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RÉSUMÉ EN FRANÇAIS

Contribution de la thèse

Dans cette thèse, nous étudions l’un des modèles de fermeture de turbulence les plus
courants pour la modélisation RANS dans un cadre d’assimilation de données varia-
tionnelle. Contrairement à la majeure partie des études menées dans la littérature où
des mesures de vitesse sont considérées sur des parties significatives du domaine (pour
un écoulement 2D avec une direction homogène), nous considérons dans cette étude un
écoulement tridimensionnel réaliste et complexes avec à notre disposition uniquement des
mesures expérimentales pariétales. Cette différence est loin d’être cosmétique puisqu’elle
est ici construite pour traiter un cadre expérimental pratique utilisé en particulier dans
l’industrie de la construction. Une dérivation analytique du modèle adjoint qui permet
l’estimation de la direction de descente de la fonction de coût associée à un probleme
d’assimilation de donnée est effectuée puis discrétisée à l’aide d’un schéma de volumes
finis. La bibliothèque open source multi-physique OpenFOAM (Jasak, 1996) a servi à
l’implémentation des itérations internes, c’est-à-dire le solveur direct et adjoint RANS, et
les itérations externes pour la procédure d’AD. La méthodologie adjointe est utilisée dans
cette thèse pour répondre à deux objectifs particuliers, détaillés ci-après.

D’une part, nous étudions certains cadres méthodologiques permettant un diagnostic
approfondi de la fermeture de turbulence. Comme point de départ, nous utilisons d’abord
cette méthodologie pour étudier les champs de sensibilité des coefficients de fermeture
globale du modèle réalisable k − ε (Shih et al., 1995). Leur interprétation physique nous
permettra de mettre en évidence les limites de l’applicabilité de tels modèles de fermeture
à des fins de couplage modèle–données, en particulier pour les champs de vent autour d’un
immeuble de grande hauteur (étude de cas choisie pour la thèse). Ce cadre discutera des
limites et des améliorations dans l’estimation des charges de vent et des vitesses moyennes
autour du bâtiment.

D’autre part, visant un couplage efficace entre le modèle et les données, nous consid-
érons la méthode comme un outil de reconstruction de l’écoulement. Dans cette optique,
une limitation est posée par la rigidité du modèle, c’est-à-dire que l’ensemble des solu-
tions admissibles par le modèle n’inclus pas de région de l’espace d’état correspondant
à une estimation pertinente. Afin de s’affranchir de cette difficulté nous avons considéré
une assimilation dite sous contrainte faible. Dans ce cadre, nous avons en premier lieu les
régions spatiales se prétant au mieux à l’intégration de nouveaux termes permettant de
corriger les erreurs de modélisation. Dans une première classe de stratégies, en définissant
un terme de forçage additif comme paramètre de contrôle, nous permettons à la solution
de s’écarter des contraintes du modèle par défaut, pour corriger directement la diffusion
de quantité de mouvement résultant du modèle de viscosité turbulente. Dans une seconde
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classe, on considère plutôt l’adjonction d’un paramètre distribué qui permet d’identifier
un terme manquant dans l’équation où la fermeture du modéle de turbulence est effectuée.
Au-delà du fait qu’il offre une meilleure structure physique à la reconstruction grâce aux
informations préalables apportées par le modèle RANS et qu’il évite le surajustement des
données, le paramètre de contrôle optimal nous permet d’identifier des caractéristiques
manquente dans les hypothèses de fermeture RANS initiales. En raison des observations
clairsemées, le champ de sensibilité est généralement peu régulier pour les paramètres
distribués, une recherche de paramètre dans l’espace de Sobolev (H1) est également pro-
posée pour renforcer l’efficacité de la méthode, c’est-à-dire en fournissant une direction
de descente robuste pour l’algorithme de minimisation par descente de gradient.

La thèse est divisée en sept chapitres dont cinq décrivent les principales contributions
de l’étude. L’état de l’art est présenté dans le chapitre 1. Dans le chapitre 2, un focus est
mis sur la modélisation des écoulements turbulents atmosphériques à l’échelle du milieu
urbain. Le chapitre 3, est dédié au développement de l’approche variationnelle de la procé-
dure d’assimilation de données. La technique variationnelle est ensuite appliquée pour
une analyse plus approfondie de la fermeture du modèle de turbulence dans le chapitre 4.
Dans le chapitre 5, nous présentons l’ensemble d’équations RANS modifié avec le terme
de forçage additif comme paramètre de contrôle. Dans le chapitre 6, la reconstruction de
l’écoulement est opérée sous une paramétrisation qui satisfait les contraintes physiques
données par le modèle de turbulence. Le chapitre 7 conclut la thèse par un résumé des
réalisations des travaux et quelques suggestions pour la poursuite des travaux. Les listes
de références accompagnées des annexes suivent le dernier chapitre.

Résumé du Chapitre 1: L’état de l’art
D’abord, une brève revue historique des études menées sur le problème de l’ingénierie

structurelle de vent est donnée. Ensuite, les techniques d’AD existantes sont énumérées.
Un aperçu des travaux antérieurs appliquant ces techniques pour le couplage de modèle-
données dans les études générales de dynamique des fluides computationnelle (CFD) est
donné après. Le chapitre finis par un aperçu des travaux utilisant ces techniques associés
à la modélisation numérique RANS.

Résumé du Chapitre 2: modélisation de la turbulence
et configuration numérique

Le but de ce chapitre est d’identifier les paramètres de modélisation qui forment la
socle des études de procédure d’AD dans la suite du manuscrit. Le modèle mathéma-
tique décrivant les équations de Navier-Stokes moyennées dans le temps, sa fermeture
associée de la turbulence, le profil atmosphérique d’entrée du domaine et le traitement
près de la paroi sont introduits. Parallèlement à cela, une brève description est faite du
montage expérimental, mené précédemment par (Sheng et al., 2018). En rassemblant les
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recommandations de la littérature qui garantissent une analyse numérique rigoureuse, une
configuration de calcul a été construite pour l’étude d’un bâtiment parallépipédique.

La cohérence entre le profil du vent, de la couche limite atmosphérique (ABL) modélisé,
et le traitement des parois du sol a été vérifiée dans un domaine vide. La vérification de
cette cohérence requière que l’homogénéité (en amont) des profils de vent se voit persiste
en aval en l’absence du bâtiment. Le chapitre se poursuit par une étude de validation
pour évaluer les erreurs liées à la discrétisation (avant l’assimilation). Cela concerne la
convergence de la grille et la vérification du schéma numérique. Dans le premier cas, la
solution donnée (la pression à la paroi et la vitesse moyenne dans l’axe du sillage) par
la grille choisie tombe dans la limite asymptotique. Dans le dernier cas, la capacité de
différents schémas avec limiteurs de flux à savoir, Gamma, superBee, linéaire au vent sont
testés en évaluant la pression pariétale et la vitesse moyenne dans le sens du courant. Ces
résultats simulés sont comparés aux expériences en soufflerie. Les résultats ont montré que
Gamma et Linear-Upwind ont conduis à des résultats identiques, alors que les résultats
pour le limiteur de superBee ont légèrement dévié des données, notament pour la pression
d’arrachement près des bords d’attaque et la longueur de recirculation . Sur les trois
schémas, le limiteur de flux linéaire au vent semble prometteur pour le développement
de la procédure d’assimilation, car il assure une meilleur convergence itérative du solveur
RANS par rapport au schéma Gamma.

Résumé du Chapitre 3: Développement de méthodes
pour la procédure d’AD variationnelle

Ce chapitre est dédié à la construction d’une méthodologie d’assimilation de donnée
pouvant être appliquée à toute fermeture de turbulence arbitrairement complexe. Sur la
base de la théorie du contrôle optimal, une différenciation, cohérente avec les équations
de transport réalisables k − ε (Shih et al., 1995) et de la loi proche paroi de l’écoulement
moyen a été effectuée. On note que la construction des équations de flux adjoint éclaire le
rôle des conditions aux limites adjoints. Cela a abouti à la définition d’un modèle adjoint
continu, avec ses conditions aux limites cohérentes, de l’opérateur tangent linéaire du
modèle RANS. Les conditions aux limites adjointes induites par la loi de fermeture à la
paroi ont été dérivées. De plus, quelques traitements spécifiques liés à la discrétisation des
volumes finis ont été donnés.

Les équations différentielles adjointes (formelles) sont introduites et les détails de leur
dérivation sont donnés dans l’annexe 7.2.
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Résumé du Chapitre 4: L’assimilation des données comme
outil de diagnostic pour la structure de fermeture de
turbulence

Compte tenu de la double description de la dynamique composée du modèle direct
RANS et de l’adjoint de son modéle tangent linéaire, nous avons exploré un dispositif
méthodologique qui permet une analyse de sensibilité efficace et un diagnostic approfondi
de la fermeture du modéle de turbulence.

Dans un premier temps, nous avons inspecté les variables d’état adjointes en relation
avec leur signification physique. Les cartes de sensibilité des coefficients globaux du re-
alizable k − ε avaient révélé un grand intérêt pour leur optimisation principalement au
niveau des couches de cisaillement résultant de la séparation de l’écoulement sur les bords
latéraux avant et au sommet du bâtiment. Cependant, une faible sensibilité dans la ma-
jeure partie de la région de recirculation du sillage a été observée. Malgré la variabilité
spatiale des champs de sensibilité, il a été montré que la condition d’optimalité réduit
considérablement la dimension de la dépendance du modèle à chaque coefficient.

Par ailleurs une étude de calibration a été conduite afin d’étudier les conditions de
validité du modèle de turbulence, à travers des scénarios de maintien/relâchement de
certaines hypothèses utilisées dans la définition des coefficients du modèles. Cette étude a
été menée dans le but de fournir une meilleure compréhension de la variabilité des solutions
du modèle en fonction de ses constantes globaux. En ce qui concerne les hypothèses de
modèle, un meilleur couplage avec les données est obtenu en imposant une contrainte qui
équilibre la redistribution de l’énergie cinétique avec celle de la quantité de mouvement,
bien que la sensibilité initiale au préfacteur du term de redistribution suggère une tendence
à réduire, en préconisant globalement une couche de mélange turbulente plus mince. Cela
suggère que c’est une hypothèse physiquement valide qui structure le modèle et contribue
ensuite à la convergence. A l’inverse, en relâchant cette contrainte et en établissant une
relation qui dicte une borne forte limitant la production du taux de dissipation d’énergie
à sa redistribution (supposée valable dans la couche inertielle près du mur), conduit à un
accord plus faible avec les données expérimentales. Dans la mesure où ces deux hypothèses
constituent une pratique courante pour la définition de modéle de fermeture de viscosité
turbulente, on s’attend à ce que ces résultats s’étendent à d’autres modèles de formes
similaires. Les performances limitées de la procédure d’assimilation, obtenues lorsque on
contrôle les paramètres globaux, sont une indication de la rigidité du modèle de turbulence
considéré.
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Résumé du Chapitre 5: Assimilation de données pour
des corrections spatiallement distribuées de déforma-
tions

La méthode d’assimilation de données dans ce chapitre vise à reconstruire l’écoulement
de vents moyen. Pour cela, un forçage spatialement distribué est ajouté à l’équation de
la quantité de mouvement afin de déduire la correction de la force induite par le tenseur
de Reynolds. Sans connaissance a priori sur sa forme analytique, un terme de forçage
brut a été intialement considéré. Une analyse des champs de sensibilité, révèle un intérêt
élevé pour l’optimisation de ce terme dans les régions englobant plusieurs régions clefs
de l’écoulement. Cela concerne l’impact de l’écoulement amont (y compris la séparation
amont et la formation du vortex en fer à cheval), les couches de cisaillement latérales et
supérieures, et le sillage.

Pour réduire les risques de solutions non physiques associées à des minima locaux, et
compte tenu des observations fortement partielles dont nous disposons et de la présence
de paramètres de contrôle spatialement distribués, nous avons proposé d’explorer deux
approches de régularisation différentes. D’une part, nous avons envisagé d’augmenter la
fonction de coût par une pénalité sur les gradients spatiaux du paramètre de contrôle. En
d’autre part, par la définition d’un produit interne H1, nous avons considéré la recherche
du paramètre de contrôle dans l’espace de Sobolev correspondant (Protas et al., 2004).
Une comparaison numérique des résultats obtenu avec l’approche de pénalisation a montré
que la recherche de paramètre sur H1 conduisait à une convergence beaucoup plus rapide
et des états optimaux d’énergie plus faibles. En ce qui concerne la capacité d’interpolations
des mesures, par rapport à la calibration des coefficients, le modèle correctif de déforma-
tion conduit à un excellent accord entre les résultats numériques et les données de pression
pariétale sur la pluspart des facades du bâtiment. En ce qui concerne la capacité de recon-
struction de la méthode d’assimilation, les résultats du modele montrent une réduction
considérable de l’extension de la zone de récirculation; cette réduction n’est cependant
pas totalement satisfaisante. Celle-ci est accompagnée par une mauvaise qualité de recon-
struction du champs de vent assoié à des caractéristiques non physiques. Il semble que
la réduction de pression sur la façade arrière soit effectuée en approchant le point focal
très près du mur dans le but de réduire la région de recirculation globale. Un manque de
structuration du forçage semble être la cause principale de ce défaut.

Afin de remédier à cette situation, nous avons tenté d’affiner la forme du paramètre de
contrôle dans le but d’assurer une certaine cohérence entre la correction de déformation
prescrite par cette force et une force induite par des contraintes de Reynolds. L’anisotropie
étant assez mal représentée par les modèles de viscosité turbulente (et la fermeture
k − ε), nous proposons ici de ne traiter que les corrections relatives à l’inhomogénéité
de l’écoulement, i.e. les régions à fort gradient d’énergie turbulente. En effet, une anal-
yse de sensibilité concentre de façon drastique des sources potentielles d’inadéquation des
contraintes de Reynolds modélisées à une mince région à l’intérieur des couches de ci-
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saillement, correspondant à l’extension du cisaillement latéral produit par la séparation
de l’écoulement séparé sur les bords d’attaque. En contrepartie, une sensibilité plus faible
en aval dans le sillage a été notée. En termes d’objectifs, les écarts avec les données de
pression de paroies ont globalement diminué considérablement pour atteindre des niveaux
plus proches de celle associée au terme de forcage brut avec une vitesse de convergence
plus rapide. Du point de vue de la reconstruction, les résultats avec une force structurée
préservent mieux les caractéristiques du sillage attendu, meme si le terme de forçage brut
produit globalement une bulle de recirculation plus petite. Néanmoins, il est à noter que
l’emploi d’une telle structuration accélère l’optimisation avec des performances compara-
bles. Cela semble suggèrer que ces régions locale ont un poids important dans l’échec du
modéle RANS.

Résumé du Chapitre 6: Assimilation de données pour
des corrections structurées grâce à la modélisation de
la turbulence

Dans ce chapitre, nous avons effectué une étude plus approfondie de l’approche vari-
ationnelle pour la reconstruction de l’écoulement moyen autour du bâtiment considéré.
Après avoir abordé les sources potentielles d’erreurs de modélisation, relatives aux hy-
pothèses utilisées pour construire le modèle de fermeture, nous avons vu que l’inférence
d’un paramètre de contrôle intégré terme à terme, donne des matrices mal condition-
nées du modèle adjoint et conduit à des instabilités numériques. Pour s’affranchir de ces
problèmes, nous avons considéré l’adjonction de paramètres distribués permettant de re-
considérer la fermeture à un niveau structurel. Pour le modèle de turbulence considéré,
nous avons introduit deux stratégies correctives pour sa fermeture; la prémiére repose sur
l’équation de transport pour l’énergie k, et la seconde sur son taux de dissipation ε. Con-
cernant la régularité du champs de sensibilité, L’utilisation du gradient de Sobolev a été
proposée à la fois pour définir une direction de descente pour l’algorithme de minimisation
et dans un but de régularisation. Notons qu’avec le gradient de Sobolev, la robustesse de
la procédure d’assimilation a été assurée par l’utilisation de schémas numérique d’ordre
un pour résoudre le RANS et son modéle dual.

Les deux champs de sensibilité des paramètres ont mis en évidence des régions où
les constantes globales ne sont pas trop sensibles (c’est-à-dire le sillage). Leurs plans
ont en fait révélé des tendances binaires, séparant les régions de cisaillement latéral et
supérieur et l’écoulement de sillage. Concernant la qualité de reconstruction, comparés à
une calibration directe des coefficients, les modèles de fermeture modifiés ont donné de
bien meilleurs résultats dans la plupart des régions proche paroies du bâtiment en termes
de profils de charge de vent. Un excellent accord avec des expériences PIV indépendantes
a été obtenu en terme d’extension transversale de sillage. Ce bon accord avec des mesures
de nature différente et qui n’ont pas été utilisées dans l’assimilation a montré que nous
ne sommes pas confronté à une sur-représentation des données de pression. Cependant,
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comme l’ajustement du débit ne provient que des effets diffusifs (hypothèse de Boussinesq),
les résultats suggèrent quelques restrictions persistentes car les profils reconstruits tendent
vers le modèle d’origine dans certaines régions dans la mesure ou certains mécanismes
d’échanges d’énergie ne sont pas représentés.

Pour proposer une solution alternative , tout en maintenant l’hypothèse de Boussi-
nesq, nous avons proposé d’étudier le couplage d’une correction directe de déformation et
l’ajustement de l’équation de fermeture du modèle de turbulence. La forme du paramètre
de contrôle joue ici un rôle important afin de permettre une hybridation efficace. La force
structurée a été choisie plutôt qu’un terme de forçage brut en raison de sa consistance et
pour sa relation étroite (dans son effet) avec la partie isotrope du tenseur de Reynolds. Les
observations qualitatives des caractéristiques principale de l’écoulement et les métriques
mur/écoulement proposées montrent que la combinaison d’un forçage direct avec une
forme de structuration simple et un ajustement de la fermeture locale est une stratégie
assez prometteuse car elle garantit globalement une bonne qualité de reconstruction. De
plus, la conjonction de la pénalisation du gradient H1 / L2 peut aider à affiner la qualité
de reconstruction; cependant, un couple adéquat de mise à l’échelle est encore nécessaire
pour fournir un compromis satisfaisant entre l’interpolation de la pression pariétale et des
modèles d’écoulement réalistes.
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INTRODUCTION

Thesis context

Because of their potential long-time exposure to strong atmospheric winds, high-rise
buildings and big structures undergo extremely strong lateral aerodynamic forces. Yet, by
having a prior understanding of the airflow surrounding these big structures, wind loads
can be predicted and such issues avoided. To understand how theses turbulent flows affect
the structures, experiments in wind tunnels along with numerical simulations are usually
deployed.

On the one hand, for more than a century, experiments with scaled models of buildings
have been carried out in wind tunnels (Cermak and Koloseus, 1954; Jensen, 1958). After
years of advancement on measurement techniques together with an increased knowledge
on wind dynamics, tunnel experiments have proven their reliability for loads prediction
issues (Surry, 1999; Cochran and Derickson, 2011). High-Frequency Force Balance method
(HFFB) (Tschanz and Davenport, 1983) and High-Frequency Pressure Integration (HFPI)
(Irwin and Kochanski, 1995) are two examples of techniques employed for such effort
measurements. Despite many improvements brought to deal with turbulent flows, such
techniques provide only partial information of the complex wind-structure interactions
involved. For instance, when the structure has a complex geometrical shape, the very
sparse nature of the cladding pressure measurements brought by HFPI techniques may
lead to a misrepresentation of the local pressure field. Moreover, although techniques
such as Particle Image Velocimetry (PIV) (Adrian, 1991) in principle allow planar or
even full 3D data (Elsinga et al., 2006) to be obtained in wind-tunnel tests, but the cost
is considerably higher and application for complex geometries can be hampered by laser-
light shielding caused by the model, e.g. in case of an urban model consisting of many
buildings.

On the other hand, more recently, thanks to the significant progress of computational
capabilities, computational fluid dynamics (CFD) techniques have proved their value to
give a complete representation of these flows, enabling a better understanding of the rela-
tion between the flow structures and the wind loads. However, since an accurate descrip-
tion of such turbulent flows requires a fine enough resolution, this technique may rapidly
become impractical due to the large computational resources required. To go beyond this
computational limitation, turbulence model closures associated with the Reynolds aver-
aged Navier-Stokes (RANS) simulation were widely adopted to give an insight into the
time-averaged flow profile. Over the years, motivated by the available computational wind
engineering guidelines (Tominaga et al., 2008; EN, 2005), several established turbulence
models have been deeply investigated (Cochran and Derickson, 2011; Meroney and Der-
ickson, 2014). While RANS simulations offer good qualitative results that are physically
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relevant, due to their inherent assumptions built from accumulated knowledge on real
turbulent flows, close inspection on wind loads reveals typical failures in their prediction
(Tominaga and Stathopoulos, 2010, 2017; Yoshie et al., 2007).
This accuracy issue may strongly hinder the model predictive skill when compared to
real-world measurements. One way to correct this deficiency consists in devising methods
allowing to couple turbulence modelling with measurements.

During the last decades, a wide variety of coupling techniques has been increasingly
considered in fluid mechanics applications. Such techniques, commonly termed as data
assimilation (DA), have been employed to estimate an optimal flow state provided by a
given dynamical model such that it remains close enough to observations. So far, two dif-
ferent classes of DA techniques have been applied to that end. On the one hand, Bayesian
techniques, often referred to as sequential DA techniques, have been used to estimate
optimal flow parameters from data affected by a high uncertainty level (Meldi and Poux,
2017; Mons et al., 2016). On the other hand, optimal control techniques, like variational
DA or ensemble-variational DA, have been proposed for direct and large eddy numerical
description models (Mons et al., 2016; Gronskis et al., 2013; Yang et al., 2015; Mons et al.,
2017; Li et al., 2020; Chandramouli et al., 2020). In this latter kind of approaches, DA
is formulated as a constrained optimisation problem (Bryson, 1975). A cost functional,
reflecting the discrepancies between some (incomplete) measurements of the flow variables
and a numerical representation of the flow dynamics, is minimised using a gradient-based
descent method. In such an optimisation problem, the functional gradient’s evaluation
is efficiently carried out through the dynamical model’s adjoint instead of a costly finite
difference approach (Errico, 1997; Plessix, 2006). At this point, these DA methods were
often used to reconstruct initial conditions and/or boundary conditions for nonstationary
flow simulation issues (such as large eddy simulations).

In the last few years, mean flow reconstruction problems have also been considered
with data assimilation techniques. In some studies (Foures et al., 2014; Symon et al.,
2017), built from variational DA techniques, the authors considered laminar steady Navier-
Stokes equations corrected by an unknown volume-force to directly model the turbulence
effects. These studies showed that, in laminar or transitional flows, such models perform
well to assimilate synthetic particle image velocimetry (PIV) data. Other DA studies at
high Reynolds number were performed with RANS turbulence models (Li et al., 2017;
Singh and Duraisamy, 2016; Franceschini and Sipp, 2020). In these works, mean flow
DA approaches exploited the turbulence models’ structure, which results from a trade-off
between asymptotic theories on turbulence mixing and empirical tuning to fit experimental
data. This was expressed through a calibration process of the closure constants or of a
corrective source term added to the turbulence model. Experimental knowledge plays here
a crucial role. Such studies dealt mainly with fundamental and industrial oriented flow
configurations in which turbulence is often generated at a unique integral scale. However,
to the authors’ knowledge, for flow configurations involving complex flow interactions as
in the case of an atmospheric boundary layer around a bluff-body, turbulence closure
structure analysis using DA techniques are still largely unexplored. Nevertheless, it is
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noteworthy that formal uncertainty quantification (UQ) techniques have been employed to
interpret these closure models in probabilistic terms (Etling et al., 1985; Duynkerke, 1988;
Tavoularis and Karnik, 1989; Edeling et al., 2014; Margheri et al., 2014). For example, in
a recent work by Shirzadi et al. (2017), global coefficients of the standard k−ε model were
adapted for unstable atmospheric boundary layer (ABL) flow around high-rise buildings
using a Monte Carlo simulations based technique.

