Thèse soutenue

Besoin en eau et rendements des céréales en Méditerranée du Sud : observation, prévision saisonnière et impact du changement climatique

FR  |  
EN
Auteur / Autrice : El houssaine Bouras
Direction : Lionel JarlanSalah Er-Raki
Type : Thèse de doctorat
Discipline(s) : Océan, Atmosphère, Climat
Date : Soutenance le 19/11/2021
Etablissement(s) : Toulouse 3 en cotutelle avec Université Cadi Ayyad (Marrakech, Maroc)
Ecole(s) doctorale(s) : École doctorale Sciences de l’univers, de l’environnement et de l’espace (Toulouse)
Partenaire(s) de recherche : Laboratoire : Centre d'études spatiales de la biosphère (Toulouse ; 2001-....)
Jury : Examinateurs / Examinatrices : Lionel Jarlan, Salah Er-Raki, Abderrahmane Lahrouni, Riad Balaghi
Rapporteur / Rapporteuse : Inbal Becker-Reshef, Benjamin Sultan

Résumé

FR  |  
EN

Le secteur agricole est l'un des piliers de l'économie marocaine. En plus de contribuer à 15% au Produit Intérieur Brut (PIB) et de fournir 35% des opportunités d'emploi, il a un impact sur les taux de croissance. Ces dernières sont affectées négativement ou positivement par les conditions climatiques et la pluviométrie en particulier. Lors des années de sécheresse, caractérisées par une baisse de la production agricole, en particulier celle des céréales, la croissance de l'économie marocaine a été sévèrement affectée et les importations alimentaires du royaume ont augmenté de manière significative. Dans ce contexte, il est important d'évaluer l'impact de la sécheresse agricole sur les rendements céréaliers et de développer des modèles de prévision précoce des rendements, ainsi que de déterminer l'impact futur du changement climatique sur le rendement du blé et leurs besoins en eau. Le but de ce travail est, premièrement, d'approfondir la compréhension de la relation entre le rendement des céréales et la sécheresse agricole au Maroc. Afin de détecter la sécheresse, nous avons utilisé des indices de sécheresse agricole provenant de différentes données satellitaires. En outre, nous avons utilisé les sorties du système d'assimilation des données terrestres (LDAS). Deuxièmement, nous avons développé des modèles empiriques de la prévision précoce des rendements des céréales à l'échelle provinciale. Pour atteindre cet objectif, nous avons construit des modèles de prévision en utilisant des données multi-sources comme prédicteurs, y compris des indices basés sur la télédétection, des données météorologiques et des indices climatiques régionaux. Pour construire ces modèles, nous nous sommes appuyés sur des algorithmes de machine learning tels que : Multiple Linear Regression (MLR), Support Vector Machine (SVM), Random Forest (RF) et eXtreme Gradient Boost (XGBoost). Enfin, nous avons évalué l'impact du changement climatique sur le rendement du blé et ses besoins en eau. Pour ce faire, nous nous sommes appuyés sur cinq modèles climatiques régionaux disponibles dans la base de données Med-CORDEX sous deux scénarios RCP4.5 et RCP8.5, ainsi que sur le modèle AquaCrop et nous nous sommes basés sur trois périodes, la période de référence 1991-2010, la deuxième période 2041-2060 et la troisième période 2081-2100. Les résultats ont montré qu'il y a une corrélation étroite entre le rendement des céréales et les indices de sécheresse liés à l'état de végétation pendant le stade d'épiaison (mars et avril) et qui sont liés à la température de surface pendant le stade de développement en janvier-février, et qui sont liés à l'humidité du sol pendant le stade d'émergence en novembre-décembre. Les résultats ont également montré que les sorties du LDAS sont capables de suivre avec précision la sécheresse agricole. En ce qui concerne la prévision du rendement, les résultats ont montré que la combinaison des données provenant de sources multiples a donné des meilleurs résultats que les modèles basés sur une seule source. Dans ce contexte, le modèle XGBoost a été capable de prévoir le rendement des céréales dès le mois de janvier (environ quatre mois avant la récolte) avec des métriques statistiques satisfaisants (R² = 0.88 et RMSE = 0.22 t. ha^-1). En ce qui concerne l'impact du changement climatique sur le rendement et les besoins en eau du blé, les résultats ont montré que l'augmentation de la température de l'air entraînera un raccourcissement du cycle de croissance du blé d'environ 50 jours.[...]