterwards). First, we introduce
the “parameter functions” Cn(λ) = g◦nλ (λ) and observe that for large n they are
expansive near λ0 ∈ R+ with λ0 > 1. From dynamically point of view, the
parameter functions Cn are formally defined on the parameter space, but they
have some common features with usual cosine maps defined on the dynamical
space.
Lemma 3.2.2 shows that if Cn is invertible on a neighborhood U and Cn(U) is

small, then we can “enlarge” the image passing to the next parameter function
Cn+1. This is used in Lemma 3.2.3 showing that whatever small neighborhood
U0 of λ0 we start, the image Cn(U0) contain a disk of radius π/

√
2 for a large

n. Finally, Lemma 3.2.4 shows that the next image Cn+1(U0) spreads over a
big portion of the complex plane, in particular it intersects a definite part near
the imaginary line and this gives the existence of parameters with the property
Cn+1(λ) = λ+ 2πik.
We start with the following simple lemma.

Lemma 3.2.1. Let U ⊂ C be a simply connected domain so that 0 6∈ U . Then
there is a constant G > 0 depending on U so that for all λ1, λ2 ∈ U

|log λ1 − log λ2| 6 G|λ1 − λ2|.

Proof. We have

|log λ1 − log λ2| 6 |λ1 − λ2| ·max
z∈U
|log(z)|′ = |λ1 − λ2|max

z∈U

1
|z|

TakeG := 1/|z0| where z0 ∈ U with the smallest absolute value, then the statement
follows.

Note that if U is a neighborhood of some λ0 and the diameter of U goes to zero,
then G→ 1/λ0.
For next propositions we need to define the “parameter functions”:

Cn(λ) := g◦nλ (λ).
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Thus C0(λ) = id, C1 = λ cosh λ, C2 = λ cosh(λ cosh λ) etc. and Cn+1(λ) =
λ cosh(Cn(λ)). By induction, one can observe that for real λ0 ∈ R+ the derivative
(Cn)′(λ0) is purely real and non-zero, thus the function Cn is locally biholomor-
phic; moreover for big n the derivative has a large absolute value, therefore Cn is
expansive near λ0.
Remark. Although each parameter function Cn is not the n-th iterate of some
function in the canonical sense (at least, Cn+1 6= C1 ◦ Cn), it still has some prop-
erties similar to the iterated cosh. For example, item 3 of Lemma 3.2.2 shows
that for small domains a “corrected” equality is true: Cn+1 = Cn,n+1 ◦ Cn with
a well-defined correction term Cn,n+1. This is a reason why we used superscript
instead of subscript in the notation Cn.
The following lemma gives some estimates for iterated cosh similarly to the

estimates for iterated exp in Lemma 2 in [BBS]. The idea can be stated as: if the
biholomorphic image Cn(U) is small and convex, then Cn+1 is biholomorphic on
U too.
Here and further we assume that U is a neighborhood of a real λ0 > 1.

Lemma 3.2.2. Suppose that Cn : U → V a biholomorphism with |λ| > 0.9 and
|(Cn)′(λ)| > 2 for all λ ∈ U . Also suppose that Re(V ) > ξ > 3, V is convex and
is contained in a disk of radius π/

√
2. Then

1. Cn+1 : U → Cn+1(U) is a biholomorphism;
2. |(Cn+1)′| > 2|(Cn)′| on U ;
3. the map Cn,n+1 : V → Cn+1(U) given by Cn,n+1 := Cn+1 ◦ (Cn)−1 is a biholo-

morhism with |(Cn,n+1)′| > eξ/8.

