Thèse soutenue

Comparaison de protéines homologues avec dépendances entre positions par alignement de modèles de Potts

FR  |  
EN
Auteur / Autrice : Hugo Talibart
Direction : Jacques NicolasFrançois Coste
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 24/02/2021
Etablissement(s) : Rennes 1
Ecole(s) doctorale(s) : MATHSTIC
Partenaire(s) de recherche : Laboratoire : Institut de recherche en informatique et systèmes aléatoires (Rennes) - LinkMedia
Jury : Président / Présidente : Guillaume Gravier
Examinateurs / Examinatrices : Julien Martin, Thomas Schiex
Rapporteurs / Rapporteuses : Sean Eddy, Martin Weigt

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Pour attribuer des annotations de structure et de fonction au nombre toujours croissant de protéines séquencées, la principale approche consiste à utiliser des méthodes de recherche d'homologues basées sur des alignements significatifs de séquences à des protéines ou familles de protéines déjà annotées. Bien que les méthodes existantes soient performantes, elles ne prennent pas en compte la co-évolution entre les résidus. Dans cette thèse, nous proposons de tirer parti d'avancées récentes dans le domaine de la prédiction de contact en représentant les protéines par des modèles de Potts, qui modélisent les couplages directs entre les positions en plus de la composition positionnelle, et de comparer les protéines en alignant ces modèles. Cette nouvelle utilisation des modèles de Potts nous a amenés à identifier de nouveaux critères pour leur construction dans un idéal de canonicité. Dû aux dépendances distantes, le problème d'alignement de deux modèles de Potts est NP-difficile. Nous avons introduit ici une méthode basée sur la formulation de l'alignement comme un problème de programmation linéaire en nombres entiers, dont la solution exacte peut être trouvée en temps raisonnable. Nos résultats suggèrent que prendre en compte les couplages directs permet d'améliorer la qualité de l'alignement d'homologues plus lointains et pourrait ainsi améliorer la détection d'homologie lointaine.