Present contribution
In this thesis, we investigate RANS modelling in conjunction with one of the most

common turbulence models in the framework of variational data assimilation prediction
of wind flows around big structures. Contrary to previous studies in which velocity mea-
surements were considered on significant parts of the flow domain ( for 2D flow with one
homogeneous direction), we consider here the coupling of a RANS model with only pari-
etal experimental measurements for a real world complex three-dimensional flows. This
difference is far from being cosmetic as it is built here to deal with practical experimental
settings, used classically in the industry of construction. An analytic derivation of the
adjoint model enabling the estimation of the descent direction to the cost minimization
algorithm has been performed and then discretized using a finite volume scheme. The
library which served for the implementation of the inner iterations, i.e. RANS and its
adjoint solvers, and the outer iterations for the DA procedure relies on the open source
multi-physics library OpenFOAM (Jasak, 1996).

Given the dual description of the dynamics composed of a RANS direct model and
the adjoint of its tangent linear representation, we explore the adjoint methodology as
two distinct tool.

In the one hand, we investigate some methodological settings that enable an in-depth
diagnosis of the turbulence closure. As a starting point, this methodology is used to
investigate the sensitivity fields of the global closure coefficients of the high Reynolds
realizable revision of the k − ε model (Shih et al., 1995). Their physical interpretations
enable us then to point out the limits on the closure models’ applicability for data-model
coupling purposes, particularly for wind flows around a high-rise building (the chosen case
study for the thesis). This study discusses the limitations and improvements in estimating
wind loads and mean velocities surrounding the building.

In the other hand, aiming for an efficient data-model coupling, we consider the method
as a flow reconstruction tool. A first strategy based on the the control of the turbulence
model parameters shown a too strong rigidity of the model in the sense that it constrain
too much the solution space to allow the estimation of very accurate estimations. The
solutions of the numerical model calibrated on real pressure data are improved but only
marginally.

Thus, we went one step further and considered a weak constraint data assimilation as
it is called in the data assimilation community, which includes additional forcing error
terms. Several strategies have been explored in this spirit. In the first strategy, by defining
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an additive forcing term as control parameter, we allow the solution to deviate from the
default model constraints, to directly correct the momentum diffusion associated to the
eddy viscosity model. In the second strategy, we considered instead the adjunction of a
distributed parameter enabling to correct the turbulence closure in some regions of the
flow. Beyond the fact that it provides a better physical structure to the reconstruction
thanks to the prior information brought by the RANS model and avoids overfitting to the
data , the optimal control parameter enables us to identify features that are missing in
the initial RANS closure hypotheses. As with sparse observations, the sensitivity field is
generally not very regular for distributed parameters, searching for the control parameter
in Sobolev’s space (H1) is also proposed to strengthen the efficiency of the method., i.e
by providing a robust descent direction for the gradient minimization algorithm.

Contents of thesis
The thesis is divided into seven chapters of which five chapters describe the main

contributions of the study. The state of the art is laid in chapter 1. Existing DA techniques
are enumerated. A survey of previous works using DA for data-model coupling in general
CFD studies is also given.

In chapter 2, a focus is made on the modelling of turbulent flows in urban flows. The
aim of this chapter is to identify the modeling settings which forms the basis for the DA
studies described in the subsequent chapters. The mathematical model outlining the time-
averaged Navier-stokes equations; its associated closure for turbulence, its consistent wind
inlet profile and the near-wall treatment are introduced. Along with this, a brief descrip-
tion is made of the experimental apparatus, conducted previously by (Sheng et al., 2018).
By gathering literature recommendations that insure a rigorous numerical flow analysis,
a computational setup was built for the building case study. This chapter continue with a
solution validation study to asses discretization-related errors. The conditions for which
the predictions become independent of the grid are first established. Then comparisons
are made between the predicted distributions of wall-pressure and available data.

Chapter 3, is dedicated to the development of the variational data-assimilation proce-
dure. The (formal) adjoint differential equations are given and their obtention is further
detailed in appendix 7.2. A particular attention is addressed on the boundary treatment,
and led us to define a consistent enforcement, especially at the wall.

The variational technique is then applied for a detailed analysis of the turbulence
model in chapter 4. Local sensitivity to the models global turbulence coefficients are
discussed and a calibration process was conducted in order to investigate models output
limitations, through hold/relax closure hypothesis scenarios, toward data-fitting.

In the next chapter (5), we present the modified set of RANS equations with the addi-
tive forcing term used as a control parameter in the assimilation. To suppress non-physical
oscillations of the sensitivity to the parameter during the reconstruction, we proposed the
examination of two regularization approaches. In the first one, we augment the objective
by a regularizing term. Whereas for the second one, the distributed parameter is sought in
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a regular space, i.e. Sobolev space. After an initial sensitivity analysis, we discuss results
by comparing reconstructed flows obtained with both regularization techniques. Since,
forcing here is not affixed with the specified turbulence model, we hence investigates the
effects of assumption of constant eddy viscosity (CEV), which enables major simplification
to the adjoint model and its boundary conditions. In a following section, we considered
a simple structuration of the forcing so as to enforce some physical constraints to the
reconstructed flow features.

In chapter 6 , the flow reconstruction is operated under a parametrization that satisfies
physical constraints given by the turbulence model. Discrepancy-corrective parameters are
embedded into the turbulence model equations rather than at the level of the momentum
equations and their effects on the mean flow are constrained by the specified stress-strain
relationship. The chapter starts by addressing possible model structure errors resulting
from the choice of the eddy-viscosity and the chosen type of turbulence model, i.e. real-
izable k − ε. Comments are given on the possible corrections at each closure assumption
layer, vis-a-vis the robustness of the DA procedure. Then, we introduce corrective models
with new spatially distributed forms of closure. In a final section, after an initial sensi-
tivity analysis, data-assimilation results are presented by comparing reconstructed flows
obtained with the proposed corrective models.

Chapter 7 concludes the thesis with a summary of the achievements of the work and
some suggestions for further work are given.

Lists of references together with the appendices follow the final chapter.
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Chapter 1

A STATE OF THE ART

1.1 A structural wind engineering problem: a brief
historical review

During there lifetime, buildings are continuously exposed to wind coming from all
directions. Particularly, due to their extended exposed surface, high-rise buildings and
big structures undergo extremely strong lateral aerodynamic forces. As a consequence,
large lateral deflections or, even more, some problematic tearing affecting security may be
observed (Murakami et al., 1992; Irwin, 2008; Cochran and Derickson, 2011). To under-
stand how wind flow affect these structures, physical models and numerical simulations
have been used for a long time.

Experiments with scaled models of buildings have been carried out in wind tunnels.
Initially studies were performed in a uniform flow that produced spurious results (Bai-
ley, 1933; Jensen, 1958). In the 1950s, atmospheric studies of Earth turbulent boundary
layer have led to a greater understanding of its structure and complexity, and ultimately
to a better modeling(Cermak, 1956). Cermak and Albertson (1958) demonstrated the
criteria for Reynolds number independence for the modeling at reduced scale of atmo-
spheric boundary layers. Other studies on phenomenological and metrological aspects of
turbulence have been carried out from the early works of (Schubauer and Dryden, 1935;
Davenport, 1965). Knowledge of the turbulent spectrum of the natural wind and incor-
poration of its scaled representation in wind tunnels led to the evolution from static to
dynamical response investigations of structures. The description of the energy content of
the wind via the turbulence spectrum by Davenport (1965) was a fundamental concept
that pushed wind engineering to follow this evolution. Note that during the 1940s and
1950s dynamic wind-tunnel studies were generally limited to flexible, long-span bridge
structures, after the collapse of the Tacoma Narrows Bridge, and the transition from
studies of bridge dynamics to building dynamics was motivated by the twin towers of
the World Trade Center in New York. Studies of buildings were performed frequently in
the 1960s and rationalization of such works was given (Cermak and Peterka, 1966). In
brief, it has been observed that the drag dependence for bluff bodies with sharp edges, as
well as the boundary layer, too the Reynolds number were small when performed above a
critical Reynolds number. Thus, a major similarity requirement was waived. In general, a
similarity study can be performed if all similarity parameters such as the Mach, Rossby,
Richardson, Prandtl and Eckert numbers are the same between model and prototype. In
wind-engineering applications, at scales where atmospheric boundary layers and urban
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1.1. A structural wind engineering problem: a brief historical review

buildings interact, it is reasonable to neglect compressible, thermal ans Coriolis effects,
making the Reynolds number the principal similarity parameter.

Indeed, construction designs of challenging heights and shapes have seen a rapid growth
of wind-tunnel simulations for the dynamic aspects of high-rise buildings. In the period
up to 1975, some centres have initiated measurements on the CAARC Standard Tall
Building Model (Holmes, 1975; Walshe and J., 1974) , i.e. a rectangular prismatic shape
with full-scale dimensions (30.48 × 45.72 × 183.88 m). An initial comparison of their
results by Melbourne (1980) have pushed to define a benchmark configuration: an isolated
tall rectangular building geometry, so that other workers could “calibrate” individual
techniques against a common set of data.

Meanwhile, during that time, much has been learned about the characteristics of flow
surrounding buildings and the structure of the wake; and knowledge of building wake
characteristics become considered in a variety of applications, e.g. pollutants dispersion
in conventional or nuclear power plants, pedestrian wind comfort and wind loads on
structures. To understand the wind flow behaviour around buildings, some investigations
(Peterka and Cermak, 1977; Baker, 1980; Peterka et al., 1985) have pointed out the
fundamental differences between three-dimensional and two-dimensional separated flows
in wind engineering. After years of advancement on measurement techniques together with
an increased knowledge on wind dynamics, wind-tunnel experiments have proven their
reliability for loads prediction issues. A more detailed survey can be found in (Surry,
1999; Cochran and Derickson, 2011). High-Frequency Force Balance method (HFFB)
(Tschanz and Davenport, 1983) and High-Frequency Pressure Integration (HFPI) (Irwin
and Kochanski, 1995) are two examples of techniques employed for wind loads and wind-
structure interaction studies.

Meanwhile, in early attempts, some analytical methods (Hunt and Smith, 1969; Hunt,
1971) which were developed to predicts the mean velocity defect (i.e. difference between
upstream and downstream mean velocities) in the wake of a three dimensional bluff-body
immersed within a turbulent boundary-layer flow have been acquired and compared to the
available measurements on mean velocity defect, turbulence intensity, mean temperature
and mean concentration of pollutants in the wake region downstream of buildings (Peterka
et al., 1985). Relying on the assumptions that only small perturbations to the turbulent
boundary layer are caused by the bluff-body and that the ratio of the model height to
the boundary-layer thickness is very small, this theory is invalid in the separated region
behind the building where flow structure cannot be considered to be a small perturbation
of the approaching flow. In the same period, numerical simulations of turbulent flows
over three-dimensional bluff bodies have been carried out (Hirt and Cook, 1972) and
applied to wind flows over buildings (Yamada and Meroney, 1971; Summers et al., 1986;
Paterson and Apelt, 1989; Murakami and Mochida, 1989). These studies corresponds to
the first use of the Reynolds averaged equations in wind engineering, using mainly the
standard k − ε model. By comparison with the earlier analytical methods, the numerical
results obtained, when compared with full scale and wind tunnel measurements, were
considered to be in a relatively good agreement for configurations such as cubic models
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Chapter 1 – A state of the art

and rectangular surface-mounted building shapes. For practical situations and complex
geometries, questions on the applicability for such numerical methods have been raised
(Murakami and Mochida, 1989).

Motivated by further developments in turbulence modelling, giving rise to unsteady
numerical methods with spatial filtering (i.e. Large eddy simulation (LES) (Smagorinsky,
1963)) and various improvement of the steady mean state models (e.g., RNG by Yakhot
et al. (1992), realizable by Shih et al. (1995), MMK by Tsuchiya et al. (1997)), several
studies were conducted to compare their relative performances and asses their applicability
on the prediction of flow around buildings, mostly on low-rise structures (Murakami et al.,
1987; Murakami, 1990; Murakami et al., 1992; Murakami, 1993; Rodi, 1997; Thomas and
Williams, 1999; Nozawa and Tamura, 2002). Together with later studies, they laid the
foundations for the current best practice guidelines (Franke et al., 2004; Tominaga et al.,
2008), by focusing on the importance of grid resolution, the influence of the boundary
conditions on the numerical results and by comparing the performances of various types
of turbulence models in steady RANS simulations, and comparisons of steady RANS
versus LES.

In most of these studies, flow-field around cubic-bluff body were analysed and defi-
ciencies of the eddy viscosity modelling in the k − ε model (Launder and Sharma, 1974)
were addressed (e.g. by Murakami et al. (1992)). These include the stagnation point
anomaly (Issa, 1995; Franke et al., 2004) with overestimation of turbulent kinetic energy
near the frontal corner and the resulting underestimation of the size of separation and
recirculation regions on the roof and the side faces, together with the underestimation of
turbulent kinetic energy in the wake resulting in an overestimation of the size of the cavity
zone and wake. Various revised linear and non-linear k−ε models and also second-moment
closure models (e.g. algebraic stress model (Launder et al., 1975)) were also tested, and
showed improved performances for several parts of the flow-field. Yet, recent studies have
shown that such models still fail to reproduce an accurate recirculation region behind the
building (Tominaga and Stathopoulos, 2010, 2017; Yoshie et al., 2007), thus, scrutinizing
the main limitations of steady RANS modelling: its incapability to model the inherently
transient features of the flow field such as separation and recirculation downstream of
windward edges and vortex shedding in the wake. This accuracy issue may strongly hin-
der the model predictive skill to reproduce real-world measurements. Let us note that
authors reported that the flow structure around a bluff body can be predicted by RANS
models with a given accuracy; however, for accurate wall-pressure and turbulence kinetic
energy, algebraic models and even more LES are seen as a more effective analysis tools.
Although, LES leads to intrinsically superior performance of (Rodi, 1997; Thomas and
Williams, 1999; Sohankar et al., 2000), they have specific disadvantages that are not easy
to overcome. This includes in particular a huge computational burden and the difficulty
to specify appropriate time-dependent inlet and wall boundary conditions (Gatski et al.,
1996; Gosman, 1999; Dagnew and Bitsuamlak, 2010; Tabor and Baba-Ahmadi, 2010;
Thordal et al., 2019). Let us note that hybrid approaches combining steady (RANS) and
unsteady (LES) modeling (Fadai-Ghotbi et al., 2010) can be a solution to investigate in
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alleviating these limitations .

1.2 A brief state of the art on data-model coupling
The concept of data-model coupling or more commonly refered to as data-assimilation

(DA) comes from estimation theory, and was first been applied to the numerical weather
prediction (Bergthörsson and Döös, 1955). The goal is to combine observations of the
system state (for instance from weather stations and satellites in weather forecast) with
a given dynamical model. Indeed, at an arbitrary time, data assimilation usually takes a
forecast and applies a correction to it based on a set of collected data while estimating
errors underlying both the measurements and the forecast itself. A weighting is applied to
the data-model forecast discrepancy (i.e. the difference between the data and the model
output forecast) to determine how much of a correction should be made to the forecast,
yielding to a best estimate of the state. This correction is often termed as the analysis
step.

1.2.1 Data-model coupling techniques
To define the mathematical context common to the data assimilation techniques, let

us note the common goal which is to provide an optimal estimate Xa (where a stands for
analysis) of a true initial state X(t0) and model parameters α(x, t) that are in practice
unknown or known with a low confidence compared to its sensitivity. This requires first,
a dynamic model M (generally non-linear) describing the evolution of the system from
an a priori initial (or background) state Xb0 . Then, giving a set of measurements Y of the
system, the data assimilation problem is formulated by the following system of equations,

∂X(x, t)
∂t

+ M(X(x, t), α(x, t)) = ξ(x, t)

X(t0, x) = Xb0(x) + θ(x)
Y (x, t) = H(X(x, t)) + ε(x, t),

where ξ(x, t), ε(x, t) and θ(x) would take into account, respectively, any potential model
errors, measurement errors, and an a priori background error of the initial condition to
which we associate the covariance matrix,

B = E(θθT ) = E(||Xb0 −X||2),

and H() is an observation operator which maps any possible model state X to the ob-
servation space. This operator ensures consistency between model and measurements. In
the first section, we address what we may consider as a basis for the development of a
DA procedure. Thus, dynamics are omitted and we consider simple ideas from estimation
theory. To take M into account, two main approaches are briefly introduced in further
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subsections.

Linear estimation theory as a basis for data-assimilation

Under the linear estimation theory, the noise ε around measurements is assumed to
be a zero mean Gaussian random field associated to the observation covariance tensor R.
For sake of simplicity, we also consider H to be a linear observation operator. As such,
the data-model discrepancy reads as

R = E((Y −HX)(Y −HX)T ) = E(εεT ). (1.1)

Thus, an estimation problem would aim at determining an estimator X̂ of the true state
that optimally reduces this discrepancy, based on the knowledge of Y , of Xb and the
covariances matrices.

Least square fitting A classical approach to express the estimation problem consist in
interpreting it as a least squares problem. In this approach, we seek the optimal estimator
X̂ that minimizes the cost function

J (x) = 1
2(Y −HX)TR−1(Y −HX). (1.2)

By cancelling its gradient one can obtain an optimal state (assuming HTR−1H is invert-
ible):

X̂ = (HTR−1H)−1HTR−1Y.

We note that in this naive approach, no information is given about the fact that X is
solution of the model M, about the background solution and about relative confidence
between observations and model. This approach is doomed to fail in case of sparse and/or
noisy measurements.

Basic Bayesian inference As we consider both the state vector X and data Y as
random variables, in this approach, one may seek an estimation of the true state X t

associated with the conditional probability P (X|Y ) which verifies the Bayes rule (1.3),

P (X|Y ) = P (Y |X)P (X)
P (Y ) (1.3)

where P (X|Y ) is the a posteriori probability distribution of the forecast X being ac-
counted for by the available data Y , P (x) is an a priori probability of the forecast X
while P (Y ) an a priori distribution. Given this, a Bayesian estimator X̂ can be built by
minimizing a Bayesian risk E(Br(X̂,X)). For instance, the minimum variance estimator
considers the mean square error, Br(X̂,X) = ||X̂ − X||2, Then by expressing the cost
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function as the expectation of Br knowing Y :

J = E(||X̂ −X||2|Y ),

the optimal estimator can be obtained by cancellation of its gradient with respect to X̂
giving

Xa = E(X|Y ). (1.4)
We recall that so far we still did not take into account the dynamics. To take M into
account, two main family of approaches have emerged for data assimilation issues.

Sequential approaches

The sequential approach can be seen as an extension of the Bayesian minimum variance
estimation as the background state is evolving in time through a dynamical model. The
goal of sequential data assimilation is then to correct the background state each time a
new observation is available.

Kalman filter The Kalman filter introduced by (Kalman, 1960) can be seen as the
direct extension of the best linear unbiased estimator (BLUE) for dynamical models. In
this approach, say at discrete time tk+1, one seek for the analysis state Xa

k+1 that corrects
the background state Xf

k+1, given the observation Yk+1, which reads as

Xa = LXb +KY.

In fact, as we consider both background an data errors to be unbiased, this analysis is
reduced to the following expression

Xa = Xb +K(Y −HXb) (1.5)

where K is refered to as a Kalman gain that has to be defined. Moreover, as we assume
the dynamical model to be linear with a model error qk (associated to the covariance Qk),
we define the system,

Xf
k+1 = MkX

f
k ,

Yk+1 = HkX
t
k+1 + εk,

X t
k+1 = MkX

t
k + qk.

By choosing the cost function to be E(||Xa
k − X t

k||2), it can be shown (Robinson, 2015)
that the gain Kk which cancels its gradient reads as follow

Kk = (HkP
f
k )T (Hk(HkP

f
k )T +Rk)−1 (1.6)
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and that the analysis step reads as

P f
k = E(||Xf −X t||2) = Mk−1P

a
k−1MT

k−1 +Qk−1

Xa
k = Xf

k +Kk(Y −HkX
f
k )

P a
k = (I−KkHk)P f

k

followed by a forecast step:

Xf
k+1 = MkX

a
k ,

P f
k+1 = MkP

a
kMT

k +Qk.

Let us note that the Kalman filter can be extended to non-linear dynamics and observation
operators through linearisation. This extension is called the Extended Kalman Filter
(EKF). Both the standard method and its extended versionhave the drawback to rely
on the computation of the Kalman gain K and the error covariance matrices P a and
P f . As a matter of fact, the covariance matrices require a significant computation and
storage resources as the system dimensions become high, despite strategies based on the
Cholesky decomposition of low-rank covariance matrices. Therefore, these techniques are
only usable for systems of moderate size.

Ensemble Kalman filter The ensemble Kalman Filter (EnKF), first introduced by
(Evensen, 2003), may be presented as an efficient alternative to the EKF using a Monte-
Carlo approach. In this context, one consider an ensemble N of state sampled according
to a given probability distribution, each referred to as a member, noted (Xf,1

k , . . . , Xf,N
k ).

This ensemble is generated from the randomization of the non linear dynamical model
given the result Xa

k of a previous analysis step. Instead of directly computing and storing
the error covariance matrices, the EnKF uses an empirical expression of the ensemble
mean and covariance matrix to deduce a low-rank approximation of the gain matrix and
the covariance matrices P f and P a. Let us recall that the more ensemble members are
employed, the more accurate the approximations to the distributions are, and the bigger
computational resources are involved. For further computational details regarding the
forecast and analysis steps, reader is referred to the works of (Yang, 2014; Robinson,
2015).

Variational approaches

Based on control theory, an alternative approach for data assimilation is to define a
minimisation problem, whose associated cost function embeds the data-forecast discrep-
ancy. These are called variational methods, such as 3DVar (at a single time) and 4DVar
(integrated over a time window). These approaches involve the use of iterative minimiza-
tion algorithms.
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With the variational approach (Le Dimet and Talagrand, 1986; Courtier and Tala-
grand, 1987) the assimilation is no more performed instantly (at each time an observation
is available) but along an assimilation window in which we have the background trajectory
generated by the model dynamics starting from an initial state Xb0 , and a set of successive
observations Y . Thus, the goal of this approach consists in finding the initial state Xb0

which performs an adjustment to the integrated trajectory to make it as close as possible
to the observations. This is done by solving an optimal control problem as described by
Lions (1971). In practice, the assimilation is translated into the minimization of an ob-
jective functional which measures the mismatch between the model predictions and the
data, under the constraint that the optimal state obeys to the model dynamics. The data
assimilation problem, over an assimilation window [t0; tf ], can be formulated as

J (X0) = 1
2(X0−Xb0)TB−1(X0−Xb0)+ 1

2

∫ tf

t0
(H(Xt)−Y (t))TR−1(H(Xt)−Y (t)) dt, (1.7)

in which B and R are, respectively, the background and the observation covariance ma-
trices. The minimization is performed by a gradient-based algorithm which requires the
evaluation of the cost function gradient w.r.t the initial state x0. There are basically two
approaches to obtain numerically the gradient. The finite difference, or direct approach,
that consists in approximating the gradient through infinitesimal variations of each vari-
ables of the cost function. For instance, a first order finite difference around x0 in the
direction hδX0 is given by

J (X0) ' J (X0 + hδX0)− J (X0)
h

.

In order to meet the accuracy requirements, we need to fix a sufficiently small differentia-
tion step h. For the whole gradient, if we consider N as the number of design variables, we
have to solve N sensitivity equations. Thus as N increases, this approach become rapidly
very expensive. Instead, the adjoint formulation is an elegant alternative based on the
work of (Lions, 1971; Le Dimet and Talagrand, 1986). In the adjoint-based approach, we
only require to solve the adjoint equation once. We note that if the nonlinear dynamics
equation is time dependent, then the adjoint equation is time dependent and is solved
backwards in time. Indeed, the standard 4DVar (and its incremental version (Courtier
et al., 1994)) technique(s) is used to determine the initial optimal state xt0 which is of the
size of a given state (Gronskis et al., 2013). In general, as iterative gradient-descent algo-
rithms are sensitive to numerical errors, the most accurate numerical adjoint associated
to a given problem is required.

Hybrid approaches

More recently, there is a trend in the development of hybrid data assimilation tech-
niques which combine the advantages of ensemble methods and variational assimilation
approaches (Yang et al., 2015; Yang and Mémin, 2019). From a variational perspective,
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hybrid methods would take advantage of the formalism of an iterative gradient descent
procedure and one would incorporate an ensemble-based background covariance operator
B, thus providing an exact descent procedure (Hamill and Snyder, 2000; Lorenc, 2003),
without being constrained by the derivation of the adjoint equations and by the strong se-
quentiality of the 4D-Var algorithm. Compared to the ensemble Kalman filter formalism,
when facing high dimension problems, the explicit analysis or update step are replaced in
the hybrid approach by a computationally tractable iterative gradient descent procedure
of a cost function. Reader is referred to the work by (Yang, 2014) for a further details
about this kind of hybridization as well to works by (Beyou et al., 2013; Papadakis et al.,
2010)for methods mitigating ensemble Kalman filtering for nonlinear filtering.

