Thèse soutenue

Élaboration de couches minces d’oxydes dopées terres rares par CVD pour les technologies quantiques

FR  |  
EN
Auteur / Autrice : Nao Harada
Direction : Alexandre Tallaire
Type : Thèse de doctorat
Discipline(s) : Physique et chimie des matériaux
Date : Soutenance le 19/10/2021
Etablissement(s) : Université Paris sciences et lettres
Ecole(s) doctorale(s) : École doctorale Physique et chimie des matériaux (Paris)
Partenaire(s) de recherche : Laboratoire : Institut de recherche de chimie Paris - Institut de recherche de chimie Paris
établissement opérateur d'inscription : École nationale supérieure de chimie (Paris)
Jury : Président / Présidente : Ian Cameron Vickridge
Examinateurs / Examinatrices : Anne Louchet-Chauvet, David Hunger
Rapporteurs / Rapporteuses : Noëlle Gogneau, Virginie Nazabal

Résumé

FR  |  
EN

Ce travail a été mené dans le cadre du projet européen SQUARE qui vise à démontrer des fonctionnalités dans le domaine des technologies quantiques au moyen de matériaux oxydes dopés terre-rare. L’ambition de cette thèse est d'établir les premières briques élémentaires permettant d'envisager le développement futur d'ordinateurs et de mémoires quantiques ainsi que la mise à l'échelle de ces composants. Dans ce cadre, des temps de cohérence optique, c’est-à-dire des durées pendant lesquelles l’information quantique est maintenue, les plus longs possibles sont visés. En particulier, je me suis intéressé à une matrice d’oxyde d’yttrium (Y2O3) dopée par des ions europium (Eu3+) sous forme de couches minces sur silicium. La technique de synthèse qui a été développée est le dépôt chimique en phase vapeur avec injection liquide directe (DLI-CVD) qui autorise une grande souplesse dans la composition et la mise en œuvre. Les conditions de dépôt ont été optimisées afin de permettre la production de couches minces polycristallines de très bonne pureté et qualité cristalline, conduisant à des solutions solides d’(Y(1-x)Eux)2 dans une large gamme de dopage. Les propriétés optiques des ions de terre rare dans cette matrice ont été étudiées par spectroscopie à haute résolution. Pour des dopages de 2 % en Eu, des largeurs inhomogènes de près de 20 GHz et des largeurs homogènes mesurées par la technique de creusement de trou spectral de 10 MHz, ont pu être démontrées ce qui est à notre connaissance les plus faibles obtenues pour des couches minces sub-micrométriques. Ces valeurs restent néanmoins supérieures à celles rapportées pour des matériaux de composition équivalente sous forme de cristaux massifs ou de nanoparticules. Malgré les bénéfices apportés par cette plateforme en couche mince, des défauts spécifiques induisant de la décohérence existent donc et il sera nécessaire de les identifier et de réduire leur présence. Ce travail a permis d’ouvrir des perspectives très intéressantes en vue de l’utilisation de ces matériaux pour la réalisation de structures hybrides ou de résonateurs optiques pour les communications ou le traitement de l’information quantique.