Proof. 1. It is sufficient to prove that Cn+1 is injective on U . Assume for some
λ1, λ2 ∈ U we have the following equalities :

Cn+1(λ1) = Cn+1(λ2)
λ1 coshCn(λ1) = λ2 coshCn(λ2)

log coshCn(λ1)− log coshCn(λ2) = log λ2 − log λ1

The last equality is obtained by taking an appropriate branch of the loga-
rithm, which exists due to biholomorphicity of Cn (the equations are equiv-
alent except for the choice of the logarithm branch in the last equality).
We want to prove the following chain of inequalities for λ1, λ2 ∈ U :

|log coshCn(λ2)− log coshCn(λ1)| > 0.92|Cn(λ2)− Cn(λ1)| >
> 0.92 · 2|λ2 − λ1| > 0.93 · 2 · |log λ2 − log λ1|, (3.2.1)

then it implies that the equality Cn+1(λ1) = Cn+1(λ2) is true for λ1, λ2 ∈ U
only when λ1 = λ2.
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Denote zj := Cn(λj), for j = 1, 2. For the first inequality we can observe
that

log cosh z2 − log cosh z1 =
∫ z2

z1
(log cosh z)′ dz =

=
∫ z2

z1
tanh(z)dz =

∫ z2

z1

(
1− 2e−2z

1 + e−2z

)
dz.

A simple computation shows that 2e−2z/(1 + e−2z) < 0.1 if Rez > ξ > 3,
thus |tanh(z)| > 0.9. Moreover, for the same reason we obtain that the
argument of tanh(z) is close to 1, to be more precise |cos arg tanh(z)| >
1/
√

(1 + 0.01) > 0.9, this proves the first inequality in chain (3.2.1).
The second inequality can be obtained if we use biholomorphicity of Cn,
convexity of V and the bound for the derivative:

|λ2−λ1| = |(Cn)−1(z2)−(Cn)−1(z1)| 6 sup
z∈V
|
(
(Cn)−1

)′
(z)|·|z2−z1| 6

1
2 |z2−z1|.

And the last part of chain (3.2.1) is Lemma 3.2.1, |log λ1−log λ1| 6 G|λ1−λ2|
with G = 10/9, because |λ| > 0.9 for all λ ∈ U .

2. We have(
Cn+1

)′
(λ) = coshCn(λ) + λ sinhCn(λ) · (Cn)′(λ) =

= eC
n(λ)

2
(
1 + e−2Cn(λ) + λ

(
1− e−2Cn(λ)

)
(Cn)′(λ)

)
.

Since |e−2Cn(λ)| 6 e−2ξ < 1/9 6 1− (0.8/|λ|), we obtain that

|λ
(
1− e−2Cn(λ)

)
| > 0.8.

For the same reason we have |1 + e−2Cn(λ)| < 1.1. Thus we can write:

|
(
Cn+1

)′
(λ)| > eξ

2 |0.8(Cn)′(λ)− 1.1| > 2|(Cn)′(λ)|,

where the last inequality holds since |(Cn)′(λ)| > 2 and ξ > 3.
3. Cn,n+1 : V → Cn+1(U) is a biholomorphism as a composition of two biholo-

morphic maps, it remains to show the estimate for the derivative. Recall
Cn,n+1(z) = λ(z) cosh(z) with λ(z) = (Cn)−1(z).

(
Cn,n+1

)′
= λ sinh z + λ′ cosh z = ez

(
λ

1− e−2z

2 + λ′
1 + e−2z

2

)

Similarly as in previous estimates, we have |λ(1−e−2z)| > 0.8, |1+e−2z| < 1.1.
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Also, |λ′(z)| 6 1/2 since |Cn| > 2. So we can write

|λ1− e−2z

2 + λ′
1 + e−2z

2 | > |0.82 −
1.1
2 · 2 | =

1
8 ,

and therefore |(Cn,n+1)′| > eξ/8.

Using the previous lemma we can prove that whatever small neighborhood of λ0
we take, we can find a sufficiently large n so that Cn(U) is big due to expansivity
of Cn.

Lemma 3.2.3. For every λ0 as above, and every neighborhood U0, there is an
N0 ∈ N (depending on U0) so that for all n > N0, there is a neighborhood Un ⊂ U0
of λ0 so that Cn(Un) is a disk of radius π/

√
2, and Cn+1 is injective on Un.