1.2.2 Data-model coupling in computational fluid dynamics

During the last decades, a wide variety of data assimilation coupling techniques have
been increasingly considered in fluid mechanics applications. Such techniques, have been
employed to estimate an optimal flow state provided by a given dynamical model such
that it remains close enough to observations. So far, the two classes of DA techniques
and their hybrid versions have been applied to that end. On the one hand, under the
Bayesian inference, the sequential DA techniques have been used to estimate optimal flow
parameters from data affected by a high uncertainty level (Colburn et al., 2011; Mons
et al., 2016; Meldi and Poux, 2017). In the work by Colburn et al. (2011), DA study was
conducted using the ensemble Kalman Filter (EnKF) technique (Evensen, 2003) for the
estimation of near wall region of a turbulent channel flow, considered as the first step
toward a flow control problem, based on wall measurements. Note that Meldi and Poux
(2017) employed a reduced Kalman filter proposed by (Suzuki, 2012) in order to deal
with the high costs associated with the manipulation of the covariance matrices in three-
dimensional flows. In this work, the Kalman gain was embedded within the prediction-
correction algorithms commonly involved in segregated solver for incompressible flow.

Within the iterative gradient descent formalisms, variational DA and hybrid ensemble-
variational DA have been used for direct and large eddy numerical description models
(Gronskis et al., 2013; Yang et al., 2015; Mons et al., 2014, 2016, 2017; Li et al., 2020;
Chandramouli et al., 2020). A cost functional, reflecting the relative discrepancies between
incomplete measurements of the flow variables and a numerical representation of the flow
dynamics, is minimised. In the case of the purely variational approaches, the functional
gradient’s evaluation is efficiently carried out through the adjoint dynamical model in-
stead of a costly finite difference approach (Errico, 1997; Plessix, 2006). As for the hybrid
ensemble-variational approach, as performed by Mons et al. (2016), authors have used
a Monte Carlo sampling technique to generate an ensemble which enables evaluation of
prior statistics, thus, avoiding the adjoint formalism for the gradient estimation. At this
point, these DA methods were often used to reconstruct initial conditions and/or bound-
ary conditions for nonstationary flow simulation issues, such as large eddy simulations.
Nonetheless in (Meldi and Poux, 2017), authors also have extrapolated the reduced-order
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Kalman filter to steady state or mean flow reconstruction by assimilating the numerical
marching iterations to time evolutions.

In fact, in the last few years, mean flow reconstruction problems are increasingly con-
sidered with data assimilation techniques. In such configuration, as the system of interest
is governed only by boundary conditions, the model M can non-longer be seen as an
evolution (or dynamic) model, i.e. where its solution is determined by its initial condi-
tion. In fact, the initial condition is now seen as only a guess from which the solution
iterates until it reaches the stationary solution which approaches M(X(x)) = 0. In such
problem, one of the possible way to conduct DA is by adjusting model underlying param-
eters which act either in the flow bulk or at the boundary to constrain the mean state
behaviour. Indeed, in some studies (Foures et al., 2014; Symon et al., 2017, 2020), built
from variational DA techniques, the authors considered steady Navier-Stokes equations
corrected by an unknown volume-force to directly model the fluctuating part around the
mean state. These studies showed that, in laminar or transitional two-dimensional flows,
such models perform well to assimilate synthetic particle image velocimetry (PIV) data.

As people starts to consider situations with high Reynolds number, DA techniques
were performed with RANS turbulence models (Singh and Duraisamy, 2016; Parish and
Duraisamy, 2016; Li et al., 2017; Franceschini and Sipp, 2020). In these works, mean flow
DA approaches exploited the turbulence models’ structure, which results from a trade-off
between asymptotic theories on turbulence mixing and empirical tuning to fit experimental
data. This was expressed through a calibration process of the closure constants or of a
corrective source term added to the turbulence model.

In parallel to the above data assimilation issues or, in a broader sense, state esti-
mation studies, researchers from the control community,have incorporated reduced order
modelling and hydrodynamic stability analysis techniques, such as resolvent analysis 1 to
perform efficient flow reconstruction (Beneddine et al., 2015, 2016, 2017; Franceschini,
2019; Symon et al., 2020). In fact, authors have aimed at the reconstruction of unsteady
flow from mean flow (which can be obtained through mean DA procedure) and very
sparse informations such as point sensor, that can be experimentally collected by hot wire
anemometry for instance. In such approach, by interpreting the non-linear term arising
from the time-dependent fluctuations around mean state in the Navier–Stokes equations
(or in ensemble-averaged equations in URANS modelling in (Franceschini, 2019)) as a har-
monic forcing (McKeon and Sharma, 2010), the fluctuation is reconstructed as a response
to this forcing. By reduction of the resolvent operator, this response is then found as a
weighted sum of resolvent modes in which the weighting is determined through data. Given
this response, one can then account for its contribution through the Reynolds stresses to
the time-averaged flow state. These results are very encouraging, and appear with great
value for mean-flow reconstruction when data is very sparse. Caveats regarding the com-

1. The resolvent of a linear operator governs how harmonic forcing inputs are amplified by the lin-
earised dynamics and mapped onto harmonic response outputs. Resolvent analysis refers to the inspection
of this operator to find the most responsive inputs, their gains, and the most receptive outputs. The re-
sulting low-rank approximation of the forcing-response dynamics of the full system is of a great value for
modeling, controlling, and understanding the physics of fluid flows.
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putational complexity and memory requirements, essential to consider three-dimensional
cases, have been addressed by using techniques ranging from iterative approach (Bagheri
et al., 2009; Loiseau et al., 2018) to randomized numerical linear algebra techniques (Moar-
ref et al., 2013). Moreover, we believe in promising perspectives of these techniques by
considering high-fidelity Reynolds-averaged models, e.g. RSM turbulence models that ac-
count better for the anisotropic behaviour of turbulence (Hanjalić and Launder, 1972;
Manceau and Hanjalić, 2002).

1.2.3 Data-model coupling: specification to RANS turbulence
modelling

State of the art Accurate simulations of turbulent flows is of great importance to
many applications, ranging from fundamental to environmental and industrial configu-
rations, as in the study considered in this thesis of wind engineering flows. Despite the
enormous growth in computational resources, RANS modeling and simulation of many
realistic turbulent flows has remained challenging, and in some cases even inaccessible.
Most common closure to RANS models are strong simplifications of the complex dynam-
ics of turbulent flows. Closure equations usually introduce a rough modelling of the exact
transport terms with adjustable constants. These constants are mainly calibrated by a
small number of simple, yet canonical flow configurations, such as homogeneous turbu-
lence and thin-shear flows. This has the consequence to break the consistency, when the
closure model is applied to practical problems which generally deviate from (or sometimes
combine) the canonical calibrated configurations. It is the case for flows involving adverse
pressure gradients, inhomogeneous flow directions and flow separations. In an attempt
to increase this accuracy, some work have explored enrichments of turbulence models to
better account for non-homogeneity produced by the presence of the wall (Durbin, 1993;
Manceau et al., 2001).

As an alternative solution, the data-driven strategy, which constitutes the core of the
present work, aims at moving beyond these limitations and provide an effective solution
to address turbulence modelling errors at reasonable costs and through data obtained
from experimentally realistic procedures. In this line of thought, formal uncertainty quan-
tification (UQ) techniques have been employed to addresses the modelling errors under-
lying the closure constants of RANS system in probabilistic terms (Etling et al., 1985;
Duynkerke, 1988; Tavoularis and Karnik, 1989; Kato and Obayashi, 2014; Edeling et al.,
2014; Margheri et al., 2014). In a recent work by Shirzadi et al. (2017), global coefficients
of the standard k−ε model were adapted for unstable atmospheric boundary layer (ABL)
flow around high-rise buildings using optimisation techniques (e.g. by Monte Carlo sim-
ulations). Other studies have attempted to characterize errors that result from the eddy
viscosity relationship, which links the Reynolds stress to the mean strain rate (Dow and
Wang, 2011; Cheung et al., 2011; Emory et al., 2013; Ling and Templeton, 2015). For in-
stance, using forward uncertainty quantification approaches, closure errors were addressed
either into the relationship, by inferring it in the scaling coefficient, assuming it to be nor-
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mally distributed (Dow and Wang, 2011), or by a perturbation of the predicted Reynolds
stresses (Emory et al., 2013). More recently, Franceschini and Sipp (2020) has partly ad-
dressed structural model’s errors to the transport equation of the eddy-viscosity in the
Spalart-Allmaras model (Spalart and Allmaras, 1992). For its relevance with separated
flows encountered in aeronautical applications, authors operated DA on 2D turbulent
backward-facing step flow under the framework of an adjoint optimization approach. In
other works (Duraisamy et al., 2015; Parish and Duraisamy, 2016; Singh and Duraisamy,
2016), data (either synthetic or experimental) were assimilated and turbulence model er-
rors were addressed in the turbulent energy production as it constitutes one common issue
for the prediction of a variety of flow configurations. In the work of Singh and Duraisamy
(2016), a particular attention has been given on two model structures: Spalart-Allmaras
and Wilcox k − ω (Wilcox, 1993) models. In their study, reconstruction of a number of
benchmark flow configurations, ranging from a one-dimensional channel flows to 2D air-
foil flows, were performed under the framework of both ensemble Kalman (Iglesias et al.,
2013) and variational (i.e. adjoint, or inversion as they refer to) approaches. Let us note
that in the spirit of the work in (Parish and Duraisamy, 2016), a possible goal is to extract
modeling informations from data that can be used as a guidance (or training informa-
tion) for deriving new closure terms. Machine learning techniques can be employed for
that purpose (Zhang et al., 2015). Interested reader can be referred to the following list
of paper reviews on this subject (Ferrero et al., 2019; Duraisamy et al., 2019; Bocquet
et al., 2019; Brunton et al., 2020).

Present work Despite the increasing interest to couple stationary RANS modeling with
data for flow analysis, let us note that all the above mentioned studies dealt mainly with
fundamental and industrial oriented 2D flows in which turbulence is often generated at
a unique integral scale. However, to the authors’ knowledge, for flow configurations in-
volving complex flow interactions as in the case of an atmospheric boundary layer around
a bluff-body, turbulence closure structure analysis using DA techniques are still largely
unexplored. The present work is thus a first attempt to investigate data-driven strate-
gies for the analysis of 3D complex flow configurations using only wall-pressure as data
input. Furthermore, beyond providing an efficient data-driven reconstruction technique,
the proposed adjoint methodology is investigated here as an in-depth analysis tool of the
turbulence closure.
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Chapter 2

FLOW CONFIGURATION: TURBULENCE
MODELLING AND NUMERICAL SETUP

2.1 Introduction

In wind engineering, as any industrial context, the choice of a turbulence model comes
from several years of expertise, obtained from a large number of tests and validations and
from a deep experience in mesh generation. Moreover, it is easy to produce non-physical
results, even with the best turbulence model. Hasty conclusions on the turbulence model
can be made, while the problem could actually comes from an inadequate mesh, such
as too coarse near the wall, or even from a specific way to initialise the computation.
Without entering into details, k−ε models are a class of turbulence models. The equation
on the turbulent kinetic energy k, trace of the Reynolds stress tensor, can be directly
obtained from the transport equations on the Reynolds stress tensor components, while
the equation on the dissipation rate ε is generally issued from modelling and requires a
closure. As a consequence, there exists plently of models based on these two quantities.
Among the several versions of k − ε and k − ω turbulence models which were tested in
wind engineering related subjects, it seems that the preferred turbulence models were the
realizable k− ε, RNG k− ε and sometimes k− ω SST turbulence models (Menter, 1994).
In particular, in studies on both low-rise buildings (Ozmen et al., 2016) or inquiring wind
pressure coefficients prediction on tall buildings (e.g. CAARC (Meng et al., 2018)), it was
suggested that the realizable k − ε turbulence model is sensitive to strong strain (high
streamline curvature), flow separation; also lower discrepancy to data were achieved in
the distribution of wind pressure coefficients, as compared to RNG and the standard k−ε
model. Besides, this choice joins the fact that the realizable k−ε closure possesses stronger
foundations since it is based on the transport equation of vorticity, on which additional
closure assumptions are performed.

As the realizable k − ε model relies on the assumption of high Reynolds regimes, it
requires a proper wall treatment since we have to enforce a no-slip condition.

In this chapter, both the experimental and physical models of the high-rise building
that we have considered in the thesis are introduced. In section 2.2, the experimental
set up is presented. In section 2.3, the governing equations used in the CFD are given.
In section 2.4, the numerical details of the direct RANS simulation are presented, in
accordance with the general recommendations of (Ferziger, 1990, 1993). Implementation
details can be found in section 2.5. Finally, in section 2.6, validation by grid refinement
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(a) (b)

Figure 2.1 – CSTB’s NSA wind tunnel facility; (a), 3D set up of the wind tunnel facility
at CSTB Nantes, (b), roughness elements disposal upstream the building model inside
the test section

and comparison with experiments are conducted.

2.2 Description of the wind tunnel experiment
Experiments were held in CSTB (Nantes, France) as a part of the thesis of Sheng et al.

(Sheng et al., 2018). Measurements were performed in a recirculating atmospheric wind
tunnel called NSA 1 with a test section of 20 m long, 4 m wide and 2 m high. A 3D view
is shown in figure 2.1a.

2.2.1 Generation of ABL profiles
The particularity of such wind tunnel facility lies in its fairly long test section. This

great length allows the arrangement of roughness elements of different sizes upstream
of the building model (see figure 2.1b). Indeed, these elements enables to reproduce the
various turbulence scales of the natural wind. The larger elements are placed on the
far upstream. They generates large coherent flow structures that maintain themselves
far downstream. Conversely, small elements, which are arranged closer to the building
model, create small eddies with a smaller spatial coherence. The goal is then to place all
these roughness elements over the entire length of the test section so as to generate a
relevant upstream turbulent flow representative of a realistic atmospheric boundary layer.
Thus, before proceeding to wind-load and PIV measurements, it is necessary to carry
out a characterisation without the model of the average velocity and turbulent intensity
gradient, in order to ensure that the desired wind profile 2 is established when the wind

1. The abbreviation comes from the french designation "Nouvelle Souffle Atmosphérique"
2. Experimental profiles have to comply with national and/or international standards, such as, in this

experiment, the ones provided in the Eurocode (EN, 2005).
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reaches the building model. By adapting both the size and position of the roughness
elements, this characterisation is carried out iteratively, using a so-called “fast” Pitot tube,
which allows a high acquisition frequency (owing a short pneumatic connection between
the pitot and pressure transducer) of the average velocity and of some information on the
turbulence. Note that profile measurements are taken at the center of the test section,
where the model will be positioned.

2.2.2 Metrology
The building case was modeled at scale 1/300th with a wall-mounted prism of square

cross-section with the dimensions: 10 cm× 10 cm× 49 cm which corresponds to a tower
of 147 m high at full scale. To perform measurements, two tower models were built: one
for wind loads measurements and the other for PIV measurements.

Wind-load measurements

The objective here is to be able to accurately measure the fluctuations of pressure
exerted by the wind on the tower facades.

Pressure taps The first model is equipped with 265 pressure taps. Their locations
are illustrated in figure 2.2a. Note that a common practice is to place the pressure taps
according to the areas of interest of the project in question and to the pressure field
analysis which was obtained by prior numerical simulations or empirical knowledge.

Pressure sensors All the pressure taps are then connected by vinyl tubes to syn-
chronous multi-channel pressure sensors. The length of these tubes (about 1m) is cali-
brated in order to maintain good dynamics of the pressure signal up to the sensor. The
pressure sensors are 32-channel piezoresistive differential pressure sensors. In this experi-
ments, 9 sensors were used.

Note that in addition to these local wind-load measurements, a global measurement of
the aerodynamic forces is conducted simultaneously using a high sensitivity force trans-
ducer (shown in figure 2.2a). Besides providing a global structural dynamic response, it
allows to check that the pressure taps distribution all over the building is sufficient by
ensuring that the pressure integration is consistent with the wind loads measured by the
force transducer.

PIV measurements

In order to understand the evolution of aerodynamic forces undergone by the building,
the topology of the flow is studied using Particle Image Velocimetry (PIV). The second
model was made of Plexiglas which allows for optical access and, thus, to use PIV. Seeded
particles, here olive oil micro-droplets, are then illuminated by a high power pulsed laser
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(a) (b) (c)

Figure 2.2 – Measurement configuration: (a), Pressure traps configuration; (b), Vertical
PIV planes; (c), Horizontal PIV planes at normalized 4 heights; z/Href = 1 (z/D =
3.33), z/Href = 0.75 (z/D = 2.5), z/Href = 0.38 (z/D = 1.26), z/Href = 0.19 (z/D =
0.63).

sheet. The images are acquired using a special camera. Its optical sensor is square and
highly resolved with a gray depth coded on 16 bits. Thus, being able to distinguish up to
65,000 shades of gray, this allows to have a very strong contrast in the images. Besides, the
camera also consists of a special CCD sensor that can capture quickly a pair of successive
images. The camera is finally mounted on a two-axis robot arm with 1m of travel on each
axis. This makes it possible to “scan” the building by making several images to cover
the whole flow. In his experiment, 9 vertical plans, of size 25cm × 25cm each, and 3 × 4
horizontal plans, 21cm× 21cm each, were combined (shown in figure 2.2, b and c). These
plans once combined allow to cover the near wake flow at the symmetry plan, and 4
horizontal transverse plans.

2.2.3 Measurement extrapolation to full scale

It is reminded that wind tunnel measurements are carried out on a scaled model for a
wind velocity lower than the full scale targeted speed requided by Eurocode regulations.
In order to extrapolate the measurements to the full scale, and for a wind time scale of
fifty years, it is necessary to define a geometric scale,

H? = Hfs

Hwt

,

and a velocity scale, computed at the reference height (generally 2/3 of the building’s
height and here Href = 100m), is defined as

U? = Ufs
Uwt

,
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where subscripts ()fs and ()wt refers, respectively, to the full scale and wind tunnel scale.
Given these two scales, it is then possible to define a time scale such that

t? = H?

U?
.

While the two formers are strongly constrained by the wind-tunnel geometry and fan
performances, the similarity argument leads to an acquisition time which ensures conver-
gence and then fixes an acquisition frequency that captures well the full scale dynamics.
To that end, it is generally recommended to reproduce a storm lasting more than 2 hours
to ensure the statistical convergence of the peak pressure measured on the facades.

In these experiments, the size of the model is chosen as a compromise, such that it is
large enough to allow access for pressure taps implantation, and small enough to reduce
blockage effects, constrained by H? = 300. Regarding the velocity, at reference height,
the full scale velocity is chosen 3 as Ufs = 24m/s. Thus, considering a wind velocity
in the wind tunnel of Uwt = 10m/s, the dimensionless velocity is U? = 2.4, and thus
the time scale is given as t? = 125. Therefore, with regard to pressure measurements,
a common acquisition time of 2 min allows to achieve the equivalent of 4 hours at full
scale, thus ensuring statistical convergence. In addition, it can be seen that, with an
acquisition frequency of 512 Hz, an equivalent full scale frequency of 4.0 Hz is reached,
which makes it possible to clearly capture events of 3 s bursts at full scale. For a given
direction, a pressure tap (say is located in a zone of strong tearing) provides a temporal
signal usually with very high pressure fluctuations with tearing peaks greater than three
times the mean value. In order to have a representative value of these peaks, the signal is
split into blocks of 10 minutes (at full scale), i.e. a period generally used in climatology
to establish an average wind speed. The maximum and minimum values of the pressure
are then recorded in each block. The peak value retained for the acquisition is then taken
equal to the average of the peaks recorded in each block of 10 min.

Moreover, regarding the PIV, a lower acquisition frequency of ' 7 Hz was fixed by
the camera acquisition rate. Therefore, for each PIV plan, 2500 pairs of images were
acquired during an acquisition time of 6 min As the acquisition frequency is very low
compared to the flow dynamics (at the scaled model), this enables an assumption of a
statistically un-correlated pair of measured fields. With this assumption, the average field
and its standard deviations provide the information on both the average speed and on
the turbulent intensity of the flow.

3. This corresponds to a wind speed of 16m/s measured at a height of 10m which is in the range of
reference speeds for most areas in France in the EN (2005)
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2.3 Definition of the physical model

2.3.1 A RANS model

The incompressible airflow surrounding the building can be fully described by its
velocity u and pressure p . This unsteady state, solution of the Navier-Stokes equations,
can be further decomposed in terms of its mean (U, P ), that will be resolved and a modeled
fluctuation (u′, p′). By applying time averaging to the Navier-Stokes equations, one can
obtain the partial differential equations (PDEs), called Reynolds averaged Navier-Stokes
(RANS), written here in conservative form, whose solution provides the mean wind flow :

∂(ρUjUi)
∂xj

= −∂P
∂xi

+ µ
∂

∂xj

[
∂Ui
∂xj

]
− ∂

∂xj

(
ρu′iu

′
j

)
, (2.1)

∂Uj
∂xj

= 0.

Due to the non-linear term, the averaging procedure leads to a second-order moment u′iu′j,
called the Reynolds stress. Since all the unsteadiness and turbulence effects of the wind
flow are contained in this term, without a priori specification of this term, the above
system is not closed and cannot be solved. The immediate solution for the closure is to
include additional transport equations to predict the turbulence second-order statistics.
Relying on the Boussinesq analogy between turbulent fluctuations and thermal motion,
Reynolds stresses are commonly modeled using a turbulent diffusion-like term, so-called
eddy viscosity model. Several models have been proposed to relate quantities describing
turbulent fluctuations.

A common practice associates the turbulent kinetic energy k, representing the isotropic
part of the exact Reynolds stress, with the turbulence length scale l. Due to their simple
structures, these models often require empirical closure functions or constants which are
established and determined from experimental knowledge, trying to ensure their widest
possible applications. For instance, the steady realizable k − ε turbulence model (Shih
et al., 1995), in which

ε ∼ k3/2
l

models the turbulence dissipation rate at the viscous scale, is often adopted for the ex-
pertise of wind flows around real-world buildings. In this model, the Reynolds stress is
linearly linked to the mean shear stress by an eddy viscosity as follows:

−ρuiuj = µt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
− 2

3δijρk, (2.2)

where µt stands for the isotropic eddy viscosity coefficient, i.e. assuming that length and
time scales of turbulence are smaller than those of the mean flow with no preferential
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direction. Its value is calculated using the relation

µt = Cµρ
k2

ε
.

The coefficient Cµ, following the work of Shih et al. (1995), is a non uniform coefficient
that depends on the mean strain-rate and ensures the realizability conditions, i.e. Schwartz
inequality and the non-negativity of the diagonal Reynolds stress. It is defined by

Cµ = 1
A0 + AsUs

k
ε

, (2.3)

with

Us =
√
SijSij + ΩijΩij

Sij = 1
2

(
∂Ui
∂xj

+ ∂Uj
∂xi

)

Ωij = 1
2

(
∂Ui
∂xj
− ∂Uj
∂xi

)

and

As =
√

6 cos(φ), φ = 1
3 arccos(

√
6W )

W = SijSjkSki
S

, S =
√

2SijSij,

where Sij and Ωij are, respectively, the mean strain (with its magnitude S) and rotation
rates. The parameter A0 is a closure tuning coefficient.

Substituting the Reynolds stress model (2.2) in the mean momentum equation (2.1)
yields to

∂(ρUjUi)
∂xj

= − ∂

∂xi

(
P + 2

3ρk
)

+ ∂

∂xj

[
µeff

(
∂Ui
∂xj

+ ∂Uj
∂xi

)]
, (2.4)

where µeff = (µt + µ) stands for an effective viscosity. It can be noted that the isotropic
component 2

3ρk of the Reynold stress is absorbed in a modified mean pressure and only
the anisotropic part plays an effective role in diffusing the momentum. It is worth noting
that anisotropy here arises only from the mean flow strain and does not depend on the
turbulent fluctuations. Moreover, in the computation of the pressure coefficient, required
for the observation error in the data assimilation (in chapter 3).

