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1

INTRODUCTION AND ORGANIZATION OF

THE THESIS

Contents

1.1 Motivations and aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

My interest in the study of the dynamics of nonlinear systems and their applications started since

during the days of my Master’s degree program. I had Master’s degree in advanced electronic

systems engineering from university of Burgundy France through which I did my internship at Uni-

versitat Politecnica de Catalunya Spain, during 2016/2017 academic session. My internship con-

cerned the design of Operational Transconductance Amplifiers (OTA) using Simulation Program

with Integrated Circuit Emphasis (SPICE) and Python programming. This paved a way for me to

this doctoral research which is also based on the applications of nonlinear systems to signal and

image processing.

1.1/ MOTIVATIONS AND AIMS

Due to its counter-intuitive nature, understanding the dynamics of nonlinear systems has given rise

to many challenges to overcome. This has brought about so many quests to answer because most

systems are ubiquitously nonlinear in nature. For example, the information encoding by nonlinear

neural systems brings about a rich variety of bio-inspired effects which are not yet comprehended.

As a result, the study of the dynamics of nonlinear systems has drawn the attention of researchers

in various fields such as for instance, engineering and cognitive sciences.

In particular, the famous nonlinear neuronal systems have received considerable attention from

researchers due to their vast applications. Presently, there are many nonlinear neuronal models

developed to describe the behavior of biological neurons. Indeed, these mathematical models are

ruled by set of nonlinear differential equations. Abundant of literature reported different dynamical

behaviors of nonlinear neuronal models. In most cases, the validity of the numerical models was

3



4 CHAPTER 1. INTRODUCTION AND ORGANIZATION OF THE THESIS

proven by theoretical studies. Some models were realized as an electronic circuits to consistently

comprehend the theoretical and numerical analyses. Apart from the biological behavior, these set

of nonlinear differential equations can also model many other physical phenomena such as; motion

of a particle in mechanical oscillators or follow of an electric charge/current in nonlinear circuits.

As a smallest unit of nervous system, neuron is an excitable electrical cell which is responsible for

receiving information from external world, and which processes and transmits it through electrical

signals. Biological neuron basically consists of dendrites, cell body and axon which are respectively

analogous to the input, sum/threshold unit and output of the artificial neuron as depicted in the

schematic of Fig. 1.1. Many mathematical models such as Integrate-and-Fire [1], McCulloch-

Pitts [2], Hodgkin-Huxley (HH) [3], Leaky integrate-and-fire [4], FitzHugh-Nagumo (FHN) [5], Morris-

Lecar [6] and Hindmarsh-Rose [7] models have been designed to predict the output behavior of

biological neuron as a function of input stimulation. Hodgkin-Huxley (HH) and FitzHugh-Nagumo

(FHN) models are still receiving attention of researchers from different fields.

Figure 1.1: Biological and artificial neuron

Enormous nonlinear dynamical behaviors were investigated but there are yet arising challenges to

address such as: understanding the information encoding by a single neuron, how neurons can col-

lectively act to process information, how lattices of the coupled elementary neurons behave under

the influence of various perturbations and how to carryout experiments with the nonlinear circuits to

confirm the validity of theoretical results obtained from numerical simulations. For decades, variety

of fascinating dynamical phenomena were explored in nonlinear systems. Among the most studied

dynamical effects in nonlinear systems are resonance induced phenomena which mainly address
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how perturbing the input of nonlinear system can positively affect the system’s output response.

Occurrence of resonance induced effects can either be promoted by a noise perturbation or a high

frequency perturbation. However, the later is now the most studied because it is easier to control

without tedious mathematics and most importantly, it was reported to surpass the former in terms

of performance in most scenarios.

In this thesis, out of the different dynamical properties reported in nonlinear systems, we focus on

Vibrational Resonance (VR) effect, a phenomenon where high frequency perturbation enhances

the output response of nonlinear systems at the low frequency [8]. VR was investigated in many

systems and in different contexts both theoretically, numerically and experimentally. Moreover,

VR was reported to have many applications such as in electronics to perform signal detection,

signal amplification and subthreshold images perception to mention but just a few. However, with

the advent of VR exploration in different systems and contexts, there are vast of arising issues to

address. It constitutes the aims of this thesis since we consider: the impact of the particle’s mass

on VR occurrence in a mechanical system, the effect of a truncated sinusoidal nonlinearity on VR in

the Chua’s circuit model and the applications of VR in subthreshold images perception. We propose

to carry out these studies numerically using Matlab scripts running on the computation cluster of

the University of Burgundy.

1.2/ ORGANIZATION OF THE THESIS

The subsequent chapters of this thesis consist of the following: Chapter 2 provides an overview

of literature on the most famous resonance phenomena in nonlinear systems. In chapter 3, we

analyze vibrational resonance occurrence in a particular mechanical system describing the motion

of a particle of mass m which is damped in two different cases. More precisely, the dynamics of the

system is first studied with a constant damping and lastly with an inhomogeneous space dependent

damping. Moreover, in each case, the influence of the particle mass on VR is highlighted. In chap-

ter 4, we investigate the dynamics of a modified Chua’s circuit model with a truncated sinusoidal

nonlinearity. In particular, we study the impact of the system’s nonlinearity on the occurrence of VR

and GVR. Moreover, system’s dynamics observed with our proposed truncated sinusoidal nonlin-

earity are compared with the existing dynamics of the system experiencing a sawtooth nonlinearity.

In chapter 5, we investigate the application of VR in subthreshold noisy images perception. We first

recall the existing SR-based detector for subthreshold images perception. Afterwards, we introduce

a VR-based detector by replacing the noisy perturbation with a spatial high frequency signal. Lastly,

chapter 6 comprises of the general conclusions and future works.





2

OVERVIEW OF THE MOST STUDIED

NONLINEAR RESONANCE PHENOMENA

Contents

2.1 Random resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Coherence resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Stochastic resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Ghost-stochastic resonance . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Deterministic resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Vibrational resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Ghost-vibrational resonance . . . . . . . . . . . . . . . . . . . . . . . . 12

This chapter presents a restrictive review of literature on the most famous resonance induced phe-

nomena in nonlinear systems. These phenomena are of crucial importance due to their applications

especially in the field of signal and image processing which constitute the topic of this thesis. In this

chapter, depending on the nature of the external stimuli acting upon nonlinear systems, we choose

to categorize these nonlinear resonance phenomena in nonlinear systems into random resonances

and deterministic resonances.

2.1/ RANDOM RESONANCES

Random resonances in nonlinear systems refer to the resonance induced phenomena which take

benefit of a noise perturbation to improve the output response of nonlinear systems. Noisy pertur-

bations have aided the occurrence of very important phenomena in nonlinear systems which were

reported to have applications in many fields of science and engineering.

Until late 19th century, it was usually considered that, noise which comes from an external environ-

ment or those that are generated by working systems/machines are nothing but disturbance to the

systems. Presence of noise was then widely believed to negatively affect the performance of work-

ing systems and as a result, noise was generally accorded as something that has to be avoided.

7



8 CHAPTER 2. RESONANCE PHENOMENA IN NONLINEAR SYSTEMS

Consequently, it was then very paramount to evacuate working systems from interaction with the

noisy external environment and also to minimize the noise that the system may generate by its self.

With the continuous advent in nonlinear dynamics, it was later discovered that noise can play a

constructive role in the dynamics of nonlinear systems, leading to interesting phenomena. In logistic

systems, Mayer-Kress and Haken demonstrated that noise can induce transition from intermittent

behavior to remarkable periodicities [9, 10]. Subsequently, Matsumoto and Tsuda revealed that

external noise can induce a transition from chaotic behavior to ordered behavior [11]. Pikovsky

used noisy dynamical systems to demonstrate the statistics of trajectory separation [12]. It was also

shown that addition of small noise suppresses chaos and it leads to more pronounced periodicity

than when the noise is larger [13]. Recently, Chapeau-Blondeau reported that noisy quantum bits

(qubits) can enhance the estimation of quantum parameters [14–16].

On the other hand, the presence of an optimum noise amplitude was shown to made the oscilla-

tory response of a non driven excitable system to be most coherent: this phenomenon is called

Coherence Resonance (CR) [17]. Moreover, in a nonlinear system which is simultaneously driven

by noisy perturbation and periodic signal, the noise was reported to improve the detection of the

periodic signal in what was named Stochastic Resonance (SR) effect [18, 19]. Coherence and

stochastic resonances are both noise-induced effects reported in nonlinear systems which have

received considerable attentions especially from the fields of neuroscience and engineering. Par-

ticularly, stochastic resonance, which was studied in many systems including the neuronal models,

has found to have many applications.

2.1.1/ COHERENCE RESONANCE

As it was pointed, the presence of noise in nonlinear systems is unavoidable. However, the effect

of noisy perturbations in stochastic systems is not all the time trivial, noise does not always induce

irregularities in systems. Indeed, in absence of external periodic force, noise can induce more

coherence in the oscillatory response of certain nonlinear systems. This phenomenon termed

Coherence Resonance (CR) was reported by Pikovsky and Kurths in excitable systems [17]. They

also observed that, at an optimal noise intensity, the noise-induced oscillations present a maximum

of regularity.

Figure 2.1: Coherence resonance phenomenon.
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The schematic of Fig. 2.1 summarizes the coherence resonance effect. Basically, to observe this

effect, the system must be tuned below a bifurcation which constitutes the subthreshold hypothesis.

Moreover, the system must be driven without any external force but only with a random perturbation.

In the absence of the noisy perturbation, the system remains in its rest state, that is the output does

not reveal any activity. However, addition of certain amount of noise makes the response regular

and most coherent at an optimal noise intensity. Coherence resonance is the typical example of

the constructive role of noise in nonlinear systems.

Coherence resonance effect was first reported in the work of Gang et al as stochastic resonance

phenomena without the external periodic force [20]. Later, Pikovsky and Kurths observed the same

behavior in excitable system where it was named coherence resonance [17]. In the model of

Hugkin-Huxley without external periodic force, the coherence of the system was found to be max-

imal at certain noise intensity [21]. Chua model submitted to chaotic medium exhibited regular

oscillations in the presence of noise, whose intermediate value provided the best oscillatory re-

sponse [22]. In the leaky integrate-and-fire model, it was demonstrated that the coherence of the

spike train can be maximized or minimized depending on the noise intensity [23]. Other systems

where coherence resonance was reported include: excitable FitzHugh-Nagumo models [24–27],

plasma [28], optical systems [29–32], electromechanical systems [33–35] and in electronic cir-

cuits [36–38].

2.1.2/ STOCHASTIC RESONANCE

Unlike coherence resonance, the effect of Stochastic Resonance (SR) is normally studied in non-

linear systems driven by both periodic force and noise perturbation, as shown in the schematic of

Fig. 2.2. Basically, an appropriate amount of a noise perturbation enhances the detection of the

deterministic subthreshold low frequency signal at the system output.

Figure 2.2: Stochastic resonance phenomenon.

The phenomenon of stochastic resonance, the famous of all the noise-induced effects, was first re-

ported in 1980 by Benzi et al in climatic system to demonstrate the periodic behavior of the earth’s

ice age [19]. Here, a long-term alternation of temperature was induced when an external peri-

odic forcing acted upon by a noise perturbation in the system. In dynamical systems, the authors
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observed in 1981 that external periodic forcing exhibits peak in the power spectrum (resonance)

due to the noise perturbation [18]. Little attention was then devoted to the study of SR until 1989

when Gammaitoni et al reported the effect in bistable systems [39] and in 1990 when it was first

examined in a single neuron model [40]. Henceforth, this noble effect became a subject of study in

many fields, mainly in biological systems. In 1995, Dykman et al outlined the development of SR

since its inception in 1980 [41]. Moreover, they also recall the concept of the linear response theory

(LRT) previously described in [42, 43], which provides the simplest approach of understanding SR

phenomenon than the tedious computational approaches previously available. In the year 2009,

Gammaitoni et al reviewed the progress of SR investigations which comprise the applications and

extensions reported as of that time [44].

Stochastic resonance was studied in variety of systems such as: optical systems [45–47], threshold

systems [48–50], sensors [51–55], integrate-and-fire model [56], Hodkin-Huxley neuron [57, 58],

FitzHugh-Nagumo model [59, 60] and electronics circuits [61, 62] to mention just a few. Moreover,

SR was reported to have many applications in signal detection [63–77], optimal detection/estimation

[63,68,78–91], quantum information processing/estimation [92–95], image perception [46,96–99],

signal/information transmission [51,55,61,100–117] and neural signal transduction [118–121].

Note that, in the presence of other sources of perturbation instead of noise, other resonant-like

behaviors can be observed. Indeed, it has been pointed out that the role of noise in noise-induced

dynamics can also be played by a chaotic disturbance [122] or high frequency perturbation [8] in-

stead of noise. More precisely, nonlinear system subjected to perturbation which is chaotic in nature

can display a resonant-like behavior called chaotic resonance [122–125], whereas vibrational res-

onance, which is the center of our studies in this thesis, is analogous to the stochastic resonance

which basically makes use of high frequency perturbation instead of noise to enhance the detec-

tion of an input low frequency signal. A part will be specifically devoted to VR in the deterministic

resonance section of this chapter.

2.1.3/ GHOST-STOCHASTIC RESONANCE

In a nonlinear system driven by noisy perturbation and two close frequency signals, it was revealed

that noise can induce resonance in the system output at a missing input frequency lower than the

two frequencies which excite the system. This phenomenon named Ghost-Stochastic Resonance

(GSR) was first observed by Chialvo et al in neuronal systems [126] to understand pitch perception

by the auditory system in the complex sound signal and the mechanism for the missing fundamental

illusion. Indeed, it was shown that neuron fires spikes at the rate similar to the perceived pitch for

the complex tone [127–129]. Subsequently, GSR was studied in many contexts and in different

systems including: FitzHugh Nagumo models/systems [130–132], Chua circuit [133], electronic

neurons circuit [134–136] and in optical laser [137].
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2.2/ DETERMINISTIC RESONANCES

Instead of random perturbations, nonlinear systems can also take benefit of deterministic high

frequency perturbations to improve their response to an input subthreshold signal. The idea of using

deterministic perturbations was first discovered after almost two decades of intensive breakthrough

in the dynamics of nonlinear systems with random perturbations. However, much attention is now

devoted to the investigation of dynamical responses with deterministic perturbations because it is

easier to control. Moreover, studies confirmed that, the dynamical properties reported in nonlinear

systems due to random perturbations can equally be obtained using deterministic perturbations.

Indeed, deterministic resonances constitute the main area of study covered in this thesis.

2.2.1/ VIBRATIONAL RESONANCE

The same role played by noise perturbation in the study of Stochastic Resonance (SR) can however

be induced by high frequency perturbations. This noble idea named Vibrational Resonance (VR)

was initially reported in the year 2000 by Landa and McClintock in bistable systems [8]. The system

in this setting is driven by a low frequency signal corrupted by a high frequency perturbation with

relatively sharp difference between the two frequencies. They found that the response of the system

at the low frequency is enhanced by an appropriate increase of the perturbation amplitude. Indeed,

the maximum response is achieved for an intermediate perturbation amplitude, beyond which the

system’s response at the low frequency reduces. VR is analogous to the SR because the high

frequency perturbation perform the same task of enhancing the detection of the low frequency

signal as schematically depicted in Fig 2.3.

Figure 2.3: Vibrational resonance phenomenon.

VR phenomenon is deterministic and easier to control unlike SR where the system is described

by stochastic process. In the year 2001, Gitterman proposed an analytical approach of analyzing

VR occurrence which open way to more understanding of the paradigm [138]. Ulner et al exper-

imentally reported the phenomena of VR in excitable electronic circuit and confirmed the effect

numerically in FitzHugh-Nagumo model [139]. Moreover, Blekhman et al theoretically affirmed

VR existence and showed that the resonance can also be induced not only by varying the ampli-



12 CHAPTER 2. RESONANCE PHENOMENA IN NONLINEAR SYSTEMS

tude of the high frequency excitation but also by either varying the low or high frequency [140].

Subsequently, VR has attracted the interest of many researchers in the last ten years and it was

studied numerically, theoretically and experimentally in many systems and in different contexts. To

mention but just a few, VR was reported in excitable neuronal systems [139, 141, 142], monos-

table systems [143, 144], bistable systems [8, 145–148], multistable systems [149, 150], Chua’s

circuit model [151, 152], FitzHugh-Nagumo model [131, 139, 153–155] optical system [156], bi-

harmonically driven plasma [157] and in nonlinear dissipative systems [158]. Moreover, vibrational

resonance was reported to have applications in signal detection [77,159,160] and signal amplifica-

tion [161] among others.

2.2.2/ GHOST-VIBRATIONAL RESONANCE

Ghost-Vibrational Resonance (GVR) is a variant of Vibrational Resonance (VR) which occurs in

nonlinear systems driven by a high frequency perturbation and low frequency signal consisting of

more than one frequency. Basically, the system reveals resonance in its output signal at a missing

frequency which is lower than the input low frequencies.

GVR was first reported by Rajamani et al in duffing oscillator [162] and in Chua’s circuit model

by Abirami et al [152]. Ghost-Vibrational Resonance (GVR) effect is analogous to the Ghost-

Stochastic Resonance (GSR) where noise acts as a perturbation instead of high frequency signal.

As more researchers are now interested in considering deterministic perturbation instead random

perturbation, it will not come as surprise to anyone when GVR is revealed in the systems and

contexts where GSR has been reported. Recently in this thesis, we reported the occurrence of

GVR phenomenon in a Chua’s circuit model with a truncated sinusoidal nonlinearity [163].

In this thesis, we numerically analyze the occurrence of VR in two different nonlinear systems

and also investigate application of VR in subthreshold images perception [99, 163–165]. The two

systems considered in this manuscript are: a nonlinear damped mechanical system [164] and a

modified Chua’s circuit model [163]. Concerning the mechanical system which was investigated

with constant/linear and nonlinear damping [138, 140, 149, 158, 166, 167], none of these studies

have focused on the possible impact of the particle mass on VR occurrence, which constitutes the

subject considered in this thesis. In the analyses of Chua’s circuit model, we mainly focus on the

impact of the system’s nonlinearity on VR and GVR occurrence which to our knowledge has not

been yet addressed. Instead of the conventional SR-detector used for subthreshold noisy images

perception [96, 98, 168, 169], in this thesis we report for the first time that VR can also enhance

visual perception of subthreshold noisy images.
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In this chapter, we consider the dynamics of a particular nonlinear mechanical system experiencing

a multistable potential well. The system is driven by a low frequency signal corrupted by a high fre-

quency perturbation. We study the dynamics of this system with two different damping coefficients:

first as constant damping coefficient and lastly, nonlinear space-dependent damping coefficient. In

15
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both the two cases of the damping, we begin by revealing vibrational resonance existence in the

system by using temporal and frequency analyses. Subsequently, we study the impact of the damp-

ing coefficients for a unitary particle mass. Lastly, we consider the combined impact of varying the

particle mass and the damping coefficients on vibrational resonance occurrence.

3.1/ DESCRIPTION OF THE SYSTEM

The system of our interest is similar to a multistable pendulum oscillator previously considered by

Rajasekar et al when they first reported the phenomenon of vibrational resonance (VR) in multi-

stable systems [149]. The system describes the motion of a single particle of mass m driven by an

external excitation e(t), experiencing a periodic potential Φ(x) and whose displacement x obeys to:

m
d2x
dt2 +

dΦ(x)
dx

+Γ(x)
dx
dt

= e(t), (3.1)

where Γ(x) represents the damping coefficient.

3.1.1/ THE POTENTIAL Φ(x)

In our system described by eq. (3.1), a particle of mass m is submitted to a nonlinear force f (x)

which derives from the potential Φ(x) via the relation:

dΦ(x)
dx

=− f (x), (3.2)

with,

f (x) =−Φ0 sinkx,

where Φ0 adjusts the potential height and the parameter k accounts for the periodicity of the poten-

tial. To obtain the expression of the periodic potential, we integrate the relation (3.2) in a boundary

starting from position 0 to x which leads to

∫
Φ(x)

Φ(0)
dΦ(x) =

∫ u=x

u=0
Φ0 sinkudu,

that is

Φ(x)−Φ(0) =
[
−Φ0

k
cosku

]u=x

u=0
.

The potential is then defined by:

Φ(x) = Φ(0)− Φ0

k
coskx+

Φ0

k
.
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Figure 3.1: System’s periodic potential Φ(x) defined by eq. (3.3) in the specific case considered in this chapter, namely
Φ0 = 1 and k = 1. The height of the potential ∆Φ and its width ∆x are indicated with the double head arrows in this
figure.

Assuming that the potential energy at the position x = 0 is

Φ(x = 0) =−Φ0

k
,

the expression of the potential reduces to

Φ(x) =−Φ0

k
coskx. (3.3)

The symmetric periodic potential defined by eq. (3.3) is plotted at Fig. 3.1. The peak to peak

amplitude of the potential corresponds to its height ∆Φ which depends on parameters Φ0 and k

since ∆Φ =
2Φ0

k
. Moreover, the width ∆x of the potential is defined by the distance between any

two consecutive tops or bottoms of the potential, that is ∆x = 2πk.

The symmetric periodic potential depicted in Fig. 3.1 has maxima at X∗max, n = ±(2n+1)π
k

and

minima at X∗min, n = ±
2nπ

k
, for n = 0,1,2, . . . . Consequently, X∗max, n and X∗min, n are respectively

the unstable and stable equilibrium positions of the system.

This multistable periodic potential was used in many systems for different purposes, including the

pendulum system considered by Rajasekar et al [149] and the nonlinear dissipative system of Roy-
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Layinde et al [158] where they highlighted the phenomenon of vibrational resonance. The property

of multistability was used to study VR occurrence in many systems and also it was reported to have

applications in image processing tasks. In fact, multistability property of the Cellular Neural Network

(CNN) was used by Morfu et al to extract regions interest of a radiography of soldering [170].

Furthermore, multistability was used in chaotic systems to highlight different dynamical properties

[152,171–173] and also in memristors for information storage [174–176].

In this chapter, we use the multistable periodic potential Φ(x) to detect a subthreshold low fre-

quency signal by the aid of a high frequency perturbation via vibrational resonance effect.

3.1.2/ THE DAMPING COEFFICIENT Γ(x)

In the particle motion ruled by eq. (3.1), the general parameter Γ(x) characterizes the system’s

dissipation. In this chapter, we will consider this damping term Γ(x) in two different cases: firstly

with a constant damping and secondly, space-dependent inhomogeneous damping. More precisely,

Γ(x) = Γ
′
0, (3.4)

will refer to constant damping, while

Γ(x) = Γ0

(
1−λsin(kx+φ)

)
, (3.5)

will correspond to a space-dependent inhomogeneous damping. In eq. (3.5), the parameter λ sets

the strength of the frictional inhomogeneity, the positive parameter Γ0 is the whole amplitude of the

nonlinear damping, k adjusts the same periodicity as in the periodic potential Φ(x), while φ denotes

the phase difference between the periodic potential Φ(x) and the nonlinear dissipation Γ(x).

The case of a constant damping Γ(x) = Γ
′
0 was initially analyzed by Rajasekar et al when they

highlighted the occurrence of VR in multistable systems [149], whereas the case of the space-

dependent inhomogeneous damping obeying to eq. (3.5) has been considered by Roy-Layinde et

al [158].