Proof. Note that for sufficiently small U0 we can always get |(Cn)(λ0))′| > 2.
In particular this means that Cn is locally biholomorphic. Suppose we have a
neighborhood Ũn so that Cn : Ũn → Cn(Ũn) is biholomorphic and Cn(Ũn) contains
a disk of some radius. Denote by rn the largest possible radius and by Vn ⊂ Cn(Ũn)
the corresponding disk. If rn > π/

√
2, then we are done, taking Un ⊂ Ũn as the

preimage of Vn.
If rn 6 π/

√
2, then we want to apply Lemma 3.2.1. By restricting the radius of

Vn we can assure that λ > 0.9. For every n > 3 and λ > 0.9 we have Re(Vn) >
ξ > 4 and Vn is convex. Therefore we can use the statements of the lemma. In
particular, Cn+1 is biholomorphic on Ũn and the absolute value of derivative of
Cn,n+1 is bounded by eξ/8. By the Koebe 1/4-theorem, the image contains a disk
around Cn+1(λ0) of radius rn+1 > rne

ξ/32 > rn.
Repeating this procedure finite number of steps we obtain that for some N0 we

have rN0 > π/
√

2 and same for other n > N0.

Lemma 3.2.4 (Critical point image). The neighborhood Un from Lemma 3.2.3
contains parameters λn so that Cn+1(λn) = λn + 2πikn with kn ∈ Z and |kn| >
Cn(λ0).

Proof. The image Cn(Un) is a disk of radius π/
√

2 and it contains a square of side
π with the center at z0 := Cn(λ0), denote the square by Qn. Consider f : Qn → C
given by f(z) := λ(z)(cosh(z) − 1) = Cn,n+1(z) − λ(z), where λ(z) = (Cn)−1 (z).
In order to understand the image of Qn under f we can compose f to cosh and
then subtract 1 and multiply by λ(z) (see Figure 3.1).
The boundary of cosh(Qn) consists of two imaginary intervals joining cosh(z0−

π/2± iπ/2) with cosh(z0 +π/2± iπ/2) and two arcs being half-ellipses. Note that
both elliptic arcs are almost circular ones of radii r± = 1/2 exp(z0 ± π/2) since

cosh
(
z0 ±

π

2 + it
)

= 1
2 exp

(
z0 ±

π

2

)
(exp(it) + exp(−2z0π − it)) .
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Figure 3.1 – Schematic visualization of f

Similarly, as in previous lemmas, |exp(−2z0π−it)| 6 0.1, thus cosh(Qn) contains
a half-annulus between radii 1.1r− and 0.9r+. Note that 0.9r+ − 1.1r− � 4π.
Subtraction of 1 moves the image to the left, but this still contains two imaginary
intervals of of length bigger then 4π.
Multiplication by λ(z) + 1 does not distort cosh(Qn) + 1 too much. Every point

is multiplied by a number with absolute value |λ| > 0.9 and a small argument
arg λ. Note that if z in the upper half plane then the argument is positive and if
z in the lower half plane then the argument is negative.
This means that f(Qn) contains a purely imaginary interval of length greater

than 2π.
Moreover, f is injective on Qn, this can be obtained from injectivity of Cn,n+1

on Qn. Indeed, Qn is simply connected and the derivative is bounded from below:

|f ′(z)| = |
(
Cn,n+1

)′
+ λ′(z)| > eξ

8 −
1
2 > 0.

This implies that there exists a point zn such that f(zn) = 2πikn with |kn| >
1.1r− � z0. Using zn = Cn(λn) we can rewrite the equality f(zn) = 2πikn also as
Cn+1(λn) = λn + 2πikn with |kn| > Cn(λ0) and this is exactly the statement we
wanted to prove.

