Thèse soutenue

Rôle des filaments intermédiaires dans la mécanotransduction

FR  |  
EN
Auteur / Autrice : Gaëlle Dutour Provenzano
Direction : Sandrine Étienne-Manneville
Type : Thèse de doctorat
Discipline(s) : Biologie cellulaire
Date : Soutenance le 02/11/2021
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Complexité du vivant (Paris ; 2009-....)
Partenaire(s) de recherche : Laboratoire : Institut Pasteur (Paris). Unité Polarité cellulaire, Migration et Cancer
Jury : Président / Présidente : Catherine Coirault
Rapporteurs / Rapporteuses : Sabrina Batonnet-Pichon, Nicolas Borghi

Résumé

FR  |  
EN

Les cellules s'adaptent en permanence à leur microenvironnement. En particulier, elles modifient leur morphologie, leur croissance, leur division et leur motilité en fonction des propriétés biochimiques et physiques de la matrice extracellulaire (MEC). Elles sont équipées de structures adhésives appelées plaques d’adhérences, permettant aux cellules d'interagir avec les protéines de la MEC via les protéines transmembranaires appelées intégrines et de détecter la nature et la rigidité de la MEC. Le signal est transduit par les protéines des plaques d’adhérences et résulte par exemple en une modification de la tension mécanique induite par l'acto-myosine. Les voies de signalisation en aval peuvent également atteindre le noyau. L'expression des gènes peut alors être modifiée, ce qui peut en retour affecter la composition des plaques d’adhérences et de la MEC pour une réponse cellulaire adaptative. Nous avons émis l'hypothèse qu'en plus des voies de signalisation, un couplage mécanique direct entre les événements se produisant à la périphérie de la cellule et le noyau pourrait participer à la transmission de signaux mécaniques. Bien que les filaments intermédiaires (FIs) aient des propriétés mécaniques extrêmement intéressantes et résistent à des charges de tension élevées, leur implication dans les voies de mécanotransduction est encore mal connue. En utilisant l'astrocyte comme modèle, en raison de sa combinaison spécifique de FIs : vimentine, GFAP, nestine et synémine, nous avons d'abord étudié l'effet de la rigidité du substrat sur la morphologie, la structure et les fonctions du noyau, ainsi que sur l'organisation des FIs autour du noyau. Nous avons ensuite étudié l’impact de l’absence de FI les changements nucléaires observés en réponse à la rigidité du substrat. En utilisant une combinaison de techniques de microfabrication, de méthodes biochimiques et de microscopie, nous avons montré que la rigidité du substrat affecte la forme, le volume du noyau, la structure de la chromatine et le recrutement des facteurs de transcriptions (YAP). Nos résultats suggèrent que les FI forment une structure en forme de cage autour du noyau d'une manière dépendante de la rigidité : un substrat plus rigide induit la formation d’une cage de vimentine et de nestine. Cette interaction avec le noyau pourrait expliquer les modifications nucléaires observées en réponse à la rigidité du substrat. Au total, les résultats obtenus au cours de notre étude permettent de mieux comprendre le rôle des filaments intermédiaires dans les réponses nucléaires aux propriétés mécaniques du substrat.