In this chapter, for each case of the damping Γ(x) defined by eq. (3.4) and (3.5), we first perform

preliminary studies to highlight VR occurrence. Henceforth, we show how the parameters of the

damping term Γ(x) influence VR, which was not reported in the previous studies performed by

Rajasekar et al in the case of a constant damping [149] and Roy-Layinde et al in the case of an

inhomogeneous damping [158].
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3.1.3/ THE BICHROMATIC DRIVING OF THE SYSTEM e(t)

In our model, the particle is driven by a bichromatic excitation e(t) which consists of a low frequency

signal corrupted by a high frequency perturbation, that is:

e(t) = Gcosωt +H cosΩt, (3.6)

where G and ω are respectively the amplitude of the low frequency component and its angular

frequency. Moreover, H represents the high frequency perturbation amplitude and Ω its angular

frequency. Throughout this thesis, we consider the perturbation angular frequency Ω to be much

greater than the low angular frequency ω, that is Ω� ω. This corresponds to the usual setting of

the excitation to observe vibrational resonance in nonlinear systems.

Many physical systems in engineering and science consist of this kind of two frequencies setup.

This include: vertical cavity surface emitting laser used for experimental demonstration of VR [156],

telecommunication signals where information carriers are usually high-frequency waves modulated

by a low-frequency signal [177], ultrasonic two-frequency waves used to enhance cavity yield [178]

and a two-frequency laser signal showing high stability and high efficiency [179]. In this thesis, we

use the high frequency perturbation to enhance the detection of a low frequency signal.

Considering eq. (3.3) which described the periodic potential and eq. (3.6) that defined the system’s

external excitation, then eq. (3.1) can be rewritten as:

m
d2x
dt2 +Γ(x)

dx
dt

+Φ0 sinkx = Gcosωt +H cosΩt. (3.7)

Note that, our system defined by eq. (3.7) can identically be adapted to describe many physical

systems. For example, by considering noise instead of the high frequency perturbation in the model

given by eq. (3.7), ratchet effect has been highlighted [180–184] as well as stochastic resonance

[185]. Also, according to Rajasekar et al [149], this model described the dynamics of rf-driven

Josephson junction and phase-locked voltage-controlled oscillators.

In this chapter, we perform two different studies on VR occurrence in our system ruled by eq.

(3.7): first for the case of constant damping Γ(x) = Γ
′
0 and secondly, with the space-dependent

inhomogeneous damping Γ(x)=Γ0(1−λsin(kx+φ)). In both cases, we first perform a preliminary

study of VR effect for a fix value of the particle mass, namely m = 1. This is of great interest

because unitary particle mass was mainly considered in the mechanical systems where VR was

initially reported [149,158]. Subsequently, we explore the effect of jointly varying the particle mass

m and the damping parameters, on the occurrence of VR.
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3.1.4/ NUMERICAL PROCEDURE

This section is devoted to the numerical procedure used in this chapter to carry out our numerical

experiments. The numerical simulations performed throughout this research were launched on the

University of Burgundy computation cluster. Particularly in this chapter, considering the number

of samples we take, the simulation time step, number of iterations and the discretization of some

parameters of the system, the simulations will take larger amount of time when they are carry out on

the personal computer. Indeed, by using the university computation cluster, most of the resonance

curves presented in this chapter rather took some few days before the results were produced.

To perform any analysis such as computing the system’s response to the bichromatic excitation e(t),

the first step is to integrate the system by using any of the known numerical methods for solving

nonlinear differential equations. In this chapter, we numerically integrate our system ruled by eq.

(3.7) with a fourth order Runge-Kutta algorithm using a Matlab script. The system is integrated

over a temporal window which corresponds to 2000 low frequency cycles and with a total number

of samples sets to N = 222. Such temporal window sets the integrating time step to dt =
2000

N
×

2π

ω
which will be sufficient for our numerical analyses. The corresponding spectral resolution is

therefore d f =
1

Ndt
. Also, we considered zero initial conditions, that is x(t = 0) = 0 and ẋ(t = 0) =

0.

While setting the algorithm, it is also convenient to transform our model given by eq. (3.7) into the

system of two ordinary first order differential equations:


dx
dt

= y,

dy
dt

=−yΓ(x)−Φ0 sinkx+Gcosωt +H cosΩt.

(3.8)

Note that, the low frequency part of the excitation Gcosωt constitutes the input of our system while

x(t) will then be considered as the system’s output after integrating eq. (3.8). To analyze the sys-

tem’s behavior, we device the Fast Fourier Transform (FFT) which estimates the Fourier Transform

X( f ) of the system’s output x(t) and which provides the bilateral magnitude spectrum defined by

|X( f )|. Therefore, 2|X( f )|u( f ) allows to compute the corresponding unilateral magnitude spec-

trum where u( f ) is the following Heaviside function:

u( f ) =


0 i f f < 0,

1 i f f ≥ 0.

To quantize VR, it is important to evaluate the system’s response amplitude at the low frequency

fL f =
ω

2π
by determining the amplitude of the unilateral magnitude spectrum at this low frequency,
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namely 2|X( f = fL f )|. Indeed, this corresponds to the contribution of the low frequency component

in the output unilateral magnitude spectrum 2|X( f )|. The response amplitude provides an idea of

how the low frequency component of the input signal is amplified by the high frequency perturbation.

Emergence of VR is usually revealed by the classical linear response Q, which was first defined by

Landa and McClintock [8] as:

Q =
2|X( fL f )|

G
. (3.9)

Q allows to quantize VR effect since it represents the amplitude of the system’s unilateral magnitude

spectrum 2|X( fL f )| at the low frequency normalized by the amplitude of the low frequency input

signal G. Physically, the parameter Q can be viewed as the amplification factor of the nonlinear

system for the specific low frequency component.

Throughout this thesis, as in the usual VR studies, we will consider the low angular frequency ω

to be very small when compared to the perturbation angular frequency Ω. Indeed, we choose

Ω = 20ω, and the low frequency amplitude G is set to G =0.05. Moreover, the parameters of the

potential will also remain as Φ0 = k = 1 to provide a potential barrier
Φ0

k
= 1, as already illustrated

in Fig. 3.1. This setting of parameters is to ensure that, the low frequency input excitation is

subthreshold and that the potential barrier is never crossed without the help of the high frequency

perturbation. This scenario constitutes the hypothesis commonly used to highlight VR.

3.2/ CASE OF A CONSTANT DAMPING

In this section, we first highlight VR signature from the temporal and frequency analyses points of

view. Henceforth, by using the classical linear response of eq. (3.9), we study the effect of the

constant damping coefficient on the VR occurrence, for the unitary particle mass (m = 1). Lastly,

we study the combined effect of varying the particle mass m and the constant damping coefficient

Γ
′
0 on the VR occurrence.

In the model of the system defined by eq. (3.7), the general damping parameter Γ(x) becomes

Γ(x) = Γ
′
0 for the case of constant damping, as defined by eq. (3.4). Therefore, the general

equation of the system given by eq. (3.7) can now reduce to

m
d2x
dt2 +Γ

′
0

dx
dt

+Φ0 sinkx = Gcosωt +H cosΩt, (3.10)

where Γ
′
0 stands for the constant damping amplitude which characterizes the system’s dissipation.

Therefore, it is maintained as a positive parameter throughout this chapter to stay in the dissipative

mode else, it becomes an energy source to the system.
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3.2.1/ HIGHLIGHT OF THE CLASSICAL VR EFFECT

This preliminary section highlights the classical VR signatures by means of temporal and frequency

analyses for different perturbation amplitudes H. Moreover, by using the classical linear response

Q, we study the influence of the constant damping amplitude Γ
′
0 on VR occurrence for a unitary

mass (m = 1).

3.2.1.1/ TEMPORAL ANALYSES

In this section, temporal behavior of the system’s output x(t) for different values of the perturbation

amplitude H is examined by analyzing two different cases of the constant damping coefficient cor-

responding to Γ
′
0 =0.03 and Γ

′
0 =0.27. This temporal analysis of the system’s output signal x(t)

is important because it allows to observe how the slow and fast oscillations are mixed and evolve

through the system. This study is performed by integrating eq. (3.10) with the numerical procedure

detailed in Sec. 3.1.4 to provide the temporal series of the system output.

For five different values of the perturbation amplitude H and for the specific value of the constant

damping, namely Γ
′
0 =0.03, we present in Fig. 3.2, the temporal response of our linearly damped

system defined by eq. (3.10). In each case presented at Figs. 3.2(a)–(e), the temporal series

of the output signal reveals a low frequency component mixed with a high frequency perturbation

component.

In particular, the temporal series of Fig. 3.2(a) corresponds to the instance of the smallest perturba-

tion amplitude considered, namely H = 30. Here, we observed that the low frequency component

in the system’s output is very weak and the output signal is dominated by the high frequency per-

turbation. As shown in Fig. 3.2(b), when the perturbation amplitude increases to H = 220, the

contribution of the low frequency component in the output signal is stronger than in Fig. 3.2(a). By

contrast, in Fig. 3.2(c), the low frequency component in the output signal is best observed for an

intermediate value of the perturbation H = 245. However, as the perturbation amplitude exceeds

the intermediate value, the low frequency component in the output signal become less observable

as depicted in Fig. 3.2(d) and Fig. 3.2(e) for H = 300 and H = 405 respectively.

Indeed, the temporal analysis of Fig. 3.2 shows that, varying the perturbation amplitude H en-

hances the detection of the low frequency component in the output signal. More precisely, the best

response is obtained for an intermediate value of the perturbation amplitude H. This behavior is a

typical signature of vibrational resonance effect.

We also study how the constant damping amplitude Γ
′
0 affects the contribution of the low frequency

component in the output signal. Therefore at Fig. 3.3, the value of the damping coefficient is in-

creased to Γ
′
0 =0.27 instead of Γ

′
0 =0.03. Despite increasing the constant damping coefficient Γ

′
0,

VR signature is still observed from the temporal series of Fig. 3.3, which is obtained for specific

values of the perturbation amplitude H. Indeed, as reported in Fig. 3.3(c), the low frequency com-
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Figure 3.2: Time series of the system response revealing vi-
brational resonance effect for the specific constant damping
coefficient Γ

′

0 =0.03. From top to bottom, the perturbation
amplitude H increases as follows: (a) H = 30, (b) H = 220,
(c) H = 245, (d) H = 300 and (e) H = 405. Parameters:
m = 1, k = 1, Φ0 = 1, G =0.05, ω =0.65, Ω = 13.
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Figure 3.3: Time series of the system response revealing vi-
brational resonance effect for the specific constant damping
coefficient Γ

′

0 =0.27. From top to bottom, the perturbation
amplitude H increases as follows: (a) H = 20, (b) H = 180,
(c) H = 280, (d) H = 350 and (e) H = 405. Parameters:
m = 1, k = 1, Φ0 = 1, G =0.05, ω =0.65, Ω = 13.

ponent of the output signal is best revealed for the intermediate value of the perturbation amplitude,

namely H = 280.

Note that, the low frequency contributions in the temporal analyses of Fig. 3.3 are less pronounced

when compared with the temporal series of Fig. 3.2. This implies that when the system is hugely

damped, the low frequency signal detection in the system is lowered. Nevertheless, to have a better

perception of the temporal series of Fig. 3.2 and Fig. 3.3, we therefore perform frequency analysis.

3.2.1.2/ FREQUENCY ANALYSIS

Temporal analysis is a good way of revealing the phenomenon of vibrational resonance but it is

better to carry out frequency analysis to quantify this effect from the spectral point of view. Fre-

quency analysis provides an alternative and better vision of how the low frequency component in

the system’s output signal x(t) is affected by the perturbation amplitude H.

Therefore, we analyze the behavior of the unilateral magnitude spectrum of the system output

2|X( f )|u( f ) versus the perturbation amplitude H for the two previously considered damping co-

efficients namely, Γ
′
0 =0.03 and Γ

′
0 =0.27. First, when Γ

′
0 =0.03, Figs. 3.4 (a)–(e) present the

unilateral magnitude spectra corresponding to the same five values of the perturbation amplitude

H used in the temporal analyses of Fig. 3.2. For the sake of clarity, we have made a zoom near
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the time series of Fig. 3.3. From top to bottom: (a) H = 20,
(b) H = 180, (c) H = 280, (d) H = 350 and (e) H = 405.
Parameters: m = 1, Γ

′

0 =0.27, k = 1, Φ0 = 1, G =0.05,
ω =0.65, Ω = 13.

the low frequency fL f =
ω

2π
in all the spectral responses presented at Fig. 3.4. It is obvious from

the spectral response of Fig. 3.4(a) that, the amplitude of the unilateral magnitude spectrum at the

low frequency fL f is weak for the smallest value of the perturbation amplitude, namely H = 30.

Next, when the perturbation amplitude increases to H = 220, the spectral contribution of the low

frequency increases at Fig. 3.4(b). As depicted at Fig. 3.4(c), the amplitude of the spectrum at

the low frequency is best pronounced when the perturbation amplitude is tuned to the intermediate

value H = 245. However, as shown at Figs. 3.4(d) and 3.4(e) for H = 300 and H = 405 respec-

tively, increasing the perturbation amplitude H beyond the optimal value, the spectral contribution

at the low frequency became weak again.

Consequently, the frequency analyses summarized at Fig. 3.4 confirm the temporal analyses pre-

sented at Fig. 3.2 which revealed that: the perturbation amplitude H can be optimally set to en-

hance the detection of the low frequency component. Especially, the best response is obtained for

an intermediate value of the perturbation amplitude H, which is the typical signature of vibrational

resonance effect.

Similarly, at Fig. 3.5, we report the spectral behavior of the system when the damping coefficient

increases to Γ
′
0 =0.27, as we have observed in the temporal behavior for the same value of the

damping coefficient at Fig. 3.3. Here, it is clearly obvious by comparing Fig. 3.5(a) and (b) that

the amplitude of the spectrum at the low frequency is weak but it increases as the perturbation

amplitude H increases from H = 20 to H = 180. As expected, the amplitude of the spectrum at the
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low frequency is more observable in Fig. 3.5(c), when the perturbation amplitude is optimally tuned

to H = 280. Eventually, the amplitude of the spectrum at the low frequency became weak again

as the perturbation amplitude increases to H = 350 and H = 405 in Fig. 3.5(d) and Fig. 3.5(e)

respectively.

The spectral analyses of Fig. 3.5 clarify with better physical display than the temporal analyses of

Fig. 3.3, how the perturbation amplitude H affects the system’s response at the low frequency. This

implies that the frequency analysis is also an important tool for our analysis despite the temporal

analysis.

3.2.1.3/ HIGHLIGHT OF THE VR SIGNATURE

Having observed the behavior of the system from the perspectives of temporal and frequency anal-

yses, it is now pertinent to quantize the spectral response of the system. It will allow to better

investigate how the low frequency component of the output signal evolves when the high frequency

perturbation amplitude H varies. Here, with the same set of parameter values used in our temporal

and frequency analyses, we use the classical quantification tool Q defined by eq. (3.9) to highlight

VR effect.
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Figure 3.6: Typical VR signature observed in the system defined by eq. (3.10) for two values of the constant damping
amplitude Γ

′

0. Parameters: m = 1, k = 1, Φ0 = 1, G =0.05, ω =0.65, Ω = 13.
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Presented in Fig. 3.6 is the linear response Q as a function of the perturbation amplitude H for two

values of the constant damping amplitude, namely Γ
′
0 =0.03 and Γ

′
0 =0.27. In both the two cases

depicted at Fig. 3.6, we observed bell-shape curves which show that, the response amplitude

Q is a non monotonous function of the perturbation amplitude H. Indeed, the linear response Q

achieves its maximum for an optimal value of the perturbation amplitude H. This implies that the

detection of the low frequency signal in this system can be optimized by an appropriate setting

of the perturbation amplitude H, which is the typical VR signature. Moreover, it can be seen that

decreasing the constant damping amplitude Γ
′
0 provides a better response since the maximum

value of the linear response Q is greater in the case of weak damping amplitude, that is Γ
′
0 =0.03.

However, in the system with the space-dependent inhomogeneous damping, Roy-Layinde et al

revealed that there are other resonances when the perturbation amplitude H is further increased

[158]. Therefore, in this particular system, it is also important to find out if there are other reso-

nances when the perturbation amplitude H increases.

3.2.2/ HIGHLIGHT OF THE VIBRATIONAL MULTIRESONANCE

It is now obvious that vibrational resonance signature is observed in our system and especially, that

the low frequency component can be better detected when the perturbation amplitude H is tuned

to an optimal value, as shown in Fig. 3.6. In the resonance curves of Fig. 3.6, the perturbation am-

plitude H varies from 0 to 400 as such, we obtained single resonance. However, we are interested

in exploring the behavior of the system when the perturbation amplitude H increases beyond 400.

The linear response Q as a function of the perturbation amplitude H for the two values of the con-

stant damping coefficients Γ
′
0 =0.03 and Γ

′
0 =0.27, is presented at Fig. 3.7 for a perturbation am-

plitude H ranging from 0 to 1500. For both the two constant damping amplitudes, we obtain multiple

resonances as the perturbation amplitude H increases. Note that, in each case, the first resonance

provides the global maximum which is obtained for an intermediate value of the perturbation ampli-

tude H. Beyond the optimal value of the perturbation amplitude H, other resonances appear with

local maxima which decrease as the perturbation amplitude H keeps increasing. Moreover, it can

be seen from the resonance curves of Fig. 3.7 that increasing the constant damping amplitude

from Γ
′
0 =0.03 to Γ

′
0 =0.27 decreases the performance of the system. Indeed, the amplitude of the

local maxima is weakest for the strongest constant damping amplitude Γ
′
0.

Interestingly, our system reveals vibrational multiresonance effect with the resonances depending

on the intensity of the perturbation amplitude H. This typical multiresonance signature was also

reported in the study of vibrational resonance in pendulum systems [166,186,187], neuronal models

with time delay [187–192] and in the study of stochastic resonance [193–196]. In the next section,

we analyze the evolution of the second resonances depicted at Fig. 3.7, by means of temporal and

frequency analyses.
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Figure 3.7: Vibrational multiresonance signature for two values of the constant damping amplitude Γ
′

0. The linear
response Q exhibits local maxima whose values decrease as the perturbation amplitude increases. Parameters: m = 1,
k = 1, Φ0 = 1, G =0.05, ω =0.65, Ω = 13.

3.2.2.1/ TEMPORAL ANALYSIS

In this subsection, we study the temporal behavior of the system near the second resonances of

the linear response curves of Fig. 3.7, for both damping values Γ
′
0 =0.03 and Γ

′
0 =0.27. The

temporal series of Fig. 3.8 correspond to the responses around the second resonance of Fig.

3.7 when the constant damping coefficient Γ
′
0 is set to 0.03. We observe that for the two values

of the perturbation amplitude H before the peak of the second resonance, namely H = 430 and

H = 500, the low frequency component in the output signal is weak, as shown in Figs. 3.8(a) and

3.8(b). However, at the peak of the second resonance, corresponding to the time series of Fig.

3.8(c) when H = 645, the low frequency component reaches its highest intensity in this case. Also,

for the values of perturbation amplitude H beyond the peak of the second resonance, H = 770

and H = 935, the low frequency component of the output signal decreases, as given in Fig. 3.8(d)

and Fig. 3.8(e) respectively. The behavior revealed at Fig. 3.8 is similar to the temporal behavior

previously observed for the first resonance in Fig. 3.2 and for the same value of the constant

damping coefficient Γ
′
0 =0.03.

Similarly, in Fig. 3.9, we study the temporal behavior of the second resonance of Fig. 3.7, for the

corresponding value of the constant damping amplitude Γ
′
0 =0.27. Our temporal studies of the
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Figure 3.8: Time series of the system response revealing
the second resonance of Fig. 3.7 for the specific constant
damping coefficient Γ

′

0 =0.03. From top to bottom, the per-
turbation amplitude H increases as follows: (a) H = 430, (b)
H = 500, (c) H = 645, (d) H = 770 and (e) H = 935. Pa-
rameters: m= 1, k = 1, Φ0 = 1, G=0.05, ω=0.65, Ω= 13.
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Figure 3.9: Time series of the system response revealing
the second resonance of Fig. 3.7 for the specific constant
damping coefficient Γ

′

0 =0.27. From top to bottom, the per-
turbation amplitude H increases as follows: (a) H = 430, (b)
H = 500, (c) H = 650, (d) H = 810 and (e) H = 935. Pa-
rameters: m= 1, k = 1, Φ0 = 1, G=0.05, ω=0.65, Ω= 13.

second resonance in Fig. 3.9 also revealed vibrational resonance effect. Indeed, the detection

of the low frequency component of the output signal is best achieved for an optimal perturbation

amplitude H. By contrast, the temporal response of the second resonance at Fig. 3.9 is less

pronounced than the temporal response of the first resonance at Fig. 3.3 for the same value of

the constant damping amplitude, namely Γ
′
0 =0.27. Comparing the temporal series for the second

resonance when Γ
′
0 =0.03 in Fig. 3.8 and when Γ

′
0 =0.27 in Fig. 3.9, we can admit that the

response decreases when the constant damping coefficient Γ
′
0 increases. To clearly ascertain this

fact, we study the frequency analysis for the same scenarios.

3.2.2.2/ FREQUENCY ANALYSIS

In the analysis of the second resonances, as with the study of the first resonance, temporal analysis

is not enough to clearly visualize the impact of the perturbation amplitude H on the system’s output

signal. Especially, when the constant damping coefficient Γ
′
0 became large. In this subsection, we

study the spectral behavior of the second resonances of Fig. 3.7.

Increasing the perturbation amplitude from H = 430 to H = 500 below the peak of the second

resonance for Γ
′
0 =0.03, we can clearly observe how the amplitude of the spectrum at the low

frequency increases from Fig. 3.10(a) to Fig. 3.10(b). Moreover, the amplitude of the spectrum
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at the low frequency is best observed at the peak of the second resonance, that is when H = 645

as reported at Fig. 3.10(c). When the perturbation amplitude H increases beyond the peak of this

second resonance, the contribution of the low frequency in the system output spectra become weak

again as shown in Figs. 3.10(d) and 3.10(e) for H = 770 and H = 935 respectively.

Meanwhile, for the second resonance in the case of Γ
′
0 =0.27 reported at Fig. 3.11, we obtain

a better view of the resonance phenomenon with the spectral responses than with the equivalent

temporal analyses presented at Fig. 3.9. Indeed, in the spectra of Figs. 3.11(a) and 3.11(b), it

is obvious that the contribution of the low frequency is more pronounced when the perturbation

amplitude H increases from H = 430 to H = 500. The amplitude of the spectrum at the low

frequency is more evidently observed at the peak of the second resonance, that is when H = 650,

as shown in Fig. 3.11(c). The response afterward decreases when the perturbation amplitude H is

beyond the peak of the second resonance as shown in Fig. 3.11(d) and Fig. 3.11(e) when H = 810

and H = 935 respectively.

Having explored so much from the temporal and frequency analyses points of view, now we study

the impact of the constant damping coefficient Γ
′
0 on the classical VR, for the unitary value of mass

m = 1. The combined effect of the particle mass m and the constant damping coefficient Γ
′
0 will

also be considered in the studies that follows.
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Figure 3.10: Unilateral magnitude spectra corresponding to
the time series of Fig. 3.8. From top to bottom: (a) H = 430,
(b) H = 500, (c) H = 645, (d) H = 770 and (e) H = 935.
Parameters: m = 1, Γ

′

0 =0.03, k = 1, Φ0 = 1, G =0.05,
ω =0.65, Ω = 13.
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(b) H = 500, (c) H = 650, (d) H = 810 and (e) H = 935.
Parameters: m = 1, Γ

′

0 =0.27, k = 1, Φ0 = 1, G =0.05,
ω =0.65, Ω = 13.



30 CHAPTER 3. ANALYSES OF VR IN A DAMPED NONLINEAR SYSTEM

3.2.3/ CONTROL OF VR BY THE CONSTANT DAMPING COEFFICIENT Γ
′
0

The temporal and frequency analyses performed in the previous sections highlighted the existence

of VR phenomenon and also the impact of increasing the value of the constant damping coefficient

Γ
′
0. Moreover, the presentation of the classical linear response Q in Fig. 3.7 shaded more light

on the nature of the resonance curves obtained in our system and also on the effect of increasing

the constant damping coefficient Γ
′
0. In this part, we use the classical VR measurement defined

by eq. (3.9) to further investigate how the parameter of the constant damping Γ
′
0 can control the

vibrational resonance occurrence for a unitary particle mass (m = 1).

