Optimisation du placement des tranches de réseau dans les infrastructures distribuées à grande échelle : des heuristiques à l'apprentissage par renforcement profond contrôlée
Auteur / Autrice : | José Jurandir Alves Esteves |
Direction : | Pierre Sens, Amina Boubendir, Fabrice Guillemin |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 13/12/2021 |
Etablissement(s) : | Sorbonne université |
Ecole(s) doctorale(s) : | École doctorale Informatique, télécommunications et électronique de Paris (1992-...) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique de Paris 6. Equipe Recherche opérationnelle |
Jury : | Président / Présidente : Anne Fladenmuller |
Examinateurs / Examinatrices : Sylvaine Kerboeuf, Adlen Ksentini | |
Rapporteurs / Rapporteuses : Stefano Secci, Yassine Hadjadj Aoul |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse examine comment optimiser le placement de tranches (slices) de réseau dans les infrastructures distribuées à grande échelle en se concentrant sur des approches heuristiques en ligne et basées sur l'apprentissage par renforcement profond (DRL). Tout d'abord, nous nous appuyons sur la programmation linéaire en nombre entiers (ILP) pour proposer un modèle de données permettant le placement de tranches de réseau sur le bord et le cœur du réseau. Contrairement à la plupart des études relatives au placement de fonctions réseau virtualisées, le modèle ILP proposé prend en compte les topologies complexes des tranches de réseau et accorde une attention particulière à l'emplacement géographique des utilisateurs des tranches réseau et à son impact sur le calcul de la latence de bout en bout. Des expérimentations numériques nous ont permis de montrer la pertinence de la prise en compte des contraintes de localisation des utilisateurs.Ensuite, nous nous appuyons sur une approche appelée "Power of Two Choices" pour proposer un algorithme heuristique en ligne qui est adapté à supporter le placement sur des infrastructures distribuées à grande échelle tout en intégrant des contraintes spécifiques au bord du réseau. Les résultats de l'évaluation montrent la bonne performance de l'heuristique qui résout le problème en quelques secondes dans un scénario à grande échelle. L'heuristique améliore également le taux d'acceptation des demandes de placement de tranches de réseau par rapport à une solution déterministe en ligne en utilisant l'ILP.Enfin, nous étudions l'utilisation de méthodes de ML, et plus particulièrement de DRL, pour améliorer l'extensibilité et l'automatisation du placement de tranches réseau en considérant une version multi-objectif du problème. Nous proposons d'abord un algorithme DRL pour le placement de tranches réseau qui s'appuie sur l'algorithme "Advantage Actor Critic" pour un apprentissage rapide, et sur les réseaux convolutionels de graphes pour l'extraction de propriétés. Ensuite, nous proposons une approche que nous appelons "Heuristically Assisted DRL" (HA-DRL), qui utilise des heuristiques pour contrôler l'apprentissage et l'exécution de l'agent DRL. Nous évaluons cette solution par des simulations dans des conditions de charge de réseau stationnaire, ensuite cyclique et enfin non-stationnaire. Les résultats de l'évaluation montrent que le contrôle par heuristique est un moyen efficace d'accélérer le processus d'apprentissage du DRL, et permet d'obtenir un gain substantiel dans l'utilisation des ressources, de réduire la dégradation des performances et d'être plus fiable en cas de changements imprévisibles de la charge du réseau que les algorithmes DRL non contrôlés.