Voisinages anisotropes de superpixels pour la segmentation d'images de structures fines
Auteur / Autrice : | Christophe Ribal |
Direction : | Sylvie Le Hégarat |
Type : | Thèse de doctorat |
Discipline(s) : | Traitement du signal et des images |
Date : | Soutenance le 17/12/2021 |
Etablissement(s) : | université Paris-Saclay |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Référent : Faculté des sciences d'Orsay |
graduate school : Université Paris-Saclay. Graduate School Informatique et sciences du numérique (2020-….) | |
Laboratoire : Systèmes et applications des technologies de l'information et de l'énergie (Gif-sur-Yvette, Essonne ; 2002-....) | |
Jury : | Président / Présidente : Thomas Rodet |
Examinateurs / Examinatrices : Nicolas Passat, Sylvie, Julie Chambon, Su Ruan | |
Rapporteur / Rapporteuse : Nicolas Passat, Sylvie, Julie Chambon |
Mots clés
Résumé
En vision robotique, segmenter une image consiste à décomposer cette image en régions homogènes, en associant un label à chaque élément la constituant. Cette thèse propose une approche générique vis à vis de ces éléments, pixels ou superpixels, en les désignant communément sous le terme de sites. La résolution du problème inverse qu'est la segmentation d'images est généralement rendue robuste au bruit grâce à la formulation d'une hypothèse Markovienne sur le champ des labels, et d'un a priori d'homogénéité des labels au sein des voisinages. Cependant, la solution optimale (ou régularisée) tend alors à présenter des artéfacts indésirables, notablement la perte prématurée des structures fines, définies comme des structures dont la taille est réduite selon au moins une dimension. La construction de voisinages anisotropes adaptés à ces structures permet de pallier ce problème. Ces voisinages sont calculés après une première étape d'estimation des orientations des structures fines présentes dans l'image. Trois options, dont deux adaptées de la littérature, sont proposées pour réaliser cette étape cruciale : la minimisation d'une énergie, le vote de tenseurs, et le RORPO. À partir des cartes d'orientation obtenues, quatres méthodes de construction des voisinages anisotropes sont retenues. Tout d'abord, un voisinage défini par des formes géométriques est présenté, puis la restriction à un nombre fini de configurations pour chaque site permet de formuler un voisinage basé sur un dictionnaire. Enfin, deux voisinages basés sur des chemins entre sites (l'un à extrémités fixées et l'autre à taille constante) sont considérés, tous deux faisant intervenir une énergie à minimiser. Dans ce manuscrit, les segmentations obtenues par estimateur du Maximum A Posteriori (obtenu à partir de coupes de graphes) avec les voisinages anisotropes proposés sont comparées à celles supposant un voisinage isotrope dans le cas de deux applications : la détection de structures fines et la reconstruction de cartes de profondeur en Shape From Focus. Les résultats des différentes variantes proposées sont évalués qualitativement et quantitativement dans le but de souligner les apports de la méthode proposée.