Fig. 3.12 reveals the linear response Q as a function of the perturbation amplitude H for different

values of the constant damping coefficient Γ
′
0. This shows that, increasing the perturbation am-

plitude H, there exist multiple resonances whatever the value of the constant damping coefficient

Γ
′
0. In each case, the first resonance provides the best linear response Q which is achieved for an

intermediate value of the perturbation amplitude H. Beyond the first resonance, which of course

provided the global maximum, the local maxima afterward decrease as the perturbation amplitude

H increases. Furthermore, the resonance curves of Fig. 3.12 also convey to us that the weakest

constant dissipation Γ
′
0 provides the best response Q of the system.
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Figure 3.12: Control of VR with the constant damping amplitude Γ
′

0. Parameters: m = 1, k = 1, Φ0 = 1, G =0.05,
ω =0.65, Ω = 13.
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From the mechanical point of view, one may conclude that the best linear response Q will be

achieved without dissipation in the system (Γ
′
0 = 0). In this chapter, we do not consider this case

because there is always dissipation in the real systems therefore, the case Γ
′
0 = 0 does not exist in

reality.

The vibrational resonance behavior revealed in Fig. 3.12 shows that the linear response Q at which

the global, second and third maxima are obtained depends on the constant damping amplitude Γ
′
0.

For instance, the global maxima of Fig. 3.12 decreases as the constant damping amplitude Γ
′
0

increases. We have reported at Fig. 3.13 how the peak value Qn
max of the resonance number n of

Fig. 3.12 evolves versus the constant damping Γ
′
0. We restricted our analyses of Fig. 3.13 to the

peak of the global, second and third maxima, that is Q1
max, Q2

max and Q3
max. It is obvious in Fig. 3.13

that for smaller values of the constant damping amplitude Γ
′
0, the gaps between the global, second

and third maxima are the greatest. By contrast, these gaps reduce and vanish as Γ
′
0 increases.

Moreover, for larger Γ
′
0, the magnitudes of the three resonances become almost the same and the

weakest one. This implies that controlling VR in this system is more efficient for the smaller value

of the constant damping coefficient Γ
′
0.
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3.2.4/ THE MEASURING TOOL INDICATING VR EXISTENCE

Until this end, our studies are restricted to the case of a particle of unitary mass, namely m = 1.

Now, in this section, we investigate the combined impact of the particle mass m and the constant

damping coefficient Γ
′
0 on the occurrence of VR phenomenon.

Depending on the particle mass m, our numerical investigations reveal two different behaviors. Fig.

3.14 highlights these two cases for different values of the constant damping coefficient Γ
′
0 and spe-

cific values of the particle mass, more precisely m = 1 and m =2.4. At Fig. 3.14(a), corresponding

to m = 1, the system’s performance can be optimized by an appropriate setting of the perturbation

amplitude H since the linear response curves versus the perturbation amplitude exhibit multireso-

nance shapes. By contrast, for the case reported at Fig. 3.14(b), and corresponding to m =2.4,

increasing the perturbation amplitude H can not maximized the system’s response Q. Indeed, the

maximum linear response in this case is obtained when the perturbation amplitude is H = 0, for all

values of the constant damping coefficient Γ
′
0. Note that VR phenomenon failed to exist in this later

case because, the maximum linear response Q is obtained without the perturbation, that is when

H = 0.

The existence of these two behaviors highlighted in Fig. 3.14 makes it an interesting task for us to

have a general view of the system’s behavior when the particle mass m varies. For each value of
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Figure 3.14: System’s two different observed behaviors due to the change of the particle mass m. (a) m = 1, VR
signature: A high frequency perturbation enhances the detection of the low frequency. (b) m =2.4, no enhancement of
the low frequency detection. Parameters: k = 1, Φ0 = 1, G =0.05, ω =0.65, Ω = 13.
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the mass m, to identify whether the perturbation can lead to an enhancement of the low frequency

detection or not, we introduce an indicator, namely Q∗max, which allows to classify the behavior

belonging to each particle mass. We propose to define Q∗max as the ratio of the maximum linear

response Qmax to the linear response obtained without high frequency perturbation, that is when

H = 0. We therefore define Q∗max as:

Q∗max =
Qmax

Q(H = 0)
˙ (3.11)

If the maximum response amplitude Qmax in whatever the case is obtained without the perturbation,

our indicator Q∗max equals Q∗max = 1. This means for that particular value of the particle mass, no

enhancement can be achieved by adding a high frequency perturbation, as in the case of Fig.

3.14(b). However, if Qmax is obtained for an appropriate increase of the perturbation, the indicator

Q∗max will exceed the value 1 as in the case of Fig. 3.14(a). Accordingly, Q∗max = 1 implies no

enhancement and Q∗max > 1 signifies enhancement whereas the former corresponds to the case

where VR phenomenon failed to exist while the latter matches the existence of VR. The indicator

Qmax defined by eq. (3.11) will be used in this chapter to identify which of these two different

behaviors occurs according to the particle mass m value.

3.2.5/ COMBINED IMPACT OF THE PARTICLE MASS m AND THE CONSTANT DAMPING AM-

PLITUDE Γ
′
0 ON VR OCCURRENCE

In this section, we investigate the influence of the particle mass m on the occurrence of vibrational

resonance for different values of the constant damping amplitude Γ
′
0. For different values of the

particle mass below and above m = 1, we study the evolution of the linear response Q. In each

case, by using the indicator Q∗max defined by eq. (3.11), we identify if the system’s response can be

optimized with the perturbation amplitude H, that is if Q∗max > 1.

In Fig. 3.15, we present the indicator Q∗max as a function of the particle mass m. This will give an

idea of how the system changes its behavior, through VR effect, depending on the particle mass m.

Our result in Fig. 3.15 revealed that there is a critical value of the particle mass m∗ below which VR

effect exists and beyond which VR effect ceases to exist. This critical value of mass m has been

precisely calculated for our parameter settings as m∗ =2.375, for all values of the constant damping

amplitude Γ
′
0. Lastly, the best response Q∗max is obtained for the smallest damping coefficient Γ

′
0 as

previously reported, namely Γ
′
0=0.03.

The complete analyses conducted so far correspond to the case of a system with the constant

damping Γ(x) = Γ
′
0 which will constitute a reference for our future studies of the system experi-

encing a nonlinear damping. Throughout these studies, we highlighted the occurrence of VR and

the influence of the constant damping amplitude Γ
′
0 on VR. Our analyses were first for the case of

the fixed unitary particle mass m = 1 and lastly for the case of varying the particle mass. In what
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Figure 3.15: Selective response behavior controlled by the mass m of the particle. Summary of the system’s two
behaviors for different values of the constant damping amplitude Γ

′

0. Values of mass m that correspond to Q∗max = 1
define the region where VR ceases to exist whereas those that correspond to Q∗max > 1 match the existence of VR.
Parameters: G =0.05, k = 1, ω =0.65, Ω = 13, Φ0 = 1.

follows, we will study the behavior of a system experiencing a space-dependent inhomogeneous

damping.
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3.3/ CASE OF AN INHOMOGENEOUS AND SPACE-DEPENDENT NONLINEAR

DAMPING

In the case of space-dependent nonlinear damping obeying to eq. (3.5), the equation (3.7) of the

system describes the motion of a particle ruled by:

m
d2x
dt2 +Γ0

[
1−λsin(kx+φ)

]
dx
dt

+Φ0 sinkx = Gcosωt +H cosΩt. (3.12)

Recall that, λ sets the strength of the frictional inhomogeneity, the positive parameter Γ0 is the

whole amplitude of the nonlinear damping, k adjusts the same periodicity as in the periodic po-

tential Φ(x), while φ denotes the phase difference between the periodic potential Φ(x) and the

nonlinear dissipation Γ(x). The case λ = 0 in eq. (3.12), which corresponds to the case of the con-

stant damping studied in the previous section, has also been considered by Rajasekar et al when

they first reported the phenomenon of VR in multistable systems [149]. Moreover, Roy-Layinde

et al recently introduced nonlinear dissipative damping to the system and studied the role of its

parameters on the occurrence of VR [158].

In fact, nonlinear dissipation [197] is a very interesting property due to its wide appearance and ap-

plications in many mechanical systems such as: aerospace structures [198], nanoelectromechani-

cal systems [199–201], acoustic nonlinearity of an orifice [202], nonlinear suspension and isolation

systems [203], cochlear amplifier [204], Kramers oscillator [205], Josephson junction [206,207] and

in plasma science [157, 208]. Despite its diverse occurrences and applications, there are very few

investigations that focused on the impact of nonlinear damping/dissipation on the occurrence of

vibrational resonance [157,158,209].

In this section, we numerically first study the role of the nonlinear dissipation parameters; Γ0, λ and

φ on the occurrence of VR for a fix unitary mass (m = 1). Especially, this preliminary studies allow

to highlight the role of the mass m of the particle on the occurrence of VR, which to our knowledge,

has not been yet reported.

3.3.1/ RESPONSE OF THE SYSTEM

In this section, we perform temporal and spectral analyses to study how the system with inhomo-

geneous damping defined by eq. (3.12) responds to an external input stimuli. Like in the case of

constant damping, we subsequently study the influence of the nonlinear dissipation parameters on

VR, first for unitary mass and lastly for other values of the particle mass.
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3.3.1.1/ TEMPORAL ANALYSES

We analyze the temporal behavior of our dissipative system by examining the output signal x(t) for

different values of the perturbation amplitude H and for the specific values of nonlinear damping

amplitude Γ0 =0.03 and Γ0 =0.27. Note that these two values of the inhomogeneous damping

amplitude correspond to the values of constant damping amplitude Γ
′
0 previously considered in Sec.

3.2, when the damping was maintained constant. We carry out temporal analysis to qualitatively

observe the slow and the fast oscillations in the system’s output signal x(t).

For five different values of the perturbation amplitude H and for the specific value of the nonlinear

damping amplitude Γ0 =0.03, we summarized at Fig. 3.16 the temporal response of the system

with inhomogeneous damping. For all the perturbation amplitudes H of Fig. 3.16, the temporal

series reveal a low frequency component mixed with the high frequency perturbation component.

In particular, for the smallest value of the perturbation amplitude, namely H = 20, the low frequency

component is weak as shown in Fig. 3.16(a). The contribution of the low frequency in the output

signal is enhanced when the perturbation amplitude H increases to H = 220, as depicted in Fig.

3.16(b). By contrast, for an intermediate value of the perturbation amplitude, namely H = 245

presented at Fig. 3.16(c), the low frequency component in the output signal is best pronounced.

In this latter case, we can see that the output signal is dominated by the low frequency signal,
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Figure 3.16: Time series of the system response revealing
vibrational resonance effect for the specific nonlinear damp-
ing coefficient Γ0 =0.03. From top to bottom, the pertur-
bation amplitude H increases as follows: (a) H = 20, (b)
H = 220, (c) H = 245, (d) H = 300 and (e) H = 400. Pa-
rameters: m = 1, λ =2.4, φ =0.2, k = 1, Φ0 = 1, G =0.05,
ω =0.65, Ω = 13.
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Figure 3.17: Time series of the system response revealing
vibrational resonance effect for the specific nonlinear damp-
ing coefficient Γ0 =0.27. From top to bottom, the pertur-
bation amplitude H increases as follows: (a) H = 20, (b)
H = 200, (c) H = 280, (d) H = 340 and (e) H = 400. Pa-
rameters: m = 1, λ =2.4, φ =0.2, k = 1, Φ0 = 1, G =0.05,
ω =0.65, Ω = 13.
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which is contrary to the case of Fig. 3.16(a) when the perturbation amplitude H was very weak.

Meanwhile, for the perturbation amplitudes beyond the intermediate value, H = 300 and H = 400

for example, the low frequency component becomes weak again as shown in Figs. 3.16(d) and

3.16(e) respectively. This implies that the detection of the low frequency signal in the system is

enhanced when the perturbation amplitude H is tuned to an intermediate value. Consequently, the

temporal series of Fig. 3.16 exhibit the signature of VR.

We have performed the same temporal analysis at Fig. 3.17 for a greater nonlinear damping am-

plitude, namely Γ0 =0.27 instead of Γ0 =0.03. This study gives an insight on the impact of the

nonlinear damping amplitude Γ0 on the dynamics of the dissipative system with inhomogeneous

damping. Figs. 3.17(a)-(e) summarize the system temporal behavior, for five different values of the

perturbation amplitudes. Fig. 3.17(a), which corresponds to the case of the smallest considered

perturbation amplitude H = 20, shows that the low frequency component in the output signal is

hardly detectable. Increasing the perturbation amplitude to H = 200 enhances the detection of

the low frequency component in the output signal, as shown in Fig. 3.17(b). Moreover, for an in-

termediate value of the perturbation H = 280, the low frequency component in the output signal

is best observed. The low frequency in the output signal becomes weak again for the values of

perturbation amplitude beyond the intermediate value as shown in Figs. 3.17(d) and 3.17(e).

It is clear that, the responses obtained in Fig. 3.17 after increasing the nonlinear damping am-

plitude to Γ0 =0.27 are less pronounced when compared with the responses obtained when the

damping amplitude was Γ0 =0.03 as given by Fig. 3.16. This implies that, when the nonlinear

damping amplitude Γ0 grows larger, the low frequency component in the system’s output signal is

less detectable. The responses obtained in these temporal analyses are in agreement with what

has been observed from the system experiencing the constant damping, as such, this behavior can

said to be general in both the two systems. To be more consistent with the temporal analyses of

Figs. 3.16 and 3.17, we also perform the corresponding spectral analyses.

3.3.1.2/ FREQUENCY ANALYSES

We carry out frequency analyses as a complementary approach which allows to quantize the con-

tribution of the low frequency component in the output signal corresponding to the chronograms

presented at Figs. 3.16 and 3.17. Note that the spectra reported in this section at Figs. 3.18 and

3.19 correspond to the chronograms presented at Figs. 3.16 and 3.17 respectively.

In Fig. 3.18, we present the unilateral magnitude spectrum with the zoom only near the low fre-

quency fL f =
ω

2π
for the lowest damping amplitude Γ0 =0.03. Moreover, the same five values of the

perturbation amplitude H are considered as in the temporal analysis of Fig 3.16. For the smallest

perturbation amplitude, namely H = 20, the amplitude of the magnitude spectrum 2|X( f = fL f )|
at the low frequency fL f =

ω

2π
is weak as shown in Fig 3.18(a). As the perturbation amplitude

increases to H = 220 in Fig 3.18(b), the amplitude of the spectrum at the low frequency fL f =
ω

2π
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Figure 3.18: Unilateral magnitude spectra corresponding to
the time series of Fig. 3.16. From top to bottom: (a) H = 20,
(b) H = 220, (c) H = 245, (d) H = 300 and (e) H = 400.
Parameters: m = 1, Γ0 =0.03, λ =2.4, φ =0.2, k = 1, Φ0 =
1, G =0.05, ω =0.65, Ω = 13.

0.1029 0.1033 0.1037 0.104

0.5

1

1.5

0.1029 0.1033 0.1037 0.104

0.5

1

1.5

0.1029 0.1033 0.1037 0.104

U
n

il
a
te

r
a
l 
m

a
g

n
it

u
d

e
 s

p
e
c
tr

u
m

0.5

1

1.5

0.1029 0.1033 0.1037 0.104

0.5

1

1.5

Frequency (arbitrary unit)

0.1029 0.1033 0.1037 0.104

0.5

1

1.5

(a)

(b)

(c)

(d)

(e)

(f=0.1035 ;  2|X(f)|=0.08621)

(f=0.1035 ;  2|X(f)|=0.1800)

(f=0.1035 ;  2|X(f)|=0.3555)

(f=0.1035 ;  2|X(f)|=0.1916)

(f=0.1035 ;  2|X(f)|=0.1138)

Figure 3.19: Unilateral magnitude spectra corresponding to
the time series of Fig. 3.17. From top to bottom: (a) H = 20,
(b) H = 200, (c) H = 280, (d) H = 340 and (e) H = 400.
Parameters: m = 1, Γ0 =0.27, λ =2.4, φ =0.2, k = 1, Φ0 =
1, G =0.05, ω =0.65, Ω = 13.

also increases. However, the amplitude of the spectrum at the low frequency appears more evi-

dently observable for the intermediate value of the perturbation amplitude H = 245, as shown in

Fig 3.18(c). Eventually, the amplitude of the magnitude spectrum at the low frequency becomes

weak again for the larger values of the perturbation amplitude, as displayed in Fig 3.18(d) and Fig

3.18(e) when H = 300 and H = 400 respectively. Therefore, the spectral analyses carried out at

Fig. 3.18 confirm the observation of VR phenomenon revealed by the chronograms of Fig 3.16.

In the case when the nonlinear damping amplitude increases to Γ0 =0.27, the spectral analysis is

presented at Fig. 3.19. Unlike in the corresponding temporal analyses of Fig. 3.17, the influence of

increasing the perturbation amplitude H is better perceived in the corresponding spectral analyses

of Fig. 3.19. It is also obvious from Fig. 3.19(c) that, the amplitude of the spectrum at the low

frequency is best pronounced for an intermediate perturbation amplitude, below and beyond which

the response is lowered.

Having going far on the study of the temporal and spectral responses of our nonlinear dissipative

system, next we pay attention to the influence of nonlinear dissipation parameters; Γ0, λ and φ

on VR. Emergence of VR effect can be revealed using the classical quantification tool defined by

eq. (3.9) corresponding to the linear response Q. Indeed, the linear response Q is the amplitude

of the unilateral magnitude spectrum 2|X( fL f )| at the low frequency fL f =
ω

2π
normalized by the

amplitude of the low frequency input signal G.
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3.3.2/ CONTROL OF VR BY NONLINEAR DAMPING PARAMETERS

In this section, using the classical linear response Q, we conduct preliminary numerical investi-

gations for a fix value of the particle mass m = 1, to study how VR phenomenon is controlled by

the nonlinear dissipation parameters: damping amplitude Γ0, frictional inhomogeneity λ and the

phase φ between nonlinear damping and periodic potential. This preliminary study will constitute a

reference to investigate the impact of the particle mass m on the occurrence of VR.

3.3.2.1/ CONTROL OF VR BY THE NONLINEAR DAMPING AMPLITUDE Γ0

The study of the impact of nonlinear damping parameters on VR was initiated by Roy-Layinde et

al [158]. However, their study was silent on the possible effect of nonlinear damping amplitude Γ0

on VR. In this part, to complement the work of Roy-Layinde et al [158], we show how the damping

amplitude Γ0 affects VR, while the other dissipation parameters remain the same as those of Sec.

3.3.1, namely, λ =2.4, φ =0.2 and k = 1.

Fig. 3.20 depicts the linear response Q as a function of the perturbation amplitude H for different

values of the nonlinear damping amplitude Γ0. Here, increasing the perturbation amplitude H, we

obtain multiple resonances, where the first resonance corresponds to the global maximum attained
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Figure 3.20: Control of VR with the nonlinear damping amplitude Γ0 of the space-dependent damping coefficient Γ(x).
Parameters: m = 1, λ =2.4, φ =0.2, k = 1, Φ0 = 1, G =0.05, ω =0.65, Ω = 13.
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for an intermediate value of the perturbation amplitude H. For each value of the damping amplitude

Γ0, the local maxima decrease as the perturbation amplitude H increases. As well, it can be

observed from Fig. 3.20 that reducing the nonlinear damping amplitude Γ0 enhances the detection

of the low frequency signal since the achieved maxima are greater for weak values of the damping

amplitude Γ0.
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Figure 3.21: Dependence of the local maxima Qn
max of Fig. 3.20 versus the nonlinear damping amplitude Γ0. Qn

max
donates the amplitude of the local maxima number n. Parameters: m = 1, λ =2.4, φ =0.2, k = 1, Φ0 = 1, G =0.05,
ω =0.65, Ω = 13.

Comparing the result of Fig. 3.20 with the corresponding result for the case of constant damping

in Fig. 3.12, one can conclude that including the nonlinearity in the system’s damping is interesting

because it enhances the response Q of the system. Indeed, the responses for the case of the

nonlinear damping in Fig. 3.20 are better than those for the case of the constant damping presented

at Fig. 3.12.

Lastly, Fig. 3.21 shows how the nonlinear damping amplitude Γ0 affects the maximum amplitude of

the local, second and third resonances of the linear response presented at Fig. 3.20. The results

of Fig. 3.21 implies that varying the nonlinear damping is more significant for smaller values of the

damping amplitude Γ0 since for larger values of the nonlinear damping amplitude Γ0, the response

of all the maxima became less pronounced and approaches the same value.
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3.3.2.2/ CONTROL OF VR BY THE PHASE DIFFERENCE φ BETWEEN THE NONLINEAR DAMPING

AND THE PERIODIC POTENTIAL

The parameter φ was reported to have influenced the occurrence of VR by Roy-Layinde et al [158].

However, as they did not discuss the possibility for the phase φ to maximize VR, we addressed

this particular point in this section. It may be recalled that, φ is the phase difference between the

nonlinear damping Γ(x) and the periodic potential Φ(x).

We carry out the study of the linear response Q versus the perturbation amplitude H, for different

values of the phase φ. Our analyses in Fig. 3.22 reveal the same behavior as in Fig. 3.20 that is,

varying the perturbation amplitude H, we obtain multiple resonances for each value of the phase

φ, the first resonance gives the global maximum, followed by local maxima which decrease as the

perturbation amplitude H increases. Note that, varying the phase φ enhances the performance

of the system and the maximum response is obtained for the optimal value of the phase φ =
π

2
.

Indeed, beyond the optimal value φ =
π

2
, for example for φ =2.1, the resonances of the linear

response Q are less pronounced, as can be seen from Fig. 3.22.

Presented at Fig. 3.23 is the evolution of the local maxima Qn
max of the linear response Q as

a function of the phase φ, for the global, second and third maxima of the multiresonance curve
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Figure 3.23: VR enhancement by the phase φ of the nonlinear damping Γ(x). The three first local maxima Qn
max of the
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G =0.05, ω =0.65, Ω = 13.

(n = 1, 2 and 3) of Fig. 3.22. It appears from Fig. 3.23 that the largest resonances are obtained

when the phase φ is optimally tuned to φ =
π

2
+2πk, with k being an integer.

In fact, when φ =
π

2
, the sine function of the nonlinear damping term sin(kx +

π

2
) in eq. (3.5)

reduces to coskx and it became perfectly in phase with the cosine function of the periodic potential

defined by eq. (3.3). This implies that the maximum response is achieved when the modulation

of the nonlinear damping force Γ(x) and that of the periodic potential Φ(x) are in phase with each

other.

3.3.2.3/ CONTROL OF VR BY THE FRICTIONAL INHOMOGENEITY λ

In this subsection, we briefly recall the effect of the frictional inhomogeneity λ on VR phenomenon.

Indeed, it will provide a reference for our next study devoted to the influence of the particle mass

m. The resonance curves of Fig. 3.24 summarized the behavior of the linear response Q as

a function of the perturbation amplitude H for different values of the frictional inhomogeneity λ.

Multiple resonances are once again observed for each value of λ, the first resonance corresponding

to the global maximum which is obtained for an intermediate perturbation amplitude H. Moreover,

increasing λ enhances the detection of the low frequency component of the signal. From the



3.3. CASE OF SPACE-DEPENDENT NONLINEAR DAMPING 43

Perturbation amplitude H (arbitrary unit)

0 500 1000 1500

L
in

e
a
r 

re
s
p

o
n

s
e
 Q

1

2

3

4

5

6

7

8

9

λ=0

λ=0.5

λ=1

λ=1.7

λ=2.4

λ=3.3

λ=4.2

Figure 3.24: Control of VR with the modulation strength λ of the space-dependent dissipation Γ(x). Parameters: m = 1,
Γ0 =0.27, φ =0.2, k = 1, Φ0 = 1, G =0.05, ω =0.65, Ω = 13.

nonlinear damping coefficient given by eq. (3.5), we can interpret that the curve for λ = 0 in Fig.

