Structure, solvatation, thermodynamique et fragmentation d'agrégats moléculaires
Auteur / Autrice : | Linjie Zheng |
Direction : | Jérôme Cuny, Mathias Rapacioli |
Type : | Thèse de doctorat |
Discipline(s) : | Physico-Chimie Théorique |
Date : | Soutenance le 26/08/2021 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Sciences de la Matière (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de chimie et physique quantiques (Toulouse ; 2007-....) |
Jury : | Président / Présidente : Romuald Poteau |
Examinateurs / Examinatrices : Jérôme Cuny, Julie Douady | |
Rapporteurs / Rapporteuses : Céline Toubin, Carine Clavaguéra |
Mots clés
Résumé
Cette thèse vise à étudier en détail le comportement d'agrégats moléculaires complexes et se concentre sur deux aspects principaux. Tout d'abord, la description des isomères de faible énergie des clusters d'ammonium et ammoniac et (H2O)1-7,11,12UH+ à travers l'exploration des surfaces d'énergie potentielle (PES) en utilisant une combinaison d'approches d'optimisation globales et locales. Les propriétés structurelles, de solvatation et thermodynamiques des isomères de basse énergie nouvellement identifiés ont été caractérisées. Par la suite, des simulations dynamiques de la dissociation induite par collision des (H2O)1-7,11,12UH+ et Py2+ ont été réalisées et analysées en termes de : mécanisme de dissociation, répartition d'énergie, spectres de masse et sections efficaces de collision pour complémenter des mesures expérimentales récentes menées sur ces espèces. L'optimisation globale des clusters (H2O)1-10NH4+ et (H2O)1-10NH3 a été réalisée au niveau de théorie SCC-DFTB (pour self-consistent-charge density-functional based tight-binding), pour laquelle des paramètres N-H améliorés ont été proposés, en combinaison avec l'approche d'exploration PTMD (pour parallel-tempering molecular dynamics). Les isomères de basse énergie nouvellement déterminés ont été optimisés au niveau MP2 afin d'évaluer la fiabilité de nos paramètres N-H modifiés. Les structures et les énergies de liaison obtenues avec la méthode SCC-DFTB sont en très bon accord avec les résultats de niveau MP2/Def2TZVP, ce qui démontre la capacité de l'approche SCC-DFTB à décrire la PES de ces espèces moléculaires et représente ainsi une première étape vers la modélisation d'agrégats complexes d'intérêt atmosphérique. L'intérêt porté aux (H2O)1-7,11,12UH+ vise à fournir une description détaillée d'expériences récentes de dissociation induite par collision (CID). Premièrement, les isomères stables des (H2O)1-7,11,12UH+ sont calculés en utilisant la même méthodologie que celle décrite ci-dessus. Ensuite, des simulations dynamiques des collisions entre isomères (H2O)1-7,11,12UH+ et un atome d'argon sont réalisées à énergie de collision constante au niveau SCC-DFTB. La proportion simulée d'agrégats neutres contenant l'uracile par rapport à celle d'agrégats chargés contenant l'uracile, la section efficace de fragmentation ainsi que les spectres de masse sont cohérents avec les données expérimentales ce qui met en évidence la précision de nos simulations. Ces dernières permettent de sonder en details les fragments qui se forment aux temps courts et de rationaliser la localisation du proton en excès sur ces fragments. Cette dernière propriété est fortement influencée par la nature de l'agrégat soumis à la collision. L'analyse de la proportion des fragments en fonction du temps et des spectres de masse démontrent que, jusqu'à 7 molécules d'eau, un mécanisme de dissociation direct alors que pour 11,12 molécules, un mécanisme statistique est plus susceptible d'intervenir. Enfin, des simulations d'expériences CID du Py2+ à différentes énergies de collision, entre 2,5 et 30 eV, sont présentées. Les simulations permettent de comprendre les processus de dissociation mis en jeu. L'accord entre les spectres de masse simulés et mesurés suggère que les principaux processus sont bien pris en compte par cette approche. Il semble que la majeure partie de la dissociation se produise sur une courte échelle de temps (moins de 3 ps). L'analyse de la répartition d'énergie cinétique est utilisée pour obtenir des informations sur les processus de collision/dissociation à l'échelle atomique. Les spectres de masse simulés des clusters parents et dissociés sont obtenus à partir en combinant simulations de dynamique moléculaire et théorie de l'espace des phases pour traiter respectivement la dissociation aux courtes et longues échelles de temps.