Remark. We know that the sequence Cn(λ0) grows as an iterated exponential
and in the construction above we obtain that |kn| is of order Cn+1(λ0). As we do
not want to deal with additional constants, we “sacrifice” one iterate and get that
|kn| > z0 = Cn(λ0).
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3.2.2 Estimate on core entropy
In this subsection we want to estimate core entropy for cosine maps defined by

the preperiodic parameters λn from Lemma 3.2.4 (be “preperiodic parameters”
we mean those cosine maps whose critical values lie on a preperiod). The latter
lemma guaranties the property Cn+1(λn) = λn + 2πikn, or equivalently,

g
◦(n+1)
λn

(λn) = λn + 2πikn
.
Since such maps are post-critically finite, their (Homotopy) Hubbard trees are

well-defined (see [Pfr1] for details) and we can use any of the “classical” definitions
of core entropy, for example, the following.

Definition 3.2.5 (Core entropy for pcf cosine maps). Let g be a post-critically
finite cosine map, H be its (Homotopy) Hubbard Tree and N(n) be the number
of precritical points on H of order 6 n. Then core entropy of g is defined as

h(g) = lim sup
n→∞

1
n

logN(n).

The following proposition gives an explicit lower bound on core entropy for
precritical parameters from Lemma 3.2.4.

Proposition 3.2.6 (Bound on core entropy). Let N(m) be the number of precrit-
ical points of order 6 m on the Hubbard tree of gn(z) = λn cosh(z), where λn is so
that g◦(n+2)

n (0) = λn + 2πikn. Then the following estimate holds

N (m(n+ 2)) > (2|kn| − 2)m+1.

As a consequence, a lower bound on core entropy is:

h(gn) > log(2|kn| − 2)
n+ 2 .

Proof. For two points a, b on the Hubbard tree Hn we denote by [a, b] the arc on
Hn connecting a and b. Let I := [λn, λn + 2πikn] ⊂ H. Obviously, the number
of precritical points of order 6 m on the whole Hn is bounded from below by
the number of precritical points on I. Every dynamical partition for cosine is
always 2πi-periodic, thus I contains 2|kn| − 1 critical points lying between λn and
λn + 2πikn, so N(0) > 2|kn| − 1. For simplicity of notations, assume kn > 0.
Consider a subinterval of I lying between two consecutive critical points, Il :=

[πil, πi(l + 1)]. We claim that every such subinterval (there are 2kn−2 of them on
I) contains at least 2kn−1 precritical points of order 6 n+2. The key observation
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is that the union of n+ 2 forward-iterates of Il contains I:
n+2⋃
j=1

g◦jn ([πil, πi(l + 1)]) ⊃ I.

Indeed, the image of Il is [−λn, λn], the next image contains [λn, gn(λn)] (because
[−λn, λn] contains 0 being mapped to λn and ±λn are mapped to gn(λn)). Next
iterates of the latter interval are of the kind [gj−1

n (λn), gjn(λn)], j = 2, . . . , n + 2.
Their union contains I.
The observation above gives the fact that each Il contains points being mapped

to the points of I in at most n+ 2 iterates, i.e. the number of precritical points of
order 6 n+ 2 on Il is bounded from below by 2kn − 1. This means that that the
number of precritical points of order 6 n + 2 is bounded by (2kn − 2)(2k − 1) >
(2kn − 2)2.
Essentially it was the inductive step, because the number of precritical points

of order 6 2(n+ 2) on Il can be bounded from above by the number of precritical
points of order 6 (n+ 2) on I, thus we immediately obtain

N(2(n+ 2)) > (2kn − 2)3

Repeating this procedurem times we get the required inequality forN(m(n+2)).
Plugging the estimate to the definition of core entropy, we immediately obtain

h(gn) = lim sup
m→∞

1
m

logN(m) > lim
m→∞

1
m(n+ 2) logN(m(n+ 2)) > log(2|kn| − 2)

n+ 2 .

Now we can prove the main theorem.

Theorem 3.2.7. Let λ0 ∈ R+ such that λ0 > 1. Then there exists a sequence λn
with |λn − λ0| → 0 and core entropy of gn(z) = λn cosh(z) tends to infinity:

h(gn)→∞.

