Anisotropie de propagation de fissure de fatigue dans le superalliage INCONEL 718 élaboré par fabrication additive
Auteur / Autrice : | Mélanie Prost |
Direction : | Vincent Maurel |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique |
Date : | Soutenance le 07/12/2021 |
Etablissement(s) : | Université Paris sciences et lettres |
Ecole(s) doctorale(s) : | Ecole doctorale Ingénierie des Systèmes, Matériaux, Mécanique, Énergétique (Paris) |
Partenaire(s) de recherche : | Laboratoire : ENSMP MAT. Centre des matériaux (Evry, Essonne) |
établissement de préparation de la thèse : École nationale supérieure des mines (Paris ; 1783-....) | |
Jury : | Président / Présidente : Véronique Doquet |
Examinateurs / Examinatrices : Vincent Maurel, Patrice Peyre, Sylvain Dépinoy, Djamel Missoum Benziane, Alain Köster | |
Rapporteur / Rapporteuse : Rafael Estevez, Etienne Pessard |
Mots clés
Mots clés contrôlés
Résumé
La fabrication additive (FA), et notamment la fabrication par lit de poudre (Laser Beam Melting / LBM) est un procédé mature pour certains matériaux, dont certains superalliages base Ni faiblement chargés, matériaux cibles pour l'industrie aéronautique. Les caractérisations de propriétés mécaniques pour des pièces FA sont le plus souvent abordées sous l'angle seul des propriétés de traction, alors que pour de nombreuses applications, c'est la fatigue qui permettra de dimensionner une pièce. Il a ainsi été montré que ces matériaux présentent une anisotropie de comportement. L’objectif de cette thèse est d’analyser l’anisotropie de propagation de fissure de fatigue. Dans un premier temps, nous avons choisi deux conditions de fabrication qui nous ont permis d’obtenir deux microstructures distinctes. Des essais d’écrouissage nous ont permis d’identifier un comportement anisotrope pour ces deux configurations. Nous avons complété cette étude en analysant l’anisotropie de vitesses et chemins de propagation de fissure. Ces essais permettent en effet d'établir clairement le rôle des hétérogénéités de microstructure. Une simulation numérique de ces essais nous a permis de quantifier l’énergie nécessaire à l’avance de fissure dans un matériau fortement anisotrope.