1-cocycles pour les n-tresses fermées dans le tore solide qui sont des nœuds et algorithmes de calculs
Auteur / Autrice : | Jean-Marc Hok |
Direction : | Thomas Fiedler |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées |
Date : | Soutenance le 07/06/2021 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, informatique et télécommunications (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Institut de mathématiques de Toulouse (2007-....) |
Mots clés
Résumé
Ce manuscrit est un travail qui s'inscrit dans le cadre de la topologie, de l'algèbre, de la combinatoire et de la programmation. Plus précisément, c'est une thèse en théorie des noeuds. L'objectif de ce travail est de fournir une famille d'invariants permettant de distinguer les 4-tresses qui sont des noeuds (une famille particulière de noeuds) dans le tore solide S1 × D2. La construction et le calcul de ces invariants utilise des notions élémentaires de la théorie des nœuds mais la preuve du théorème principal d'invariance nécessite des connaissances plus poussées en théorie des singularités. La compréhension du programme de calcul qui implémente ces invariants en Sagemath implique d'avoir des bases en programmation Python et en algorithmique (Programmation Orientée Objet, fonctions récursives, dictionnaires, etc...).