Proof. Lemmas 3.2.3 and 3.2.4 imply that for every U0 there exist N0(U0) so that
for all m > N0 there are periodic parameters λm with the property g◦m+1

m (λm) =
λm + 2πikm . Let U0 := D(λ0, 10−n) to be the disk of radius 10−n centered at
λ0. Then (probably, after taking subsequences) there is a sequence λn → λ0 with
g◦n+1
n (λn) = λn + 2πikn.
Proposition 3.2.6 gives a lower bound on core entropy of gn

h(gn) > log(2|kn| − 2)
n+ 2 .

Divergence of the latter fraction can be obtained from the inequality |kn| >
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Cn(λ0). Indeed, the denominator grows linearly, while Cn(λ0) grows as an iterated
exponential. In particular, there exists an α so that for large n we have log(2|kn|−
2) > log(2Cn(λ0)− 2) > αCn−1(λ0)� αen−1 and this finalizes the proof.

Remark. We believe that that for parameters gn core entropy is equal exactly
to log(2|kn|)/(n + 2), but this requires more work. A reason why log(2|kn| − 2)
(instead of log(2|kn|)) was in the numerator in Proposition 3.2.6 is because at each
step of our computation we discarded two “end-subintervals” (the ones containing
of the endpoints of Il). Our estimate is still sufficient to obtain diverging core
entropy.
Remark. If we want to compute core entropy of gn in terms of transition matrix
An, then we obtain the same lower bound. This is because Proposition 3.2.6 gives
existence of an interval covering itself in n + 2 iterates with degree > 2|kn| − 2.
This means that a lower bound on the largest eigenvalue of (An)n+2 is 2|kn| − 2.
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4 Outlook

4.1 Questions related to Chapter 2
4.1.1 Relation to complex parameter space
Even if we have continuity of core entropy in every SB, we have not proved similar

results in the global complex parameter space C∗ or at least on the subspace of
parameters corresponding non-escaping critical values (the combinatorics is not
uniformly bounded there, while core entropy is well-defined). This question is
partially discussed in Chapter 3 and a surprising discontinuity result is obtained.

4.1.2 Hölder-continuity or Universal space is not metrizable
In [Ti1] it was proved that for quadratic polynomials core entropy not only con-

tinuous, but also Hölder-continuous (near parameters with positive core entropy).
The latter notion depends very much on the metric considered. In our case, every
SB is metrizable and one standard metric can be defined as follows. For two ex-
ternal addresses x = (x0x1x2 . . . ) and y = (y0y1y2 . . . ) we introduce δ(xj, yj) being
equal to 1 if xj = yj and 0 otherwise. Then the distance between x and y is equal
to

d(x, y) =
∞∑
j=0

1
2j δ(xj, yj).

This metric can be obtained from the discrete metric on B, when we assume all
symbols are equidistant from each other. We can also obtain another geometrically
intuitive metric on SB if the distance between symbols a1, a2 ∈ B is |a2 − a1|:

d(x, y) =
∞∑
j=0

1
(2b+ 1)j |yj − xj|.

The reason to put (2b + 1)j in the denominator is because the metric should
respect the lexicographical order on SB. The metric degenerates when b → ∞,
but this is not surprising: the universal space ∪SB with the inductive topology
(discussed in Remark on p. 18) is not first countable and therefore is not metrizable
(and the question of Hölder-continuity is not even defined).
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4.1.3 Full cosine family
In [GT] labeled wedges were introduced for polynomials of higher degrees. The

labeled wedges consist of several layers corresponding to different critical orbits. In
context of cosine maps one can consider the full cosine family {aez+b−z | a, b ∈ C∗}
and introduce labeled wedges (with two layers). The proof of continuity in spaces
with uniformly bounded combinatorics requires more work, but we believe the
statement is true.

4.1.4 Other families of entire transcendental maps
There are more possible generalizations if we allow critical points of higher degree

or asymptotic values. Letting a map to have an asymptotic value is a separate
interesting case partially studied in [H1] for the exponential family.

