Estimation de l’humidité du sol à haute résolution spatio-temporelle : une nouvelle approche basée sur la synergie des observations micro-ondes actives-passives et optiques-thermiques
Auteur / Autrice : | Nitu kumari Ojha |
Direction : | Olivier Merlin |
Type : | Thèse de doctorat |
Discipline(s) : | Surfaces et Interfaces Continentales, Hydrologie |
Date : | Soutenance le 15/11/2021 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Sciences de l’univers, de l’environnement et de l’espace (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Centre d'études spatiales de la biosphère (Toulouse ; 2001-....) |
Jury : | Examinateurs / Examinatrices : Olivier Merlin, Nicolas Baghdadi, Mehrez Zribi |
Rapporteurs / Rapporteuses : Pierre-Louis Frison, Mercedes Magdalena Vall-llossera Ferran |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Les capteurs micro-ondes passifs SMOS et SMAP fournissent des données d'humidité du sol (SM) à une résolution d'environ 40 km avec un intervalle de 2 à 3 jours à l' échelle mondiale et une profondeur de détection de 0 à 5 cm. Ces données sont très pertinentes pour les applications cli- matiques et météorologiques. Cependant, pour les applications à échelle régionales (l'hydrologie) ou locales (l'agriculture), des données de SM à une haute résolution spatiale (typiquement 100 m ou plus fine) seraient nécessaires. Les données collectées par les capteurs optiques/thermiques et les radars peuvent fournir des indicateurs de SM à haute résolution spatiale, mais ces deux approches alternatives ont des limites. En particulier, les données optiques/thermiques ne sont pas disponibles sous les nuages et sous les couverts végétaux. Quant aux données radar, elles sont sensibles à la rugosité du sol et à la structure de la végétation, qui sont tous deux difficiles à caractériser depuis l'espace. De plus, la résolution temporelle de ces données est d'environ 6 jours. Dans ce contexte, la ligne directrice de la thèse est de proposer une nouvelle approche qui combine pour la première fois des capteurs passifs micro-ondes, optiques/thermiques et actifs micro-ondes (radar) pour estimer SM sur de grandes étendues à une résolution de 100 m chaque jour. Notre hypothèse est d'abord de nous appuyer sur une méthode de désagrégation existante (DISPATCH) des données SMOS/SMAP pour atteindre la résolution cible obtenue par les radars. A l'origine, DISPATCH est basé sur l'efficacité d' évaporation du sol (SEE) estimée sur des pixels partiellement végétalisés à partir de données optiques/thermiques (généralement MODIS) de température de surface et de couverture végétale à résolution de 1 km. Les données désagrégées de SM sont ensuite combinées avec une méthode d'inversion de SM basée sur les données radar afin d'exploiter les capacités de détection des radars Sentinel-1. Enfin, les capacités de l'assimilation des donnés satellitaires de SM dans un modèle de bilan hydrique du sol sont évaluées en termes de prédiction de SM à une résolution de 100 m et à une échelle temporelle quotidienne.Dans une première étape, l'algorithme DISPATCH est amélioré par rapport à sa version actuelle, principalement 1) en étendant son applicabilité aux pixels optiques entièrement végétalisés en utilisant l'indice de sécheresse de la végétation basé sur la température et un produit de couverture végétale amélioré, et 2) en augmentant la résolution de désagrégation de 1 km à 100 m en utilisant les données optiques/thermiques de Landsat (en plus de MODIS). Le produit de SM désagrégé à la résolution de 100 m est validé avec des mesures in situ collectées sur des zones irriguées au Maroc, indiquant une corrélation spatiale quotidienne variant de 0,5 à 0,9. Dans un deuxième étape, un nouvel algorithme est construit en développant une synergie entre les données DISPATCH et radar à 100 m de résolution. En pratique, le produit SM issu de DISPATCH les jours de ciel clair est d'abord utilisé pour calibrer un modèle de transfert radiatif radar en mode direct. Ensuite, le modèle de transfert radiatif radar ainsi calibré est utilisé en mode inverse pour estimer SM à la résolution spatio-temporelle de Sentinel-1. Sur les sites de validation, les résultats indiquent une corrélation entre les mesures satellitaires et in situ, de l'ordre de 0,66 à 0,81 pour un indice de végétation inférieur à 0,6. Dans une troisième et dernière étape, une méthode d'assimilation optimale est utilisée pour interpoler dans le temps les données de SM à la résolution de 100 m. La dynamique du produit SM dérivé de l'assimilation de SM DISPATCH à 100 m de résolution est cohérente avec les événements d'irrigation. Cette approche peut être facilement appliquée sur de grandes zones, en considérant que toutes les données (télédétection et météorologique) requises en entrée sont disponibles à l' échelle globale.