Thèse soutenue

Rôle des interactions mécaniques entre tissus dans la mise en place du circuit olfactif du poisson-zèbre

FR  |  
EN
Auteur / Autrice : Pauline Monnot
Direction : Marie BréauIsabelle Bonnet
Type : Thèse de doctorat
Discipline(s) : Sciences de la Vie
Date : Soutenance le 17/06/2021
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Complexité du vivant (Paris ; 2009-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de biologie du développement (Paris ; 1997-....)
Jury : Président / Présidente : Magali Suzanne
Examinateurs / Examinatrices : Filippo Del Bene
Rapporteur / Rapporteuse : Nicolas David, Kristian Franze

Résumé

FR  |  
EN

Alors que les signaux biochimiques impliqués dans la croissance axonale et la migration neuronale sont largement étudiés, la contribution des signaux mécaniques dans la formation des circuits neuronaux reste peu explorée in vivo. Nous cherchons à étudier comment les forces mécaniques contribuent à la formation du circuit olfactif du poisson-zèbre. Ce circuit se développe durant la morphogénèse de la placode olfactive (PO), par le mouvement passif des corps cellulaires qui s’éloignent de l’extrémité de leurs axones. Mes travaux de thèse s’intéressent à la contribution mécanique de l’œil, qui se forme sous la PO par des mouvements d’évagination et d’invagination, à cette migration passive des neurones et à l’extension de leurs axones. L'analyse quantitative des mouvements cellulaires a tout d’abord révélé que les mouvements des cellules de la PO et de l’œil sont corrélés. Chez des embryons dans lesquels l’œil ne se développe pas, les mouvements des cellules de la PO sont affectés, ce qui produit des PO plus fines et des axones plus courts, et la tension mécanique dans la direction d’élongation des axones dans la PO est réduite. Enfin, la matrice extracellulaire s’accumule à l’interface oeil/PO et sa dégradation enzymatique réduit la corrélation entre les mouvements des cellules de la PO et de l’œil. Ces résultats suggèrent que l’œil en formation exerce des forces de traction sur la PO, transmises par la matrice, entrainant le mouvement des neurones et l’extension des axones. Ce travail apporte un éclairage nouveau sur le rôle des forces mécaniques échangées entre les neurones en développement et les tissus environnants dans la formation des circuits neuronaux in vivo.