3.24 corresponds to the case of constant damping which was reported in our previous studies of

VR and also by Rajasekar et al [149].

As these typical vibrational multiresonance signatures were shown by Roy-Layinde et al in the

case of a unitary particle mass [158], one may wonder if these signatures can persist for particles

of different mass or if other behaviors may appear. This constitutes the subject of the next section.

3.3.3/ COMBINED EFFECT OF THE PARTICLE MASS m AND THE NONLINEAR DISSIPATION

PARAMETERS ON THE VR OCCURRENCE

As with the previous case of the constant damping, depending on the mass of the particle, our

numerical investigations for the case of nonlinear damping also reveal two different behaviors. Fig.

3.25 highlights these two cases for different values of the damping amplitude Γ0 and specific mass

values, more precisely m = 1 and m =2.4.

At Fig. 3.25(a) which corresponds to m = 1, the system’s performance can be optimized by in-

creasing the perturbation amplitude H and the maximum response is obtained for an intermediate

value of the perturbation. By contrast, for the case reported at Fig. 3.25(b), and corresponding



44 CHAPTER 3. ANALYSES OF VR IN A DAMPED NONLINEAR SYSTEM

Perturbation amplitude H  (arbitrary unit)

0 500 1000 1500

L
in

ea
r 

re
sp

o
n

se
 Q

0

5

10

15

20

25

30

35

Γ
0
=0.03

Γ
0
=0.15

Γ
0
=0.27

Γ
0
=0.39

Γ
0
=0.51

Perturbation amplitude H  (arbitrary unit)

0 500 1000 1500

L
in

ea
r 

re
sp

o
n

se
 Q

0

2

4

6

8

10

12

14

Γ
0
=0.03

Γ
0
=0.15

Γ
0
=0.27

Γ
0
=0.39

Γ
0
=0.51

(a) (b)

Figure 3.25: System’s two different observed behaviors due to the change of the particle mass m. (a) m = 1, VR
signature: A high frequency perturbation enhances the detection of the low frequency. (b) m =2.4, no enhancement of
the low frequency detection. Parameters: λ =2.4, φ =0.2, k = 1, Φ0 = 1, G =0.05, ω =0.65, Ω = 13.

to m =2.4, increasing the perturbation amplitude H can not optimize the system’s response Q.

Indeed, for m =2.4, the response Q of the system at H = 0 is the maximum response with the

local maxima decreasing as the perturbation amplitude increasing. Note that VR phenomenon fails

to exist in the case m =2.4 because, the maximum response amplitude is obtained without the

perturbation, that is when H = 0.

Based on these two behaviors reported at Fig. 3.25, we perform the same study for different

values of the mass below and above m = 1. For each value of the mass m, to identify whether

the perturbation can lead to an enhancement of the low frequency detection or not, we use the

indicator defined by eq. (3.11) in Sec. 3.2.4, namely Q∗max. The indicator allows to classify the

behavior belonging to each particle mass. Q∗max is the ratio of the maximum response amplitude

Qmax to the response amplitude obtained without the high frequency perturbation, namely when

H = 0.

In the case of varying the amplitude of the nonlinear damping Γ0, we present Q∗max versus the

particle mass m in Fig. 3.26. The curves presented in Fig. 3.26 reveal a critical value m∗ of the

mass around which we obtained the change of behavior, whatever the value of Γ0. This value has

been precisely determined and is equal to m∗ =2.375. The first behavior occurs for particle masses

below the critical mass m∗. For such particles, since Q∗max exceeds 1, VR effect can be observed.

By contrast, for particle masses beyond m∗, Q∗max = 1 which indicates that VR ceases to exist.
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Figure 3.26: Selective response behavior controlled by the mass m of the particle. Summary of the system’s two
behaviors for different values of the nonlinear damping amplitude Γ0. Values of mass m that correspond to Q∗max = 1
define the region where VR ceases to exist whereas those that correspond to Q∗max > 1 match the existence of VR.
Parameters: λ =2.4, φ =0.2, k = 1, Φ0 = 1, G =0.05, ω =0.65, Ω = 13.

Lastly, as previously shown, Fig. 3.26 also confirms that smaller value of Γ0 yields the maximum

response.

Consequently, particles with mass below m∗ will experience VR, whereas for particles with a mass

beyond m∗, no improvement of the system response can be expected by perturbing the system with

a high frequency perturbation.

In a particular case of varying the phase φ, we also study Q∗max as a function of the particle mass

m at Fig. 3.27. For the parameter settings of Fig. 3.27, the critical mass m∗ beyond which VR

ceases to exist does not depend on the phase φ. Indeed, we have precisely measured this value

as m∗ =2.375. Lastly, we can also deduce from Fig. 3.27 that varying the phase φ improves

the performance of the system, but the particular value φ =
π

2
gives the maximum response, as

reported in the earlier preliminary study.

Similarly, at Fig. 3.28, we study how Q∗max evolves versus the mass m of the particle for different

values of the frictional inhomogeneity λ. There also exist a critical mass m∗ below which VR occurs

whatever the value of the frictional inhomogeneity λ. This critical mass m∗ is determined to be

invariably the same as the one obtained in the later cases of varying Γ0 and φ, that is m∗ =2.375.

Moreover, we note that the maximum response amplitude is obtained for larger values of λ.
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Figure 3.27: Selective response behavior controlled by the
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ω =0.65, Ω = 13.
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Figure 3.28: Selective response behavior controlled by the
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k = 1, Φ0 = 1, G =0.05, ω =0.65, Ω = 13.

In summary, the simulation results presented at Figs. 3.26, 3.27 and 3.28 demonstrate that for

all the nonlinear dissipation parameters considered, there exists a critical value of mass m∗ below

which the phenomenon of VR can be observed and beyond which no enhancement can be obtained

by perturbing the system.

3.4/ CONCLUSION

In this chapter, we have considered the motion of a particle experiencing a periodic potential which

is driven by a bichromatic excitation in two different cases of damping; constant damping and

a space-dependent nonlinear damping. More precisely, our research has mainly addressed VR

occurrence when the particle mass and the damping parameters are jointly considered as control

parameters.

To accomplish these analyses, it was first useful to briefly precise the setting of the system and to

introduce the classical tools necessary to highlight VR. In view of these, in both the two cases of

the damping, we have therefore performed preliminary studies restricted to the case of a unitary

particle mass.

In the first case of constant damping and for the unitary particle mass, we have numerically re-

vealed by using temporal and spectral analyses that, VR effect exists in the system. We highlighted

that VR can be controlled by the constant damping amplitude Γ
′
0 and that the best responses can
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be obtained for the smaller values of the constant damping amplitude Γ
′
0. Moreover, when the per-

turbation amplitude H evolves in a wide range, the obtained responses have exhibited vibrational

multiresonance signature. More precisely, among the multiple observed resonances, the first reso-

nance corresponds to the greatest one, while the magnitude of the next resonances decreases as

the perturbation amplitude H keeps increasing.

Subsequently, we studied the combined impact of the particle mass m and the constant damping

amplitude Γ
′
0 on VR occurrence. We demonstrated that the system exhibits two different behaviors

that depend on the particle mass m, one of which VR phenomenon ceased to exist. The first

behavior, which corresponds to the instance of the unitary particle mass, revealed that the system’s

response can be optimized by an appropriate increase of the perturbation amplitude H while in the

latter, the system’s maximum response is obtained without the perturbation, that is when H = 0.

This change of behavior neither depends on the constant damping amplitude Γ
′
0 but on the variation

of the particle mass m. Therefore, we then proposed an indicator, namely Q∗max, which enabled us

to classify the behavior belonging to each considered particle mass m. Indeed, for all values of the

constant damping amplitude Γ
′
0, we have identified a critical value of mass m∗ below which VR can

be observed and beyond which it ceased to exist.

For the case of a system with nonlinear dissipation, the space-dependent nonlinear dissipation

we have considered was first introduced by Roy-Layinde et al. This nonlinear dissipation can be

tuned by its strength λ, its whole amplitude Γ0 and its phase difference φ with the periodic potential

of the system. We have first conducted a preliminary study for a unitary particle mass from the

perspectives of temporal and frequency analyses to verify VR existence in the system. As previ-

ously pointed by Roy-Layinde et al [158], we have numerically verified that nonlinear dissipation

parameters λ and φ allow to control VR. Indeed, as in the previous case of the constant damping,

we obtained response curves that exhibited multiple resonances: the first resonance corresponds

to the global maximum which is achieved for an intermediate value of the perturbation amplitude

H while the other local maxima decrease as the perturbation amplitude increases. However, we

highlighted that an optimal value of the phase difference between the potential and the nonlinear

dissipation maximizes the VR effect. This optimal value of the phase (φ =
π

2
) corresponds to the

case when the modulation of the nonlinear damping and the modulation of the periodic potential are

in phase with each other. In addition, we have enlarged this study by analyzing the impact of the

dissipation amplitude Γ0 which also allowed to control VR. In particular, we found that decreasing

the amplitude of the nonlinear damping coefficient Γ0 enhances the response Q of the system.

After these preparatory studies, our main results in this part concerned the joint effect of the non-

linear dissipation parameters and the particle mass m on VR occurrence. Especially, as in the case

of the constant damping, we demonstrated that the system exhibits two different behaviors that

depend on the particle mass m, one of which VR phenomenon ceased to exist.

By comparison, we understood that the responses achieved by the system experiencing nonlinear

damping amplitude Γ0 are better than those obtained for the case of the linear damping amplitude
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Γ
′
0. Moreover, unlike linear damping, nonlinear damping allowed to control the response of the

system from its multiple parameters: modulation strength λ and the phase difference φ between

damping and potential.

We suspect that our finding concerning the existence of a critical mass m∗ beyond which VR ceased

to exist could be extended to other mechanical systems exhibiting different kinds of potential. In-

deed, the depth and location of the potential wells [210], shape of the harmonically trapped poten-

tial [167] and the shape of an asymmetrical deformable potential were recently reported to have

a significant impact on the occurrence of VR [211]. Moreover, it is interesting to note that the ex-

istence of the critical mass m∗, which is observed in our system with both constant and nonlinear

damping, could allow to separate particles with different mass.

In the context of the so called ratchet effect, particle’s trajectory was also studied in inhomogeneous

systems experiencing symmetric periodic potential [180–184]. Frictional inhomogeneity λ and initial

phase of the external periodic forcing φ0 were reported to have an effect on the sensible generation

of ratchet current for unitary particle masses [181]. We suggest that the phase difference φ, nonlin-

ear damping amplitude Γ0 and most especially the particle mass m may have significant impact on

the directed particle transport. That is why the work presented in this chapter could be relevant in

the context of ratchet effect.
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In this chapter, we numerically investigate the dynamics of a multistable Chua’s circuit model driven

by an external perturbed excitation. We mainly study the impact of the system’s nonlinearity, which

provides the system’s multistability, on the occurrence of Vibrational Resonance (VR) and Ghost-

Vibrational Resonance (GVR) phenomena. Especially, we compare the well known dynamics ob-

tained with the classical sawtooth nonlinearity [152] and the one produced with a truncated sinu-

soidal nonlinearity.
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4.1/ INTRODUCTION

The nature of the nonlinearity have significant impact on the dynamical response of nonlinear sys-

tems. For instance, a multistable nonlinearity has proven to have applications in image process-

ing [170]. In particular, Chua’s circuit model, which was first introduced to study chaotic behavior

in electronic circuits, is based on a multistable nonlinearity [212]. This model was used to study

many nonlinear properties and phenomena such as the existence of multi-scroll chaotic attrac-

tors [172,213], bifurcation analysis [171,214], Stochastic Resonance (SR) [173], Vibrational Reso-

nance (VR) [151,152] and Ghost-Vibrational Resonance (GVR) [152].

Recently, Chua’s circuit model was used with a multistable sawtooth force as form of nonlinearity to

study the occurrence of VR and GVR [152]. However, we must admit that the dynamics of Chua’s

circuit model in the context of nonlinear resonances was not explored with a truncated sinusoidal

force, which is also multistable. Indeed, nonlinear systems with the truncated sinusoidal force

have revealed applications in image processing [170] and have also enabled information storage in

memristors [174–176]. Owing to these promising applications, it is of crucial interest to characterize

the impact of a truncated sinusoidal nonlinearity on VR and GVR occurrence. In this chapter,

we study how a truncated sinusoidal force affects the occurrence of VR and GVR in a modified

Chua’s circuit model. Moreover, we especially compare the dynamics obtained with the well known

classical sawtooth nonlinearity [152] and the one produced with our proposed truncated sinusoidal

nonlinearity.

The subsequent sections of this chapter are arranged in the following order. Firstly, the system

under consideration is described in Section 4.2 with its setup and the numerical procedure used

throughout the chapter. Next, the analyses of the VR and GVR are presented in Sections 4.3 and

4.4 respectively for each considered nonlinearity, that is the sawtooth function and our propose

truncated sinusoidal function. Lastly, section 4.5 is devoted to the conclusion and outlooks of this

chapter.

4.2/ DESCRIPTION OF THE CHUA’S MODEL

Chua’s circuit was first invented in 1983 by Chua to study the existence of double-scroll chaotic

attractors [212]. These attractors were numerically confirmed in 1984 by Matsumotu [215] and the

chaotic behavior of the circuit was experimentally shown one year later [216]. The modification of

the initial nonlinearity of the system has also attracted attention since it has allowed to generate

multi-scroll attractors [172]. In this chapter, we also focus on the impact of the nonlinearity on the



4.2. DESCRIPTION OF THE CHUA’S MODEL 51

dynamics of the following modified Chua’s circuit model:

dx
dt

= αy+
dΦn(x,α)

dx
+ ep(t)

dy
dt

= x− y+ z (4.1)

dz
dt

= −βy.

This three dimensional system describes the evolution of three variables x, y and z, when it is driven

by an input perturbed excitation ep(t). The term Φn(x,α) represents the potential which provides

the multistability and whose derivative will refer to a nonlinearity of order n in the whole chapter.

Moreover, α is a constant parameter which also adjusts the height of the potential barrier. The

corresponding nonlinear force Fn(x,α) is derived from the potential Φn(x,α) by the relation

Fn(x,α) =−
dΦn(x,α)

dx
. (4.2)

4.2.1/ THE TWO CONSIDERED NONLINEARITIES OF ORDER n

The most crucial part of the Chua’s circuit model defined by the set of eqs. (4.1) is the nonlinear

force Fn(x,α) due to its significant impact on the dynamical response of the system. Indeed, variety

of dynamical behaviors were studied while considering different nonlinear forces or nonlinearities

Fn(x,α) such as: a sigmoid force [217], a piecewise linear force [218], a discontinuous force [219],

a saturated force [220] and a sawtooth force [152,172,173] among others.

A recent study by Abirami et al reported the role of a sawtooth type nonlinearity on VR and GVR

occurrence in a modified Chua’s circuit model [152]. This sawtooth force is redefined here with

our own notations for convenience and to allow direct comparison with the truncated sinusoidal

nonlinearity proposed in this chapter. The sawtooth force of order n and parameter α is then

redefined by the following expression:

Fn(x,α) = − α

{
A0

A
x+
(
(−1)n +1

2

)
A0 sgn(x)

− A0

n

∑
j=0

[
sgn

(
x+
(

2 j−
(
(−1)n−1

2

))
A
)

(4.3)

+ sgn

(
x−
(

2 j−
(
(−1)n−1

2

))
A
)] }

,

where sgn is a sign function, n is the order of nonlinearity and the constant parameters α, A and

A0 adjust the potential barrier. The sawtooth force Fn(x,α) described by eq. (4.3) is presented in

Fig. 4.1 with its corresponding potential Φn(x,α) for three values of the nonlinearity order, namely
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n = 0, n = 1 and n = 2.

The number of stable and unstable states of the potential is controlled by n. Indeed, for each value

of n, we obtain n+1 unstable states and n+2 stable states, whose positions are given by

X∗h,n =
h

4A
,

where h is an integer value in the interval [−(n+1);n+1], while the second index n refers to the

nonlinearity order. The parameter n categorizes these stability positions in two cases:

• if n is odd, the positions X∗h,n =
h

4A
correspond to stable states for even values of h and

unstable states for odd values of h.

• if n is even, the positions X∗h,n =
h

4A
correspond to stable states for odd values of h and

unstable states for even values of h.

Moreover, for all values of n, the potential starts at the left with a stable state at the position

X∗−(n+1),n = −n+1
4A

and ends at the right with a stable state at position X∗(n+1),n =
n+1
4A

. The

potential barrier ∆Φ associated to the sawtooth force is defined by ∆Φ =
αA0

32A3 and the spacing

∆X∗ between any two consecutive stable or unstable states of the potential is given as ∆X∗ =
1

2A
.

In this chapter, we introduce another multistable nonlinearity to investigate its impact on the dynam-

ics of the modified Chua’s circuit model, especially in the context of VR and GVR. We choose to
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Figure 4.1: Sawtooth force Fn(x,α) and its corresponding potential Φn(x,α) for three values of nonlinearity order n:
(a) n = 0, (b) n = 1, (c) n = 2. Parameters: α = 6, A =0.5, A0 =0.125. ∆X∗ represents the spacing between two
consecutive stable or unstable states that is, the potential width and ∆Φ is the potential barrier height.
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use such nonlinearity because it can be implemented in electronic devices [221]. More precisely,

we propose a truncated sinusoidal force which is expressed as:

Fn(x,α) =



− 2παV0k2[x+X∗(n+1),n], for x < X∗−(n+1),n

+ (−1)nαV0k[sin(2πkx)], for X∗−(n+1),n ≤ x≤ X∗(n+1),n

− 2παV0k2[x+X∗−(n+1),n], for x > X∗(n+1),n .

(4.4)

In eq. (4.4), as for the potential driven from the sawtooth force, X∗−(n+1),n and X∗(n+1),n correspond

to the respective positions of the two ends of the potential associated to our truncated sinusoidal

force. Moreover, the truncated sinusoidal force defined in eq. (4.4) is also multistable owing to its

sinusoidal behavior. Note also that, it is truncated because the force is replaced by the tangent

of the sinusoidal function at both the two ends of the force as expressed in relation (4.4). Fig.

4.2 illustrates the form of the truncated sinusoidal force Fn(x,α) and its corresponding potential

Φn(x,α) for the orders of nonlinearity n = 0, n = 1 and n = 2. In the definition of the truncated

sinusoidal force given by eq. (4.4), the parameter k accounts for the periodicity and width of the

potential ∆X∗. Moreover, α and V0 adjust the potential barrier height ∆Φ.

Similarly, n sets the number of stable and unstable states of the potential. Furthermore, this poten-
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Figure 4.2: Truncated sinusoidal force Fn(x,α) and its corresponding potential Φn(x,α) for three values of nonlinearity

order n: (a) n = 0, (b) n = 1, (c) n = 2. Parameters: α = 6, V0 =
π

32
, k = 1. ∆X∗ represents the spacing between two

consecutive stable or unstable states and ∆Φ is the potential barrier height.
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tial still exhibits n+1 unstable states and n+2 stable states located at positions

X∗h,n =
h
2k

,

where h is an integer in the range [−(n+1);(n+1)] and the second index n refers to the nonlin-

earity order. The stability of each of these positions depends on the parity of n:

• if n is odd, the positions X∗h,n =
h
2k

correspond to stable states for even values of h and

unstable states for odd values of h.

• if n is even, the positions X∗h,n =
h
2k

correspond to stable states for odd values of h and

unstable states for even values of h.

Lastly, whatever the value of n, the two ends of the potential correspond to stable states whose

positions are given as X∗−(n+1),n = −(n+1)
2k

and X∗(n+1),n =
(n+1)

2k
. The barrier height of the

potential driven from the truncated sinusoidal force, defined in eq. (4.4), is ∆Φ =
αV0

π
and the

spacing between any consecutive stable or unstable states of the truncated sinusoidal potential is

given by ∆X∗ =
1
k

.

To compare the respective impact of the two nonlinearities defined by eqs. (4.3) and (4.4) on the

system’s response, it is necessary that the corresponding potentials share the same features in

terms of barrier height ∆Φ and width ∆X∗. This implies that, for our truncated sinusoidal force,

the parameter V0 must be tuned to V0 =
πA0

32A3 while the periodicity k of the truncated sinusoidal

potential must be adjusted to k = 2A.

In the study of Abirami et al [152], the parameters A0 and A of their sawtooth force were adjusted

to A0 =0.125 and A =0.5. Consequently, throughout this chapter, the parameters of our truncated

sinusoidal nonlinearity are set to V0 =
π

32
and k= 1. With these parameters settings, both potentials

of the two models share the same potential barrier height ∆Φ and width ∆X∗, that is numerically

∆Φ =
α

32
and ∆X∗ = 1.

4.2.2/ INPUT PERTURBED EXCITATION ep(t)

The system defined by eqs. (4.1) is driven by an input perturbed excitation ep(t) consisting of low

frequency signal(s) e(t), corrupted by an additive high frequency perturbation p(t), that is,

ep(t) = e(t)+ p(t). (4.5)

Here, e(t) refers to the input low frequency signal(s) defined as

e(t) = bcos(ω1t)δ+b
[

cos(ω1t)+ cos(ω2t)
]
(1−δ), (4.6)
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where the boolean variable δ allows to select the appropriate stimuli to investigate VR (δ = 1) or

GVR (δ = 0). In eq. (4.6), the parameter b represents the low frequency amplitude whereas ω1 and

ω2 are two close low angular frequencies whose difference will define the ghost angular frequency

ω0. Therefore, in the whole chapter, we choose ω1 and ω2 so that they satisfy the classical setting

to observe GVR, that is ω1 = 2ω0 and ω2 = 3ω0. Lastly, in the input perturbed excitation ep(t)

defined by eq. (4.5), p(t) stands for the high frequency perturbation which satisfies

p(t) = BcosΩt. (4.7)

In expression (4.7), B and Ω are the perturbation amplitude and its angular frequency respectively.

Throughout this chapter, we consider the high angular frequency to be much greater than the low

angular frequencies namely, Ω� ω1 and Ω� ω2, which corresponds to the commonly used

condition for achieving VR and GVR phenomena.

4.2.3/ NUMERICAL PROCEDURE

To study the dynamics of the system described by the set of eqs. (4.1), it is pertinent to first detail the

numerical procedure which was used by Abirami et al when they considered a sawtooth nonlinearity

[152]. For each of the two types of nonlinearities defined by eqs. (4.3) and (4.4), taking into account

zero initial conditions for all variables, namely x(0) = y(0) = z(0) = 0, we use a 4th order Runge-

Kutta algorithm in Matlab script to integrate the system of eqs. (4.1) which is driven by the input

excitation of eq. (4.5). Considering first the zero perturbation case, that is B = 0, we perform

simulations during a temporal window T which corresponds to 1000 low frequency cycles and 222

total number of samples. The corresponding integrating time step is therefore dt = (
1000
222 )

2π

ωi
, with

ωi taken according to the angular frequency to be analyzed, that is ωi = ω1 for the study of VR

(δ = 1) and ωi = ω0, ω1 or ω2 for the study of GVR (δ = 0). When the perturbation amplitude B

increases with step ∆B, last values of the system variables are considered as the initial conditions

for the next simulation with amplitude B+∆B, that is x(0) = x(T ), y(0) = y(T ) and z(0) = z(T ).

Lastly, the values of the output x(t) corresponding to the last 500 driving cycles are considered for

all computations whereas the first 500 cycles are discarded as transient.

