Thèse soutenue

Apprentissage automatique et confidentialité des données

FR  |  
EN
Auteur / Autrice : Beyza Bozdemir
Direction : Suna Melek Önen
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 10/12/2021
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : Institut EURECOM (Sophia-Antipolis, Alpes-Maritimes)
Jury : Président / Présidente : Thorsten Strufe
Examinateurs / Examinatrices : Zekeriya Erkin, Refik Molva
Rapporteur / Rapporteuse : Sébastien Canard, Aikaterini Mitrokotsa

Résumé

FR  |  
EN

L'apprentissage automatique en tant que service (MLaaS) fait référence à un service qui permet aux entreprises de déléguer leurs tâches d'apprentissage automatique à un ou plusieurs serveurs puissants, à savoir des serveurs cloud. Néanmoins, les entreprises sont confrontées à des défis importants pour garantir la confidentialité des données et le respect des réglementations en matière de protection des données. L'exécution de tâches d'apprentissage automatique sur des données sensibles nécessite la conception de nouveaux protocoles garantissant la confidentialité des données pour les techniques d'apprentissage automatique.Dans cette thèse, nous visons à concevoir de tels protocoles pour MLaaS et étudions trois techniques d'apprentissage automatique : les réseaux de neurones, le partitionnement de trajectoires et l'agrégation de données. Dans nos solutions, notre objectif est de garantir la confidentialité des données tout en fournissant un niveau acceptable de performance et d’utilité. Afin de préserver la confidentialité des données, nous utilisons plusieurs techniques cryptographiques avancées : le calcul bipartite sécurisé, le chiffrement homomorphe, le rechiffrement proxy homomorphe ainsi que le chiffrement à seuil et le chiffrement à clé multiples. Nous avons en outre implémenté ces nouveaux protocoles et étudié le compromis entre confidentialité, performance et utilité/qualité pour chacun d’entre eux.