With regards to the turbulence closure model, the transport of mean turbulent kinetic
energy, k, is described by

∂ρUjk

∂xj
= ∂

∂xj

[(
µ+ µt

σk

)
∂k

∂xi

]
+ µt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
∂Ui
∂xj
− ρε, (2.5)
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where σk is a closure constant that enables the scalar mixing of k to be affected by other
mechanisms than eddy viscosity. The hypothesis, associated to the value σk = 1, in which
the eddy diffusion affects in the same way the momentum and the turbulent kinetic energy
k, is analysed in section 4.4.2.

The turbulent dissipation rate transport is described by the model proposed by Shih
et al. (1995)

∂ρUjε

∂xj
= ∂

∂xj

[(
µ+ µt

σε

)
∂ε

∂xi

]
+ C1(S, k, ε)Sε− C2

ε2

k +√µε, (2.6)

where
C1 = max (0.43, η/(5 + η))

and
η = Sk/ε

is the normalised strain rate. The constants σε and C2 are closure coefficients that need to
be calibrated. Assuming, that everywhere in the domain, the generation of ε is linked to its
inter-scale redistribution, as it is established in an inertial sublayer, leads to a relationship
between these coefficients (details in section 4.4.2). This closure hypothesis is analysed as
well in section 4.4.2. To properly close this set of equations, an asymptotic behaviour has
to be imposed near the wall, since the model can only be valid for high Reynolds regimes,
broken hypothesis in the viscous layer.

2.3.2 The wall law
On the wall boundaries of the computational domain, no-slip condition must be veri-

fied, i.e., the velocity vector must be equal to zero. The region where the velocity evolves
from zero to the free stream velocity, called boundary layer, is in practice extremely thin,
leading to strong shear. This is even more pronounced when the object scales are very
large compared to the eddy diffusive scale. To take into account the viscous shear near
the wall when simulating a turbulent flow, it is necessary to construct sufficiently fine
grids, which leads to substantial increase in the total number of nodes of the computa-
tional domain. In turbulent flows, and especially in wind engineering, such a direct full
resolution is most of the times out of reach of actual computational resources. Instead, the
semi-empirical method of wall functions enables the consideration of effects near the wall
on coarse grids, which relaxes the requirements in computing resources. The principle of
wall functions is to replace numerical schemes by new relations, coming from a physical
knowledge, linking variables and their derivatives in order to compute surface integrals,
i.e. the diffusive fluxes. This class of model is built in two parts. First for the mean flow,
wall laws link conservative quantities to wall gradients through the shear stress. In the
second part based on the knowledge of boundary layer flows, a simple boundary condi-
tion is introduced on the turbulence variables (Kalitzin et al., 2005; Mohammadi and
Puigt, 2006). In our case, an simple homogeneous Neumann condition is given on k and
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Chapter 2 – Flow configuration: Turbulence modelling and numerical setup

a Dirichlet condition is enforced on ε.
Historically, wall functions were first defined for smooth walls. Then roughness were

token into account as it introduces significant changes in energy and momentum transfers
between the wall and the flow compared with smooth walls For incompressible flows,
usually, to take rough elements into account, a new coefficient, that vanishes on smooth
boundaries is added, in order to modify the evaluation of the friction velocity involved
in the boundary integral. As an example, one can consider the sand grain theory by
Schlichting (1968), but such an approach issued from experiments cannot be extended
easily to any roughness element shapes since there is no perfect law to find the equivalent
sand-grain parameters in agreement with a general rough element shape. This is especially
true for ABL wind inflows where rough element are mainly a consequence of far enough
big objects, such as trees or small houses.

For large scale configurations (i.e., ABL, high-rise buildings), the first grid centre
closest to the wall usually falls at the high end of the logarithmic layer. The domain Ωc,
covered by the first grid cell closest to the wall centered on |c and with a boundary face
centered on |f (see figure 2.3), the following relations hold

U+|c = 1
κ
f(y+|c), (2.7)

∂k

∂xj
nj|f = ∂ε

∂xj
nj|f = 0, (2.8)

Pk|c = ε|c = u3
τ |c
κy|c

(2.9)

y+|c = ρuτ |cy|c
µ

, (2.10)

τwall|c = ρu2
τ |c = µeff

Uiti|c
y|c

, (2.11)

U+|c = Uiti|c
uτ |c

, (2.12)

where U+, y+ are the dimensionless wall unit tangential velocity component and distance
from wall, respectively, ni and ti = 1−ni are the normal and tangential projections of the
unit vectors onto the boundary face in the orthonormal frame (x, y, z). The log function f
is an empirical function parametrised by constants which depends on the wall type (such
as smooth or rough) and made consistent with the inlet wind profile; and κ = 0.41 is
the von Kármán constant. As viscous effects are neglected at the center of the first cell
where y+�O(1), the friction velocity uτ is scaled by the square root of the fluctuations,
following the empirical expression

uτ = C1/4
µ k1/2

with Cµ = 0.09. Let us note that (2.11) extends the constant shear stress to the wall as
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∂Ωw

Ωc
c

f

Figure 2.3 – First grid cell close to the wall.

we assume a linear behaviour inside the cell Ωc in the second order finite volume scheme
adopted in this work. In practice, this extension is of great importance as it enables the
enforcement of the logarithmic law with a good numerical stability.

2.3.3 A neutral atmospheric boundary model (ABL)
In early experiments by (Jensen, 1958), it was reported that in wind-tunnel testings

it is just as important to correctly model the wind as to correctly model the building.
Thus, setting down the basic conditions for simulating the atmospheric boundary layer
is of a great importance. In a later time, Richards and Hoxey (1993) recommended to
model the atmospheric surface layer as a horizontally-homogeneous turbulent boundary
layer (HHTBL), which consists in considering constant properties in the streamwise and
spanwise directions. Thus, only variations along the vertical axis are considered. For com-
putational studies, HHTBL velocity and turbulence statistics profiles were proposed, and
adapted to the standard k − ε turbulence model (Yang et al., 2009; Richards and Norris,
2011). Therefore, in steady incompressible two-dimensional atmospheric boundary layer
with the k − ε turbulence model, the existence of homogeneous flow has the following
implications:

— The vertical velocity is zero.
— The pressure is constant in the streamwise direction.
— The shear stress is constant across the flow (in the vertical direction).
— The turbulent kinetic energy and its dissipation rate satisfy an energy equilibrium.

To enforce the inlet wind flow, profiles for U , k and ε are defined as

Uin = uABLτ ln(z + z0)
κz0

, kin = (uABLτ )2√
Cµ

and εin = (uABLτ )3

κ(z + z0) , (2.13)

where Cµ = 0.09 is chosen as for a standard k− ε model and uABLτ is the friction velocity
associated with the constant shear stress along the ABL width

uABLτ = κUref

ln(Href+z0
z0

)

in which Uref and Href = 2
3H are, respectively, reference velocity and height chosen to
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Figure 2.4 – Profile of the neutral atmospheric boundary layer: (a), mean wind velocity;
(b), turbulent dissipation rate ε.

match with the experimental profiles, and thus the eurocode (EN, 2005) (see figure 2.4).
Let us note that these profiles are consistent with the wall treatment as we prescribe eddy
viscosity ground-value by (3.28), such that uτ = uABLτ . As for roughness height z0, it was
set to 0.02, which was chosen as an intermediate between class I and class II roughness
(EN, 2005).

2.4 Definition of the computational model
In this section, we present recommendations for a proper numerical setting for the

simulation of wind flow around buildings, in particularly isolated cases. Comprehensive
literature reviews on the use of CFD for these applications have been published. To list
some: (Franke et al., 2004; Blocken et al., 2007; Tominaga et al., 2008; Tamura et al.,
2008). Although full-scale building model can be realized in numerical simulation, it is
still essential to reduce workload via the reduction of grid number and the dimension of
the computational domains.

Domain size

To avoid the influence of the domain boundaries on the flow near the building and the
wall-pressure, a sufficiently large domain is required. In order to choose the size of the
entire computational domain, upon previously collected studies, the guidelines given by
(Franke et al., 2004; Meng et al., 2018) suggest the following:

— The inlet and the lateral sides should be around 5H away from the building, where
H is the building height,
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2.4. Definition of the computational model

— To prevent an artificial acceleration of the flow over the building, the top of the
computational domain should be also at least 5H away from this building.

— For the blockage ratio δb = Ab
A
, where Ab is the projected building’s area per-

pendicular to the wind direction and A is the area of the computational domain
perpendicular to the wind direction, the limit of 3% is recommended,

— The outflow boundary should be positioned at least 10H behind the building to
allow for inflow re-establishment downstream.

In this work, the dimension of computational domain is fixed as 18H × 12H × 6H
(length × width × height). Meanwhile, the upstream and downstream distances were set
as ∼ 6H and ∼ 12H, respectively, providing wind with sufficient space to fully develop.
The blockage ratio is 0.28 % less than the threshold of 3%.

Computational grid

When computing flows in wind engineering studies, it is often difficult to generate
a “good one”. In fact, the task of grid generation is also the most time-consuming task
compared with the computation (in the case of steady-flow computation). If not designed
correctly, the computational results may depend on the grid that is used to discretise the
domain. Therefore, the grid has to be designed in such a manner that it does not introduce
errors that are too large. This means that the resolution should be fine enough to capture
the important flow local features, e.g. shear layers due to separation and recirculation,
and the quality should be high.

The recommendations presented here are mainly based on up to date published results.
Grid stretching/compression should be small in regions of high gradients (to keep the
truncation error small), also expansion ratio (between two consecutive cells) should be
below 1.3 in these regions. Besides, as we are adopting the Finite Volume methods, another
criterion for grid quality is the angle between the normal vector of a cell face and the line
connecting the centroids of neighbouring cells. Ideally they should be parallel. With regard
to the shape of the computational cells, hexahedra are to be preferred over tetrahedra, as
the former are known to introduce smaller truncation errors and display better iterative
convergence (Hirsch et al., 2002; Franke et al., 2004). On walls, the grid lines should
be perpendicular to the wall. Yet, for the necessary resolution it is impossible to make
recommendations in advance as this is generally problem dependent. Since we employ
the logarithmic law of the wall, the position of the first computational node should be of
course placed in the logarithmic region, corresponding to a non-dimensional wall distance
of at least y+ = 30.

In this study, hexagonal structured grid was adopted to generate the background
empty fetch, after which local mesh refinement approach was employed to densify the
gird around the building model, as shown in figure 2.5. The minimum distance of grid
centroid to the ground was set to 0.006×H, approximate to one meter, while it reaches
down to 0.0008H for the centroid of the cell adjacent to the building walls. Grid number
reached approximately 3.5 millions cells in the computational domain. This grid is referred
to by case mesh in the figures legends for this chapter. As for the section 2.6.3 in which we
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Figure 2.5 – Generated grid

check the grid convergence, both grid number and grid size were adjusted for comparison.

2.5 Definition of the numerical methods
The open source library OpenFOAM (Jasak, 1996) was used to implement the CFD

and adjoint governing equations derived in the next chapter. The library utilizes a second
order finite volume discretization approach (Patankar, 1980; Versteeg and Malalasek-
era, 2007; Moukalled et al., 2016) and a fully implicit first order method for time inte-
gration. The variables are usually defined at the centers of each control volume (CV).
Moreover, the grid faces and there consecutive edges defining the CV’s are assumed to be
straight. A prediction-correction procedure is used for the pressure-velocity coupling using
the SIMPLE-type methods. As non-staggered grids are used, the “checkerboard effect” 4

present in the pressure is efficiently eliminated using the Rhie–Chow interpolation (Rhie
and Chow, 1983).

With regard to the discretization schemes, first, let us recall that in order to obtain
maximum accuracy of convective fluxes (when using linear interpolation), the line con-
necting two neighbour CV centers should pass through the center of the common face.
When the grid generator uses some kind of block-wise generation, such as the OpenFOAM
built-in utility used to generate the mesh in this study, such situations is not achievable.

With regards to the diffusive fluxes, the maximum accuracy is achieved when the line

4. The “checkerboard effect” is a numerical artefact where two subsets of values are alternatively
present in the adjacent cells distributed as in a checkerboard, leading to a very irregular solution even if
each of the subsets are smooth.
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2.5. Definition of the numerical methods

connecting the neighbour CV centers is orthogonal to the cell face and passes through the
cell-face center. This property constitutes a measure of the grid quality with the latter is
often referred to as skewness while the former as mesh non-orthogonality, whose angle is
expressed in degree.

The former measure is reduced by refining the grid as indicated in previous section,
which reduces the distance between the cells sharing the same face-center and the location
at which the straight line connecting the cells centroids. As for mesh non-orthogonality,
iterative correction was applied for the Poisson solver. Thus, for this study, we have priv-
ileged mesh quality over computational cost, as to avoid additional sources of parametric
errors and, also, to ensure computational stability. In fact, although OpenFOAM can be
a reliable solver; yet, it is quite sensitive to grid quality, especially with the discretized
RANS adjoint model.

Further, since wind around buildings are convection-dominated flows, the numerical
approximation of the advective terms is very important. With regards to recommenda-
tions performed in the literature, Franke et al. (2004) denotes that the use of first order
methods like the upwind scheme is highly discouraged, as it suffers from excessive numer-
ical diffusion. Let us note that under the framework of data-model coupling in this thesis,
it is shown that relaxing this requirement helps to provide a robust descent direction for
the optimisation process. However for a first validation and in chapters 4 and 5, a second
order scheme will be used and whenever numerical stability becomes an issue, we indicate
it and shift to the upwind scheme. Indeed, the use of a first order scheme can be here jus-
tified, as it will be seen in chapter 6 that the results of the optimisation will be generally
closer to the data than using the second order scheme.

Yet, the choice for an adequate second order scheme is much of a trial and check, as it is
case dependent, and far from being straightforward. While traditional central differencing
schemes does improve the accuracy, they generally generate non-physical oscillations,
and more so unboundness, when the solution contains steep gradients (e.g, high strain
rates at flow impingement) of the transported variable (Godunov, 1954; Tamamidis and
Assanis, 1993; Zhang et al., 2015). As a remedial, a scheme with the boundedness property
(although only guaranteed for one-dimensional cases) will be used herein. Basically, a flux-
limiter will be used which combines a high-order scheme (e.g. the second order central
difference) that acts in the smooth flow regions, with a low-order scheme near the sharp
gradients. Choosing the suitable flux limiting scheme gives the appropriate interpolation
between cell-centred value and it’s face-centred value. It is performed through an efficient
use of local informations on the gradients in order to limit the total variation of the
variable. This ensures the physical boundedness and monotonicity.

In the purpose of validation, some of the well-known total variation diminishing (abbre-
viated usually as TVD (Sweby, 1984)) and normalized variation diminishing (NVD)(Leonard,
1988; Jasak et al., 1999) flux-limiters have been used in the current chapter:

— the superBee flux-limiter (Roe, 1986)
— the Gamma flux-limiter (Grinstein and Fureby, 2005)
— the second order upwind (or linear-upwind) scheme (Warming and Beam, 1976)
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Let us note a "V" type of schemes for vector fields where the limiter is applied in the
direction of greatest change. It is used for the advection of the mean flow. It should be
noted that we are advocate of the latter scheme (i.e. linear-upwind) as it is shown to
be one of the most efficient and accurate scheme for Reynolds Averaged Navier Stokes
(RANS) simulations on bluff body flows (Robertson et al., 2015).

2.6 Validations

In order to ensure an accurate wind flow prediction, a validation of the CFD has to be
conducted. Recommendation on the practice for CFD uncertainty analysis can be found
in (Ferziger, 1993; Roache, 1997; Steffen et al., 1995; Peric, 1997; Ferziger et al., 2020).
In the data-assimilation framework, this step ensures that the numerical errors of the
initial solution are negligible, due to an adequate choice of grid refinement and convection
scheme. In other words, as any numerical solution contains errors, the aim here is to
quantify them, and thus to give some confidence that any remaining discrepancy are
conceptual, i.e. arising from turbulence modelling. Some acquirements for a first solution
verification can be summarized as follow,

— Verify the assumption of an established boundary layer corresponding to the HHTBL
hypothesis, by performing a simulation in an empty domain with the same grid
and boundary conditions.

— Judge iterative convergence of the solution by monitoring relevant values for the
considered problem (e.g. wall-pressure here) in addition to the residuals, which can
be done within a single calculation.

— Use local grid refinement in the regions of interest, such as shear layers, to check
for grid dependence of the results. This requires a minimum of two calculations on
different grids.

Let us note that discretization errors, also called order check, should be analyzed
by comparing solutions on a sequence of systematically refined grids (through the latter
acquirement). Systematic refinement is easy for uniformly sized grids and relatively small
domains. As we simulate with a relatively large domain and, at the same time we have
to fulfil the requirement for fine enough grid close to the wall (although the ideal range
30 < y+ < 100 is very hard to achieve), where non-uniform and variably refined grids (i.e.
up to 6 levels of refinement in the chosen case) are used, this task is not straightforward.
Instead, this check will be here performed through a two step process. At first, we run the
simulation on three different meshes, where a local refinement is performed in a region
of interest (i.e. near shear layers and wake), instead of an expensive uniform refinement.
Doing so, we both verify the truncation order and we verify that the solution reaches an
asymptotic range (Roache, 1994), i.e. the solution reaches a plateau as the mesh is refined.
Then, if the asymptotic range is reached, we proceed for point-wise and profile-distributed
comparisons.
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Figure 2.6 – A schematic of the empty domain.

2.6.1 ABL profile verification

Before performing the computation of the flow around the building, the conjunction
of the boundary conditions and the turbulence model (i.e. realizable k − ε) should be
capable of producing a homogeneous boundary layer flow (HHTBL) in the absence of the
object. As reported by (Hargreaves and Wright, 2007; Parente et al., 2011), this is an
issue in itself. These problems have been highlighted in (Walshe, 2003) in which decay of
the velocity profile with distance along the domain was identified. The authors postulate
that the errors were due to an observed peak in the turbulent kinetic energy close to the
ground. In this section, an empty domain is used to demonstrate that wind inlet boundary
conditions, provided in section 2.3.3, are maintained until the building position. This
check allows us to discard the hypothesis of unbalanced inflow conditions for explaining
discrepancies between CFD and experimental measurements. Let us note that in order
to ensure this sustainability, a proper modification to the wall boundary condition, as
introduced in section 2.3.2, is already implemented in the OpenFOAM library.

The domain used in the investigation is shown in figure 2.6, its size is identical to the
one including the building. Simulations were run until an acceptable level of convergence
has been achieved (∼ 10−8).

Figure 2.7 is a typical plot produced by computational wind engineers, when showing
that their simulation of the ABL is satisfactory. It shows profiles of streamwise wind
velocity, turbulent kinetic energy and the dissipation rate. Here it is also shown the eddy
viscosity profiles function of the previously mentioned variables. The profiles along the
symmetry plan y = 0 are up to a height ∼ 2H (H = 1.47Href ) and at the streamwise
positions x = −6H (inlet) and x = xb, where xb = −0.5D position where the building will
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be placed. Theses profiles are used to demonstrate any variation caused by the boundary
layer development. In the figure, a plot of the eddy viscosity replaces the commonly used
∂U
∂z
. This is to show that the turbulent viscosity is well represented.
At first sight, the profiles of the mean velocity are encouraging, with the profile being

greatly maintained. The turbulent dissipation rate and the eddy viscosity are also seen to
maintain themselves along the domain. However, when looking into the near-wall region
of the boundary layer, the initially constant value of turbulent kinetic energy does barely
maintain itself. The peak in kinetic energy is again clear, yet with a relative excess of less
than 8%. Although, the peak in turbulent kinetic energy near the ground may give cause
for concern, but it should be noted that it is present to some degree in reality (Hargreaves
and Wright, 2007). Moreover, as found by Walshe (2003); Hargreaves and Wright (2007)
this spike occurs in the second cell above the ground, this seems to be an intrinsic feature
of the k − ε model and in this regard the model deviates due to an overproduction of k.
Note that for the upper boundary of the domain (not shown here), some deviation on
the eddy viscosity were observed, yet, still far up from the building such that it does not
affect the results.

As an aside, the values of y+ of the size of the first cell are in slight excess (y+ ∼ 1500),
outside the range of 30 to 300 necessary for the consistent and accurate application of the
logarithmic law of the wall. Let us recall that this is computed with the well documented
sand-grain roughness effects (say Ks) and does not apply with the modeled wind profiles
since the roughness height z0 >> Ks would shift the layer further from the wall. It is
suggested that there may be a need for an alternative definition of y+ in the modelling
of the Boundary layer when rough walls are used for the ground, e.g. investigating a
relationship that relates z0 with Ks .

Nevertheless,in our case, when the building is added and more refinement were applied,
the y+ has dropped to ∼ 600, which can be considered acceptable here.

2.6.2 Iterative convergence

Because the RANS equations are non-linear and the dimensions are quite large, an
iterative marching method is used. The algorithm is composed by two iteration loops: the
inner iterations involve solving the tangent-linear system, with a SIMPLE algorithm to
determine the pressure, and the outer iterations for updating the non-linear term and the
model coefficients function of the flow state (such as µt). Requiring that the norm of the
residual (from solving the linear algebraic system at each inner iteration) falls three to
four orders of magnitude is usually a safe criterion. In this study a residual error under
10−5 was reached by all the variables and this is verified also for all the grids considered
for the validation. For conciseness, only the computed residual for the mesh case is shown
in figures 2.8.
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Figure 2.7 – Plots of the streamwise velocity, turbulent kinetic energy, dissipation rate
and the eddy viscosity for the wind profile by (Richards and Hoxey, 1993), up to a
non-dimensionalised height of 3Href and at distances of x = −6H (inlet) and x = xb
(xb = −0.5D).
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Figure 2.8 – Residual monitoring for the mesh case.

2.6.3 Grid convergence
In the complex case that we are considering, i.e. turbulence modeling and schemes

in which flux limiters are used, it is difficult to predict a priori the order of accuracy of
the discretized system. Roache (1997). Without an exact solution for the actual problem,
it is necessary to posses at least three grid solutions to extract the discretization order,
denoted Oobs. If the grid refinement is performed with a constant ratio r (say r = 2 for
doubling the coarse mesh), then a direct order evaluation can be obtained from the three
grid solutions,

Oobs =
log

(
f3−f2
f2−f1

)
log(r)

with subscripts 1, 2 and 3 denotes, respectively, the finest, the medium and the coars-
est grid. Further, assessing the accuracy of the computation requires that the grid is
sufficiently refined such that the solution is in the asymptotic range of convergence.

The methodology we are adopting here follows the work by (Roache, 1994) on uniform
grid refinement studies, where the basic idea, as quoted from his work is to “approximately
relate the results from any grid refinement test to the expected results from a grid dou-
bling using a second-order method. The GCI (grid dependency index) is based upon a grid
refinement error estimator derived from the theory of generalized Richardson Extrapola-
tion”. Roache (1994) suggests a grid convergence index GCI which enables reporting the
results of grid convergence studies and provides an interval of the order of the estimated
error. In this work, the GCI will be computed using the three levels of grid in order to
check that the solution is within the asymptotic range of convergence. Provided the ob-
served order of the method, i.e. Oobs, if an exact solution is known to a model problem,
we can estimate the error as E ∼ ChOobs with h is the grid size and ε is the relative
error between the estimated solution and the exact one (as h ∼ 0). Then the approximate
constancy of E, i.e. C = E

hOobs
, is a faithful verification of the order Oobs and an indication
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(a) (b) (c)

Figure 2.9 – Three mesh configurations for grid convergence; (a), mesh-1, (b), mesh-2,
(c), mesh-3.

that the asymptotic range is achieved.
In the practical case where the exact solution is not known, we calculate as an alterna-

tive, two GCI, from fine grid to intermediate grid GCI12 = ε12
rOobs−1 and from intermediate

grid to coarse grid GCI23 = ε23
rOobs−1 . Then the estimate constancy, defined as E ' GCI

3hOobs ,
leads to the verification that GCI23 ' rOobsGCI13, thus assessing that the asymptotic
range is achieved.

The grid cell sizes in the region of interest (e.g. −3H < x < 3H) is halved in each
direction. Three cases with different degrees of grid resolution, as mesh-1, mesh-2 and
mesh-3, were generated. Their number of grid points were 0.98, 1.39 and 4.54 millions,
respectively, for which refinement is illustrated in figure 2.9.