4.3/ VIBRATIONAL RESONANCE OCCURRENCE

In order to study VR, the boolean variable δ in eq. (4.6) is set to δ = 1. This reduces the input

perturbed excitation ep(t) defined by eq. (4.5) to

ep(t) = bcosω1t +BcosΩt. (4.8)

In this section, we study how the multistable nonlinearities defined by eqs. (4.3) and (4.4) affect VR.
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Three different analyses are presented namely: temporal, frequency and phase portraits analyses.

In each of these analyses, responses of the system experiencing a truncated sinusoidal nonlinearity

are compared with the responses of the system with a sawtooth nonlinearity. In this whole section,

the constant parameters of the model α and β are taken as α = 6 and β = 16. Moreover, we set the

amplitude of the low frequency to b =0.1, the low angular frequency to ω1 = 1 and the perturbation

angular frequency to Ω = 10ω1.

4.3.1/ TEMPORAL ANALYSIS

In this subsection, we study how the temporal response x(t) of the system experiencing the two

different nonlinearities behave against the perturbation amplitude B. The time series analysis is

conducted in such a way that, for each considered value of the perturbation amplitude B, we perform

simulations starting from B= 0 with the step ∆B=0.01, saving the memory of the system each time

until the chosen value of the perturbation B.

For the system experiencing the truncated sinusoidal force, we choose the perturbation amplitudes

B =1.5, 4.13 and 6.8, to obtain the chronograms of Fig. 4.3(a), 4.3(b) and 4.3(c) respectively. The

temporal series of Fig. 4.3 revealed that the low frequency signal is corrupted by the high frequency

perturbation in all the three cases. For the smallest perturbation amplitude, that is B =1.5 at Fig.

4.3(a), the low frequency contribution in the output signal is weak. However, for the intermediate

perturbation amplitude B =4.13 at Fig. 4.3(b), the low frequency component in the output signal

is best revealed. The low frequency contribution in the output signal at Fig. 4.3(c) became less

pronounced as the perturbation amplitude further increases to B =6.8. This implies that when the

perturbation amplitude B is optimally tuned to the intermediate value B =4.13, the enhancement

of the system response to the low frequency excitation is the best. This behavior signifies the

occurrence of VR phenomenon in the system experiencing the truncated sinusoidal nonlinearity.

On the other hand, for the system experiencing the sawtooth force, we consider the perturbation

amplitudes B =1.5, 4.72 and 9.79, to study its temporal response as presented at Fig. 4.4(a),

4.4(b) and 4.4(c) respectively. In fact, each of the temporal responses of Fig. 4.4 also revealed

low frequency signal corrupted by a high frequency perturbation. For the weakest considered

perturbation amplitude B =1.5, Fig. 4.4(a) shows that the low frequency contribution in the output

signal is weak. However, for the intermediate perturbation B =4.72 depicted at Fig. 4.4(b), the low

frequency in the output signal is best pronounced. Lastly, Increasing the perturbation amplitude

to B =9.79, the low frequency component in the output signal became weak again as shown in

Fig. 4.4(c). Indeed, varying the perturbation amplitude B, the best system response at the low

frequency is achieved for an intermediate perturbation, namely B =4.72 in this case. This is the

signature of VR also revealed by the system experiencing a sawtooth nonlinearity.
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Figure 4.3: Typical time series of the Chua’s model expe-
riencing the truncated sinusoidal force defined by eq. (4.4)
and driven by the excitation of eq. (4.8). The chronograms of
x have been obtained by increasing the perturbation ampli-
tude starting from B= 0 with step ∆B=0.01 until (a) B=1.5,
(b) B =4.13, (c) B =6.8. Model parameters: n = 1, k = 1,

V0 =
π

32
, α = 6, β = 16, b =0.1, ω1 = 1, Ω = 10ω1, numer-

ical time step ∆t =0.0015.
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Figure 4.4: Typical time series of the Chua’s model experi-
encing the sawtooth force defined by eq. (4.3) and driven by
the excitation of eq. (4.8). The chronograms of x have been
obtained by increasing the perturbation amplitude starting
from B = 0 with step ∆B =0.01 until (a) B =1.5, (b) B =4.72,
(c) B =9.79. Parameters: n = 1, A =0.5, A0 =0.125, α = 6,
β = 16, b =0.1, ω1 = 1, Ω = 10ω1, ∆B =0.01, ∆t =0.0015.

4.3.2/ FREQUENCY ANALYSIS

In this section, spectral analyses are first presented to confirm the observations made with the time

series presented at Sec. 4.3.1. Afterwards, we study the impact of the two considered nonlinearities

on VR occurrence by quantizing the spectral response. To better understand the time series of Figs.

4.3 and 4.4, we have computed their corresponding spectra at Figs. 4.5 and 4.6 respectively. As VR

basically concerns the enhancement of a subthreshold low frequency signal by a high frequency

perturbation, the unilateral magnitude spectra of Figs. 4.5 and 4.6 are presented with the zoom

only near the low frequency f1 =
ω1

2π
=0.1592.

The spectral responses of Fig. 4.5, which correspond to the case of the system experiencing the

truncated sinusoidal force, are for the same values of the perturbation amplitude B considered to

produce the chronograms of Fig. 4.3. It implies from Fig. 4.5 that, for the smallest perturbation

B =1.5, the amplitude of the unilateral magnitude spectrum at the low frequency f1 is weak. How-

ever, for the intermediate perturbation amplitude B =4.13, the amplitude of the spectrum at the low

frequency f1 is best pronounced. The spectral contribution at the low frequency f1 is reduced again

as the perturbation amplitude further increases to B =6.8. As expected, the spectral contribution

at the low frequency f1 is best pronounced for an intermediate value of the perturbation amplitude
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Figure 4.5: Spectral response of the system experiencing
the truncated sinusoidal force corresponding to the time se-

ries of Fig. 4.3. Model parameters: n = 1, k = 1, V0 =
π
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,

α = 6, β = 16, b =0.1, ω1 = 1, Ω = 10ω1, numerical time
step ∆t =0.0015.
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Figure 4.6: Spectral response of the system experiencing
the sawtooth force corresponding to the time series of Fig.
4.4 Parameters: n = 1, A =0.5, A0 =0.125, α = 6, β = 16,
b =0.1, ω1 = 1, Ω = 10ω1, ∆B =0.01, ∆t =0.0015.

B. This signifies VR occurrence is in agreement with the observation of the time series presented

at Fig. 4.3.

Similarly, the spectral responses of Fig. 4.6, which correspond to the case of the system experi-

encing a sawtooth force, are for the same values of the perturbation amplitude considered to obtain

the chronograms of Fig. 4.4. Analyses of Fig. 4.6 revealed that the amplitude of the spectrum at

the low frequency f1 is best pronounced for the intermediate perturbation amplitude B =4.72. This

also agrees with the corresponding time series analyses previously presented at Fig. 4.4.

4.3.3/ LINEAR RESPONSE ANALYSIS

The time series and the spectral analyses presented so far both signified the occurrence of VR in

our systems. However, in the majority of studies, VR is usually studied by quantizing the spectral

response at the low frequency f1 to compute the linear response Q previously defined by eq. (3.9)

and recall hereafter:

Q =
2|X( f1)|

b
. (4.9)

In eq. (4.9), b is the amplitude of the low frequency signal at the system input while 2|X( f1)| is its

contribution at the system output. The definition (4.9) of the linear response Q expresses how a low
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frequency component in the output magnitude spectra is affected through the considered nonlinear

systems by a high frequency perturbation. Therefore, through linear response Q, direct impact of

a high frequency perturbation on a low frequency signal can be visualized more easily. Moreover,

the analyses of the linear response Q will allow to better compare the impacts of the two proposed

nonlinearities on VR occurrence.

Using the modus operandi given in Sec. 4.2.3, we integrate the system defined by the set of

eqs. (4.1), first with our truncated sinusoidal force defined by eq. (4.3) and secondly, with the

sawtooth force expressed by eq. (4.4). The resonance curve of Fig. 4.7 depicts the evolution of the

linear response Q versus the perturbation amplitude B for the case of the system experiencing the

truncated sinusoidal force with nonlinearity order n= 1. Here, we vary the perturbation amplitude B,

first in the “forward direction”, that is from B = 0 to B = 20, and then return in the “reverse direction”

from B = 20 to B = 0. The resonance curves corresponding to the forward and reverse directions,

for the system experiencing the truncated sinusoidal force are superimposed, as shown at Fig. 4.7.

The system then follows the same path in both directions and the resonance curves reveal two

resonances which correspond to the number of unstable states in the system’s potential well, that

is n+1. Increasing the perturbation amplitude B in the “forward direction”, the first resonance gives

the maximum response which decreases as the perturbation amplitude B keeps increasing.

In a similar way, considering the sawtooth nonlinearity with the order n = 1, we have obtained the
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Figure 4.7: Linear response Q versus the perturbation am-
plitude B for a system experiencing the truncated sinusoidal
force. The arrows indicate that increasing B from 0 to 20 or
reducing B from 20 to 0 provide the same resonance curve.

Parameters: n = 1, k = 1, V0 =
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, α = 6, β = 16, b =0.1,

ω1 = 1, Ω = 10ω1, perturbation amplitude step ∆B =0.01,
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Figure 4.8: Linear response Q versus the perturbation am-
plitude B, for a system experiencing the sawtooth force. Our
simulation results are in agreement with the one obtained by
Abirami et al [152]. Parameters: n = 1, A =0.5, A0 =0.125,
α = 6, β = 16, b =0.1, ω1 = 1, Ω = 10ω1, ∆B =0.01,
∆t =0.0015.
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resonance curves of Fig. 4.8, which was first reported in the work of Abirami et al [152]. Fig.

4.8 confirms their work with our notation for the sawtooth force expressed in eq. (4.3): varying

the perturbation amplitude B in the forward and returning in reverse direction, the system follows

two different paths near the peak of each resonance. In the forward direction, the last resonance

provides the system’s maximum response contrary to the case of the truncated sinusoidal force

presented in Fig. 4.7.

In comparison, the overall maximum response of our system with the truncated sinusoidal force

in the forward direction is Q∗ =1.729, achieved for the optimal perturbation amplitude B∗ =4.10.

This is better than the maximum response obtained with the sawtooth force in the forward direction,

that is Q∗ =1.587 at B∗ =9.81. Indeed, at Fig. 4.7, the system with our truncated sinusoidal force

needs smaller perturbation amplitude B∗ =4.10 to reach its maximum response when compared

to the system experiencing the sawtooth force at Fig. 4.8 which required B∗ =9.81. Moreover,

increasing the perturbation amplitude B in the forward and returning in the reverse direction, our

system follows the same path at Fig. 4.7. Note that, hystereses at the breakpoints of each reso-

nance are obtained only in the case of the system experiencing the sawtooth force as represented

in Fig. 4.8. The presence of these hystereses around the jumps may be due to the discontinuities

which are observed at the unstable positions of the sawtooth force in Fig. 4.1 and which does not

exist for the truncated sinusoidal force of Fig. 4.2.

The nonlinearity order n controls the number of resonances obtained for both nonlinearities. Fig.

4.9(a) and 4.9(b) provide the overall resonance behavior of the system experiencing the truncated
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Figure 4.9: Overall resonance behavior of the system experiencing: (a) truncated sinusoidal force (b) Sawtooth force, in
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n. Parameters: k = 1, V0 =
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, A =0.5, A0 =0.125, α = 6, β = 16, b =0.1, ω1 = 1, Ω = 10ω1, ∆B =0.01, ∆t =0.0015.
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sinusoidal force and the sawtooth force respectively. In each case of Fig. 4.9, linear response Q

is presented as a function of the nonlinearity order n and the perturbation amplitude B. In fact,

both Fig. 4.9(a) and 4.9(b) show that there are always n+ 1 resonances which correspond to

the number of unstable states set by the system’s potential. For each value of n in the case of

the system experiencing the truncated sinusoidal force at Fig. 4.9(a), the first resonance always

provides the maximum response, as depicted in Fig. 4.7 for n = 1. After the first resonance, the

amplitude of the other observed resonances decreases as the perturbation amplitude B increases.

By contrast, at Fig. 4.9(b), for the system experiencing the sawtooth force, the first resonance is

always the weakest one. Indeed, the response of the subsequent resonances increases with the

perturbation amplitude B.

For the sake of clarity, we introduce Q∗,nm as the amplitude of the local maxima number m achieved

by the linear response Q of a system with nonlinearity order n. Moreover, B∗,nm will refer to the

amplitudes of the perturbation allowing to reach these local maxima Q∗,nm .

B
*,n

m

0 10 20 30 40 50

Q
*,

8

m

1.4

1.6

1.8

0 10 20 30 40 50

Q
*,

7

m

1.4

1.6

1.8

0 10 20 30 40 50

Q
*,

6

m

1.4

1.6

1.8

0 10 20 30 40 50

Q
*,

5

m

1.4

1.6

1.8

B

0 5 10 15 20 25 30 35 40 45 50

Q

0.5

1.5

2.5

B
0 5 10 15 20 25 30 35 40 45 50

Q

0.5

1.5

2.5

B

0 5 10 15 20 25 30 35 40 45 50

Q

0.5

1.5

2.5

B
0 5 10 15 20 25 30 35 40 45 50

Q

0.5

1.5

2.5

(b)

(c)

(d)

(a) A B C D E F

A B C D E F G

A B C D E F G H

A
C E F

GFEC
A

D

DB

B

HGFEDCB
A n=7

n=6

n=5

A B C D E F G H I

HGFEDCB
A

I

n=8

Q
a

Q
a

Q
a

Q
a
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To have another look of the general behavior of the system for each nonlinearity order n, we analyze

the evolution of the local maxima Q∗,nm that the linear response Q reaches and which corresponds

to the response peak number m of Fig. 4.9(a) and 4.9(b). We therefore present at Figs. 4.10(a)

– 4.10(d) the locus of the maximum response Q∗,nm at the resonance peaks of Fig. 4.9(a) for the

truncated sinusoidal nonlinearity with order ranging from n = 5 to n = 8, versus the corresponding

perturbation amplitude B∗,nm at which they occurred. For instance, in the inset of Fig. 4.10(a), the

linear response Q exhibits m = 6 resonances for the nonlinearity order n = 5. These resonances

are referred by capital letters A, B, C, D, E and F . Therefore, we can see from Fig. 4.10(a), the

locus of the local maxima Q∗,5m of each of these six resonances A, B, C, D, E and F versus the

corresponding optimal perturbation amplitude B∗,nm at which they occurred. Figs. 4.10(a) – 4.10(d)

show that, whatever the nonlinearity order n, the first resonance is always the maximum response of

our system after which, the magnitude of the mth local maxima decreases as the nonlinearity order

n increases. However, performing the same analyses on the system experiencing the sawtooth

force, set of Figs. 4.11(a) – 4.11(d) show that the first resonance is always the weakest. Moreover,
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the intensity of the maximum linear response Q∗,nm at the peak of the mth local resonance increases

as the nonlinearity order n increases.

Note that, the maximum response Q∗,nm of the two systems from Figs. 4.10 and 4.11 tends to an

asymptotic value Qa as the nonlinearity order n keeps increasing. The asymptotic value of the

two systems response, which is indicated with the dashed-line on both plots of Fig. 4.10 and Fig.

4.11, is rounded to Qa =1.664. Therefore, it clearly appears that the advantage of the truncated

sinusoidal nonlinearity is to provide the best response for the nonlinearity order n = 0, whereas to

achieve the best resonance with the sawtooth force a greater nonlinearity order n must be consid-

ered.

The nonlinearity order n was shown to have directly controlled the number of resonances obtained

in the two systems. However, we are now interested in exploring if n can enhance the system’s local

maximum response Q∗,nm . We study the dependence of the two systems’ local maximum responses

Q∗,nm on the nonlinearity order n, corresponding to the first, second, third and fourth maxima in
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Figure 4.12: Evolution of each local maxima Q∗,nm reached by the linear response Q versus the nonlinearity order n.
The performance obtained with the two nonlinear forces are compared when we consider: (a) The first maxima, (b)
The second maxima, (c) The third maxima, (d) The fourth maxima. Circle-marked lines correspond to the truncated

sinusoidal force whereas the star-marked lines refers to the sawtooth force. Parameters: k = 1, V0 =
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, A =0.5,

A0 =0.125, α = 6, β = 16, b =0.1, ω1 = 1, Ω = 10ω1, ∆B =0.01, ∆t =0.0015.
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Figs. 4.12(a), 4.12(b), 4.12(c) and 4.12(d) respectively. Circle-marked lines, which represent the

response of the system submitted to the truncated sinusoidal force, are compared with the star-

marked lines, which refer to the responses with the sawtooth force. As shown in all plots of Fig.

4.12, we understand that for each resonance, the maximum response Q∗,nm obtained in both the two

systems does not significantly change due to the nonlinearity order n.

Furthermore, we can also understand from Fig. 4.12 that the responses of our system with the trun-

cated sinusoidal force are more pronounced than those achieved with the sawtooth force. Lastly,

as we are approaching the last maxima, the responses of the two systems tend to the asymptotic

value Qa, as indicated by the dashed-lines in all the plots of Fig. 4.12.

4.3.4/ ANALYSIS BY PHASE PORTRAITS

In this part, by means of phase portraits, we analyze the dynamical behavior of the system induced

by each of the two different nonlinearities. In particular, we investigate the evolution of the reso-

nance curves presented at Figs. 4.7 and 4.8, which correspond to the responses of the system

submitted to the truncated sinusoidal and sawtooth forces of order n = 1 respectively. For this

nonlinearity order n = 1, according to our notations, the truncated sinusoidal and sawtooth forces

present three stable states located at positions X∗−2,1 =−1, X∗0,1 = 0, X∗+2,1 =+1 and two unstable

states at positions X∗−1,1 = −0.5, X∗+1,1 = +0.5. We analyze the phase portraits behavior for six

selected points on each resonance curve of Figs. 4.7 and 4.8. All simulations here start with the

perturbation B = 0. The perturbation amplitude increases with step ∆B =0.01 and the last values

of the system variables from the previous simulation are maintained as the initial conditions for the

next simulation. Moreover, for each selected point on Fig. 4.7 and 4.8, we perform five different

simulations, each of them with one of the stable and unstable positions as initial condition for x, and

zero for the remaining variables.

First, for the resonance curve obtained at Fig. 4.7 with the truncated sinusoidal force, we choose

the perturbation amplitudes B =1.5, 3.5, 4.13, 6.86, 9.38 and 11 to analyze the corresponding

phase portraits. For example, to obtain the phase portrait for each chosen perturbation B of Fig.

4.13, we start with B = 0 and perform five different simulations each of them starting with one of the

initial conditions x(0) = −1, −0.5, 0, 0.5, 1 respectively, and y(0) = z(0) = 0. For each of these

five simulations, the system exhibits periodic orbits which are centered around one of the stable or

unstable positions of the system.

Therefore, setting the perturbation amplitude to B =1.5 at Fig. 4.13(a) gives rise to periodic orbits

centered around the three stable positions X∗−2,1 = −1, X∗0,1 = 0 and X∗+2,1 = +1. This implies

that the orbits for the two unstable positions: X∗−1,1 = −0.5 and X∗+1,1 = +0.5 are attracted to

the neighboring stable states. Increasing the perturbation amplitude to B =3.5, the size of these

periodic orbits increases, as shown at Fig. 4.13(b). At the peak of the first resonance of Fig.

4.7, which corresponds to B =4.13, the sizes of these three orbits increase further and the two
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Figure 4.13: Phase portraits of the coexisting orbits for the resonance curve of Fig. 4.7. The perturbation amplitude is
set to: (a) B =1.5, (b) B =3.5, (c) B =4.13, (d) B =6.86, (e) B =9.38 and (f) B = 11. The equivalent truncated sinusoidal

force F1(x,1) is also superimposed using a dashed-line in all the cases. Parameters: n = 1, k = 1, V0 =
π

32
, α = 6,

β = 16, b =0.1, ω1 = 1, Ω = 10ω1, ∆t =0.0015.

adjacent orbits overlap the middle orbit. However, increasing the perturbation amplitude B beyond

the peak of the first resonance, the linear response Q in Fig. 4.7 is decreasing. Consequently,

we obtained two periodic orbits centered around the two unstable points. These orbits overlap

at the bottom of the first resonance, that is when B =6.86, as presented in Fig. 4.13(d). The

sizes of these two orbits keeps increasing as the perturbation amplitude B increases until at the

peak of the second resonance when B =9.38, the orbits coincide with each other as shown in

Fig. 4.13(e). Lastly, for perturbation amplitudes beyond the second resonance of Fig. 4.7, there

will be no other resonance. This leads to the birth of one periodic orbit centered about the stable

position at X∗0,1 = 0. The size of this orbit increases as the perturbation amplitude increases, as

depicted for B = 11 at Fig. 4.13(f). The phase portrait analyses presented at Fig. 4.13 illustrate

that our system with the truncated sinusoidal force exhibits resonance effect when the perturbation
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Figure 4.14: Phase portraits of the coexisting orbits for the resonance curve of Fig. 4.8. The perturbation amplitude is
set to: (a) B =1.5, (b) B =3.5, (c) B =4.13, (d) B =6.86, (e) B =9.38 and (f) B = 11. The equivalent truncated sinusoidal
force F1(x,1) is also superimposed using a dashed-line in all the cases. Parameters: n = 1, A =0.5, A0 =0.125, α = 6,
β = 16, b =0.1, ω1 = 1, Ω = 10ω1, ∆t =0.0015.

amplitude B varies. This observed resonance is the VR phenomenon which was earlier identified

using temporal and frequency analyses.

For the hysteretic response of the system submitted to the sawtooth force, which was previously

presented at Fig. 4.8, we choose the perturbation amplitudes B =1.5, 3.82, 4.74, 9.03, 9.80 and 11

to propose the corresponding phase portraits of Fig. 4.14. In particular, B =1.5, 4.74, 9.80 and 11

whose phase portraits are presented at Fig. 4.14(a), 4.14(c), 4.14(e) and 4.14(f) respectively, are

chosen to investigate the forward direction resonance of Fig. 4.8. The system reveals three small

periodic orbits for B =1.5, each centered around the stable positions of the potential as depicted

in Fig. 4.14(a). For the perturbation amplitude B =4.74, which corresponds to the first peak of

the forward direction resonance of Fig. 4.8, the system reveals two orbits each centered around an

unstable position as depicted at Fig. 4.14(c). At the second peak of the forward direction resonance



4.4. GHOST-VIBRATIONAL RESONANCE 67

of Fig. 4.8, which is achieved for B =4.74, there exists only one stable periodic orbit as shown at

Fig. 4.14(e). Beyond the peak of the last resonance, the size of the remaining stable orbit increases

with the perturbation amplitude B as at Fig. 4.14(f) for B =11.

To investigate the evolution of the hystereses depicted by the reverse direction resonance of Fig.

4.8, we present the phase portraits of Fig. 4.14(b) and 4.14(d). These phase portraits depict the

orbits obtained from the forward and reverse simulations at the points of Fig. 4.8 where B =3.82

and B =9.03 respectively. For the perturbation B =3.82, which corresponds to the second peak of

the reverse resonance of Fig. 4.8, forward simulation reveals three stable orbits (plotted in red) and

reverse simulation reveals two unstable orbits (plotted in blue) as shown in Fig. 4.14(b). Moreover,

two unstable orbits from the forward simulation and one additional stable orbit from the reverse

simulation are also observed for B =9.03 as shown at Fig. 4.14(d). The additional orbits obtained

in the reverse simulation for B =3.82 and B =9.03 signify the existence of hystereses in the system

experiencing a sawtooth nonlinearity. Moreover, the phase portraits of Fig. 4.14 also illustrate VR

effect induced by the perturbation amplitude B as previously revealed using the time series and

frequency analyses in the system experiencing a sawtooth force.

