Thèse soutenue

Modèles de mobilité et synchronisation d'horloge dans les réseaux sans fil

FR  |  
EN
Auteur / Autrice : Sirajo Abdullahi Bakura
Direction : Alain LambertThomas Nowak
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 08/11/2021
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire interdisciplinaire des sciences du numérique (Orsay, Essonne ; 2021-....)
référent : Faculté des sciences d'Orsay
graduate school : Université Paris-Saclay. Graduate School Informatique et sciences du numérique (2020-....)
Jury : Président / Présidente : Marc Shawky
Examinateurs / Examinatrices : Anthony Claude Busson, Janna Burman, Mohammed Aminu Mu'azu
Rapporteurs / Rapporteuses : Marc Shawky, Anthony Claude Busson

Résumé

FR  |  
EN

La mobilité dans les réseaux ad-hoc conventionnels est un défi en raison de l'invalidation constante des chemins de bout en bout. Nous traitons, dans cette thèse, spécifiquement des réseaux mobiles ad-hoc où les humains sont les principaux porteurs d'appareils mobiles communicants. Une bonne compréhension de la mobilité humaine permet la conception d'un modèle de mobilité réaliste en tant qu'outil d'évaluation des protocoles de réseau. Les modèles conventionnels d'évaluation des protocoles des premiers réseaux ad hoc (par exemple, random walks, random waypoints, random directions) ne parviennent pas à simuler correctement la mobilité humaine. Des études récentes ont montré que la mobilité humaine est influencée par les habitudes personnelles, les relations sociales, les caractéristiques environnementales et les préférences de localisation. Par conséquent, un modèle réaliste devrait inclure ces caractéristiques. À cet égard et à l'aide de traces réelles, nous avons développé une heuristique pour définir un modèle de mobilité humaine basée sur des caractéristiques spatiales, temporelles et de connectivité. Nous avons remarqué des clusters de mouvements dynamiques temporels associés à des utilisateurs individuels. Nous avons étudié la distribution de la distance parcourue, du temps de pause, de l'angle de déplacement, de la durée de contact et de la durée d'inter-contact. Motivés par nos résultats, nous avons proposé un nouveau modèle de mobilité qui imite de manière réaliste les caractéristiques de la mobilité humaine. Notre modèle a été validé en comparant ses traces synthétiques à des mesures de mobilité réelles. Dans un environnement de campus intelligent, les réseaux prennent en charge les applications de surveillance environnementale et de positionnement intérieur/extérieur, parfois avec un déploiement important de capteurs. Compte tenu des limitations des capteurs telles qu'autonomie énergétique, capacité de calcul limité, et la dynamique, les horloges des capteurs doivent être synchronisées pour exécuter des algorithmes de fusion de données, mettre en œuvre des protocoles de gestion de l'énergie ou un traitement temps réel des applications où la sécurité est importante. Compte tenu de cela, nous avons proposé un algorithme de synchronisation d'horloge distribuée à couplage d'impulsions pour des réseaux de capteurs sans fil. Notre algorithme permet de réduire les décalages d'horloge dus aux conditions ambiantes, à la mobilité ou aux défauts de fabrication. Pour ce faire, les capteurs mesurent les différences de temps en échangeant uniquement des impulsions au lieu de paquets. Par conséquent, notre algorithme est léger et robuste à la défaillance de capteurs du réseau. L'algorithme proposé est comparé aux travaux antérieurs avec des paramètres statiques et mobiles. Les résultats montrent qu'il peut réduire le décalage d'horloge, en particulier dans un environnement dynamique avec une dérive d'horloge importante et des changements topologiques inattendus comme ceux apparaissant dans les réseaux de véhicules.