Note that we were not been able to afford another refinement level, as this halving leads
to a 23 increase in the number of cells, with a grid number above 20 millions. Yet, note
that the two finest grids are both fine enough so that monotone convergence is obtained
and thus we are in the conditions of the extrapolation theory of Richardson. Therefore
the grid convergence index (GCI) is valid to estimate when the grid-independent solution
is reached (Roache, 1994; Peric, 1997; Ferziger et al., 2020).

Mean pressure coefficients on several points on the surface of the modelled building
and in the bulk of the wake have been considered for order convergence verification and
to verify that the solution reached a grid-independence (or asymptomatic) range, as pre-
sented in table 2.1.

Although the slightly variability from one point to another, the observed order of
convergence Oobs is very close to the theoretical order O(2).

Based on theses observed orders, it is shown that grid uncertainty are overall gradually
decreased < 6% by halving the cells size (as GCI12 < GCI23) giving a mostly monotonic

45



Chapter 2 – Flow configuration: Turbulence modelling and numerical setup

Point Pt. location (x,y,z) GCI12(%) GCI23(%) GCI23 ' rOobsGCI12 ordre Oobs
1 (0 50 124) 1.43 7.50 1.02 2.35
2 (0 50 100) 1.91 8.14 1.02 2.05
3 (0 50 19) 1.15 4.77 1.012 2.03
4 (15 50 100) 3.38 10.50 1.02 1.60
5 (15 50 19) 0.54 3.67 1.01 2.73
6 (0 -15 124) 0.99 3.96 1.009 1.97
7 (0 15 124) 5.79 15.96 1.03 1.41
8 (0 15 100) 1.12 4.84 1.01 2.087
9 (0 15 19) - - - -
10 (0 -15 100) 1.30 4.46 1.01 1.75
11 (0 -15 19) - - -

Table 2.1 – Observed order of convergence, grid convergence indices and the asymptomatic
range of convergence for the three mesh cases. This quantities accounted for at the wall-
pressure at different points.

convergence as GCI23 ' rOobsGCI12 ∼ 1 (at most 2% error) for all points. A further
qualitative illustration of the grid convergence (by the three grids), in figure 2.10, shows
that the solution of the proposed mesh case lies appropriately within the asymptotic range
estimated by the three grid cases. Thus, the current 3.5 million point grids are clearly
sufficient to achieve monotonic convergence at least for the variable of interest Cp.

To further verify grid independence, wall-pressure profiles are compared to wind tunnel
data as illustrated in figure 2.11. Let us note a forth grid case was generated for the
data comparison which is based on the proposed mesh case with more refinement at the
vicinity of the building (it is referred to in the figures by “fine mesh” plotted with dotted
line). Globally, predicted wall-pressure coefficients of all cases have the same pattern as
those of the wind tunnel data. When grids tend to be sparse, the accuracy of numerical
results depends on the variable displayed on the building surfaces. Grid resolution implies
minor impacts on positive pressure coefficients (i.e. at the frontal façade), while negative
wind pressure coefficients witness significant variability (see the numerical results of the
coarsest mesh-1 case). However, as the grid number increases, influences of grid resolution
on the numerical wall-pressure decreases and all cases seems to collapse, as it is shown in
figure 2.11.

2.6.4 Scheme convergence

This section presents several advection test cases to evaluate the relative performance
of the proposed flux limiter schemes from section 2.5, that is superBee (TVD), Gamma
(TVD) and linear-upwind (NVD). In these tests, the accuracy is qualitatively illustrated
by the wall-pressure profiles (see figure 2.12) around the building façades and the mean
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(a) (b)

Figure 2.10 – Richardson extrapolation of the mean pressure coefficients at different
points, their locations are listed in table 2.1

Figure 2.11 – Effects of near-structure mesh refinement on the mean pressure coefficients
along the building facades.
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Figure 2.12 – Effects of convection scheme on the mean pressure coefficients along the
building facades.

streamwise velocity at two heights z/Href = 0.19 and z/Href = 1 along the downstream
flow at the symmetry plan (see figure 2.13). The results show that both Gamma and
linear-Upwind provide almost identical results. While with superBee limiter, results have
deviated slightly for the tearing wall-pressure near the leading edges and for predicting
the recirculation length. Although, these deviations can be judged significant between the
schemes, yet, it should be noted that the linear-upwind scheme has allowed reaching the
lowest iterative convergence and a robust descent.

2.7 Conclusion
The principle of RANS modelling was introduced in this chapter. By gathering a set

of recommendation from literature CFD studies, has allowed the definition of a proper
computational set-up; e.g avoiding blockage effects, boundary effects, which enables non-
biased comparison with the experimental data. The consistency between the wind profile,
of the modelled ABL, and the wall treatment for the ground was verified in an empty do-
main. This consistency was verified as the (downstream) homogeneity of the wind profiles
are seen persistent downstream with the absence of the disturbances, i.e. results from the
presence of the building. Moreover, a first solution verification (before the assimilation)
is conducted, that is grid convergence and the numerical scheme check. In the former,
the solution given by the chosen grid does fall in the asymptomatic range, by judging
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2.7. Conclusion

Figure 2.13 – Effects of convection scheme on the mean streamwise velocity along the
wake centreline; comparison with experimental data at all horizontal plans levels.

the wall-pressure to be the first variable of interest. Nevertheless, in comparison with the
data, the mean velocity at the wake centreline reaches also a grid convergent state. In
the latter, the ability of different flux limiter schemes namely, Gamma, superBee, linear-
upwind are assessed by evaluating the wall-pressure and the mean streamwise velocity.
The simulated results are compared with the wind tunnel experiments. The results have
shown that Gamma and linear-Upwind have lead to identical results, while superBee lim-
iter results has deviated slightly, e.g. for the tearing wall-pressure near the leading edges
and recirculation length. Over the three schemes, linear-upwind flux limiter is looking
promising for the development of the assimilation procedure, as it enables lower iterative
convergence of the RANS solver as compared to Gamma scheme. Therefore, this scheme
will be chosen for the next chapters, unless numerical stability is of an issue as will be
seen in chaptre 6.
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Chapter 3

METHOD DEVELOPMENT: A VARIATIONAL
DATA-ASSIMILATION PROCEDURE

3.1 Introduction
In this chapter, we present the variational data-model coupling framework. In varia-

tional data assimilation, the estimation problem is written as a constrained optimisation,
and its resolution is based on optimal control techniques. A particular attention is given
to the analytical derivation of the adjoint model of one of the most common turbulence
models, the realizable revision of k − ε, coupled with near wall closure.

3.2 Variational approach
A generic variational data-coupling problem can be formally described by the following

optimisation problem :

min
α

J (α,X(α),Yobs)

subject to Mi(α,X(α)) = 0 i = 1, . . . , N
(3.1)

where J () is the cost function that quantifies the misfit between observations and the
model, i.e. here measurements and CFD solution respectively, penalised by an a priori
statistical knowledge of these discrepancies in the form of a covariance matrix. Here we
refer to the flow measurements Yobs, and the predicted flow X. N stands for the number
of independent variables necessary for a full description of the flow. The minimisation
of this function is constrained by the set of flow governing equations Mi. Such problem
may be solved using a gradient-based algorithm. It consists in iteratively evaluating the
cost functional and its sensitivity derivatives in order to find the minimum by successive
updates of the control variables α. The sketch of the procedure is given in algorithm 1.

In order to properly define the cost function, one may proceed as follows. The only
available experimental inputs are wall-pressure measurements. Ideally, the discrepancy
between the experimental pressure measure and the model wall-pressure can be expressed
as ∆Pw = Pw

obs −H(Pw) where H(.) restricts the pressure at the measurement positions
(the subscript w stands for wall). However, due to measurement errors, this difference
must be weighted by their associated uncertainties. Having no access to the real pres-
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3.2. Variational approach

Algorithm 1 min
α
J (α,X(α),Yobs)

Initialisation: αm = αb and m=0
repeat
Solve M(Xm, αm) = 0
Compute sensitivity DJ

Dα (Xm, αm)
update α→ αm+1 ; m = m+ 1

until ‖Jm − Jm−1‖ < ε

sure values, these uncertainties have to be estimated. By assuming a normal distribution
around the measured value, this can be introduced by means of an empirical covariance
matrix. Concerning the projector H(.), in this work, we have considered interpolation by
a Gaussian kernel of half size D, i.e. the building diameter, from the computational grid
to the position of the measurements to ensure consistency between estimated observation
and pressure measurements. So far, it should be pointed out that under the assumption
of incompressible flow, the pressure solved numerically is only defined up to a constant.
Thus, the experimental and numerical pressures can best be collated by comparing their
respective pressure coefficient. Not that we have to subtract the isotropic part to obtain
the pressure coefficient for the CFD with Cw

p = P−P∞− 2
3ρk

1/2ρU2
ref

with P∞ denoting the reference
static pressure.

To ensure that the set of parameters α remains in a realistic set of values, we define
a physically likely range for each component αi. This can be formalised by a penalisation
term on the cost functional, leading to

J (P, α) = ||12ρU
2
ref∆Cw

p ||2R−1 + ||α− αb||2B−1 , (3.2)

where R is the covariance matrix defined from measurement’s uncertainties, B denotes
the covariance matrix associated to the parameter validity range, and Uref stands for the
reference velocity of the simulation, i.e Uinflow at Href . Without loss of generality, a diag-
onal measurement covariance with a constant standard deviation

√
Rii = 1 is used. This

uniformity represents an equal degree of confidence for each measurement, and the diag-
onal structure ensues from an assumption of spatially uncorrelated errors, which can be
assumed for sufficiently distant measurements. Matrix B corresponds to a prior knowl-
edge on the range of values of the parameters. In practice, it is worth noting that the
role of B matrix is twofold. In the one hand, it imposes a realistic interval in which the
parameters can be optimised; while, on the other hand, it ensures a consistent scaling
between inhomogeneous terms.
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Chapter 3 – Method development: a variational data-assimilation procedure

3.3 An adjoint RANS model

3.3.1 Differential equations: formal adjoint model
The optimisation problem (3.1) can be solved by augmenting the cost function with

the constraint, i.e. the RANS model. This is done through Lagrange multipliers also called
adjoint variables. The resulting unconstrained optimisation problem can be written in a
compact form as

L(X,X∗, α) = J (P, α) + 〈X∗,M(X, α)〉Ω, (3.3)
where 〈., .〉Ω stands for the spatial L2 inner-product in the flow domain Ω. The mean flow
state X is defined by the set (U, P, k, ε, µt). As for the adjoint state X∗, we define it as
(U∗, P ∗, k∗, ε∗, µ∗t ). The term U∗ stands for the adjoint velocity, P ∗ is the adjoint pressure
field, k∗ is the adjoint turbulent kinetic energy, ε∗ the adjoint kinetic dissipation rate and
µ∗t the adjoint eddy-viscosity.

Solving the optimisation problem implies to find the set of parameters, the state vector
and the adjoint state such that the derivatives of L with respect to all variables vanish. To
this end, based on the application of the Green-Gauss theorem and the use of integrations
by parts – see the Appendix7.2– the adjoint system reads as follows:

− ρ∂UjU
∗
i

∂xj
− ρUj

∂U∗j
∂xi
− ∂

∂xj

[
µeff

(
∂U∗i
∂xj

+
∂U∗j
∂xi

)]
+ ∂P ∗

∂xi
= DU∗,i (3.4)

∂U∗j
∂xj

= 0 (3.5)

− ∂ρUjk
∗

∂xj
− ∂

∂xi

[(
µ+ µt

σk

)
∂k∗

∂xj

]
− ρ2

3
∂Ui
∂xi

k∗ = Dk∗ (3.6)

− ∂ρUjε
∗

∂xj
− ∂

∂xi

[(
µ+ µt

σε

)
∂ε∗

∂xj

]
− ρ∂Pε

∂ε
ε∗ + ρ

∂sε
∂ε
ε∗ = Dε∗ (3.7)

∂Pk
∂µt

k∗ −
(
∂Ui
∂xj

+ ∂Uj
∂xi
−
)
∂U∗j
∂xi
− 1
σk

∂k

∂xi

∂k∗

∂xi
− 1
σε

∂ε

∂xi

∂ε∗

∂xi
= µ∗t . (3.8)

The right-hand sides are expressed as

DU∗,i = k
∂k∗

∂xi
+ ε

∂ε∗

∂xi
+ 2

3
∂kk∗

∂xi
− ∂Pε
∂Ui

ε∗ − ∂Pk
∂Ui

k∗ − ∂

∂xi

(
∂µt
∂Ui

µ∗t

)

Dk∗ = ρ
∂Pε
∂k

ε∗ − ρ∂sε
∂k

ε∗ − ∂µt
∂k

µ∗t

Dε∗ = −∂µt
∂ε

µ∗t ,

where Pk and Pε stand for the production terms of turbulent energy (second term in the
RHS of (2.5)) and for the turbulence dissipation rate (second term in the RHS of (2.6)),
respectively. As for sε, it denotes the modeled sink of turbulence dissipation rate (third
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3.3. An adjoint RANS model

term in the RHS of (2.6)). To solve this adjoint system, adjoint boundary conditions have
to be derived consistently with the boundary conditions of the direct problem. The next
section is dedicated to this crucial point.

3.3.2 Adjoint boundary conditions

The treatment of the adjoint boundary conditions is a central piece in adjoint methods
in order to obtain consistency in the gradient computation. In our case with the transport
equations of turbulent quantities, some treatments are not standard, particularly at the
adjoint wall law. Moreover, some specific treatments are performed at the discrete level of
the finite volume formulation. In this section, we propose to recall the general procedure
to obtain adjoint boundary conditions, and then to detail the conditions to enforce at
each boundary. Boundary conditions for the flow and adjoint fields are summarised in
figure 3.1. Let us note that the wall boundary condition on the pressure ∇nP = 0 is an
approximation that is commonly made in CFD by projecting the momentum equation
on the boundary and by neglecting the viscous terms. Thus, we propose to develop the
adjoint in a consistent way to this approximate model.

Un = Uinlet
k = kinlet
ε = εinlet
∇nP = 0

no slip
∇nP = 0
wall function

∇nU = 0
∇nk = 0
∇nε = 0
P = 0

symmetry

6H

12H6H
12H

H

U∗ = 0
k∗ = 0
ε∗ = 0
∇nP ∗ = 0

U∗ = 0
∇nP ∗ = 0
adjointwall function

U∗ = U∗outlet
k∗ = k∗outlet
ε∗ = ε∗outlet
P ∗ = P ∗outlet

symmetry

D
U∗n = − ∂J

∂P

(a) (b)

Figure 3.1 – Settings and boundary conditions of flow solution (a) and adjoint solution
(b).A revoir les polices qui se chevauchent.

Derivation of (3.3) leads, in addition to system (3.4)-(3.7), to a system of boundary
terms. Directional derivative with respect to P , leads to

[U∗i niδP ]δΩ = − ∂J
∂P

δP, (3.9)

where the boundary integral is defined as [·]∂Ω =
∫
∂Ω(·) d∂Ω. By deriving with respect to
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Chapter 3 – Method development: a variational data-assimilation procedure

Ui, we obtain

[P ∗δUini]δΩ −
[
ρ
(
(U∗i ni)(Uini) + UjU

∗
j ni

)
δUini

]
δΩ
−
[
µeff (U∗i ni + U∗j nj)

∂δUi
∂xj

]
δΩ

−
[
δUiµeff

(
∂U∗i ni
∂xj

ni +
∂U∗j nj

∂xi
ni

)]
δΩ

−
[
δUi

(
5
3ρkk

∗ni +
(
∂Pk
∂Uj

ni

)
k∗ + ρεε∗ni +

(
∂Pε
∂Uj

ni

)
ε∗ +

(
∂µt
∂Uj

ni

)
µ∗t

)]
δΩ
.

(3.10)

Derivative with respect to k, leads to

[
−2

3ρU
∗
i niδk

]
δΩ

+ [ρUinik∗δk]δΩ −
[(
µ+ µt

σk

)
k∗
∂δk

∂xj
nj

]
δΩ

+
∂

(
µ+ µt

σk

)
k∗

∂xj
njδk


δΩ

,

(3.11)
and with respect to ε to

[ρUiniε∗δε]δΩ −
[(
µ+ µt

σk

)
ε∗
∂δε

∂xj
nj

]
δΩ

+
∂

(
µ+ µt

σk

)
ε∗

∂xj
njδε


δΩ

. (3.12)

Finally by deriving with respect to µt, we obtain[
δµt

(
µ∗t −

(
∂Uj
∂xi

nj + ∂Ui
∂xj

nj

)
U∗i −

ρ

σk
k∗
∂k

∂xj
nj −

ρ

σε
ε∗
∂ε

∂xj
nj

)]
δΩ
. (3.13)

Then at each boarder, variations of the direct boundary conditions are injected in the
system (3.9)–(3.13), to obtain the corresponding adjoint boundary conditions.

Inlet: At the inlet, the direct boundary conditions lead to

δUiti = 0 ; δUini = 0 ; δk = 0 ; δε = 0. (3.14)

Substituting this in (3.9)–(3.12), the system reduces to

U∗i ti = 0 ; U∗i ni = 0 ; k∗ = 0 ; ε∗ = 0. (3.15)

This quite standard result at the continuous level is not straightforward to implement
in the finite volume formulation. No condition is imposed on P ∗ and the inlet boundary
condition for the adjoint pressure is left arbitrary. But, in accordance with (Zymaris et al.,
2010; Othmer, 2008) and identically as the numerical treatment of the direct inlet pressure
P , zero Neumann condition on P ∗ is imposed to ensure numerical stability. To obtain the
other boundary conditions, the same approach is employed.
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3.3. An adjoint RANS model

Outlet: At the outlet, the pressure value is prescribed while the other flow variables
have their normal gradient imposed, leading to

P ∗ni = (U∗i ni)(Uini) + (U∗j Uj)ni + µeff
∂(U∗j nj)
∂xi

ni + 5
3ρkk

∗ni + ρεε∗ni +
(
∂µt
∂Uj

nj

)
niµ

∗
t .

(3.16)
This provides a constraint on the boundary condition to determine the adjoint pressure
at the outlet. In equation (3.16), the adjoint pressure at the next iteration is determined
explicitly by evaluating U∗ at the previous iteration. Projecting then the fluxes on the
outlet tangent plane, we obtain:

µeff
∂(U∗j tj)
∂xi

ni + (U∗i ti)(Uini) = −
(
∂µt
∂Ui

ni

)
tiµ
∗
t −

(
∂Pk
∂Uj

nj

)
tik
∗ −

(
∂Pε
∂Uj

nj

)
tiε
∗. (3.17)

This equation provides a boundary condition for the tangential component of the adjoint
velocity.

It is worth noting that, instead, an alternative choice could be made by imposing
P ∗ = 0 and determining the adjoint velocity by solving equations (3.16) and (3.17).
Previous works, for a different turbulence model (Zymaris et al., 2010) or for frozen tur-
bulence assumption (Othmer, 2008), showed that both implementations yields to identical
sensitivities.

Derivation w.r.t. k, ε and µt leads, respectively, to

ρk∗Uini + ρDk
∂k∗

∂xi
ni = ∂µt

∂k
µ∗t , (3.18)

ρε∗Uini + ρDε
∂ε∗

∂xi
ni = ∂µt

∂ε
µ∗t , (3.19)(

∂Uj
∂xi

nj + ∂Ui
∂xj

nj

)
U∗i = µ∗t . (3.20)

Therefore, for known outlet direct and adjoint velocities, the adjoint eddy viscosity is
updated through equation (3.20). Then, conditions (3.18) and (3.19) can be imposed to
solve k∗ and ε∗ respectively.

Side and top: As for the side and top, free-stream boundaries under symmetry condi-
tion are applied. We assume a zero flux of all flow variables,

∂P

∂xi
ni = ∂(Ujtj)

∂xi
ni = ∂k

∂xi
ni = ∂ε

∂xi
ni = 0, (3.21)

and zero normal velocity,
Uini = 0. (3.22)
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We thus obtain the following boundary conditions for the adjoint variables:

U∗i ni = 0, ∂(U∗i ti)
∂xj

nj = 0, ∂k∗

∂xi
ni = 0, ∂ε∗

∂xi
ni = 0, µ∗t = 0. (3.23)

This shows that symmetric boundary conditions are conserved with the adjoint model.

Walls: The wall boundaries are split into two parts, namely ∂Ωtower for the part where
data are provided, i.e. the tower, and ∂Ωgr for the walls at the ground modelling the sur-
rounding environment, for which there is no data but roughness. Based on equation (3.9)
we have

U∗i ni = ∂J
∂P

at ∂Ωtower, (3.24)

U∗i ni = 0 at ∂Ωgr, (3.25)
U∗i ti = 0 at ∂Ωtower ∪ ∂Ωgr. (3.26)

Therefore exactly in the same way as for the inlet, the no-slip condition on the velocity,
associated with a zero Neumann condition on the mean pressure, implies a homogeneous
Dirichlet boundary condition for the adjoint velocity and a zero Neumann condition for
the adjoint pressure at the ground walls ∂Ωgr. Let us note that due to the wall-pressure
measurements, the Dirichlet condition on the adjoint variable U∗ is inhomogeneous on
the normal component along ∂Ωtower at the sensor positions.

Considering the adjoint turbulence variables (k∗, ε∗, µ∗t ), it is important to consider
the expression of the wall-law in order to derive their boundary conditions. From the
equality (2.11), the log law is imposed by re-evaluating the wall viscous fluxes through a
prescribed value of the eddy-viscosity. From the relations

U+ = 1
κ

ln(Ey+) at ∂Ωtower,

and
U+ = 1

κ
ln(y + z0

z0
) at ∂Ωgr,

the eddy viscosity is then defined such that

µt = µ

(
y+κ

ln(Ey+) − 1
)

at ∂Ωtower, (3.27)

µt = µ

 y+κ

ln(y+z0
z0

)
− 1

 at ∂Ωgr, (3.28)

where E = 9.8 is the roughness parameter for smooth walls (Versteeg and Malalasekera,
2007) and z0 = 0.02 m is the roughness length which is relevant for an ABL flow scale.
Recalling from figure 2.3 that |c and |f denote respectively the first cell centre and the
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3.3. An adjoint RANS model

boundary face values, on both walls µt|f is seen to be dependent on k|c solely. Furthermore,
by imposing the inertial balance (2.9) we observe that ε|c is an explicit function of k|c.
As a consequence, we conclude that the logarithmic wall-closure can actually be defined
uniquely through the knowledge of the turbulent kinetic energy value at the first cell-
center only. We propose thus to reconsider the derivation of these terms inside the domain
included in the cells adjacent to the wall. Replacing ε|c by its function of k|c (equation
(2.9)), we are led to consider a zero Neumann boundary condition, which is fully consistent
with the homogeneity assumption near the wall. This yields to the following modification
to the source terms at the wall adjacent cell

Dk∗ = ρ
∂Pε
∂k

ε∗ − ρ∂sε
∂k

ε∗ + ρ

(
∂Pk
∂k
|c −

∂ε

∂k
|c
)
k∗|c and Dε∗ = 0 in Ωc,

(3.29)
with Pε and sε, the dissipation production and sink terms, being modified accordingly. At
the continuous level, the third term in the RHS vanishes assuming turbulence homogene-
ity. However, at the discrete level, as discussed in section 2.3.1, it is kept for numerical
consistency.

Furthermore, as we impose a homogeneous Neumann boundary condition for k in
equation (2.8), it can be observed that this leads to the same set of conditions as in the
outlet (equations (3.18), (3.19) and (3.20)). Moreover, with the no slip condition and
the set of conditions for the adjoint velocity ((3.24), (3.25), (3.26)), the wall boundary
conditions for the adjoint dissipation rate and eddy viscosity reads as

∂ε∗

∂xi
ni = 0 at ∂Ωtower ∪ ∂Ωgr, (3.30)

µ∗t =
(
∂(Uini)
∂xj

nj + ∂(Ujnj)
∂xi

ni

)
U∗i ni at ∂Ωtower, (3.31)

µ∗t = 0 at ∂Ωgr. (3.32)

Concerning the boundary condition on k∗, we propose to consider (3.18) at |c while we
impose zero Neumann condition at |f . This leads to the following boundary condition for
k∗:

∂k∗

∂xj
nj|f = 0 at ∂Ωw (3.33)

and
k∗|c = ∂µt

∂k
|f
µ∗t |f
ρUini

in Ωc. (3.34)

for which ∂µt/∂k|f embeds the sensitivity of the direct wall law. It is determined by
differentiating equations 3.27 and 3.28 with respect to k at the first cell center.