4.4/ GHOST-VIBRATIONAL RESONANCE

In this section, we consider that the system is driven by two signals with close low angular frequen-

cies ω1 and ω2, corrupted by a high frequency perturbation of amplitude B and angular frequency

Ω. By setting the boolean variable δ of the excitation e(t) defined by eq. (4.6) to δ = 1, the input

perturbed excitation ep(t) defined by eq. (4.5) reduces to

ep(t) = b
[

cos(ω1t)+ cos(ω2t)
]
+BcosΩt, (4.10)

with ω1 = 2ω0 and ω2 = 3ω0.

Especially, the gap ω0 between the two input low angular frequencies ω1 and ω2 is fixed to ω0 =

ω2−ω1 =0.1 and it constitutes the system’s ghost angular frequency. Moreover, the amplitude of

the low frequencies is set to b=0.04 while the perturbation angular frequency is tuned to Ω= 20ω0.

Lastly, we take the following values for the constant parameters α and β of the Chua’s model: α = 4

and β = 14.

It is well known that VR and GVR effects consider a high frequency perturbation to enhance the

detection of an input low frequency signals and a missing input low frequency signal respectively.

These effects are induced when the perturbation amplitude B is considered as a control parameter

while keeping the other parameters fixed. In this section, we propose to analyze the system re-

sponse at the missing low angular frequency ω0 and also at the two input low angular frequencies

ω1 and ω2 to highlight GVR and VR phenomena in the Chua model experiencing the two proposed

nonlinear forces. We first restrict our study to Chua model with nonlinearity order n = 0.
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By using the simulation algorithm precised in Sec. 4.2.3, and considering the input perturbed

excitation ep(t) defined by eq. (4.10), we integrate the system given by the set of eqs. (4.1) in

the cases of the truncated sinusoidal and the sawtooth forces defined by eq. (4.3) and eq. (4.4)

respectively.

For the system experiencing the truncated sinusoidal force, the resonance curves of Fig. 4.15 cor-

respond to the evolution versus the perturbation amplitude B of the linear responses Q(ω0), Q(ω1)

and Q(ω2) estimated at the missing low angular frequency ω0 and at the two input low angular

frequencies ω1 and ω2. Without perturbation, namely B = 0, the system’s linear response Q(ω0)

at the missing low angular frequency ω0 is null, contrary to the linear responses Q(ω1) and Q(ω2)

at the two input low angular frequencies. However, as the perturbation amplitude B increases, the

system reveals resonances at the missing low angular frequency ω0 and at the two input low an-

gular frequencies (ω1 and ω2) whose predominance can be identified within different ranges of the

perturbation amplitude B. In the first resonance region, where the perturbation amplitude B is in

the range [0.560; 0.597], we observe an enhancement of the system’s linear response Q(ωi) at the

three input angular frequencies ω0, ω1 and ω2. Moreover, the linear response Q(ω0) at the miss-

ing angular frequency ω0 is the predominant one. However, for the perturbation amplitude B in the

perturbation amplitude B (arbitrary unit)
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Figure 4.15: Linear response Q of the system estimated at the low angular frequencies ω0, ω1 and ω2, versus the

perturbation amplitude B, for the system experiencing the truncated sinusoidal force. Parameters: n = 0, k = 1, V0 =
π
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α = 4, β = 14, b =0.04, ω0 =0.1, ω1 = 2ω0, ω2 = 3ω0, Ω = 20ω0, ∆B =0.001, ∆t =0.0015.
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interval [0.598; 0.619], the system’s linear response Q(ω1) at the input low angular frequency ω1

becomes predominant. Similarly, for the perturbation amplitude B in the interval [0.620; 0.676], the

linear response at the two low angular frequencies ω1 and ω2 interchangeably dominates but each

in a short interval of B. Lastly, as the perturbation amplitude B keeps increasing beyond B =0.676,

the system’s linear response Q(ω0) at the missing angular frequency ω0 approaches zero whereas

the responses Q(ω1) and Q(ω2) at the two low angular frequencies ω1 and ω2 are amplified in the

same way, none of the two being predominant.

To better understand the evolution of the resonances observed in Fig. 4.15, chronograms and their

corresponding spectra are respectively presented at Figs. 4.16(a) – 4.16(d) and Figs. 4.17(a) –

4.17(d), for four specific values of the perturbation amplitude B, namely B =0.561, 0.603, 0.621
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Figure 4.16: Chronograms summarizing the system’s behavior for four specific values of the perturbation amplitude
B taken in the different ranges identified at Fig. 4.15. The system synchronizes its response to the sinusoidal wave
superimposed on each subfigure and which corresponds to the predominant angular frequency, that is, ω0, ω1, ω2 and
ω1 for subfigures (a), (b), (c) and (d) respectively. From top to bottom, we observe the predominance of: (a) GVR at
the ghost angular frequency ω0 when B =0.561 (first resonance region of Fig. 4.15), (b) VR at the angular frequency
ω1 when B =0.603 (second resonance region of Fig. 4.15), (c) VR at the angular frequency ω2 when B =0.621 (third
resonance region of Fig. 4.15) and (d) VR at the angular frequency ω1 when B =0.629 (third resonance region of

Fig. 4.15). Parameters: n = 0, k = 1, V0 =
π

32
, α = 4, β = 14, b =0.04, ω0 =0.1, ω1 = 2ω0, ω2 = 3ω0, Ω = 20ω0,

∆t =0.0015.
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and 0.629. We first choose the value B =0.561 to show the predominance of GVR at the ghost

angular frequency ω0 in the first resonance region of Fig. 4.15 defined by the range of the per-

turbation amplitude [0.560; 0.597]. Next, the value B =0.603 allows to observe the superiority of

VR effect at the angular frequency ω1 in the second resonance region of Fig. 4.15 defined by the

perturbation range [0.598; 0.619]. Lastly, considering B =0.621 and B =0.629 allow to illustrate

the predominance of VR respectively at the angular frequencies ω2 and ω1 in the last resonance

region of Fig. 4.15, where B is in the range [0.620; 0.676]. Note that, to visualize at which frequency

the system synchronizes its response, we have superimposed the corresponding predominant low

frequency sinusoidal wave in each chronogram of Fig. 4.16. Additionally, for each spectrum of Fig.

4.17, we have labeled the value of the unilateral magnitude spectrum 2|X( fi)| corresponding to

each low frequency, namely f0 =
ω0

2π
, f1 =

ω1

2π
and f2 =

ω2

2π
.

In the first resonance region of Fig. 4.15 where GVR effect is predominant, that is for B ∈ [0.560;
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Figure 4.17: Unilateral magnitude spectra of the time series of Fig. 4.16. The spectral responses clearly indicate which
frequency is dominant in each case. From top to bottom, we observe the predominance of: (a) GVR at the ghost angular
frequency ω0 when B =0.561 (first resonance region of Fig. 4.15), (b) VR at the angular frequency ω1 when B =0.603
(second resonance region of Fig. 4.15), (c) VR at the angular frequency ω2 when B =0.621 (third resonance region of
Fig. 4.15) and (d) VR at the angular frequency ω1 when B =0.629 (third resonance region of Fig. 4.15). Parameters:

n = 0, k = 1, V0 =
π

32
, α = 4, β = 14, b =0.04, ω0 =0.1, ω1 = 2ω0, ω2 = 3ω0, Ω = 20ω0, B =0.561, ∆t =0.0015.
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0.597], Fig. 4.16(a) shows that the enclosed signal at the ghost angular frequency ω0 synchronizes

with the slow oscillations of the time series. In addition, the corresponding unilateral magnitude

spectrum at Fig. 4.17(a) also confirms that the amplitude of the spectrum 2|X( f0)| at the ghost

angular frequency ω0 is best pronounced in this particular region.

By contrast, the system’s temporal response of Fig. 4.16(b) and its corresponding spectra of Fig.

4.17(b) have been obtained for the perturbation amplitude B from the second resonance region,

where VR effect at the angular frequency ω1 is the best pronounced resonance. In this resonance

region, for which the perturbation amplitude B is in the range [0.598; 0.619], the chronogram of

Fig. 4.16(b) shows that the slow oscillations of the temporal response are in phase with the super-

imposed sinusoidal wave of angular frequency ω1. Moreover, the corresponding spectrum at Fig.

4.17(b) confirms that the response of the system at the angular frequency ω1 is the predominant

one.

In the last resonance region of Fig. 4.15 defined by the range of perturbation amplitude [0.620;

0.676], the chronograms of Figs. 4.16(c) and 4.16(d) with their corresponding spectra at Figs.

4.17(c) and 4.17(d) show that VR at the angular frequencies ω2 and ω1 interchangeably emerge

as the best pronounced resonances. The chronogram of Fig. 4.16(c), obtained for B =0.621,
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Figure 4.18: Linear response Q of the system at the angular frequencies ω0, ω1 and ω2 versus the perturbation
amplitude B, for the system experiencing the sawtooth force. Parameters: n = 0, A =0.5, A0 =0.125, α = 4, β = 14,
b =0.04, ω0 =0.1, ω1 = 2ω0, ω2 = 3ω0, Ω = 20ω0, ∆B =0.001, ∆t =0.0015.
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Figure 4.19: Impact of the nonlinearity order n of the truncated sinusoidal force on the resonances. The linear response
Q estimated at the angular frequencies ω0, ω1 and ω2 has been plotted versus the perturbation amplitude B, for the

nonlinearity orders: (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4, (e) n = 5. Parameters: k = 1, V0 =
π

32
, α = 4, β = 14,

b =0.04, ω0 =0.1, ω1 = 2ω0, ω2 = 3ω0, Ω = 20ω0, ∆B =0.01, ∆t =0.0015.

illustrates the predominance of VR at the angular frequency ω2, since the slow oscillations of the

temporal response synchronize with the superimposed sinusoidal wave at the angular frequency

ω2. Furthermore, the corresponding spectrum at Fig. 4.17(c) proves that the system’s response at

the angular frequency ω2 is the best pronounced one. Similarly, the time series of Fig. 4.16(d) and

the associated spectrum at Fig. 4.17(d), obtained for B =0.629, refer to the predominance of VR

effect at the angular frequency ω1.

These resonance behaviors of the system submitted to the truncated sinusoidal force were not

obtained in the case of the system experiencing a sawtooth force, for the considered parameter

settings. Indeed, our simulation of the system with the sawtooth force reported at Fig. 4.18, con-

firms the behavior observed by Abirami et al [152] where: varying the perturbation amplitude B

induces all the resonance effects in the same perturbation range [0.652; 0.708], with the linear

response Q(ω0) at the ghost angular frequency ω0 predominant in the whole region. Note that, the

system experiencing the sawtooth force can also exhibits the behavior which has been reported at

Fig. 4.15 in the case of the truncated sinusoidal force. However, in this regard, it is necessary to

change the system parameters such as the nonlinearity order n, the low frequencies amplitude b

and the perturbation angular frequency Ω.

Concerning the system submitted to the truncated sinusoidal force, the separation of the different

resonance effects in distinct ranges of perturbation amplitude B, is not restricted to the nonlinearity

order n = 0. Indeed, for the nonlinearity orders n presented at Fig. 4.19, namely n = 1, 2, 3, 4
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Figure 4.20: Impact of the nonlinearity order n of the sawtooth force on the resonances. The linear response Q estimated
at the angular frequencies ω0, ω1 and ω2 has been plotted versus the perturbation amplitude B, for the nonlinearity
orders: (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4, (e) n = 5. Parameters: A =0.5, A0 =0.125, α = 4, β = 14, b =0.04,
ω0 =0.1, ω1 = 2ω0, ω2 = 3ω0, Ω = 20ω0, ∆B =0.01, ∆t =0.0015.

and 5, our system also follows the same behavior as achieved at Fig. 4.15 for n = 0. For each

considered nonlinearity order n, we obtained n+1 resonances which have been plotted separately

at Fig. 4.19 with an appropriate zoom near each resonance. Interestingly, we observe the same

trend for each corresponding resonance, whatever the nonlinearity order n.

On the other hand, Fig. 4.20 reveals the system’s response when submitted to the sawtooth force

for the nonlinearity orders n = 1, 2, 3, 4 and 5. Contrary to the responses reported at Fig. 4.18

for n = 0, system’s response at other input low frequencies can be predominant when the nonlin-

earity order n increases. Similarly, the same trend is observed for each corresponding resonance,

whatever the nonlinearity order n.

4.5/ CONCLUSION

In this chapter, we have considered the dynamics of a modified Chua’s circuit model, experiencing

a truncated sinusoidal force and driven by a perturbed input excitations: low frequency signal(s)

corrupted by a high frequency perturbation. In particular, we studied the impact of the system’s

nonlinearity on the occurrence of Vibrational Resonance (VR) and Ghost-Vibrational Resonance

(GVR) phenomena. VR effect refers to the enhancement of an input low frequency signal at the

system’s output, by a high frequency perturbation. However, high frequency perturbation induces

resonance at a missing (ghost) input low frequency in the case of GVR effect. In the previous work
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of Abirami et al devoted to this Chua system, VR and GVR were studied by considering a sawtooth

nonlinearity [152]. In the present work, we analyzed the impact of the system’s nonlinearity on the

occurrence of VR and GVR, since we compared the system responses obtained with the truncated

sinusoidal force and those with the sawtooth force. Consequently, we maintained the same param-

eters settings, namely, the same potential barrier height and potential periodicity in both the two

systems.

Our VR studies in the system experiencing the truncated sinusoidal force revealed multiple reso-

nances whose intensity reduces as the perturbation amplitude B increases. As initially reported

by Abirami et al [152], our simulations with the sawtooth force also revealed multiple resonances.

However, we have established that the intensity of the first resonance is the weakest one. More

precisely, contrary to the truncated sinusoidal force, the intensity of the local maxima increases with

the perturbation amplitude B. On the other hand, we have shown that the number of resonances

obtained with both nonlinearities is controlled by their order n which also represents the number of

unstable states in the system.

It is interesting to remark that, the system submitted to the truncated sinusoidal force requires

smaller perturbation amplitude B to reach its maximum response. Consequently, it is less energy

consuming when compared to the system experiencing a sawtooth force, which requires relatively

larger perturbation amplitude B to attain its maximum response. In addition, as the nonlinearity

order n in both the two systems keeps increasing, the response of the two systems approaches an

asymptotic value Qa which for our parameters setting has been rounded to Qa =1.664.

Next, in the case of the truncated sinusoidal force, we have interpreted the multiple resonances

observed by means of phase portraits analyses. For a weak value of the perturbation amplitude B,

our system revealed orbits with small amplitudes, each centered around one of the stable positions

of the system’s potential. Increase in the size of the existing orbits refers to the enhancement in the

system’s linear response Q, when the perturbation B varies. At the peak of each resonance, the

existing adjacent orbits overlap with each another. However, increasing the perturbation amplitude

B beyond the peak of each resonance, one of the existing orbits disappeared. After the peak of the

last resonance, the system revealed just one orbit whose size increases with the increase of the

perturbation amplitude B. In a similar way, phase portraits corresponding to the system submitted to

sawtooth force also followed the same trend as in the case of the system experiencing the truncated

sinusoidal force. However, additional orbits were revealed at the peaks of the reverse direction

resonances, which explained the existence of hystereses induced by the system experiencing a

sawtooth force.

Exciting the system experiencing the truncated sinusoidal nonlinearity with two close low frequency

signals, we have established that a high frequency perturbation can induce resonances at the

two input low angular frequencies ω1 and ω2, together with another resonance at a missing input

low angular frequency ω0. The predominance of these resonances can be identified each in a

specific range of the perturbation amplitude B. In the first range of the perturbation amplitude,
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the system’s response at the missing low angular frequency ω0 emerged as the best pronounced

resonance which indicates a strong manifestation of GVR effect. Another resonance region is

defined by a second range of the perturbation amplitude B where the system’s linear response at

the low angular frequency ω1 is the strongest. It corresponds to the occurrence of VR effect at the

low angular frequency ω1. In the last region, obtained for a third range of perturbation amplitude

B, VR effects at the low angular frequencies ω2 and ω1 interchangeably became the dominant

resonances. Our temporal and spectral analyses also confirmed which resonance is the most

pronounced one since the observed chronograms has revealed that the system can synchronize

its response with the ghost frequency or one of the two input low frequencies. In fact, it depends on

which of the previously established ranges the perturbation amplitude B is taken.

By contrast, for the system experiencing the sawtooth force, all the resonance effects occurred

in only one specific range of the perturbation amplitude B, with the GVR as the predominant reso-

nance throughout. As obtained from the study of the system with the truncated sinusoidal nonlinear-

ity, the system experiencing a sawtooth nonlinearity can also reveal the predominance of different

resonance effects in the distinct ranges of the perturbation amplitude B. However, this is possi-

ble through varying the system parameters such as the nonlinearity order n, the low frequencies

amplitude b and the perturbation angular frequency Ω.

As we have shown that Chua’s circuit model with the truncated sinusoidal nonlinearity provided

a better response than with the sawtooth nonlinearity, we suspect that it could be interesting to

analyze in the same way, the impact of the nonlinearities in other systems. It could lead to optimized

application of signal detection in engineering fields.
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In the two previous chapters, we have studied the effect of Vibrational Resonance (VR) in the

context of one-dimensional signals. This chapter extends the investigation to applications of VR

in two-dimensional signals which consist of images. Precisely, we study the application of VR in

subthreshold noisy images perception.

5.1/ INTRODUCTION

The analyses of the dynamics of nonlinear systems, especially their response to external input stim-

uli, has revealed a lot of fascinating applications. For instance, the famous Stochastic Resonance

(SR) effect, where nonlinear systems take benefit of an external random perturbation to enhance

their response [222], has drawn considerable attention and revealed applications in different con-

texts such as image processing, visual perception and signals dithering.

77
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Indeed, parameter induced SR, which was first investigated in one-dimensional signals in the field

of signal processing [49, 64], was later extended to two-dimensional signals to develop image pro-

cessing tasks [223–227]. In the field of pattern recognition, potential applications of SR in biometric

identification has been investigated, where the extraction of low-quality fingerprint images was en-

hanced [228]. Indirect techniques of noise induced improvement (SR) has revealed applications in

images contrast enhancement [229, 230], in improving magnetic resonance as well as ultrasound

images in the context of medical images analyses [231, 232]. It was also shown that, the noise

enhanced properties of a nonlinear system can find applications in the context of image denoising

and edge preserving [221,233–235].

In another important scenario, it was revealed that adding an appropriate amount of noise to sub-

threshold images can enhance their perception through a simple threshold detector [96, 168, 169].

Moreover, at the acquisition process level of human vision, it has been established that spatio-

temporal random fluctuations can enhance visual perception in a basic model of a retina [236,237].

On the other hand, in the field of signal processing and during signal quantization, it is interesting

to note that adding external perturbation was reported to reduce unavoidable loss of information

and distortion which mainly occurred due to quantization error [238, 239]. This induced effect,

rather called dithering, is normally applied to suprathreshold signals where the added dithering

signal is often subtracted after the quantization, contrary to SR effect [240]. Concerning image

quantization, among the dithering algorithms, ordered dithering, which consists of adding coherent

patterns to the initial image before quantization, was reported to be more efficient than random

dithering which uses noisy patterns [238]. Motivated by this fact, one may wonder if processes

based on nonlinear resonances which use ordered perturbations, like VR, would be more efficient

than processes which use noisy perturbations, like SR. This constitutes the content of this chapter

which addresses the open question of the contribution of VR to subthreshold images perception

through threshold detectors.

In this chapter, at Sec. 5.2, we first introduce a threshold detector which can be perturbed by noise

to take benefit of stochastic resonance or by a high frequency spatial signal to take advantage of the

enhancement induced by VR. Next, In Sec. 5.3, we highlight the limitations of stochastic resonance

based detector in terms of subthreshold image perception. In Sec. 5.4, we introduce a particular

spatial high frequency perturbation to show how VR overcomes the limitation of SR. Unlike classical

studies which usually consider the amplitude of the perturbation as a control parameter, we also

analyze the impact of the perturbation frequency in terms of image perception. We then close this

chapter with concluding remarks and outlooks.
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5.2/ THE DETECTOR AND ITS SET-UP

5.2.1/ INPUT OF THE DETECTOR

To perform our study, we use the noiseless images of size N×N pixels represented in Fig. 5.1 and

whose gray levels evolve from 0 (black) to 1 (white). As shown in Fig. 5.1 where the scales of the

images have been respected, we propose different image sizes N2 ranging from N2 = 642 pixels to

N2 = 5122 pixels. Each of these images I is then corrupted by an additive white noise of root mean

square σ to generate the noisy image Ib according to:

Ibi, j = Ii, j +σηi, j, with i = 1,2, ,N and j = 1,2, ,N, (5.1)

where Ii, j denotes the gray level of the pixel of coordinates i, j and ηi, j represents the unity gaussian

variance stochastic process with autocorelation

〈ηi, j,ηi′, j′〉= δ(i− i′)δ( j− j′) (5.2)

Each of the obtained noisy images Ib is represented at Fig. 5.2 in the case considered throughout

this chapter, namely when the root mean square amplitude of the noise σ is set to σ =0.1. For a

sake of clarity, we have chosen to zoom each image which fits the same size without changing the

image resolution N2 which remains N2 = 642, N2 = 1282, N2 = 2562, N2 = 5122 pixels for images

1, 2, 3 and 4 respectively.

These noisy images Ib, which can have different resolutions N2, will constitute the inputs of our

resonant detector.

Image 4: Lena

Image 2:

Saturn

Image 3:

Cameraman

Image 1:

Coloseum

Figure 5.1: Images used throughout the chapter with different sizes N×N. Images 1, 2, 3 and 4 represent the Roman
Coloseum, Saturn, a Cameraman and Lena. The resolution of images 1, 2, 3 and 4 are N2 = 642 pixels, N2 = 1282

pixels, N2 = 2562 pixels and N2 = 5122 pixels respectively.
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Image 1: Coloseum                   Image 2: Saturn                 Image 3: Cameraman                Image 4: Lena

Figure 5.2: The noisy images Ib with noise intensity σ =0.1. Each image has been zoomed even if they don’t share
the same resolution N2. Coloseum: N2 = 642 pixels, Saturn: N2 = 1282 pixels, Cameraman: N2 = 2562 pixels, Lena:
N2 = 5122 pixels.

5.2.2/ THE RESONANT THRESHOLD DETECTOR

The resonant detector, which is simulated in this chapter, is described at Fig. 5.3. The noisy

image input Ib of the threshold detector is first corrupted with an additive perturbation P which

corresponds to noise in the case of a stochastic resonance based detector, while for a vibrational

resonance based detector, P corresponds to an additive high frequency perturbation. Indeed, as

shown at Fig. 5.3., a switch selects with a control c the appropriate perturbation between noise

and high frequency sine spatial signal. The pixels gray levels IPi, j of the perturbed image IP are

produced by adding the perturbation P to the noisy image Ib, thus they obey to:

IPi, j = Pi, j + Ibi, j , with i = 1,2, ,N and j = 1,2, ,N (5.3)

More precisely, if we introduce c as a switch control which takes the boolean value c= 0 for stochas-

tic resonance or c = 1 for vibrational resonance, the perturbation added to each pixel of the noisy

image Ib is defined by:

Pi, j = c×Acos
(

2πi jNHF

N2 +ϕi, j

)
+(1− c)× γη

′
i, j with i = 1,2, ,N and j = 1,2, ,N (5.4)

According to the value of the switch command c, the device which has been designed corresponds

to:

• A stochastic resonance based detector (SR-detector) when c = 0. Indeed, in eq. (5.4),

the perturbation is the random term consisting of the unitary variance gaussian process η′i, j

multiplied by the noise root mean square amplitude γ. In this case, the detector can be

optimized by tuning the noise intensity γ of the perturbation.

• A vibrational resonance based detector (VR-detector) when the switch control is set to c = 1.