4.2 Questions related to Chapter 3
4.2.1 Other (periodic) parameter rays
One reason to work with the particular parameter ray R+ is simplicity of com-

putations. For parameters λ0 with sufficiently high potential escaping on another
fixed (or periodic) ray one can formulate statements similar to Lemmas 3.2.2, 3.2.3,
3.2.4, because we still have essentially horizontal escape for λ0 and large expansion
of parameter functions Cn near λ0.

4.2.2 Smaller potentials
Periodic parameters with growing core entropy can be possibly found for λ0 of

a small potential (for example, for R+ we mean λ0 with 0 < λ0 < 1). The main
idea is that for each λ0 we can “wait” for a finite number of iterations m0 until it
gets a sufficiently fast rate of escape and then use ideas of the construction above.
In this case the estimate on the core entropy may change to the kind

h(gn) > log(2|kn| − 2)
m0 + n+ 2 ,

but the diverging numerator should remain.

4.2.3 Discontinuity of core entropy on the bifurcation locus
Speculating further, one can assume that core entropy cannot be continuous in

the bifurcation locus of cosine parameters. The reason for this is that parameters
escaping on rays are dense in the bifurcation locus and every parameter escaping on
rays can be approximated by pcf parameters with growing entropy. The estimates
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of core entropy in our method depend on the potential and this can be an obstacle
for proving of discontinuity of core entropy on the bifurcation locus, so the question
remains open.

55



Bibliography
[A97] L. Alsedà, J. Guaschi, J. Los, F. Man̄osas, P. Mumbru, Canonical represen-

tatives for patterns of tree maps, Topology 36(5) (1997), 1123–1153.
[BBS] M. Bailesteanu, V. Balan, D. Schleicher, Hausdorff Dimension of Expo-

nential Parameter Rays and Their Endpoints, Nonlinearity 21 (2007), no. 1,
113–120.

[BR1] A. Benini, L. Rempe, A landing theorem for entire functions with bounded
post-singular sets, Geom. and Funk. An. 30 (2020), 1465–1530.

[BFH] B. Bielefeld, Y. Fisher, J. Hubbard, The classification of critically preperi-
odic polynomials as dynamical systems, J. Amer. Math. Soc. 5 (1992), no. 4,
721–762.

[BFP] A.M. Benini, J.E. Fornæss, H. Peters, Entropy of transcendental entire
functions, arXiv:1808.06360[math.DS].

[DS] D. Dudko, D. Schleicher, Core Entropy of Quadratic Polynomials, Arnold
Math. J. 6 (2020), 333–385.

[G1] Y. Gao, On Thurston’s core entropy algorithm, Trans. Amer. Math. Soc. 373
(2020), 747–776.

[GT] Y. Gao, G. Tiozzo, The core entropy for polynomials of higher degree,
arXiv:1703.08703 [math.DS].

[H1] M. Haßler, Core entropy of unicritical maps, Bachelor thesis, Jacobs Univer-
sity Bremen, 2020.

[Ju] W. Jung, Core entropy and biaccessibility of quadratic polynomials,
arXiv:1401.4792[math.DS].

[LM93] J. Llibre, M. Misiurewicz, Horseshoes, entropy and periods for graph maps,
Topology, 32(3) (1993) 649–664.

[L1] M. Lyubich, Conformal Geometry and Dynamics of Quadratic Polyno-
mials, vol I-II, Book in preparation, http://www.math.stonybrook.edu/
~mlyubich/book.pdf

[L83] M. Lyubich, Entropy properties of rational endomorphisms of the Riemann
sphere, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 351–385.

[MB] H. Mihaljević-Brandt, Topological Dynamics of Transcendental Entire Func-
tions, PhD-thesis, https://livrepository.liverpool.ac.uk/3069540/

56

http://www.math.stonybrook.edu/~mlyubich/book.pdf
http://www.math.stonybrook.edu/~mlyubich/book.pdf
https://livrepository.liverpool.ac.uk/3069540/


[dMvS] W. de Melo, S. van Strien, One-Dimensional Dynamics, Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in
Mathematics, 25 (1993), 606 p.