Some numerical tests have shown that this alternative solution led to identical results
on the initial sensitivity field than the non-homogeneous Neumann boundary condition.
Hence, with this treatment, wall conditions for the adjoint system are now fully consistent
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with the initial RANS model and should leads us to a consistent minimisation procedure.

3.4 Conclusion
This chapter was dedicated to build a data assimilation methodology that can be

applied to any turbulence closure arbitrarily complex. Based on optimal control theory, a
differentiation, consistent with the realizable k − ε transport equations and the near-wall
law has been performed. Note that the construction of the adjoint flow equations shed
light on the role of the adjoint boundary conditions. This has resulted in the definition of a
continuous adjoint model, together with its consistent boundary conditions, of the tangent
linear operator of the RANS model. The adjoint boundary conditions at the wall induced
by the closure wall function has been derived. Moreover, specific treatments related to the
finite volume discretisation have been given. Given the adjoint dynamics, the sensitivity
of any parameter can be obtained from the optimality condition (7.5) without additional
costs.

Beyond providing an efficient data-driven reconstruction technique, in the thesis frame-
work, the proposed adjoint methodology will be also investigated as an in-depth analysis
tool of the turbulence closure. In chapter 4, some methodological settings are explored to
that end.
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Chapter 4

DATA-ASSIMILATION AS A DIAGNOSIS
TOOL FOR TURBULENCE CLOSURE

STRUCTURE

4.1 Introduction
In this chapter, we explore a methodological setting, based of the variational data

assimilation procedure derived in the previous chapter, for diagnosis of the turbulence
closure. After a first inspection of the adjoint state maps in their ability in providing
complete informations on the sensitivity fields, we will then use this methodology to
investigate the sensitivity fields of the global closure coefficients of the realizable k − ε
model (Shih et al., 1995) introduced in chapter 2. Their physical interpretation will then
enable us to point out limits on the applicability of such closure models for data-model
coupling purposes, and more particularly for wind flows around buildings. For a further
investigation, we consider optimising global constants parameters of the turbulence model
for reducing the observation error; and to relax/enforce constraints on these parameters
to test physical hypotheses. This framework will discuss limitations and improvements
in estimating wind loads and mean velocities surrounding the high-rise building after
applying the proposed data-model coupling technique.

4.2 Adjoint state as a basis for sensitivity analysis
While in general, adjoint variables are usually considered as a purely mathematical

object, they do have physical meaning which have been explored in several works (Hall and
Cacuci, 1983; Giles and Pierce, 2000; Gunzburger, 2003). Although we know that RANS
models with Boussinesq eddy viscosity hypothesis does not always allow an accurate
representation of complex flows, they nevertheless provide some usefull global insights
on the flow. With this in mind, the reconstructed adjoint state enables to highlight a
misrepresentation of the turbulent flow by the RANS model, hence, pointing where it
is possible to optimise the RANS model parameters to optimally reduce the difference
between the CFD state and a given experimental dataset. Moreover, from an optimisation
perspective, one may interpret them as a steepest descent direction of an objective cost
function, for a particular control parameter. For instance, the adjoint velocity can be seen
as the influence of an arbitrary forcing fu acting on the mean momentum equation. This

59



Chapter 4 – data-assimilation as a diagnosis tool for turbulence closure structure

can be shown when deriving an optimality condition by a perturbation of this force,

Mu(X, α) = fu → ∂J
∂fu

= U∗.

Momentum equation → Optimality condition.

Then, as we perform a first update of this forcing by a gradient-descent minimisation
algorithm, one obtain

f it1u = f it0u︸︷︷︸
=0

−λU∗,

while λ is a positive non-dimensional marching step factor. Through dimensional anal-
ysis, one may scale U∗, which has the dimension of an acceleration, as U∗ ∼ U2

ref
Href

. The
adjoint velocity features are thus immediately representing a missing term, that can be
interpreted as a correction of the Reynolds stress divergence. Examining the adjoint tur-
bulence variables of a k − ε model, namely k∗, ε∗ and µ∗t , similar interpretations can be
drawn as we consider arbitrary forcing such as

Mk(X, α) = fk → ∂J
∂fk

= k∗,

Mε(X, α) = fε → ∂J
∂fε

= ε∗,

Mµt(X, α) = fµt → ∂J
∂fµt

= µ∗t .

The adjoint variables shed some light on the flow regions that are sensitive to an eventual
correction of the turbulence model. As this will be shown in the case study of section 4.4,
this interpretation is very helpfull to analyze the incorporation of additional variables to
define efficient data-driven turbulence closure. These forcings can indeed be associated
to any of the modeled terms meant to adress a particular turbulence modelling error
(e.g. energy production, backscaterring, redistribution or dissipation). The sensitivity of
the associated parametric shapes and hyper-parameter can be efficiently obtained and
inspected through the adjoint operator.

4.3 Adjoint diagnosis on global closure coefficients
Given the adjoint dynamics, the sensitivity of any parameter can be obtained from the

optimality condition (7.5). Free constants of the RANS model can be finely tuned knowing
their sensitivities. We choose here these parameters to be constant over the domain of
the flow over the building. In this problem, the number of degrees of freedom which we
authorise ourselves to calibrate is quite small, and the solution will still be constrained to
follow a realizable k − ε model. We qualify this constraint as “model rigidity”. The risk
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4.3. Adjoint diagnosis on global closure coefficients

of this rigidity is to not be able to perform high reconstruction performances, however,
the goal in this chapter is to use the adjoint method for evaluating i) to what extend a
caibrated k − ε model is able to reconstruct the flow, ii) what are the sensitive model
parameters, iii) which physical hypotheses linking these constants are relevant to adopt.
In the next chapters, this rigidity will be relaxed.

4.3.1 A sensitivity field
Considering the vector α = (A0, C2, σk, σε) of closure parameters, the optimality con-

dition (7.5) is obtained by differentiating the Lagrangian (3.3) in the directions δα =
(δA0, δC2, δσk, δσε):

∂L
∂A0

δA0 =
〈
∂Mµt

∂A0
δA0, µ

∗
t

〉
Ω

= 〈−∂Cµ
∂A0

ρ
k2

ε
δA0, µ

∗
t 〉Ω = 〈−µtCµ, µ∗t , 〉Ω δA0

∂L
∂C2

δC2 =
〈

ε2

k +√µε, ε
∗
〉

Ω
δC2

∂L
∂σk

δσk =
〈
− ∂

∂xj

[
µt
σ2
k

∂k

∂xi

]
, k∗

〉
Ω
δσk

∂L
∂σε

δσε =
〈
− ∂

∂xj

[
µt
σ2
ε

∂ε

∂xi

]
, ε∗
〉

Ω
δσε.

(4.1)

So far, this does not include any explicit dependency of the cost on the set of parameters,
such as a penalisation term. It can be observed that the optimality conditions reduce
drastically the high dimensional dependency of the model to the lower dimensional pa-
rameter space. This reduction, performed via the inner product 〈., .〉Ω, does reflect the
global compromising character of the closure coefficients. This results in a rather rigid
situation when seeking data-model fitting. However, this rigidity can be understood as
a strong confidence in the model structure. This strongly constrains the solutions but
enables, on the other hand, to assimilate very sparse measurements. The examination
of the spatially varying adjoint variables to diagnose the parameter sensitivity provides
useful piece of information even though we deal with a rigid parametric model for the
reconstruction. This type of analysis will be exploited in our case study.

4.3.2 Penalty range
To ensure realistic numerical solutions, relevant physical range for each of the closure

coefficients is defined. These constraints are introduced via penalty terms on the con-
trol parameters through an error covariance matrix, in cost function (3.2). Values of the
parameters outside of a range defined by the standard deviation are hence strongly pe-
nalised. These standard deviations are in practice fixed from experiments on prototypical
configurations of boundary layer or decaying turbulence. This may become questionable
in regions where the fluid and building interact and near flow separations associated with

61



Chapter 4 – data-assimilation as a diagnosis tool for turbulence closure structure

strong shears. As a matter of fact, the assumptions underlying the concept of eddy viscos-
ity starts to be less reasonable in these regions (Pope, 2000). Thus, as a compromise, the
range limits are fixed from experiments as intervals ∆αi centered around the background
a priori value. The covariance matrix is finally expressed as follows

B−1
ii = ζi

(
|∂J0
∂α
|

∆αi

)
.

As mentioned earlier, this covariance has two roles: first, to impose the trusted (or rec-
ommended) ranges ∆αi and secondly, to ensure a dimensional homogeneity of the cost
function through the norm of the sensitivity derivative given at the first minimisation
iteration |∂J0

∂α
|. The importance of control variables with high values of sensitivity deriva-

tives is strengthen in the objective function in comparison to less sensitive parameters.
The parameters ζi are dimensionless free parameters allowing to give more or less global
a priori confidence on each parameter. In practice these parameters can be fixed from a
priori considerations.

4.4 Results

In this section, we validate the proposed data assimilation scheme for global turbulence
model parameters. An adjoint state analysis is conducted to obtain the sensitivities to
model control closure parameters. We assess the limits of global closure optimization
performances and exhibit the ability of the proposed method to enable turbulence closure
analysis.

4.4.1 Adjoint state analysis

The normalised adjoint fields (by their maximum in-plane values), shown in fig-
ures 4.1, 4.2 and 4.3, highlight the areas of interest in terms of turbulence modelling
on two horizontal plans (at normalised height z/Href = {0.19, 1}) and on the symmetry
plane (at y/D = 0). These areas correspond to regions, whose state is observable by the
sensors, and where the turbulence closure model fails to reproduce the physical behaviour
of the flow; this corresponds to the recirculation regions behind and at the top of the
building (as seen in the centered streamwise vertical plans on figure 4.3), the area of the
vortex shedding due to flow separation (seen in the horizontal plans on figure 4.1 and 4.2)
and the flow impingement region of the building. Based on these adjoint fields, the cost
functional’s sensitivity to any control parameter (be distributed or not) can be obtained
through its associated optimality condition.
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Figure 4.1 – Adjoint turbulence variables at horizontal plane with normalised height
z/Href = 0.19:(a), ε∗; (b), k∗; (c), µ∗t . Variables are normalised by their in-plane peak
values.

Figure 4.2 – Adjoint turbulence variables at horizontal plane with normalised height
z/Href = 1:(a), ε∗; (b), k∗; (c), µ∗t . Variables are normalised by their in-plane peak values.

Figure 4.3 – Adjoint turbulence variables at symmetry plane :(a), ε∗; (b), k∗; (c), µ∗t .
Variables are normalised by their in-plane peak values.
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∂J
∂A0

(×107) ∂J
∂σk

(×107) ∂J
∂σε

(×107) ∂J
∂C2

(×107)
AD 1.371 -2.756 0.712 -8.583
FD (δαi = 10−1) 2.39 -3.11 0.683 -6.699
FD (δαi = 10−2) 2.07 -3.76 0.77 -11.4
FD (δαi = 10−3) 2.05 -3.04 – -11.9

Table 4.1 – Sensitivity derivative values computed from the proposed adjoint model (AD)
and the finite difference (FD).

4.4.2 Results for the global coefficients
This section exhibits the adjoint approach’s capability to provide a complete infor-

mation on the cost sensitivity to the model’s global coefficients. First, we analyse the
sensitivity fields to highlight the spatial locations where a modification of these global co-
efficients could efficiently correct the model errors. Then, we discuss the results of a data
assimilation procedure. The data assimilation is performed to investigate some closure
hypotheses validity in the RANS modelling.

Sensitivity analysis

First, a validation test has to be performed to check the validity of the sensitivity
fields. In order to highlight the relevant informations, a specific innerproduct is employed
in the variational formulation by considering an integration over a volume of interest,
where the sensitivities are the most important. This volume of interest, Ωin, is centred
around the building and has a size of 2.5H×4H×1.5H. It is introduced in equation (3.3),
and used to compute the optimality condition through the following weighted sum

∂J
∂αi

∣∣∣∣∣
AD

=
〈
∂M
∂αi

,X∗
〉

Ωin
≡

nCells∑
j

(
∂M
∂αi

.X∗
)
ωj,

where ωj denotes the volume of the jth cell. The validation metric is chosen to be the
error between this weighted sum and the finite difference gradient computed by the cost
function variations resulting from a small variation of the global coefficients in the volume
of interest,

∂J
∂αi

∣∣∣∣∣
FD

= (J (αi + δαi)− J (αi))
δαi

.

The sensitivity (gradient) of J with respect to the four closure coefficients computed
using the proposed adjoint approach and the finite differences are given in table 4.1. The
comparison shows that the adjoint-based sensitivities are very close to the finite difference
values. A fair agreement is obtained for the sensitivity associated with the coefficients
involved in the redistribution of k and ε. However, deviations appear to be notably more
important for the eddy viscosity pre-factor A0. These deviations are typical of the error
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4.4. Results

Figure 4.4 – Closure coefficient sensitivities at horizontal plane with normalised height
z/Href = 0.19: (a), sensitivity to A0, (b), σk, σε (c), and, (d), C2 (d). Sensitivities are
normalised by their in-plane peak values.

levels associated to continuous adjoint methods. (Othmer, 2008; Zymaris et al., 2010).
This validates hence the procedure.

In order to explore the effect of the turbulence model’s global coefficients, their asso-
ciated sensitivity maps (plotted in figure 4.4, 4.5, and 4.6, and defined by the spatially
distributed operand inside the integral in the optimality condition (4.1)) are discussed.

We can see there is high interest in optimising these coefficients at the shear layers
resulting from flow separations at the leading lateral edges and on top of the building.
However, there is very little sensitivity in the bulk of the recirculation wake region. More-
over, with regards to the regularity of the sensitivity fields, ∂J

∂σk
and ∂J

∂σε
(Figures 4.4

and 4.5 (a) and (b)) have the largest local variations compared to the others. In fact,
this is explained by the high (second) order derivative associated with the diffusion of k
and ε, in the optimality conditions. Now, regarding the local signs and overall values of
each sensitivity field, we observe systematic change of sign over the domain. The L2 inner
product in (4.1) leads to an averaged compromise solution over the whole domain for the
global coefficient values. This compromise is likely to provide a far too weak amplitude
for these coefficients in key regions of the flow.

As shown in table 4.1, C2 is the most sensitive coefficient. Its large value suggests that
the coefficient is less subject to sign cancellations in the sensitivity maps. This is especially
observed in the horizontal map at lower elevations far enough from the high-end (plot at
z/Href = 0.19 where Href = 2/3H = 3.3D). This suggests that adjusting its value is a
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Figure 4.5 – Closure coefficient sensitivities at horizontal plane with normalised height
z/Href = 1: (a), sensitivity to A0, (b), σk, σε (c), and, (d), C2 (d). Sensitivities are
normalised by their in-plane peak values.

Figure 4.6 – Closure coefficient sensitivities on the symmetry plane with normalised: (a),
sensitivity to A0, (b), σk, σε (c), and, (d), C2 (d). Sensitivities are normalised by their
in-plane peak values.
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good compromise in between the wake flow features. Its global tendency, hence, seems to
give the closest represenstaion to the the spatially distributed trends. With regards the
other coefficients, their global sensitivity derivatives suggest, a decrease of both the eddy-
viscosity pre-factor A0, the turbulent energy diffusivity pre-factor 1/σk and an increase
of the diffusivity pre-factor 1/σε of the energy dissipation. This implies, in the one hand,
that the turbulence dissipation rate is under-predicted all over the domain and that a
better redistribution of the flow field can be obtained by increasing C2. Inversely, by
decreasing the eddy viscosity pre-factor A0 (which increases Cµ), this trend shows that
the original turbulence model tends globally to under-estimates the momentum mixing
and thus it globally advocates higher turbulent diffusion. By looking at local sensitivities
to this coefficients, these global directions are strongly driven by the high interest giving
to the lateral free-stream (surrounding lateral recirculating flow) entrained toward the
wake region. Thus, upon calibration, we may expect some preferential improvement of
the wake extension and, inversely, a retrogression in the extension of lateral separated
flow.

Closure hypothesis analysis through data assimilation

In this section, the optimisation problem is solved iteratively by following Algorithm 1,
and we discuss ability of the data assimilation procedure to estimate the flow state. Guided
by the work of Shih et al. (1995), we intend here to devise some penalty ranges for the
coefficients. Concerning the coefficients which are involved in the energy dissipation rate
budget, referring to the work (Shih et al., 1995), the C2 coefficient is actually expressed as
C2 = β/η, in which β = η+1 is the dissipation decay rate (such as ε/εt0 = (t/t0)−β where t0
is an initial time) and η is the energy decay exponent (such as k/kt0 = (t/t0)−η) that varies
from 1.08 to 1.3 in decaying homogeneous turbulence experiments (Shih et al., 1995).
Thus, a range for this coefficient can be set as C2 ∈ [1.76, 1.93], where the background
value is 1.9.
For σε, the inertial turbulence assumption near the wall allows to establish

σε = κ2

C2
√
Cµ − C1

(4.2)

were the von Kármán constant κ = 0, 41, the eddy viscosity coefficient Cµ = 0.09 and
C1 = 0.43. Assuming a quasi-linear dependency between the two constants (see figure 4.8),
knowing the range on C2, we obtain σε ∈ [1.14, 1.71]. To possibly relax the underlying
assumption of decaying turbulence for this range, two cases study will be considered for
this constant. In the first scenario, it will be assumed that relation (4.2) holds beyond the
inertial layer, as established by Shih et al. (1995). On the second scenario, this constraint
is relaxed and coefficient σε is assumed to be an independent control parameter. In that
case, the closure is thus performed by the data. The second case is expected to bring more
degree of freedom in the optimisation process, due to the independent adaptation of the
two coefficients.
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Scenario σk σε C2 A0
J−J0
J0

Default value 1.0 1.2 1.9 4.0
A 1.14 0.99 1.92 4.05 10.7%
B 1.0 0.74 1.96 4.08 15.7%
C 1.03 1.07 1.95 3.99 9.8%

Table 4.2 – Summary of the optimisation results, closure coefficients and the relative
decrease of cost function.

In the transport equation of k, the coefficient σk, which adjusts the level of turbulent
energy mixing with respect to the momentum eddy diffusivity, is commonly fixed to unity
(as in any k − ε turbulent model). This generally assumes a quasi-equality between the
scalar and the momentum mixing. Due to the lack of comparative studies in the literature
between the realizable model results and experiments, estimating a physical range for this
coefficient is not possible. Therefore, we considered two optimisation procedures where in
the first one we maintain σk = 1 while in the other case we relax this constraint letting
σk evolves in the reasonably chosen range: σk ∈ [0.9, 1.1]. Similarly, for the bounds on
A0, without any a priori informations on its physical range, we fixed a larger range of
possible value: A0 ∈ [3.6, 4.4], where the background usual value is 4.0.

Based on the remarks of the previous section, the results of three data-assimilation
scenarios are discussed and compared. A first straightforward approach corresponds to the
optimisation of the four coefficients independently. This is referred to as scenarioA. Then,
two scenarios are considered to investigate the two closure assumptions mentioned in the
previous section. First, we consider the equality between the mixing of turbulent kinetic
energy and momentum, referred as scenario B. Secondly, keeping σk a free parameter,
the scenario C consists in enforcing the inertial constraint and defining σε using (4.2).
Three criteria are considered to evaluate the agreement between the CFD results and
the measurements. The first is the relative reduction of cost function J−J0

J0
, J0 being the

initial cost. This depicts the improvement of the global effect of wind on the building.
Next, Cp, the dimensionless pressure, is compared locally on the facades of the building.
Third, to quantify the accuracy of the recovered mean flow field, the streamwise length
of the recirculation region behind the building is compared to the one observed from the
PIV plans.
Regarding the update of the coefficients, a steepest descent algorithm is used with an
adaptive step. A maximum step size is set to 10−2 while a minimum step size inferior to
10−4 is considered as an optimisation convergence criteria. The confidence coefficients are
all set to ζi = 5× 10−2. This low uniform values represent a relative degree of confidence
on the background closure values. The variations of the closure coefficients along the
optimisation iterations are shown in figure 4.7. The maximum reduction of the cost and the
optimal coefficients values for the three considered scenarios are summarised in table 4.2.
In terms of mismatch between CFD and experimental mean pressure, it is shown that
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Figure 4.7 – Cost function reduction, (a), and closure coefficient variations: (b), scenario
A; (c), scenario B; (d), scenario C.
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Figure 4.8 – σε variations with respect to C2 for all scenarios.

the highest reduction can be achieved through the optimisation scenario B. Conversely,
scenario C leads to the least improvement in the cost function. However, we note a faster
convergence rate for C, for which the optimal solution is reached 10 times faster than
for B. Furthermore, a shift between the two regimes can be noticed in scenarios A and
B. Indeed, this shifting occurs when the penalisation on the variation of C2 becomes of
the same order of magnitude than the required advancement for the cost minimisation.
Whereas in B, σk is not optimised and the trend on C2 until convergence is mainly
dominated by its penalisation. In all scenarios, the optimal value of C2 increases while it
stays within 5% of the background value. Considering A0, a minor variation is observed
during optimisation in all scenarios. On the contrary, a higher variation of σε below the
recommended range is necessary to reduce the cost function. In figure 4.8, we show the
variation of σε with respect to C2. In scenario C, a quasi-linear dependency is established
through relation (4.2). However, we retrieve the two regimes in B and A where this
dependency is broken.
In general, it can be concluded that a better agreement between the turbulence model
(e.g realizable k−ε) and wind tunnel experiments, in terms of wind load on the facades of
high-rise buildings, can be achieved through optimisation of the closure coefficients. Even
if it offers less degrees of freedom in the optimisation, better results are obtained when
enforcing the constraint that equals turbulence mixing in the equation of transport of k to
momentum mixing by the eddy viscosity (scenario B). This suggests that it is a physically
valid hypothesis in our case study. It helps structuring the data assimilation process
and leads to a robust procedure. It states that the turbulent mixing of the momentum
and kinetic energy are of same nature. At the opposite, by relaxing the constraint and
establishing relation (4.2) as valid out of the inertial layer (scenario C) may lead to lower
agreement with measurements. Indeed, this assumption may hold reasonably in flows
where turbulence behaviour is isotropic. However, in the presence of bluff body, e.g flows
with separation and recirculation dynamics, this assumption is undoubtedly unrealistic.
Scenario B might be considered as the best optimisation choice to get better wind load
representation on high-rise building given the considered turbulence closure (i.e. realizable
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Figure 4.9 – Comparison of pressure coefficient profiles between CFD (scenario B) and
experimental results along building facades. Contours are token at building symmetry
plan, (a) and three horizontal plans at z/Href = 1 , (b), z/Href = 0.27, (c) and z/Href =
0.19, (d), respectively.

k−ε). Following the best optimisation scenario, 15% gain on the overall predicted loads are
obtained. Furthermore, a comparison of the predicted pressure coefficient at the building
facades (see figure 4.9) this gain is associated to the slight improvement observed especially
along the side facades.

Nearly no change at the windward facade and along the upfront corners is observed. As
a matter of fact, this observations confirms what was earlier mentioned in the sensitivity
analysis where the rigidity of the considered turbulence model is shown to play a major
role on the degree of improvement that can be achieved to fit with measurements.

With regard to the mean flow reconstruction, adopting the best optimisation scenario
(scenario B), the contours of the mean velocity field are compared with the available PIV
plans reported from the work of Sheng et al. (2018). It is a strong validation since these
mesurements are not used in the data assimilation. Figures 4.10, 4.11 and 4.12 show the
normalised streamwise velocity at the streamwise central plane (top) and at two horizontal
plans, i.e. z/Href = 0.19 and z/Href = 1. The CFD with background values and optimised
values following B are compared with the PIV measurements.

In order to show the effect of data assimilation, velocity contours are superimposed
(right column) and thicker lines are plotted to track the size of the recirculation region.
The reattachment length on the ground, is reported in table 4.3. After optimisation,
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Figure 4.10 – Comparison of mean stream-wise contour between CFD (scenario B) and
Re. Sheng (PIV) experiments at horizontal plane with normalised height z

Href
= 0.19.

Figure 4.11 – Comparison of mean stream-wise contour between CFD (scenario B) and
Re. Sheng (PIV) experiments at horizontal plane with normalised height z

Href
= 1.

Figure 4.12 – Comparison of mean stream-wise contour between CFD (scenario B) and
Re. Sheng (PIV) experiments at symmetry plane with normalised height z

Href
= 1.

