Thèse soutenue

Télédétection hyperspectrale pour l’identification et la caractérisation de minéraux industriels

FR  |  
EN
Auteur / Autrice : Ronan Rialland
Direction : Charles SoussenRodolphe MarionVéronique Carrère
Type : Thèse de doctorat
Discipline(s) : Traitement du signal et des images
Date : Soutenance le 13/12/2021
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire des signaux et systèmes (Gif-sur-Yvette, Essonne ; 1974-....)
Equipe de recherche : Signaux
référent : CentraleSupélec (2015-....)
graduate school : Université Paris-Saclay. Graduate School Informatique et sciences du numérique (2020-....)
Jury : Président / Présidente : Thomas Corpetti
Examinateurs / Examinatrices : Patrick Pinet, Antoine Roueff, Anne Bourguignon
Rapporteurs / Rapporteuses : Patrick Pinet, Antoine Roueff

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

La télédétection hyperspectrale permet l’étude de larges zones d’intérêt via la caractérisation physico-chimique des surfaces observées. Cette thèse concerne l’identification de minéraux rencontrés sur des sites industriels à partir de leurs spectres de réflectance observés dans le domaine réflectif [400-2500] nm. Un modèle physique paramétrique adapté est proposé pour représenter un spectre comme la somme d’un continuum et de formes spectrales localisées représentant les formes d’absorption. La première contribution est une procédure de déconvolution spectrale pour estimer adaptativement le nombre d’absorptions dans un spectre ainsi que les paramètres associés. Cette procédure est composée de trois étapes : retrait du continuum, pré-estimation des absorptions, ajustement conjoint du continuum et des absorptions. La pré-estimation des absorptions est l’étape clé, où les paramètres (positions, paramètres de formes) des absorptions sont estimés par un algorithme inspiré d’Orthogonal Matching Pursuit. Cette étape fournit des décompositions du spectre pour un nombre variable de formes d’absorption, rendant possible l’utilisation d’un critère de sélection d’ordre pour estimer leur nombre. La deuxième contribution concerne l’identification des minéraux pour des spectres demélanges, inspirée d’une méthode de logique floue et basée sur la comparaison des paramètres estimés avec ceux d’une base de données prédéfinie. Cette solution tient compte des incertitudes d’estimation et des possibles variations des spectres de réflectance des minéraux. Les méthodes proposées sont validées sur de nombreuses données synthétiques et réelles issues de mesures en laboratoire, posant des difficultés d’analyse du fait d’absorptions de formes variées, possiblement superposées, et positionnées sur une plage très étendue de longueurs d’onde. De plus, une validation extensive a été effectuée sur des images hyperspectrales acquises dans le cadre du survol de deux carrières de gypse et de kaolinite. Les minéraux présents sur les sites sont précisément identifiés.