[MeSch] P. Meerkamp, D. Schleicher, Hausdorff dimension and biaccessibility for
polynomial Julia sets, Proceedings of the Am. Math. Soc. 141 (2013), no. 2,
533–542.

[MS] M. Misiurewicz, W. Szlenk, Entropy of piecewise monotone mappings, Studia
Math., 67 (1980), 45–63.

[MP77] M. Misiurewicz, F. Przytycki, Topological entropy and degree of smooth
mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977),
no. 6, 573–574.

[Pfr1] D. Pfrang, Homotopy Hubbard Trees for Post-Singularly Finite Tran-
scendental Entire Maps, PhD-thesis, https://opus.jacobs-university.de/
files/893/phd20190805_Pfrang.pdf, 2019.

[Poi1] A. Poirier, Hubbard trees, Fund. Math. 208 (2010), no. 3, 193–248.
[PRS] D. Pfrang, M. Rothgang, D. Schleicher, Homotopy Hubbard Trees for post-

singularly finite exponential maps, arXiv:1812.11831 [math.DS]
[RoS] G. Rottenfußer, D. Schleicher, Escaping Points of the Cosine Family, Tran-

scendental Dynamics and Complex Analysis, 2008, 396–424.
[RRRS] G. Rottenfußer, J. Rückert, L. Rempe, D. Schleicher, Dynamic rays of

bounded-type entire functions, Ann. of Math. (2) 173 (2011), no. 1, 77–125.
[Sch1] D. Schleicher, The Dynamical Fine Structure of Iterated Cosine Maps and

a Dimension Paradox, Duke Math. Journal 136 (2007), no. 2, 343–356.
[Ti1] G. Tiozzo, Continuity of core entropy of quadratic polynomials, Invent. Math.

203 (2016), no. 3, 891–921.
[Wen05] M. Wendt, Zufällige Juliamengen und invariante Maße mit maximaler

Entropie, Ph.D. thesis, University of Kiel, https://macau.unikiel.de/
receive/dissertation_diss_00001412 (German), 2005.

57

https://opus.jacobs-university.de/files/893/phd20190805_Pfrang.pdf
https://opus.jacobs-university.de/files/893/phd20190805_Pfrang.pdf
https://macau.unikiel.de/receive/dissertation_diss_00001412
https://macau.unikiel.de/receive/dissertation_diss_00001412

	Affidavit
	Liste de publications et participation aux conférences
	Résumé
	Abstract
	Résumé substanciel
	Remerciements
	Contents
	Introduction
	Combinatorial Continuity of Core Entropy for Cosine Maps with Uniformly Bounded Combinatorics
	Introduction and statements of the result
	Combinatorics of the cosine map
	Static partition for complex cosine and external addresses
	Abstract bounded external addresses
	Topology and order in spaces of uniformly bounded external addresses
	Dynamical partition and itineraries
	From external addresses to kneading sequences

	Core entropy for post-critically finite cosine
	Topological entropy
	(Homotopy) Hubbard trees for post-critically finite cosine
	Definitions of core entropy for pcf maps

	Graphs with bounded cycles
	Preliminaries from graph theory
	Growth rate and spectral determinant
	Weak covers of graphs

	Wedges and their properties
	Wedge as an object encoding combinatorics of a map
	Definition of a wedge
	Growth rate on the space of labeled wedges
	Periodic wedges and their finite models

	Continuity of core entropy on spaces of uniformly bounded external addresses
	Relation between external addresses and wedges
	Core entropy on SB


	Local Unboundedness of Core Entropy at Escaping Parameters
	Introduction and statement of the result
	Growing entropy
	Existence of parameters
	Estimate on core entropy


	Outlook
	Questions related to Chapter 2
	Relation to complex parameter space
	Hölder-continuity or Universal space is not metrizable
	Full cosine family
	Other families of entire transcendental maps

	Questions related to Chapter 3
	Other (periodic) parameter rays
	Smaller potentials
	Discontinuity of core entropy on the bifurcation locus