Exp realizable k − ε optimised
Y f (m) ∼ 50 139.8 117.1
Y r(m) - 13.6 11.7

Table 4.3 – Comparison of the (dimensional) reattachment lengths on the roof and floor,
CFD optimised with global constant calibration (scenario B).
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velocity contours show a better estimation of the recirculation region length which is
shorter compared to the non-optimised model. This improvement is more affirmed near
the ground, where the relative error of reattachment length Y with respect to PIV, εY =
∇Y0
∇Yend

, with the default (Y0) and the optimised (Yend), is reduced by 25%. Despite this
enhancement, it should be pointed out that CFD model still under-predicts the flow
in the wake region. This is the best improvement of this specific turbulence model we
obtained by assimilating the pressure measurements. The two limiting ingredients are
the model rigidity and the partial sparse observations (pressure at the boundary) of the
complex flow. We will show in the next chapters that the former is the most limiting.

4.5 Conclusions
Given the dual description of the dynamics composed of the RANS direct model (see

chapter 2) and the adjoint of its tangent linear representation (see chapter 3) , we have
explored a methodological setting that provides an efficient sensitivity analysis and an in-
depth diagnosis of the turbulence closure adopted on such flows. At first we inspected the
adjoint state variables in relation with their physical meaning. Then, a further study was
dedicated to provide a better understanding of the model output variabilities in terms of
the global constants associated with the model closure. These settings have been applied
to the high-rise building case study.

Sensitivity maps of the k−ε global coefficients had revealed high interest in optimising
them mainly at the shear layers resulting from flow separations at the leading lateral edges
and on top of the building. Moreover, little sensitivity in the bulk of the recirculation wake
region has been observed. Despite all the spatial variability of the sensitivity fields, it was
shown that the optimality condition drastically reduces the high dimensional dependency
of the model to each coefficient.

Regarding the model hypotheses which guided the choice for the non-calibrated values,
a better data coupling is obtained by enforcing the constraint that equates turbulence
energy mixing to momentum mixing, event though its initial sensitivity suggest globally
a thinner turbulent mixing layer and offers fewer degrees of freedom in the optimisation.
This suggests that it is a physically valid hypothesis that structures the model and then
helps for convergence. Conversely, by relaxing this constraint and establishing the relation
(4.2), which dictates a strong bound limiting the production of energy dissipation rate
to its redistribution (supposedly valid in the inertial layer near the wall), this leads to
lower agreement with experiments. As both assumptions constitute a common practice for
closure to most eddy viscosity models, it is expected that these results extend to several
other models of similar forms. The limited performance of the DA procedure, achieved
when controlling global turbulence parameters, points out the rigidity of the considered
turbulence model when used with realistic wall pressure measurements. We remind that,
with the proposed DA coupling methodology, one can investigate any model sensitive
parameters of an arbitrary size with no additional computational costs. Finally, since
the methodology was applied on an isolated buildings, it can be applied nearly with no
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changes (but larger computational resources) for urban dense areas.
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Chapter 5

DATA-ASSIMILATION FOR SPATIALLY
DISTRIBUTED CORRECTIONS OF

DEFORMATION

5.1 Introduction

As it was observed in chapter 4 and reported by many authors (Kato and Obayashi,
2013; Edeling et al., 2014), data-assimilation techniques (for instance variational) are
able to provide insights on the model variability through calibration of model closure
coefficients. However, due to the rigidity of the model, variabilities of the solution are
strongly constrained and does not allow the flow to reach enough states for accurate
estimations. To overcome such restrictions, one may approach the problem considering a
weak constraint as it is called in the data assimilation community, by defining an additive
forcing term as an additional control parameter in order to allow the solution to deviate
from the default model constraints.

This chapter is organized as follows. First (section 5.2), we present the modified set of
RANS equations. Then, on section 5.3, we introduce the changes to be made to the adjoint
models and, hence, on the optimality conditions. With the strongly partial observations
and the consideration of spatially distributed control parameters, the control parameter
can be any function in L2(Ω), which includes highly irregular functions, needs to be
smoothed to penalize the emergence of local minima and irregular solutions. To that
purpose, we propose the examination of two regularization approaches. In section 5.4,
after an initial sensitivity analysis, we present the data-assimilation results by comparing
reconstructed flows obtained with both regularization techniques. Since, forcing here is not
affixed with the specified turbulence model, we hence investigates the effects of assumption
of constant eddy viscosity (CEV), which enables a major simplification to the adjoint
model and its boundary conditions. To asses the importance for the coupled terms in the
adjoint model derivation, reconstructed flow using CEV is then confronted to those from
an exact continuous adjoint derivation. Finally, we consider a simple structuration of the
forcing so as to provide some physical constraints to the reconstructed flow features.
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5.2 Equations of motions

By examining the structure of the RANS modeling, we can address the choice of the
control parameters as a correction of the deformation field. Indeed, an exact modeling
of the deformation should properly include the mechanisms of energy transfer between
the mean field towards the turbulence and vice versa. However, under the unidirectional
energy transfer hypothesis (by Boussinesq analogy), these interactions are often modeled
by a classical diffusion process. From this point of view, an optimization parameter to
be proposed would then be a volume force bringing the direct adjustment to the wind
field. In theory, such a force corresponds to a relaxation of the Boussinesq hypothesis and
should embed the missing transport mechanisms of the mean field by turbulence. This
corrected model of deformation with the new forcing fui term reads:

∂(ρUjUi)
∂xj

= −∂P
∂xi

+ µ
∂

∂xj

[
∂Ui
∂xj

]
− ∂

∂xj

(
ρu′iu

′
j

)
− fui . (5.1)

In the line of the work done by (Foures et al., 2014; Symon et al., 2017; Franceschini and
Sipp, 2020), we consider the calibration of a vector force which, we refer to as a “raw
form”.

Let us note that, in attempt to provide an alternative force which mimics the one
induced by a shear stress, another form fu = ∇ · (f + fT ), in which f is a tensor field,
has been also experimented. Through this form, we seek eventually to account for the
missing components of the modelled shear stress. However, this choice leads in practice
to strong difficulties. First, it is noteworthy to mention that the tensor form is a field of
larger dimension (six degree of freedom) than the raw form (three degrees of freedom).
Boundary conditions need to be specified to deal with all the stress components in the DA
procedure. Besides, upon deriving an optimality condition, the sensitivity field is defined
as ∇(U∗) +∇T (U∗) . Such a sensitivity field appears to be irregular with very localized
peaks next to the building walls, thus, making the numerical procedure unstable.

5.3 Optimality conditions

Being independent of the flow state variables, this additive force does not involve any
modification on the derivation of the adjoint model and nor on its boundary conditions.
Moreover, by definition, the sensitivity of the Lagrangian compared to a disturbance of
an arbitrary force δfui is defined by

〈 ∂L
∂fui

, δfui〉Ω = 〈 ∂J
∂fui

, δfui〉Ω + 〈∂Mui

∂fui
δfui , U

∗
i 〉Ω. (5.2)

with the compact notation Mui standing for the component i of equation (5.1). In its
generic form, an optimality condition is presented as
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∂L
∂fui

= 〈 ∂J
∂fui

, δfui〉+ U∗i . (5.3)

With the strongly partial observations and the consideration of spatially distributed con-
trol parameters, the risks of obtaining local minima or unphysical irregular flow recon-
structions is strong. The control parameter can be any function (possibly irregular) of
L2(Ω). Regularisation is a way to mitigate the risk in smoothing the solution. In or-
der to achieve this, two different solutions can be proposed: a regularisation by penalty
(section 5.3.1) and by use of Sobolev gradient (section 5.3.2).

5.3.1 Regularisation through penality

For that purpose, penalty of spatial gradients of the control parameter is often con-
sidered (Franceschini and Sipp, 2020). This type of additional term enables to efficiently
smooth the irregularities of the solution. As it is classically done, we consider here L2-
norm penalisation of the gradient of the parameter field. In its integral form, the penalized
cost function reads now as follow

J1(P, fu) = 1
2 ||ρU

2
ref∆Cw

p ||2R−1 +
∫

Ω
|∇fu|2B−1dv

Where B is a confidence matrix to be estimated. Its role is to ensure both homogeneity
(in addition to scaling) and to adjust the degree of regularity to be prescribed. The scaling
parameter should not be taken too small, such that it becomes inefficient, and not too
large, so that it enforces too smooth solution in which all the spatial variabilities are
rubbed out.. This trade-off is often performed by L-curve method (Hansen, 1992). In this
specification, the first term of the right hand side of (5.2) is differentiated and yields to

〈∂J
∂fu

, δfu〉Ω = 〈−∇ · (B−1∇fu), δfu〉Ω. (5.4)

We note that boundary integral resulting from the integration by part cancels as we let
fu vanish at all boundary parts. Thus, an optimality condition (5.3) which writes as

∂L
∂fui

= −∇ · (B−1∇fu) + U∗i . (5.5)

does involve an evaluation of a Laplacian operator applied on the current parameter field.
Indeed, assuming a spatial homogeneity for this constraint, the confidence matrix B can
be considered as diagonal and uniform and its inverse is straightforwardly expressed as

B−1
ii = ζi

(
max |U∗,0|

)
.
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in which ζi is a positive free parameter and subscript i stands for the vector’s (and
matrix’s) component, .,0 mark the initial adjoint field (before the first update of the
parameter). It should be noted that, by considering B as constant and diagonal, embeds
only uniform diffusive effects. Note that one may consider covariances (or correlations)
between forces in neighbour cells and hence construct a multi-band matrix. This choice
might be investigated in future works and might be usefull to express space dependent
preferential directions of diffusion. Let us recall that for 〈a, a〉B−1 to be a norm, this matrix
must be symmetric and positive definite.

So far, sensitivity as computed by (5.5) can effectively ensure regularity of the pa-
rameter field. However, the magnitude for ζi have to be determined,this constitutes a
difficult question in itself. Most of the times, those parameters are empirically selected by
successive trials to get an a priori trade-off between performance and regularity.

5.3.2 Regularisation through Sobolev gradient

In the following, we consider an alternative Sobolev gradient regularisation (Protas
et al., 2004; Tissot et al., 2020). It consists in searching the control parameter in the
Sobolev space H1(Ω). This space includes more regular functions than L2(Ω), by consid-
ering an innerproduct with a regularity constraint on the function first derivatives.. With
this approach, the functional is defined in its basic form as

J (P ) = 1
2 ||ρU

2
ref∆Cw

p ||2R−1 .

Hence, the optimality condition (5.3) bolls down to

∂L
∂fui

= U∗i .

Furthermore, with this condition and for an arbitrary functions ψ and φ in H1(Ω), the
Sobolev gradient is defined such that

〈 ∂L
∂fui

, ψ〉 = 〈 ∂L
∂fui

H1

, ψ〉H1 , (5.6)

with the scalar product definition

〈φ, ψ〉H1 =
∫

Ω
φψ + l2sob(∇φ�∇ψ)dΩ, (5.7)

in which l2sob is a free parameter. We recall that 〈·, ·〉 stands for the standard L2 inner
product. Through integration by part of the second term in 5.7 (involving the function
gradients), the equality (5.6) yields to the new optimality condition expressed as
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∂L
∂fui

H1

=
(

1
1 + l2sob

(I− l2sob∆)
)−1

∂L
∂fui

, (5.8)

and in which ∆ stands for the Laplacian differential operator. Equation (5.8) corresponds
to the filtering of the sensitivity. Hence, under this approach, it turns out that a regular-
ized sensitivity field arises as a solution of a simple Helmoltz equation. Now, since high
dimensional matrix inversion is not an option in such large system, the Poisson equation
(5.8) is solved through an iterative technique. Regarding its discretization, the same finite
volume scheme can be adopted as for the direct RANS equations. Here, it is noteworthy
to mention that this type of regularization offers two main advantages in comparison with
the conventional penalisation approach. In the one hand, as opposed to the penalization
approach which requires an estimate of a non-dimensional confidence factor (for instance ζ
as with global coefficients) with no physical significance, the free parameter involved with
the use of Sobolev gradient is indeed a physical quantity. Through dimensional analysis of
(5.8), lsob has the dimensions of a length. In fact, this parameter can be seen as a filtering
length scale below which sensitivity field is smoothed. Thus, providing a characteristic
length scale relevant to a given flow region (e.g. the building width), the parameter can
be straightforwardly defined as a function of this length. In the other hand, the Sobolev
gradient does ensure a descent direction. Indeed, applying a Taylor expansion of the cost
function around an initial guess fui in the direction δfui = − ∂L

∂fui

H1
can be expressed as

follows
J (fui + hδfui) = J (fui) + h〈 ∂L

∂fui
, δfui〉+O(h2)

Substituting the second term in the RHS by using the equality (5.6) yields to

J (fui + hδfui) = J (fui)− h
∥∥∥∥∥∥ ∂L∂fui

H1
∥∥∥∥∥∥

2

H1

+O(h2)

in which we define the norm ‖a‖2
H1 = 〈a, a〉H1 . Thus, for a small enough perturbation

hδfui , we have J (fui + hδfui) < J (fui). Now, injecting this optimality condition into a
steepest descent algorithm, an update of the forcing at iteration n is given as:

fn+1
ui

= fnui − λ

 ∂L
∂fui

H1
n , (5.9)

in which the step size is constrained by λ = β/max(∂L/∂fui
H1

) where β is a free param-
eter.
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Figure 5.1 – Initial update of the force (e.g opposite sensitivity) field in horizontal plane at
normalized height z/D = 0.63: fUy , fUx and fUz are, respectively, transverse, streamwise
and spanwise component. Each component is normalized by in-plan overall (components)
peak value.

5.4 Results
In this section, we will first analyse the initial sensitivity field corresponding to the

first iteration of the assimilation procedure before regularization. Then, the results of the
reconstructed flow after the whole data assimilation procedure with both regularisation
approaches will be compared. In a third time, the CEV assumption will be investigated
and compared with the optimal solution.

5.4.1 Sensitivity fields
Before conducting the full data assimilation procedure, we first analyse the sensitivity

fields, associated with the tangent linear system taken for fu = 0, i.e. before optimisation.
Figures 5.1, 5.2 and 5.3 present the distributions of the sensitivity to the added force
superposed with streamlines. Sensitivities are thus illustrated at three plans, constituted
by two horizontal plans (at normalized height z/Href = {0.19, 1}) and the symmetry
plane (at y/D = 0) which highlight the different areas of relevance. The sensitivity to the
control vector reveals a variability among its three components in term of the amount
of interest for an adjustment depending on the local flow features, i.e ranging from the
upstream impingement and a dominant 2D wake at the bottom to a strongly 3D wake
as we span upward toward the high end. High sensitivities of the streamwise velocity
component are revealed on the upstream flow impingement (see figure 5.3) and the
lateral shear layers, more specifically at the junction with the wake (see figures 5.1 and
5.2). As we go downstream into the wake, a similar order of magnitude is observed for
all velocity components. With regards to the impingement region, it is observed that the
streamwise sensitivity exhibits two peaks at different elevations (see zoomed figure 5.3
on fux). Theses peaks are associated with streamlines which have high curvature, due
to the radial pressure gradient, such as on the near upstream of the stagnation point
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Figure 5.2 – Initial update of the force (e.g inverse sensitivity) field in horizontal plane at
normalized height z/D = 3.3: fUy , fUx and fUz are, respectively, transverse, streamwise
and spanmwise component. Each component is normalized by in-plan overall (compo-
nents) peak value.

Figure 5.3 – Initial update of the force (e.g inverse sensitivity) field in symmetry plan:
fUy , fUx and fUz are, respectively, transverse, streamwise and spanmwise component. Each
component is normalized by in-plan overall (components) peak value.
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(z/D ' 4) and close to the ground at the formation of the horseshoe vortex. In fact,
we note that this tendency remains whether or not pressure information is giving at
the windward facade. This shows that these regions affect the wake recirculation region
driving the back pressure. This means that upstream perturbations affect downstram
regions trough advection, which translates in the adjoint model to a retrograde advection
and an additional source term. We can recall that the adjoint inlet boundary condition
is a Dirichlet Boundary condition, i.e U∗ = 0 at ∂Ωin and the outlet ∂Ωout authorises
penetration. Moreover, inhomogeneous Dirichlet condition is apllied on the adjoint model
at the sensor position.

Regarding the signs, contributions from the force are of the same sign as the adjoint ve-
locity. Thus, fluid travelling downstream (or more generally for positive Ui, i = {x, y, z})
experiments acceleration from positive contributions. Otherwise, an upstream flow (or
more generally for negative Ui) exhibits deceleration instead. Therefore, regarding the
positive peak upstream the stagnation point at z/D ' 4 (figure 5.3 on U∗x), sensitivity
on the streamwise suggests an acceleration to the approaching flow, which later sepa-
rates partly on the sides and mainly at the high-end. However, as we span downward,
negative sensitivity, assumedly stemming from the backward transport of the (windward)
wall-pressure errors, infers deceleration to the upcoming flow. This tendency tends to de-
crease the stagnation pressure along the front, by giving more (tangent) momentum to
the upward flow and hopefully reduces the total pressure along the stagnation stream-
lines in the bottom part of the impinging flow. This feature may explain the stagnation
anomaly noted by (Issa, 1995) where the total pressure (along upstream streamlines) is
not conserved but rather increased by the (con-traverse) effects of the eddy viscosity.

At the high end at the top of the building (figure 5.3), an acceleration is prescribed
in the streamwise direction inside the recirculation bubble (see fUx). The overall effect
tends to reduce the recirculation bubble, reduce the top pressure and favor an earlier
reattachment. Let us recall that errors here constrain the vertical component solely, U∗z =
∆Cw

p z > 0, and that streamwise sensitivity is reconstructed from the adjoint model, from
the incompressibility condition of the field.

In the downstream (i.e. wake), giving the under predicted pressure, positive streamwise
adjoint component is enforced on the leeward facade. Regarding the down-wash flow, i.e.
the descending velocities around z/D > 2, x/D > 0.5, sensitivities (U∗z < 0 and U∗x > 0)
advocate downward acceleration at the wake edge (as Uz < 0 and Ux > 0) and upward
deceleration close to the facade (as Uz > 0 and Ux < 0) (figure 5.3). At height z/D = 0.63
where the flow is progressively shifting to span-wise vortex structure (figure 5.2), an
acceleration is prescribed in the streamwise direction inside the recirculation bubble (see
fUx), and with a change of sign for fUz in such a way to intensify the vorticity in the
transverse extension to the recirculation region. Examining the up-wash (z/D < 2, x/D >
0.5), in which flow is dominated by lateral spanwise structures, in a similar way, control
suggests streamwise acceleration at the wake transverse edges and decelerating at the
symmetry plane (figure 5.1). Therefore, this would, conceivably, tend to reduce the wake
region as streamwise velocity is surged (toward positive ranges).
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∂J
∂fux

(×108) ∂J
∂fuy

(×108) ∂J
∂fuz

(×108)
AD 2.476 0.055 0.635
FD (δαi = 10−2) 2.352 0.0647 0.773
FD (δαi = 10−3) 2.275 0.072 0.769
FD (δαi = 10−4) 2.274 - 0.775

Table 5.1 – Sensitivity derivative w.r.t. fui , i = {x, y, z} computed from the proposed
adjoint model (AD) and the finite difference (FD) with different perturbation sizes.

Yet, it is noteworthy to mention that this initial force field is the result of the strong
coupling between mean velocity and turbulence related quantities in turbulence model
(e.g, production of k by mean shear). Due to non-linearity, this tangent-linear analysis is
only relevant around the default (i.e. not corrected) solution. This trend of the correction
by the control parameter is expected to change through the minimization. Neverthe-
less, this constitutes only a qualitative validation test of the adjoint model. Sensitivities
need to be validated through quantitative comparison with a more simple, but expen-
sive, differentiation method. Here, again, finite difference (FD) will be considered as a
reference method. However, to ensure accuracy of the finite difference method, step size
dependency is checked, and different perturbation sizes were considered for validation
test, where δfui = ε ∈ Ωin and zero otherwise. The region of interest Ωin is chosen as
in chapter 4. Table 5.1 shows values of the summed sensitivities. Thus, overall, adjoint
based sensitivity is very close to the finite difference values, with a relative error ranging
between 5− 9% for the dominant streamwise component.

5.4.2 Reconstructed flow
Regarding the minimization procedure, a steepest descent algorithm is used with an

adaptive step. A maximum step size λ = 0.1max(∂L/∂fu)−1 is fixed based on the sensi-
tivity validation test, while a minimum pre-factor for the step size of 10−4 is considered
as an optimization convergence criteria. As for regularisation, the confidence coefficient
is set to ζi = 10−1 for the penalisation approach. Concerning the filtering choice, we note
that with lsob = 0, i.e. no smoothing, this yielded to an unstable procedure, thus, recalling
the importance of regularisation of the sensitivity fields. A higher values have led to an
over smoothing since the sensitivity varies with length scales which are quite small in
comparison to this filtering length scale (as lsob ≈ lateral recirculation width). Therefore,
following previous work (Tissot et al., 2020), a filtering length scale equivalent to 10%
of the building width seems to give a fair compromise to filter unphysical small-scales.
Comparison of the cost reduction results using both regularisation approaches are shown
in the figure 5.4. We can see that Sobolev gradient leads to the lowest level of discrepancy
( JJ0
' 0.2) compared to gradient penalisation ( JJ0

' 0.3). With regards to the convergence
speed, minimisation with Sobolev gradient reaches the minimum in less than 70 iterations
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Figure 5.4 – Cost function reduction with local deformation correction. Comparison be-
tween regularisation approaches: penalisation (ζ = 0.1) compared with parametrization
in H1 (lsob = 0.1D).

while it is achieved in over 200 steps by penalisation. The convergence process with the
Sobolev gradient is therefore much faster and more accurate than with the penalisation.
This might come due to the fact that adding the gradient to the cost does change the
original descent direction that is prescribed by the discrepancy to data.

Wind load profiles Results for the reconstructed pressure loads at and around mea-
surement locations are compared with the experimental data (Sheng et al., 2018) and the
default model in figure 5.5. In figure 5.5(a), pressure distribution is shown along “ABCD”
path in the symmetry plane; in which, “AB”, “BC” and “CD” are three lines token each at
front, roof-top and leeward facades, respectively. At points subject to recirculation Cp < 0
(“BC” and “CD”), reconstructed pressure using force with Sobolev regularisation (solid
line with circle marker) shows perfect fitting to data (with “+” marker) as compared with
the penalisation (solid line with square marker). Along windward facade (“AB”), perfect
match is also observed at the highest stagnation pressure (z/D ' 4) and at the bottom
section; however, we note an overly reduced pressure on the section 1.5 < z/D < 3.5. As
noted in the sensitivity analysis section 5.4.1, this is seen to be related with the retro-
grade convection effects of data-informations from recirculation regions. In other words,
this means that the amount of adjustment of the pressure at the front is partly guided
by the amount of reduction of the discrepancy at regions subject to separation. Figure
5.6 illustrates this by presenting the converged fu distribution at the symmetry plane. As
the positive peak around the stagnation point (−fux > 0, z/D ' 4) is shifted upstream
further from the wall, optimal force decelerates the approaching flow near the wall, with
negative values of −fux being transported leeward from the high-end. Accompanied by an
upward acceleration (−fuz > 0), this provides a suction effect which tends to over-reduce
the pressure at stagnation points. Let us note that approaching the ground, as it was ob-
served in the initial sensitivity field (figure 5.3), adjoint force is seen to be partly affected
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Figure 5.5 – Pressure coefficient profiles along building facades with local deformation cor-
rection. Comparison between regularisation approaches: penalisation (ζ = 0.1) compared
with parametrization in H1 (lsob = 0.1D).

Figure 5.6 – Converged corrective force, with Sobolev gradient, on the symmetry plane.
fUy , fUx and fUz are, respectively, transverse, streamwise and spanmwise component. Each
component is normalized by in-plan overall (components) peak value.
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by the pressure errors at the windward facade which explains the better fitting there.
Moreover, pressure profiles are also compared along “ABC” path at spanwise trans-

verse plane on the centre of the structure (the plane x/D = 0), as shown in figure 5.5(b).
“ABC” is sweeping the lateral facade along the span (“AB”) and goes on the transverse
direction at the roof top (“BC”). Along this path, both forcing leads to a very good
agreement with experiments; yet, with Sobolev gradient, pressure predictions matches
even better the data.

