Thèse soutenue

Biodétection par transfert d'énergie de fluorescence de quantum dots couplés à des modes de galerie vers des accepteurs fluorescents

FR  |  
EN
Auteur / Autrice : Subha Jana
Direction : Thomas Pons
Type : Thèse de doctorat
Discipline(s) : Chimie des Matériaux
Date : Soutenance le 10/12/2021
Etablissement(s) : Université Paris sciences et lettres
Ecole(s) doctorale(s) : École doctorale Physique et chimie des matériaux (Paris)
Partenaire(s) de recherche : Laboratoire : Laboratoire de physique et d’étude des matériaux (Paris ; 2010-....) - Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) / LPEM
établissement opérateur d'inscription : Ecole supérieure de physique et de chimie industrielles de la Ville de Paris (1882-....)
Jury : Président / Présidente : Rodolphe Jaffiol
Examinateurs / Examinatrices : Thomas Pons, Rodolphe Jaffiol, Ngoc Diep Lai, Valentina Krachmalnicoff, Jérôme Wenger, Niko Hildebrandt
Rapporteurs / Rapporteuses : Ngoc Diep Lai

Résumé

FR  |  
EN

La quantification de biomarqueurs spécifiques est un outil de diagnostic important. Les tests immunologiques standards tels que ELISA nécessitent de nombreuses étapes de lavage et une amplification du signal, en particulier à faible concentration. D'autre part, le transfert d'énergie résonant de type Förster (FRET) a été utilisé pour concevoir des tests biologiques homogènes en une seule étape qui ne nécessitent aucune étape de lavage, où le biomarqueur permet la formation d'un complexe "sandwich" impliquant des anticorps marqués par le donneur et d'autres marqués par l'accepteur. Le FRET du donneur vers l'accepteur fournit alors une signature optique de la formation du complexe, et donc du biomarqueur d'intérêt. Cependant, le FRET, qui est très sensible à la distance donneur-accepteur, ne se produit à un taux significatif que lorsque la distance donneur-accepteur est inférieure à 10 nm; la grande taille de nombreux complexes biologiques limite l'efficacité du transfert d'énergie, empêchant une détection sensible. Je propose ici une nouvelle modalité de transfert d'énergie qui utilise des microcavités optiques en solution. Ensuite, je décris un schéma de biodétection pour détecter un oligonucléotide biomarqueur de cancer en solution.À cette fin, j'ai conçu des structures de microcavité dans lesquelles des nanocristaux fluorescents sont placées à l'intérieur de microsphères diélectriques pour permettre un couplage fort de leur émission de fluorescence avec les modes de résonance de la cavité, appelés modes de galerie (WGM). J'ai étudié les propriétés structurelles et optiques de ces microcavités optiques. J'ai également caractérisé le transfert d'énergie entre ces modes et des nanoparticules acceptrices chargées de colorants présentes dans le champ évanescent, à quelques dizaines de nm au-dessus de la surface des microsphères. J’ai développé un modèle analytique pour caractériser les mécanismes de transfert d'énergie médié par les WGM (WGET). De plus, une comparaison entre WGET et FRET a révélé la supériorité du WGET dans le contexte de la construction de capteurs en termes de sensibilité et de portée de détection. Dans la dernière partie de la thèse, j’ai développé une stratégie pour fonctionnaliser ces microcavités optiques et leur permettre d'interagir avec des analytes cibles tels que l'ADN, l'ARN et les protéines avec une bonne spécificité. Cette stratégie a ensuite été adaptée pour fixer des sondes de capture d'ADN sur les microcavités activées par WGM. En utilisant les microsphères fixées à l'ADN comme donneur optique en combinaison avec des nanoparticules de colorants fonctionnalisées par un ADN complémentaire comme accepteurs optiques, un test de biodétection a été démontré avec succès pour détecter en solution un biomarqueur de cancer appelé survivine. Ce test a démontré une bonne sensibilité envers la cible, et s'est également avéré très spécifique. Le schéma de détection a été démontré dans un microscope confocal, au niveau de microsphères individuelles, puis transposé avec succès dans un instrument beaucoup plus simple tel qu'un spectrofluoromètre qui mesure la fluorescence de l'ensemble de la solution; la signature de la formation d'un complexe sandwich a été détectée efficacement.En conclusion, j'ai démontré que le transfert d'énergie assisté par microcavité présente plusieurs avantages par rapport aux tests FRET ordinaires. Un véritable test de biodétection basé sur le principe du WGET a également été conçu avec succès pour détecter des biomarqueurs du cancer avec une sensibilité et une spécificité élevées. Cette étude ouvre donc de nombreuses possibilités pour concevoir des tests plus performants et plus précis pour détecter diverses entités biologiques.