In this case, the perturbation reduces to the high frequency cosine term of amplitude A, ini-

tial phase ϕi, j and frequency adjusted with integer NHF . In particular, the initial phase ϕi, j

is chosen randomly in a spatial gaussian distribution with standard deviation σϕ =0.3π, that

is ϕi, j = σϕζi, j where ζi, j is a gaussian unitary variance process. Note that, in this chap-

ter, we propose to investigate how the detector can be optimized by tuning the perturbation

parameters, namely its amplitude A but also its spatial frequency which is adjusted with NHF .
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In Fig. 5.3, the detector processes the perturbed image IP to produce the output black and white

image T by performing a threshold filtering with threshold Vth according to the following rules:

if IPi, j >Vth, Ti, j = 1 (white level)

else Ti, j = 0 (black level) (5.5)

Moreover, the threshold detector used in eq. (5.5) is chosen such that the unperturbed image Ib

remains subthreshold, that is not detectable by the detector without the help of the perturbation P.

For all the results presented in this article, to ensure this condition, we use Vth =1.2.

Lastly the performance of the detector is quantified by a measurement of similarity between the ini-

tial image I and the black and white detected image T . More precisely, we use the cross-covariance

which constitutes a fairly appropriate measurement of similarity between two images [97,221,227].

This cross-covariance between image I and T is defined by:

CI,T =

〈
(I−〈I〉)(T −〈T 〉)

〉
√〈

(I−〈I〉)2
〉〈

(T −〈T 〉)2
〉 , (5.6)

where 〈 〉 corresponds to an average over the whole image, that is an average across all the

image pixels. Moreover, the cross-covariance defined by eq. (5.6) was numerically estimated

noise h

(g)

’

Ib
I IP b=P+ if I >VP th:

else:
T=0 (black)

T=1(white)

noisy
image

P

+
+

(perturbation)

sine wave
( A , N    )

HF

IPVth

T

1

0

Perceived
Image T

Theshold detector:

(Switch
control)

c

Resonant detector

Figure 5.3: Sketch of the resonant detector which performs a threshold filtering of the perturbed image Ip and which
perceives the black and white image T . The input of the resonant detector is the noisy image Ib which is perturbed by
an additive perturbation P selected by a switch between noise or a sine perturbation. The switch command c chooses a
noise perturbation η′ of intensity γ in the case of a stochastic resonance based detector, while for a vibrational resonance
based detector, a sine signal of amplitude A and spatial frequency NHF is selected.
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(a)                                         (b)                                        (c)

Figure 5.4: Images perceived by the SR-detector for different noise intensities γ. The initial noisy subthreshold image
Ib of Saturn is corrupted with the increasing noise RMS amplitude γ and threshold filtered with threshold Vth =1.2 to
produce the black and white images presented at subfigures (a− c). (a): γ =0.2. (b): γ =0.5. (c): γ =1.2. The best
perception of Saturn image is obtained for the optimal noise value γ∗ =0.5 represented at subfigure (b).

by an average over a sufficient number of realizations of the noisy process.

5.3/ STOCHASTIC RESONANCE BASED DETECTOR

The switch of the detector of Fig. 5.3 takes the value c = 0 such that the perturbation is a noise

source of Root Mean Square RMS amplitude γ. Therefore, in the case of a SR-detector, the per-

turbation defined by expression (5.4) reduces to

Pi, j = γη
′
i, j with i = 1,2, ,N and j = 1,2, ,N (5.7)

The black and white images T perceived by the detector are presented at Fig. 5.4 for growing

values of the RMS amplitude of the noise perturbation, and in the case of the image 2 representing

Saturn. For small noise intensities γ, as shown in Fig. 5.4.(a) for γ =0.2, threshold crossing events

rarely occur. It results that they are not enough to allow the detector to retrieve the subthreshold

information contained in the initial image. Next, for an intermediate value of the noise RMS ampli-

tude, noise cooperates with the subthreshold image to reveal the coherent structure of the image.

Indeed, the information is better perceived through the threshold detector for this optimal noise

intensity γ =0.5 at Fig. 5.4.(b). Lastly, for greater noise intensities, the random nature of noise

dominates the process of threshold crossing and hinders the perception of the image information

through the detector. The resulting image at Fig. 5.4.(c) obtained for γ =1.2 seems completely

noisy.

This is a qualitative signature of stochastic resonance, where an appropriate amount of noise en-

hances the response of a nonlinear system to a coherent input information. This effect is usually

revealed by a quantitative performance measure of the system output which exhibits a resonance

at an optimal RMS noise amplitude γ∗. The choice of the performance measure to highlight SR

most often depends on the input signal and the context of applications. For instance, the signal

to noise ratio is more appropriate for periodic signals, while for aperiodic signals the mutual infor-
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(a)                                         (b)                                        (c)                                             (d)
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Figure 5.5: Perception of the Saturn image through the SR-detector for different threshold levels Vth. Parameter:
σ =0.1. (a): Cross-covariance CI,T versus the noise intensity γ for three different threshold values Vth. Dashed lines
are guides to the eye. The best perceived images obtained for the optimal noise intensity γ∗ are displayed for each
considered threshold value Vth at subfigures (b−d). (b): Vth =1.05 requires γ∗ =0.4 to achieve CI,T (γ

∗) =0.386. (c):
Vth =1.2 requires γ∗ =0.5 to achieve CI,T (γ

∗) =0.322. (d): Vth =1.4 requires γ∗ =0.65 to achieve CI,T (γ
∗) =0.263.

mation, the channel capacity, the probability of error [102, 241–243] or the cross-covariance are

rather preferred. In our case, we choose the cross-covariance CI,T defined by eq. (5.6) since it

is commonly used in the context of image processing [97, 221] where images are rather aperiodic

bidimensional signals. For the proposed image of Saturn, the cross-covariance CIT is plotted with

crosses against the noise level γ at Fig. 5.5.(a) when the detector threshold Vth is set to Vth =1.2.

The curve exhibits a non monotonous behavior versus the noise intensity γ, which is a classical SR

signature. Indeed, such a typical bell shaped curve indicates that there exists an optimal value of

the noise γ∗ which optimizes the system response. Note that, this optimal noise level γ∗ is γ∗ =0.5,

and also corresponds to the noise level used in Fig. 5.4. (b) to obtain qualitatively the best image

perception. Usually, the optimal performances of the system are strongly affected by the threshold

of the detector. Especially, the gap between the subthreshold information signal and the threshold

significantly affects the optimal performance that can be achieved by the system with the help of

noise. To illustrate this feature, we have also plotted at Fig. 5.5. (a) the cross-covariance for two

other values of the threshold Vth, namely Vth =1.05 plotted with circles and Vth =1.4 plotted with

diamonds. When the threshold is reduced, we observe that the optimal noise γ∗ =0.4 provides

a better cross-covariance CI,T , while increasing the threshold to Vth=1.4 involves a weaker cross-

covariance. The curves presented for the three threshold values show that the more the image is

far from the threshold, the less the perception of good quality image. Moreover, in the same time, a

greater noise level is required to optimize the system.

This fact can be visually confirmed if we compare the images perceived through the detector for

each optimal noise intensity γ∗ corresponding to each of the three considered thresholds, namely

γ∗ =0.4 for Vth =1.05, γ∗ =0.5 for Vth =1.2 and γ∗ =0.65 for Vth =1.4. These images are reported

at Fig. 5.5. (b), (c) and (d). It is clear that the best perception is achieved for the weakest threshold

and that the quality of the perceived image decreases as the initial image is far from the threshold

detector. Note that, in the whole article and in all that follows, we restrict our study to the interme-

diate value of the threshold Vth =1.2.

We have also analyzed the perception of the other initial images of Fig. 5.1 whose size N2 ranges

from N2 = 642 pixels to N2 = 5122 pixels. Our results are summarized at Fig. 5.6. For all the
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considered initial images, a stochastic resonance type curve is observed for the evolution of the

cross-covariance against the RMS noise level γ. Moreover, for each of the initial images of Fig.

5.1, we propose in subfigures 5.6. (b− d) the best image perceived when the noise intensity is

tuned to the noise level γ∗ which maximizes the cross-covariance. Except for the first image of the

Coloseum, stochastic resonance reveals quite fairly the information contained in each subthreshold

initial image. In fact, the effect is less pronounced for the image of the Coloseum owing to its very

low resolution of N2 = 642 pixels which is not the most appropriate resolution to observe image

details. Note that, we have reported in table 5.1 all the necessary features of our SR-detector,

that is for each initial image: the image size , the optimal noise intensity γ∗ and the best value of

the cross-covariance CI,T achieved for γ = γ∗. This values will be of crucial interest to develop the

VR-detectors presented in the next section.

Table 5.1: Features of the stochastic resonance based detector with threshold Vth =1.2. γ∗ represents the optimal noise
intensity which maximizes the cross-covariance CI,T .

Image number Image size Optimal noise Best cross-covariance
N2 γ∗ CI,T (γ = γ∗)

Image 1: Coloseum 642 0.39 0.274
Image 2: Saturn 1282 0.5 0.322
Image 3: Cameraman 2562 0.59 0.199
Image 4: Lena 5122 0.465 0.208
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Figure 5.6: Perception of the different images through the SR-detector. Parameters: Vth =1.2 and σ =0.1. (a) Cross-
covariance CI,T of each image against the noise intensity γ. Dashed lines are guides to the eye. The best perceived
images are displayed for the optimal noise intensity γ∗ at subfigures (b−d). (b): image 1 requires γ∗ =0.39 to achieve
CI,T (γ

∗) =0.274. (c): image 2 requires γ∗ =0.5 to achieve CI,T (γ
∗) =0.322. (d): image 3 requires γ∗ =0.59 to achieve

CI,T (γ
∗) =0.199. (e): image 4 requires γ∗ =0.465 to achieve CI,T (γ

∗) =0.208.
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5.4/ VIBRATIONAL RESONANCE BASED DETECTOR

By setting the switch control c of the detector to c = 1, the perturbation P of Fig. 5.3 defined by eq.

(5.4) takes the form of the following sine function:

Pi, j = Acos
(

2πi jNHF

N2 +ϕi, j

)
with i = 1,2, ,N and j = 1,2, ,N (5.8)

In this section, we analyze how the perception of the images presented in Fig. 5.1 through the

VR-detector can be optimized by tuning the perturbation amplitude A and its spatial frequency

NHF . Therefore, it leads us to first define an amplitude optimized VR-detector obtained when

the frequency NHF of the perturbation remains constant while its amplitude A can be adjusted.

Next, motivated by the work of Yao et al [147], which have obtained better resonances when the

perturbation frequency can be tuned, we propose to develop a frequency optimized VR-detector:

the amplitude of the perturbation will remain constant while its frequency will be adjusted.

5.4.1/ AMPLITUDE OPTIMIZED VR-DETECTOR

For each image of Fig 5.1, the spatial frequency NHF of the perturbation is adjusted according to the

image resolution N2 to ensure that the normalized frequency NHF/N2 remains constant, while the

perturbation amplitude A can be tuned. We arbitrarily choose the normalized value NHF/N2 = 1/4

which is not restrictive since the influence of the normalized frequency will be addressed in the next

subsection. Like the SR-detector, we first consider the noisy image of Saturn whose resolution is

N2 = 214 pixels and whose level of noise is σ =0.1. It means that in this case, the frequency of the

perturbation must be tuned to NHF = 212 to ensure NHF/N2 = 1/4. Fig. 5.7 displays the different

images perceived by the detector for growing values of the perturbation amplitude A.

For the weakest perturbation amplitude, namely A =0.3, the threshold triggerings induced by the

(a)                       (b)                         (c)       

Figure 5.7: Images perceived by the VR-detector for different perturbation amplitudes A. The initial noisy subthreshold
image Ib of Saturn is corrupted with increasing perturbation amplitude A and then threshold filtered with threshold
Vth =1.2 to produce the black and white images presented at subfigures (a-c) . (a): A =0.3. (b): A =0.95. (c): A =1.4.
The best perception of Saturn image is obtained for the optimal perturbation amplitude A =0.95 at subfigure (b).
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Figure 5.8: Perception through the VR-detector of the saturn image with different noise intensities σ. Parameter:
Vth =1.2. (a): Cross-covariance CI,T against the perturbation amplitude A for different levels of noise σ. Dashed
lines are guides to the eye. For each noise intensity σ where a resonance of the cross-covariance occurs, we have
displayed the best perceived image obtained for the optimal perturbation amplitude A∗ at subfigures (b−e). (b): σ =0.1
requires A∗ =0.95 to achieve CI,T (A∗) =0.554. (c): σ =0.2 requires A∗ =0.85 to achieve CI,T (A∗) =0.506. (d): σ =0.3
requires A = 0 8 to achieve CI,T (A∗) =0.442. (e): σ =0.45 requires A∗ =0.6 to achieve CI,T (A∗) =0.365.

addition of perturbation are not sufficient to enable the perception of the initial image with a good

quality. However, in the case of Fig. 5.7. (b), for the intermediate amplitude value A =0.95, the

perturbation positively helps the initial subthreshold image to cross the threshold. The perception

of the initial image details is then the best and qualitatively exceeds the quality reported with the

SR-detector at Fig. 5.4.(b). By contrast, for the greatest perturbation amplitude considered at Fig.

5.7.(c), the information contained in the initial image is not well retrieved by the detector because

the threshold triggerings are rather ruled by the perturbation than by the initial image. It results that

the perceived image is dominated by the high frequency perturbation.

To quantify the performance of the VR-detector, we have plotted at Fig. 5.8.(a) the cross-covariance

CI,T against the perturbation amplitude A for different levels of noise σ ranging from σ =0.1 to

σ =0.75. First, to compare the VR-detector and the SR-detector, it is necessary to consider the

same level of noise in the input initial image Ib for both detectors. Therefore, since we used a

noise level σ =0.1 for the SR-detector, we can first comment the curve plotted with crosses at

Fig. 5.8.(a) which corresponds to the same noise intensity σ =0.1. This curve, which shows

the evolution of the cross-covariance CI,T versus the perturbation amplitude A, presents a non

monotonous behavior with a maximum value CI,T =0.554 achieved for a perturbation amplitude

A∗ =0.95. Such resonance curve constitutes the classical signature of the vibrational resonance

phenomenon. Moreover, the optimal value of the cross-covariance exceeds the one obtained with

the SR-detector which was CI,T =0.322 for the same noisy Saturn image. It quantitatively confirms

that VR-detector perceives noisy images with a better quality than SR-detectors.

The same resonant behaviors of the cross-covariance are reported at Fig. 5.8.(a) for the noise

intensity σ =0.2 (filled circles), σ =0.3 (empty circles) and σ =0.45 (stars). The corresponding
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Figure 5.9: Perception through the VR-detector of the Coloseum image with different noise intensities σ. Parameter:
Vth =1.2. (a): Cross-covariance CI,T against the perturbation amplitude A for different levels of noise σ. Dashed lines
are guides to the eye. For each noise intensity σ where a resonance of the cross-covariance occurs, we have displayed
the best perceived image obtained for the optimal perturbation amplitude A∗ at subfigures (b−d). (b): σ =0.1 requires
A∗ =0.6 to achieve CI,T (A∗) =0.422. (c) σ =0.2 requires A∗ =0.6 to achieve CI,T (A∗) =0.374. (d): σ =0.3 requires
A∗ =0.6 to achieve CI,T (A∗) =0.325.

optimal images are proposed at Fig. 5.8.(c), (d) and (e) respectively. In addition, we have recalled

at Fig. 5.8.(b), the optimal image obtained with the VR-detector when the noise level is σ =0.1.

We observe that the quality of the perceived image decreases as the noise level of the initial image

increases. In fact, it is not surprising since the maxima of the cross-covariance also reduces with

increasing values of noise at Fig. 5.8.(a).

On the other hand, Fig. 5.8.(a) also reveals that vibrational resonance ceases to exist when the

noise level σ of the initial image exceeds the optimal noise RMS value γ∗ of the SR-detector.

Indeed, the cross-covariance is a monotonous decreasing function of the perturbation amplitude

for the noise intensity σ =0.55 (squares), σ =0.65 (diamonds) and σ =0.75 (triangles) which are

beyond the critical noise value γ∗ =0.5 of the SR-detector. It results that there exists a critical value

of noise beyond which no perception enhancement can be expected with vibrational resonance.

We also propose to analyze if the image resolution N2 impacts the performances of the VR-detector.

Therefore, we consider the other images of Fig. 5.1 with the same level of noise ranging from

σ =0.1 to σ =0.75. The cross-covariances have been estimated against the amplitude of the

perturbation A, while the spatial normalized perturbation frequency remains NHF/N2 = 1/4. Our

results for the first image representing the Coloseum are reported at Fig. 5.9 with NHF = 210 since

N2 = 212. First, we recall from Table 5.1 that the optimal noise value γ∗ which maximized the SR-

detector was γ∗ =0.39 with a maximal value of the cross-covariance CI,T (γ
∗) =0.274. Fig. 5.9. (a)

confirms that vibrational resonance ceases to exist for noise intensities σ exceeding γ∗. Indeed,

only the curves corresponding to the noise levels σ =0.1, σ =0.2 and σ =0.3 exhibit a resonant

behavior, while for the other noise values, namely σ =0.45, σ =0.55, σ =0.65, σ =0.75, the cross-

covariance CI,T monotonously decreases against the perturbation amplitude A. Nevertheless, for

the noise intensity σ =0.1, the VR-detector perceives the initial image better than the SR-detector

since a cross-covariance CI,T =0.422 is reached for the optimal perturbation amplitude A∗ =0.6.

Comparing Figs. 5.6.(b) and 5.9.(b), which display the perceived image through each detector,

there is no doubt that the VR-detector outperforms the SR-detector. However, when the noise level

of the initial image increases at Figs. 5.9.(c) and (d), the quality of the retrieved image reduces.
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Figure 5.10: Perception through the VR-detector of the Cameraman image with different noise intensities σ. Parameter:
Vth =1.2. (a): Cross-covariance CI,T against the perturbation amplitude A for different levels of noise σ. Dashed lines
are guides to the eye. For each noise intensity σ where a resonance of the cross-covariance occurs, we have displayed
the best perceived image obtained for the optimal perturbation amplitude A∗ at subfigures (b− e). (b): σ =0.1 requires
A∗ =0.95 to achieve CI,T (A∗) =0.372. (c): σ =0.2 requires A∗ =0.9 to achieve CI,T (A∗) =0.342. (d): σ =0.3 requires
A∗ =0.9 to achieve CI,T (A∗) =0.292. (e): σ =0.45 requires A =0.8 to achieve CI,T =0.243.

The results obtained with the third image representing the Cameraman with a resolution of

N2 = 2562 pixels are available at Fig. 5.10. Note that the perturbation frequency is now tuned

to NHF = 214 to satisfy the condition NHF/N2 = 1/4. According to table 5.1, vibrational resonance

is expected to occur for noise levels σ below the critical value γ∗=0.59. It is verified at Fig. 5.10.(a),

where the evolution of the cross-covariance versus the perturbation amplitude exhibits a resonance

only for the noise intensities σ =0.1, σ =0.2, σ =0.3, σ =0.45 and σ =0.55. Note that in the later

case, the resonance is less pronounced since the noise level σ =0.55 is close to the critical value

γ∗ =0.59. The corresponding images perceived through the VR-detector are also presented at

Figs. 5.10.(b−e) to provide a qualitative overview of the optimal achieved performances according

to the noise level.

Lastly, the fourth image representing Lena with a resolution of N2 = 5122 pixels is used as the input

subthreshold image. It leads to consider a spatial perturbation frequency NHF = 216 since we fit the

condition NHF/N2 = 1/4. Once again, the cross-covariance CI,T can be maximized for an optimal

amplitude A∗ of the high frequency perturbation if the noise level of the input image σ remains below

the critical noise value γ∗ defined by the SR-detector. For the image of Lena, we have established

at table 5.1 that this critical value is γ∗ =0.465. Therefore, the curves of cross-covariance, which

correspond to the noise intensities σ =0.1, σ =0.2, σ =0.3 and σ =0.45, exhibit a behavior with

a resonance at Fig. 5.11.(a). It indicates that an appropriate tuning of the perturbation amplitude

to A∗ allows to enhance the perception of the subthreshold noisy image. The perceived images

for each noise level are reported at Fig. 5.11.(b− e) when the perturbation amplitude has been

optimally set to A∗. Especially, the perceived image of Fig. 5.11.(b) can be compared with the one

obtained with the SR-detector at Fig. 5.6.(e) since they share the same input noise level σ =0.1. It
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Figure 5.11: Perception through the VR-detector of the Lena image with different noise intensities σ. Parameter:
Vth =1.2. (a): Cross-covariance CI,T against the perturbation amplitude A for different levels of noise σ. Dashed
lines are guides to the eye. For each noise intensity σ where a resonance of the cross-covariance occurs, we have
displayed the best perceived image obtained for the optimal perturbation amplitude A∗ at subfigures (b−e). (b): σ =0.1
requires A∗ =0.8 to achieve CI,T (A∗) =0.401. (c): σ =0.2 requires A∗ =0.75 to achieve CI,T (A∗) =0.343. (d): σ =0.3
requires A∗ =0.7 to achieve CI,T (A∗) =0.288. (e): σ =0.45 requires A∗ =0.6 to achieve CI,T (A∗) =0.232.

is clearly established that, whatever the considered image, a better enhancement of image percep-

tion is achieved with the VR-detector than with the SR-detector. By contrast, the cross-covariance

monotonously decreases for the noise intensities σ =0.55, σ =0.65 and σ =0.75 revealing that no

enhancement of perception through the VR-detector can be obtained if the noise of the input image

exceeds the critical value γ∗.

The main features of the VR-detector are summarized in table 5.2 when the normalized spatial fre-

quency of the perturbation remains NHF/N2 = 1/4. First, we have specified the critical noise level

γ∗ beyond which the detector fails to enhance image perception. Next, for each noise intensity σ

below γ∗, we provide the value A∗ of the perturbation amplitude which gives the best image percep-

tion and the corresponding maximum value of the cross-covariance CI,T (A∗). This table shows that

as the noise intensity increases, the performance of the vibrational resonance reduces, whatever

the considered images. Moreover, except for the first image of the Coloseum whose resolution N2

is very poor, it requires a weaker amplitude of the perturbation A∗ for greater noise intensity σ to

achieve the best performance. One may wonder if the normalized spatial frequency NHF/N2 of the

perturbation would have an impact on the performances achieved by the detector. It is the aim of

the next subsection for which table 5.2 will constitute a reference.

5.4.2/ FREQUENCY OPTIMIZED VR-DETECTOR

We now consider that the spatial normalized frequency NHF/N2 of the perturbation evolves, while

the amplitude of the perturbation A remains constant. Our study concerning the effect of the per-

turbation frequency has been carried out for the five following constant perturbation amplitudes A:
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0.1, 0.6, 0.8, 0.95 and 1.4. It is an appropriate choice to obtain a fairly good overview of the system

behavior. Indeed, these values include the optimal amplitudes A∗ which have been introduced in

the previous subsection at table 5.2 to maximize the perception of the images when the normalized

spatial frequency was set to NHF/N2 = 1/4. To complete the general set-up, the noise intensity σ

of the noisy image Ib at the input of the VR-detector is adjusted to the value which was used at the

input of the SR-detector, namely σ =0.1. It allows to directly compare the performance between

the two detectors in terms of image perception.

First, we analyze how the perturbation frequency influences the perception of the Saturn image

through the VR-detector. For each value of the perturbation amplitude, the cross-covariance has

been computed versus the normalized perturbation frequency NHF/N2. For a sake of clarity, our

results are presented at Fig. 5.12.(a) where we have used a log2 scale for the horizontal axis.

We remark that the curve plotted with circles and which has been obtained with the perturbation am-

plitude A=0.95 always remains beyond the other curves. It means that for this amplitude of the per-

turbation, the detector provides the best performance whatever the frequency of the perturbation.

Of course, this specific value of the perturbation amplitude also corresponds to the optimal value

A∗ which was introduced in the previous section in table 5.2 to optimize the VR-detector versus

the amplitude at constant frequency. Moreover, for the perturbation amplitudes below A∗, namely

A =0.8 (squares), A =0.6 (crosses) and A =0.1 (diamonds), the corresponding cross-covariance

curves are ranked one on top of the others from the weakest amplitude A to the greatest one. By

contrast, when the perturbation amplitude is set to A =1.4 and exceeds A∗, the cross-covariance

curve plotted with stars is always below the curve obtained with the optimal setting A = A∗. This

specific behavior indicates that irrespective of the perturbation frequency, the evolution of the cross-

covariance versus the perturbation amplitude A follows the typical bell shaped curves presented in

the previous section and which constitutes the signature of vibrational resonance.

On the other hand, the perturbation frequency directly impacts the quality of the perceived image

since all cross-covariance curves share the same feature: whatever the considered amplitude A

of the perturbation, the cross-covariance monotonously grows with the frequency until it saturates

to a maximum value reached for the optimal normalized frequency N∗HF/N2 = 1. The perturbation

frequency NHF is then optimally set to N∗HF = N2 which corresponds to the value of the image

resolution. Note that, when the perturbation frequency NHF exceeds this optimal frequency N∗HF ,

Table 5.2: Features of the VR-detector with spatial normalized frequency NHF/N2 = 1/4 and threshold Vth =1.2. A∗

represents the optimal amplitude of the perturbation which maximizes the cross-covariance CI,T and γ∗ the critical noise
value beyond which the detector cannot recover the subthreshold image.

Image critical CI,T (A∗) CI,T (A∗) CI,T (A∗)
number noise γ∗ for σ =0.1 for σ =0.2 for σ =0.3
1: Coloseum N2 = 212 0.39 0.422 for A∗ =0.6 0.374 for A∗ =0.6 0.325 for A∗ =0.6
2: Saturn N2 = 214 0.5 0.554 for A∗ =0.95 0.506 for A∗ =0.85 0.442 for A∗ =0.8
3: Cameraman N2 = 216 0.59 0.372 for A∗ =0.95 0.342 for A∗ =0.9 0.292 for A∗ =0.9
4: Lena N2 = 218 0.465 0.401 for A∗ =0.8 0.343 for A∗ =0.75 0.288 for A∗ =0.7
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Figure 5.12: Effect of the perturbation frequency on the perception of Saturn through the VR-detector. Parameters:
N2 = 214, Vth =1.2 and σ =0.1. (a): Cross-covariance CI,T against the normalized perturbation frequency NHF/N2 for
different amplitudes A of the perturbation. Dashed lines are guides to the eye. For the optimal perturbation amplitude
A∗ =0.95, we have displayed the images perceived through the detector for three specific frequencies at subfigures
(b−d). (b): NHF = 211. (c): NHF = 213. (d): NHF = 214 . The best perception of the Saturn image is achieved when
the cross-covariance saturates to CI,T =0.749, that is when the perturbation is tuned to the optimal amplitude A∗ =0.95
and when its frequency is greater than the optimal value N∗HF = N2 = 214.

the wavelength of the perturbation becomes shorter than the interpixel distance leading to the sat-

uration of the cross-covariance. In summary, the best perception of the Saturn image is achieved

when the perturbation amplitude A matches A∗ =0.95 and when the perturbation frequency ex-

ceeds N∗HF = N2 = 214. Indeed, if we visually analyze the images obtained for the optimal ampli-

tude A∗ =0.95, and presented for various frequencies at Figs. 5.12.(b−d), there is no doubt that

tuning the detector with the optimal frequency N∗HF better enhances the image perception. More-

over, for the other frequencies chosen below the optimal value N∗HF at Figs 5.12.(b− c), we can

note that the information can also be perceived. However, as observed for the weakest frequency

at Fig. 5.12.(b), the perturbation also dominates the threshold crossing events and induces the lost

of some image details.

Next, we have performed the test bench of our VR-detector by using the other images. The fre-

quency analysis is reported at Fig. 5.13 for the image of the Coloseum whose resolution is the

weakest, namely N2 = 642 pixels. To comment the results, it is necessary to recall that in the

previous section, we have established the exact value of the optimal perturbation amplitude A∗

that maximizes the cross-covariance at constant frequency. This value, A∗ =0.6, is one of the

considered amplitudes used to plot the cross-covariance versus the perturbation frequency at Fig.

5.13.(a). This curve, plotted with crosses, is always over the others indicating that the amplitude

A∗ maximizes the image perception independently from the considered frequency. Moreover, the

curves obtained for the amplitude exceeding A∗, namely A =0.8, A =0.95 and A =1.4, are lo-

cated underneath each other and sorted from the weakest amplitude to the others. It shows that

vibrational resonance occurs whatever the frequency, with a more or less pronounced resonance,

which is defined by the curve corresponding to the optimal amplitude A∗ =0.6 at Fig. 5.13.(a). In
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Figure 5.13: Effect of the perturbation frequency on the perception of the Coloseum through the VR-detector. Pa-
rameters: N2 = 212, Vth =1.2 and σ =0.1. (a): Cross-covariance CI,T against the normalized perturbation frequency
NHF/N2 for different amplitudes A of the perturbation. Dashed lines are guides to the eye. For the optimal perturba-
tion amplitude A∗ =0.6, we have displayed the images perceived through the detector for three specific frequencies at
subfigures (b− d). (b): NHF = 29. (c): NHF = 211. (d): NHF = 212 . The best perception of the Coloseum image
is achieved when the cross-covariance saturates to CI,T =0.562, that is when the perturbation is tuned to the optimal
amplitude A∗ =0.6 and when its frequency is greater than the optimal value N∗HF = N2 = 212.

the case of the Coloseum image, the cross-covariance saturation occurs for all perturbation ampli-

tudes, when the frequency NHF exceeds the optimal value N∗HF = 212 which exactly matches the

image resolution N2 = 212 pixels. Therefore, as visually presented at Fig 5.13.(b−d) for different

perturbation frequencies, the best quality of perception is achieved when the perturbation of the

VR-detector is optimally tuned with the amplitude A∗ =0.6 and the frequency N∗HF = 212.

Lastly, for the images of the Cameraman and Lena, which are displayed at Fig. 5.14 and 5.15,

the cross-covariance follows the same trend and, therefore, do not alter the conclusion previously

drawn with the images of Saturn and the Coloseum. Indeed, in the case of the Cameraman picture

with resolution N2 = 216 pixels, the cross-covariance saturates for the optimal frequency N∗HF = 216

whatever the perturbation amplitude. Similarly, for the Lena image of resolution N2 = 218 pixels, the

saturation of the cross-covariance appears at frequencies N∗HF = 218. Moreover, for both images,

the cross-covariance obtained for the optimal amplitude A∗ always remains the greatest irrespective

of the perturbation frequency. Therefore, the existence of the classical vibrational resonance phe-

nomenon for all the considered frequencies is clearly established whatever the considered image.

Lastly, as shown by the images presented for various perturbation frequencies at Figs. 5.14.(b−d)

and 5.15.(b− d), to obtain the best perception enhancement of subthreshold images, it is con-

firmed that the perturbation must be adjusted with the optimal amplitude A∗ and the optimal fre-

quency N∗HF = N2. Indeed, the more the frequency is far from the optimal value N∗HF = N2, the

more the crossing threshold events are governed by the perturbation rather than the subthreshold

image. It involves a qualitative lost of the image details when the frequency is too weak compared

to the optimal value N∗HF = N2. Lastly, we quantitatively compare at table 5.3 the performances
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Figure 5.14: Effect of the perturbation frequency on the perception of the Cameraman through the VR-detector. Pa-
rameters: N2 = 216, Vth =1.2 and σ =0.1. (a): Cross-covariance CI,T against the normalized perturbation frequency
NHF/N2 for different amplitudes A of the perturbation. Dashed lines are guides to the eye. For the optimal perturba-
tion amplitude A∗ =0.95, we have displayed the images perceived through the detector for three specific frequencies at
subfigures (b−d). (b): NHF = 213. (c): NHF = 215. (d): NHF = 216 . The best perception of the Cameraman image
is achieved when the cross-covariance saturates to CI,T =0.565, that is when the perturbation is tuned to the optimal
amplitude A∗ =0.95 and when its frequency is greater than the optimal value N∗HF = N2 = 216.

of the VR-detector and SR-detector. The cross-covariance is given for the SR-detector tuned with

its optimal noise level γ∗ and for the optimally tuned VR-detector with optimal perturbation ampli-

tude A∗ and optimal frequency N∗HF . We have also added the cross-covariance of the VR-detector

whose perturbation frequency obeys to NHF = N2/4 and whose amplitude is optimally set to A∗.
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Figure 5.15: Effect of the perturbation frequency on the perception of Lena through the VR-detector. Parameters:
N2 = 218, Vth =1.2 and σ =0.1. (a): Cross-covariance CI,T against the normalized perturbation frequency NHF/N2 for
different amplitudes A of the perturbation. Dashed lines are guides to the eye. For the optimal perturbation amplitude
A∗ =0.8, we have displayed the images perceived through the detector for three specific frequencies at subfigures
(b−d). (b): NHF = 215. (c): NHF = 217. (d): NHF = 218 . The best perception of the Lena image is achieved when
the cross-covariance saturates to CI,T =0.546, that is when the perturbation is tuned to the optimal amplitude A∗ =0.8
and when its frequency is greater than the optimal value N∗HF = N2 = 218.
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Whatever the image and its resolution, the VR-detector clearly outperforms the SR-detector even if

the perturbation frequency is not optimally tuned to N∗HF but to NHF = N2/4.

Table 5.3: Features of the VR and SR detectors when the noise level of the input subthreshold image is σ =0.1 and
when the detector threshold is Vth =1.2.

Image number Best cross-covariance of Best cross-covariance Best cross-covariance
and size N2 VR-detector with NHF = N2/4 of VR-detector of SR-detector

CI,T (A∗,NHF = N2/4) CI,T (A∗,N∗HF) CI,T (γ
∗)

1: Coloseum 0.422 for A∗ =0.6 0.562 for A∗ =0.6 0.274 for γ∗ =0.39
N2 = 212 and NHF = 210 and N∗HF = 212

2: Saturn 0.554 for A∗ =0.95 0.749 for A∗ =0.95 0.322 for γ∗ =0.5
N2 = 214 and NHF = 212 and N∗HF = 214

3: Cameraman 0.372 for A∗ =0.95 0.565 for A∗ =0.95 0.199 for γ∗ =0.59
N2 = 216 and NHF = 212 and N∗HF = 216

4: Lena 0.401 for A∗ = 0 8 0.546 for A∗ =0.8 0.208 for γ∗ =0.465
N2 = 218 and NHF = 214 and N∗HF = 218

5.5/ CONCLUSION

In this chapter, we have first reviewed some applications of nonlinear resonances in the context

of image processing and visual perception. Next, we have focused our study on the perception

through a threshold detector of subthreshold noisy images which have different resolutions. The

main feature of this detector is to use a perturbation whose parameters can be tuned to provide the

best perception of the input subthreshold image whose noise level is σ.

When the perturbation corresponds to noise, the well-known stochastic resonance phenomenon

takes place: there exists an optimal intensity of noise γ∗ which optimizes the perception of the

information contained in the noisy subthreshold input image. Indeed, using the cross-covariance

CI,T as a measure of the similarity between the initial image I and the perceived image T , we

have determined this optimal level of noise γ∗. We have shown that this specific noise value also

corresponds to the critical noise intensity of the input image beyond which a spatial high frequency

perturbation fails to retrieve the information of the subthreshold image. However, for images with

a noise level below the critical value γ∗, considering a high frequency perturbation instead of noise

gives rise to the vibrational resonance phenomenon: similar to stochastic resonance, there exists

an appropriate setting of the perturbation parameters which provides the best perception of the

subthreshold image. We have first characterized this VR-detector at constant frequency versus the

amplitude of the perturbation to highlight that an optimal amplitude A∗ of the perturbation maximizes

the cross-covariance. It has led to a better enhancement of the visual perception through the

detector than with the SR-detector. Next, we have analyzed the impact of the spatial frequency NHF

of the perturbation when its amplitude A remains constant. It has been established that whatever

the perturbation frequency NHF , the amplitude which provides the best visual perception through

the detector is always the same, namely A∗. Therefore, we have set the perturbation amplitude to
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this optimal value and considered different spatial frequencies of the perturbation. By considering

different input subthreshold images with different sizes N2, we have established that the cross-

correlation coefficient CI,T , which quantizes the quality of the perceived image, saturates when

the frequency exceeds the image resolution, namely N2. Therefore, we have clearly established

that the vibrational resonance detector must be tuned with a perturbation of optimal amplitude A∗

and spatial frequency NHF greater than the image resolution N2. Using this optimal setting, the

vibrational resonance detector clearly outperforms the stochastic resonance detector provided that

the noise of the input images is below γ∗.

In our work, we have restricted our study to spatial perturbations. It could be also interesting to

consider spatio-temporal perturbations, i.e. perturbations which also evolve versus time. Indeed,

as reviewed in the case of stochastic resonance, such spatio-temporal perturbations have revealed

a rich variety of applications in perceptual decision-making [237,244,245] and have also accounted

for the process of perception by the retina [236]. More generally, as reported in the case of our

detector, we trust that vibrational resonance based strategies could provide better results in various

fields where stochastic resonance is used. Lastly, this work might constitute a starting point for

further investigations of more complex detectors which could induce applications in the area of

image processing.
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6.1/ CONCLUSIONS

In this thesis, we have numerically investigated resonance induced phenomena in nonlinear sys-

tems and their applications to information processing. In particular, this thesis focused on Vibra-

tional Resonance (VR), Ghost-Vibrational Resonance (GVR) and Stochastic Resonance (SR). Con-

sequently, the introductory part of this manuscript consists of a brief overview on the most famous

resonance induced effects in nonlinear systems. Our first two analyses studied VR and VR/GVR

in mechanical oscillators and Chua’s circuit model respectively. Moreover, our last analysis con-

cerned the study of the application of VR in subthreshold noisy images perception. Indeed, the

major takeaway and the findings of each study are concluded as follows:

• In our first analysis, we considered the dynamics of a particular nonlinear mechanical sys-

tem describing the motion of a particle of a given mass experiencing a multistable potential

and driven by a low frequency signal corrupted by a high frequency perturbation. More pre-

cisely, our research has mainly addressed VR occurrence when the particle mass and the

damping parameters are jointly considered as control parameters. We studied the dynamics

of the system with two different damping coefficients: firstly, constant damping coefficient

and secondly, nonlinear space-dependent damping coefficient. In both the two cases of the

damping, we begin by studying the impact of the damping coefficients on VR occurrence for

a unitary particle mass. Lastly, we studied the combined impact of varying the particle mass

and parameters of the damping coefficients on VR occurrence.

In the first case of constant damping and for the unitary particle mass, vibrational multires-

onance effect controlled by the constant damping amplitude is revealed. Best system’s re-

99
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sponses are achieved by the first resonances and for the smallest constant damping ampli-

tude. Moreover, considering the particle mass as a control parameter, the system revealed

two different behaviors one of which VR ceased to exist because the best system’s response

is obtained when the perturbation is null. Therefore, we have highlighted the existence of a

critical value of the particle mass below which VR phenomenon occurred and beyond which

it failed to exist.

For the case of the system experiencing nonlinear dissipation and unitary particle mass,

vibrational multiresonance controlled by the nonlinear dissipation parameters is revealed.

Similarly, considered dissipation parameters revealed best response at the first resonance

which are better than the responses obtained in the same system but with the constant

dissipation. Furthermore, considering the particle mass as a control parameter for each

considered nonlinear dissipation parameters, the system revealed two different behaviors,

one of which VR phenomenon ceased to exist.

By comparison, we found that, responses obtained in the case of the system experiencing

nonlinear damping are better than those achieved for the case of the system experienc-

ing constant damping. Moreover, the considered nonlinear damping allowed to control the

response of the system from its multiple parameters unlike the case of constant damping

where only the damping amplitude can control the system.

• In another nonlinear system, we numerically investigated the dynamics of a Chua’s circuit

model experiencing a truncated sinusoidal nonlinearity and driven by an external perturbed

excitation. We mainly study the impact of the system’s nonlinearity on the occurrence of VR

and GVR phenomena. In all the studies carried out, we compared the responses achieved

with our proposed truncated sinusoidal nonlinearity and the existing sawtooth nonlinearity.

VR studies in the system with the two different nonlinearities both revealed multiple res-

onances whose number is controlled by the nonlinear force parameter named “nonlinearity

order”. The system experiencing a truncated sinusoidal force attained its maximum response

always at the first resonance which required smaller perturbation amplitude to be achieved.

This is contrary to the system experiencing a sawtooth force as it attained its maximum re-

sponse always at the last resonance which required relatively larger perturbation amplitude

to be realized. Moreover, the overall maximum responses of the system experiencing our

proposed truncated sinusoidal force are better than those achieved with the existing saw-

tooth force. However, the responses of the two systems both approach an asymptotic value

as the nonlinearity order keeps increasing.

Exciting the system with a weak signal consisting of two close low frequencies corrupted

by a high frequency perturbation, we observed for both the two different nonlinearities that,

varying the perturbation amplitude induced resonances at the two input low frequencies and

at a missing (ghost) frequency lower than the two input low frequencies. The observed

VR and GVR effects can each become predominant resonance in a distinct range of the
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perturbation amplitude.

• In the last chapter, we studied the application of Vibrational Resonance (VR) in subthresh-

old noisy images perception. We first reviewed the nonlinear resonances applications in

the context of image processing and visual perception. Next, to quantify the perception of

subthreshold images of different resolution through a threshold detector, we employed the

Cross-Covariance as a measure of similarity between the input and perceived images.

When noise perturbed the system, we briefly revisited the well-known Stochastic Resonance

(SR) threshold detector, whose best performances are achieved when the noise intensity

of the random perturbation is tuned to an optimal value. Next, we introduce a VR-based

detector which uses a tunable spatial high frequency perturbation instead of noise to provide

a much better visual perception of the input subthreshold noisy images.

However, we have shown that to take advantage of this new VR-based detector, the noise

level of the input subthreshold images must be below the optimal noise intensity of the SR-

based detector. Under this condition, we have established that VR-based detector clearly

outperforms SR-based detector. Especially when the amplitude of the spatial perturbation

tuned to its optimal value and the spatial perturbation frequency exceeded the images reso-

lution, we have shown that the VR-based detector alloweds the best perception of the sub-

threshold noisy images.

6.2/ FUTURE PERSPECTIVES

Since the inception of vibrational resonance in the year 2000, a lot of advances have been reported

especially in the field of sciences and engineering. In particular, this thesis has analyzed the occur-

rence of VR in two different nonlinear systems and also studied application of VR in subthreshold

images perception.

• Our studies of VR in a mechanical system experiencing a periodic potential has revealed

the existence of a critical mass beyond which VR ceased to exist. Extending this analysis

to other mechanical systems experiencing different potentials, including modifications in the

shape and location of the potential wells, may lead to discovery of more interesting features.

Moreover, the existence of this critical mass might provide an opportunity of sorting particles

based on VR, for instance in micro/nanofluidic devices.

• In the crucial model of Chua’s circuit, different nonlinearities have reported significant ad-

vances especially, sawtooth nonlinearity which was reported to exhibits multiple resonances

on VR studies. However, our proposed truncated sinusoidal nonlinearity was shown to out-

performed the sawtooth nonlinearity in this thesis. We suspect that our proposed truncated

sinusoidal nonlinearity may report more promising applications in the dynamical fields where

sawtooth nonlinearity is usually considered.
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• In our studies of the application of VR in subthreshold images perception, our proposed

VR-based detector has clearly outperformed the conventional SR-based detector in terms

of visual perception. We suspect that further investigations of VR applications in this fields

could be developed, especially in the context of cognitive sciences.
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Abstract:

The study of resonance phenomena in nonlinear
dynamical systems has drawn considerable attention
for years. The most studied nonlinear resonance is
undoubtedly the famous stochastic resonance, which
consists of perturbing a nonlinear system with an
appropriate amount of noise to enhance the detection
of a subthreshold input signal. Since the introduction
of stochastic resonance in the context of climate
dynamics, it was later observed that a deterministic
high frequency perturbation can replace noise leading
to vibrational resonance. Even if this latter resonance
was investigated in many areas of science for more than
two decades now, it is still receiving attentions. It is
the subject of this thesis, which numerically analyzes
the occurrence of this phenomenon in two different
nonlinear systems, and which suggests applications in
the context of subthreshold images perception. First,
we analyze the motion of a particle with a given mass
which is submitted to a nonlinear force deriving from

a double-well potential. For both considered cases
of linear and nonlinear space-dependent damping, we
establish that there exists a critical mass beyond which
vibrational resonance ceases to exist. Next, we analyze
how the nonlinearity affects vibrational resonance in
the Chua’s circuit model. Especially, we show that
better resonances can be achieved when Chua’s system
experiences a truncated sinusoidal nonlinearity instead of
the conventional sawtooth nonlinearity. Moreover, when
the system driving consists of two close low frequencies,
we observe that the high frequency perturbation can
induce resonances at the two input low frequencies
but also at a lower frequency via the mechanisms of
vibrational resonance and ghost-vibrational resonance.
Lastly, we consider the perception of subthreshold images
through perturbed threshold detectors. In terms of image
perception, we show that detectors which are based on
vibrational resonance clearly outperform detectors based
on stochastic resonance.

Titre : Résonances non linéaires et certaines de leurs applications en traitement de l’information

Mots-clés : Dynamiques non linéaires, résonance vibrationnelle, résonance vibrationnelle-fantôme, perception
d’images subliminales.

Résumé :

Ces dernières années, un intérêt considérable a été
consacré à l’étude des phénomènes de résonance dans
les systèmes dynamiques non linéaires. Parmi les
résonances non linéaires, la plus étudiée est sans
aucun doute la résonance stochastique, qui traduit la
particularité des systèmes non linéaires à utiliser une
quantité appropriée de bruit pour améliorer leur réponse
à une excitation subliminale. Plus tardivement, il a
été observé qu’une perturbation haute fréquence pouvait
remplacer le bruit, ce qui donna naissance à l’effet
de résonance vibrationnelle. Même si cette forme de
résonance a été mise en évidence dans de nombreux
systèmes et dans différents contextes depuis plus de deux
décennies maintenant, l’étude de ce phénomène continue
de susciter l’intérêt des chercheurs. C’est l’objectif de
cette thèse, qui analyse numériquement l’apparition de
cette résonance dans deux systèmes non linéaires, ainsi
que ses applications dans le cadre de la perception
d’images subliminales. Notre première étude numérique

porte ainsi sur un système mécanique représentant une
particule de masse donnée. Que ce soit dans le cas
d’un amortissement linéaire ou spatialement non linéaire,
nous avons mis en évidence l’existence d’une masse
critique au-delà de laquelle la résonance vibrationelle
cesse d’exister. Notre seconde étude porte sur l’impact
de la non linéarité sur la résonance d’un modèle de
circuit de Chua. Nous avons principalement montré
numériquement qu’une non linéarité du type sinusoïdale
tronquée permettait d’obtenir une résonance vibrationnelle
plus marquée que la non linéarité usuelle du type dent de
scie. Par ailleurs, quand deux fréquences proches excitent
le système, en plus d’une résonance à chacune de ces
fréquences, il apparait une résonance à une fréquence
plus faible, qualifiée de fantôme. Enfin, nous avons établi
qu’il était possible d’obtenir une bien meilleure perception
d’images subliminales au travers d’un dispositif à seuil
tirant profit de la résonance vibrationnelle plutôt que d’un
dispositif basé sur la résonance stochastique.
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