Further, at transverse horizontal plane (with plane normal to z), as presented in figures
5.5(c) and (d), we look at paths at two different heights; on (c), the height corresponds
to the lowest measurement level (z/D ' 0.3), while, on (d), profiles are compared at the
maximum stagnation point level (z/D ' 4). In (c), across the windward section “AB”,
both optimized profiles tend to break symmetry as it reaches an intermediate level between
the default model and the non-symmetric data distribution which arises assumedly from
inverted pressure taps. However, in (d), reconstructed profiles fits perfectly to data as the
later is symmetric. Furthermore, along the side and across the back (“BC” and “CD”),
both forces yields to a great match with experiments, with better fitting using the Sobolev
gradient. Thus at this stage, although the small deviations related to such a reverse method
(retrograde advection), we can say that reconstruction with such a force does provide a
good interpolation between the measurement points. This, in particular, is achieved using
a Sobolev-based descent direction.

Wake centreline profiles Results of the streamwise velocity on the wake centreline
are further confronted to data from PIV experiments (Sheng et al., 2018) and uncorrected
model in figure 5.7. In order to span both up-wash and down-wash motions, profiles are
compared at two height levels (z/D = 0.63 and z/Href1). In terms of recirculation length,
both models show a considerable reduction at both elevations. Regarding the peak value
in the wake, both optimisation strategies yields a better prediction of the position even if
they tend to under-estimate the pressure as we span upward.

Wake transverse profiles Transverse distributions of streamwise velocity at three
streamwise locations; that is, x − xb = D, x − xb = 2D and x − xb = 3D downstream
of the building (xb = 0.5D) are given in figures 5.8 and 5.9. Spanning the ascending
and descending velocities (refferred as up-wash and down-wash motions), both optimized
models yields to a reduction of the wake extent, yet, no significant difference is observed.
Still, due to the overly-predicted recirculation length, both model results are incorrect re-
garding the magnitude and the sign. This inconsistent behaviour is worsen progressively
going further downstream. Note that, for all streamwise locations, symmetry is well pre-
served by all models. Results on the streamwise velocity shows that penalisation choice
does not matter as we go further into the bulk. Besides, both approaches yields to poor
velocity reconstruction.
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Figure 5.7 – Streamwise velocity along centreline at z/D = 0.63 and z/D = 3.3 eleva-
tions with local deformation correction. Comparison between regularisation approaches:
penalisation (ζ = 0.1) compared with parametrization in H1 (lsob = 0.1D).

Figure 5.8 – Streamwise velocity in the wake transverse at z/D = 0.63 with local defor-
mation correction. Comparison between regularisation approaches: penalisation (ζ = 0.1)
compared with parametrization in H1 (lsob = 0.1D) across streamwise positions x

D
= 1,2

and 3.
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Figure 5.9 – Streamwise velocity in the wake transverse at z/D = 3.3 with local defor-
mation correction. Comparison between regularisation approaches: penalisation (ζ = 0.1)
compared with parametrization in H1 (lsob = 0.1D) across streamwise positions x

D
= 1,2

and 3.

Flow topology For a better insight on the reconstructed flow fields, this section is
focused on the flow structure in the wake. Figure 5.10 shows time averaged sectional
streamlines at symmetry plane. Here it is noteworthy that this sectional streamlines are
computed by in-plane velocity components. In each figure, streamlines predicted with de-
fault model (sub-figure (a)) is being compared with parametrization in H1(Ω) (b), with
penalisation (c) and experiments (d). To discuss the flow topology, we propose to observe
two specific points. The fist is the saddle point in 5.10 for the uncorrected RANS model
around (x/D ' 4,z/D ' 2). This point, at the frontier of the recirculation region, results
from the interaction between the descending velocities (down-wash) and ascending veloc-
ities (up-wash). The second is the focal point around (x/D ' 1.5,z/D ' 4.5) reminiscent
of a large transversewise vortex structure , connecting the two symmetric recirculation
vortices visible in the horizontal plans figure 5.11. This focal point is a sign of a local de-
pression. In the PIV plan, the saddle point is located more upstream and slightly higher
in z, while the focal point is located closer to the roof-top trailing edge. Both optimised
models lead to a similar behaviour. The saddle point is pulled upstream, but not enough,
and lower in z instead of being raised. The focal point is crushed to the wall, while it
should be clearly detached regarding the PIV.

Globally, the recirculation region is reduced, but not in a fully satisfactory way. Ap-
parently, the pressure reduction in the leeward facade is performed in the optimisation
by approaching the focal point very close to the wall, instead of more drastically reduce
the overall recirculation region. This is consistent with the results shown in the wake
transverse profiles.

This can be seen by sectional streamlines which are plotted at height z/D = 3.3 (see
figure 5.12) as the flow is entrained downward out of the plane. Nevertheless, let us note
that as we span downward, far enough from the high-end, such that descending motions
are negligible (say at z/D = 0.63), both forces tend to preserve the physical features (see
figure 5.11).
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Figure 5.10 – Flow topology (2D) on symmetry plane with local deformation correction.
Comparison between regularisation approaches: penalisation (ζ = 0.1) compared with
parametrization in H1 (lsob = 0.1D).

Figure 5.11 – Flow topology (2D) on horizontal plane at normalized height z/D = 0.63
with local deformation correction. Comparison between regularisation approaches: penal-
isation (ζ = 0.1) compared with parametrization in H1 (lsob = 0.1D).
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Figure 5.12 – Flow topology (2D) on horizontal plane at normalized height z/D = 3.3 with
local deformation correction. Comparison between regularisation approaches: penalisation
(ζ = 0.1) compared with parametrization in H1 (lsob = 0.1D).

Frozen turbulence effects One of the most demanding part of the derivation of the
adjoint RANS model concerns the turbulence model, partly due to the wide variety of
blending functions, limiters, but mainly because of the many coupling terms to the mean-
flow equations. Beside these technical details, it is very difficult to treat turbulence mod-
els in a continuous adjoint framework, as was seen through the complicated boundary
conditions associated to the adjoint model. One of the common simplifying assumption
(Othmer, 2008) is the frozen (or constant) eddy viscosity (CEV) in which we consider that
µt is constant in between optimisation steps. With this assumption, the adjoint system
reads as

− ∂UjU
∗
i

∂xj
− Uj

∂U∗j
∂xi
− ∂

∂xj

[
νeff

∂U∗i
∂xj

]
− ∂

∂xj

[
νeff

(
∂U∗j
∂xi
− 2

3
∂U∗k
∂xk

)]
+ ∂P ∗

∂xi
= 0 (5.10)

∂U∗j
∂xj

= 0 (5.11)
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Figure 5.13 – Initial normalized magnitude of the force field in horizontal plane at normal-
ized height z/D = 0.63. Comparison between full adjoint modeling and CEV assumption.

subject to the following boundary conditions:

P ∗ni = (U∗i ni)(Uini) + U∗j Ujni + µeff
∂(U∗j nj)
∂xi

ni at outlet (5.12)

µeff
∂(U∗i ti)
∂xi

ni + U∗i tiUini = 0 at outlet (5.13)

U∗i ni = ∂J
∂P

at ∂Ωtower, (5.14)

U∗i ni = 0 at ∂Ωgr and inlet, (5.15)
U∗i ti = 0 at ∂Ωtower ∪ ∂Ωgr and inlet. (5.16)

Albeit linear by definition, the structure of this adjoint system is very similar to the direct
RANS equations. Thus, the main difference with the full adjoint model manifests on a
simplified transport mechanisms. It states that adjoint informations are rather transported
through only retrogade convection and isotopic diffusion.

In figures 5.13 and 5.14, sensitivity magnitude prior to the first update step, calculated
using the CEV approximation is presented alongside the one issued from full derivation.
It can be seen, that on the transverse plans (see figure 5.13), unlike the full adjoint model,
the sensitivity under CEV assumption is more diffused inside the lateral separated flows
(figure 5.13). With CEV hypothesis, the force seems to extend further downstream within
the wake. Thus, it is apparent that coupling terms (between mean flow to turbulence
model) does play a major role by restricting sensitivity fields to the shear layers.

Moreover, at the symmetry plane (figure 5.14) and depending on the projected flow
feature, different changes have been observed. Starting with the upstream flow subject
to adverse pressure gradient, we notice that the force spikes near the stagnation point
(z/D ' 4), while it is absent with the CEV assumption. Thus, this highlights again the
role of the coupled terms stemming from the turbulence model as it adds up to wall
informations. On the other hand, we notice relatively higher sensitivity values close to the
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Figure 5.14 – Initial normalized magnitude of the force field in symmetry plane. Compar-
ison between full adjoint modeling and CEV assumption.

Figure 5.15 – Cost function reduction with local deformation correction (using Sobolev
gradient). Comparison between full adjoint modeling and CEV assumption.

junction between the building and the ground stemming from horseshoe vortex formation.

Concerning the optimisation, it can be noticed in figure 5.15, that taking into account
all coupling terms leads to a faster convergence and to a better performance. This shows
the importance of relaxing the CEV assumption to obtain consistency of the gradients.
Moreover, these performances are associated with very close levels of agreement with the
pressure coefficients measured in the wind tunnel. Although, it should be noted that the
performances are variable from one zone to another. While the pressure predicted by
exact modelling fit better in recirculating areas, especially at the leeward wall, pressure
predicted by approximation is slightly better along the windward facade (see figure 5.16).

With regard to the topology in the transverse plans, the same lack of physical features
is found at the elevation z/D = 1.3 as the maximum depression is also shifted to the high-
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Figure 5.16 – Pressure coefficient profiles along building facades with local deformation
correction (using Sobolev gradient). Comparison between full adjoint modeling and CEV
assumtion.

end leeward wall. Nevertheless, we note a better agreement with PIV in term of wake flow
separation as the saddle point is lifted up (figure 5.17). Thus we note again the poor flow
reconstruction using non-structured force form by which sparse wall-informations are at
most interpolated.

5.5 Minimal-structuring model

5.5.1 Modified equations of motion
In order to remedy the lack of structuration of a direct forcing on the momentum

equation, we attempt here to refine the shape of the control parameter. Indeed, with the
following approach, we aim to ensure some consistency between the deformation correction
prescribed by this force and the fact that it is induced by Reynolds stress. We can restrict
the corrections to the regions where the turbulence appears to be the most active and
where we estimate that the turbulence model is likely to be prone to strong errors. Dealing
with separated flows, a major challenge for turbulence models arises from the quantifica-
tion of energy transfer toward turbulent scales in in-homogeneous and anisotropic shear
layers. With anisotropy being quite poorly represented by eddy viscosity models (and the
k − ε closure), we consider here addressing only corrections due to the flow inhomogene-
ity, that is, regions with a strong gradient of turbulent energy. Thus, a simple model of
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Figure 5.17 – Flow topology (2D) on symmetry plane with local deformation correction.
Comparison between full adjoint modeling and CEV assumption.

structured force for direct deformation correction model reads as

∂(ρUjUi)
∂xj

= − ∂

∂xi

(
P + 2

3ρk
)

+ ∂

∂xj

[
µeff

(
∂Ui
∂xj

+ ∂Uj
∂xi

)]
− fui |∇k|. (5.17)

This choice of constraint enables to bring physical structure to the control space in a
simple way.

5.5.2 Optimality condition

We note that this new force depends on the state, it requires thus a modification
of the adjoint model. Considering the Lagrangian, for an arbitrary perturbation δk, an
integration by part for the added term in the RHS of (5.17) results in

∫
Ω
fui

∂

∂k
(|∇k|)δkk∗dv = −

∫
Ω
δk∇ ·

(
fui
∇k
|∇k|

k∗
)
dv +

∫
∂Ω
δkk∗fui

∇k · n
|∇k|

ds.

It can be noted for physical interpretations that ∇k
|∇k| is the unitary vector aligned with

turbulence inhomogeneity, and that∇·
(
∇k
|∇k|

)
is the curvature of isocontours of k. By using

the fact that, on the one hand, the inlet profile of k is imposed and, on the other hand,
its flux is zero at the other edges, the boundary integral is identically zero everywhere.
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Figure 5.18 – Initial normalized magnitude of the force field in horizontal plane at nor-
malized height z/D = 0.63. Comparison between raw forcing and minimal-structured
forcing.

Thus, with only a volume contribution, the source term on k∗ becomes

Dk∗ = ρ
∂Pε
∂k

ε∗ − ρ∂sε
∂k

ε∗ +∇ ·
(
fui
∇k
|∇k|

k∗
)

in Ω. (5.18)

Moreover, by following the treatment proposed for the solid walls, on an adjacent elemen-
tary volume Ωc centred in c, this source term can be rewritten as

Dk∗ = ρ
∂Pε
∂k

ε∗ − ρ∂sε
∂k

ε∗ + ρ

(
∂Pk
∂k
|c −

∂ε

∂k
|c
)
k∗|c +∇ ·

(
fui
∇k
|∇k|

k|∗c

)
in Ωc. (5.19)

The Gateaux derivation w.r.t. δfui , leads to the following Lagrangian sensitivity

∂L
∂fui

= |∇k|U∗i . (5.20)

The explicit dependency of the cost function to the parameter is omitted here and, thus,
a regularization by Sobolev gradient as a regularization and descent direction.

5.5.3 Sensitivity fields
Figures 5.18 and 5.19 present the distributions of the structured control field. As

expected, through additional constraint, its contribution to the momentum balance is
even more restricted in space. Comparatively with the full control strategy, high sensitivity
fields highlight more on regions where the local variations of turbulent kinetic energy are
the most important.

In terms of peak values, as expected sensitivity is concentrated at the extension of the
lateral shear on the near leading edges while low values are observed further down in the
wake. Otherwise, considering the very low inhomogeneity levels of the approaching flow,
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Figure 5.19 – Initial normalized magnitude of the force field in symmetry plane. Compar-
ison between raw forcing and minimal-structured forcing.

Figure 5.20 – Cost function reduction with local deformation correction. Comparison
between direct forcing and minimal-structured forcing.

upstream the stagnation point, sensitivity is strongly damped.

5.5.4 Reconstructed flow
Reconstruction results using constrained force are compared with a direct forcing.

We here consider only regularization using Sobolev gradient. In terms of objective, as
shown in figure 5.20, globally, discrepancy with experiments has reduced significantly
using structured force reaching levels closer to the structure-free force (J /J′ < 0.3).
With regard to the convergence speed, the approach based on force structuration reaches
its minimum in less than 30 iterations. This faster convergence suggests that adding a
physical-based structure to the correction force seems to lead to a more efficient descent
direction.

Results for the reconstructed pressure loads at measurement locations, using both
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Figure 5.21 – Pressure coefficient profiles along building facades with local deformation
correction (using Sobolev gradient). Comparison between direct forcing and minimal-
structured forcing.

strategies, are compared with the experimental data (Sheng et al., 2018) and the default
model in figure 5.21. At measurement points subject to recirculating motions, results are
quite close, except the noticeable difference in the back ((d) z/D = 1).

Results of the streamwise velocity on the wake centreline using both strategies, are
compared with data from PIV experiments (Sheng et al., 2018) and default model in
figure 5.22. In term of recirculation length, both models show a considerable reduction,
especially near the ground (see figure 5.22(a)). Yet, along z/D = 3.3, in figure 5.22(b),
wake length reduction is worst compared to a direct forcing.

Results for the spanwise velocity component on the wake centreline are presented in
figure 5.23. Within the up-wash, at z/D = 0.63 (see sub-figure 5.23(a)), structured forcing
leads to noticeable improvement in the downstream region. Inversely, the direct forcing
reduces significantly upward motions causing incorrect sign value inside the wake flow. In
figure 5.23 (b), reconstructed velocity components is compared with data at z/D = 3.3
(within the down-wash motions). Predicted values using structured force stays well within
the range of measured values in the downward motions. However, without structuration,
the model over-corrects the downward flow yielding a rather large and more localized peak
value (located at x/D ' 2.25).

Let us focus now on the study of the flow structure in the wake. Figure 5.24 shows
time averaged sectional streamlines at the symmetry plane. In each figure, streamlines
predicted with the uncorrected model (sub-figure (a)) is compared with structure-free
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Figure 5.22 – Streamwise velocity profiles along centreline at z/D = 0.63 and z/D =
3.3 elevations with local deformation correction (using Sobolev gradient). Comparison
between direct forcing and minimal-structured forcing.

Figure 5.23 – Spanmwise velocity along centreline at z/D = 0.63 and z/D = 3.3 elevations
with local deformation correction (using Sobolev gradient). Comparison between direct
forcing and minimal-structured forcing.
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Figure 5.24 – Flow topology (2D) on symmetry plane with local deformation correction.
Comparison between raw forcing and minimal-structured forcing.

optimised model (b), structured forcing (c) and experiments (d). Inspecting in particular
the saddle point location, the structured forcing strategy shows a fair limitation of the
down-wash flow; indeed with the saddle point being vertically centered in the wake. In
the contrary, direct forcing yields to a configuration in which down-wash motions are
dominant, thus, pushing the saddle point downward. Moreover, with respect to the wake’s
spanwise variations, results show s that the structured force approach preserves better
the expected upstream inclination of the vortex rolls near the ground wall. Although,
structure-free forcing gives globally a smaller recirculation bubble. Otherwise, averaged
focal point (the focal of the average transverse vortex structure) resulting from the down-
wash motion has been removed by the direct forcing; while, it is moved upstream in the
vicinity of the leeward facade in the case of structured force optimisation. Regarding the
roof top roll, both optimisation strategies show a more extended recirculation region. Yet,
the flow subject to a structured force reattaches at the free-end, while, it is not the case
with raw forcing.

Figures 5.25 and 5.26 shows sectional streamlines at height z/D = 0.63 and z/D = 3.3,
respectively. At z/D = 0.63 level, both optimisation strategies fairly preserved a sym-
metric reverse flow. Observing the lateral reverse flow, we see that both models are in
good agreement with experiments. In the wake, due to diminished recirculation length,
both reconstructed reverse flow occurs closer to the cylinder in comparison to the default
model. Indeed, wake focal points have moved slightly upstream and closer to the sym-
metry plane. These changes are more pronounced with the structured forcing through an
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Figure 5.25 – Flow topology (2D) on horizontal plane at normalized height z/D =
0.63 with local deformation correction. Comparison between raw forcing and minimal-
structured forcing.

upstream inclination of the vortex. However, at z/D = 3.3, the transverse topology of
the reconstructed flows for both forms show disagreement with the experiments. Even if
the lateral reverse structures are fairly preserved, wake vortices are not properly recon-
structed. This flow distortion is more pronounced with the (unstructured) raw forcing
strategy. In fact, with the structured force, we observe that reverse wake flow is fairly
entrained around a spanwise vortex moved downstream. However, with no focal point,
fluid is rather entrained with a spanwise motion out of the symmetry plane.

The structured-forcing strategy allows to strongly restrict the potential sources of
mismatch of the modelled Reynolds stresses to a thin region within the shear layers. The
fact that it accelerates the optimisation with comparable performances (even leading to
an imperfect reconstruction) suggests that these regions corresponds to key regions for
the turbulence model. It encourage a refining strategy of the control parameters structure.

In the next chapter 6 we will go one step further to shape this correction in relying
more efficiently on the turbulence model structure. In contrast to the calibration of the
model closure coefficients ( in the previous chapter), we will address the modelling errors
at different closure levels, i.e. starting from the eddy constitutive relation and going into
each of the modeled terms of the chosen turbulence model. Then, after discussing the
different offered possibilities to embed a control parameter, enforcing the robustness of
the DA procedure, we will propose some forms for the parameter which ensure both
robustness together with a better recovery of the flow features.
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Figure 5.26 – Flow topology (2D) on horizontal plane at normalized height z/D = 3.3 with
local deformation correction. Comparison between raw forcing and minimal-structured
forcing.

5.6 Conclusions

The data assimilation framework developed in the chapter 3 was explored here for the
purpose of flow reconstruction. To recover the mean flow from the pressure measurements,
an unknown spatially distributed forcing is added to the momentum equation in order to
infer correction to the Reynolds induced force. Without a priori knowledge of its nature,
an initial raw form was considered similar to works by (Foures et al., 2014; Franceschini
and Sipp, 2020). A sensitivity map analysis, before a first parameter update, reveals high
interest of optimising the force at several regions encompassing several characteristic flow
features; the upstream flow impingement (including upstream separation and horseshoe
formation), the lateral and top shear layers, and the wake.

To reduce the risks of local minima and unphysical solutions, given the strongly par-
tial observations and the consideration of spatially distributed control parameters, we
proposed the examination of two regularization approaches. In the one hand, we con-
sidered augmenting the cost function by a penalty of spatial gradients of the control
parameter. In the other hand, by the definition of an alternative inner product H1(Ω), we
considered searching for the control parameter in the Sobolev space (Protas et al., 2004;
Tissot et al., 2020).

Regarding the regularisation, a comparison of the cost reduction results with the pe-
nalisation approach showed that using Sobolev gradient yields a much faster convergence
and lower discrepancy levels. Regarding the reconstruction ability, compared with coeffi-
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cient calibration, the corrective deformation model produced an excellent agreement with
the wall-pressure experiments in most of the building’s wall regions. We note that using
the common assumption of constant eddy viscosity (CEV), on the derivation of the adjoint
model, shows that taking into account all coupling terms led to a faster convergence and
to a better performance. This confirmed the importance of relaxing the CEV assumption
to obtain consistency of the gradients.

With regards to the recirculation length, model results show a considerable reduction
of its downstream extension, yet, not in a fully satisfactory way. Apparently, the pressure
reduction in the back facade is performed in the optimisation by approaching the focal
point very close to the wall, instead of drastically reducing the overall recirculation region.
This have resulted in a poor reconstruction quality of the near wake flow by producing
non-physical-features. This recalled the lack of structuration to the raw forcing.

In order to remedy this situation, we have attempted refining the shape of the control
parameter with the aim to ensure some consistency between the deformation correction
prescribed by this force and a Reynolds stresses induced force. With anisotropy being
quite poorly represented by eddy viscosity models (and the k − ε closure), we consider
here addressing only corrections to the flow inhomogeneity, that is, regions with a strong
gradient of turbulent energy. Indeed, parameter sensitivity selects drastically the potential
sources of mismatch in the modelled Reynolds stresses to a thin region within the shear
layers., i.e. the extension of the lateral shear of the separated flow from the leading edges.
Meanwhile, it shows fewer interest further downstream in the wake.

In terms of objective, globally, discrepancy with wall-pressure experiments has reduced
significantly reaching levels closer to the raw force. With regard to the convergence speed,
structuring the force leads to a faster convergence. Moreover, with respect to the flow re-
construction, results with a structured force preserves better the expected wake’s features,
e.g. upstream inclination of the vortex rolls near the ground wall. Although, raw forcing
gives globally a smaller recirculation bubble. The fact that it accelerates the optimisa-
tion with comparable performances (even leading to an imperfect reconstruction) suggests
that these located regions are mainly responsible of the RANS failure. It encourages the
strategy of refining the structure of the control parameters.
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Chapter 6

DATA-ASSIMILATION FOR STRUCTURED
CORRECTIONS THROUGH TURBULENCE

MODELLING

6.1 Introduction

In this chapter, flow reconstruction is operated under a parametrization that satisfies
physical constraints given by the turbulence model. In contrast to a direct forcing on the
mean deformation field (examined in the chapter 5), corrections of the mean flow are in-
stead given under the Boussinesq hypothesis, thus assuming that the Reynolds stresses are
proportional to the deformation tensor. In other words, discrepancy-corrective parameters
are embedded into the turbulence model equations rather than at the level of the momen-
tum equations, and their effects on the mean flow are constrained to be a diffusive term
by the specified relationship between stress and strain. Hence, since the reconstructed
solutions are sought in the space of admissible solutions by a RANS model, we believe
that it has the advantage of producing physically acceptable solutions. Indeed, this space
is induced by the physical principles sustaining the definition of the turbulence model.
This intuition is supported by the work of Singh and Duraisamy (2016); Franceschini and
Sipp (2020). In their DA studies in canonical flows under the Boussinesq assumption,
they reported that applying corrections in the transport equations of the eddy-viscosity
in Spalart-Allmaras model Spalart and Allmaras (1992), or in the production of turbulent
energy in Wilcox k − ω model Wilcox (1993), may be advantaged whenever sparse infor-
mations are considered, such as partial velocity field or wall-pressure and wall-friction. In
addition, in the work of Singh and Duraisamy (2016), authors reported that, given few
data inputs (such as wall-pressure and skin-friction), a complete set of realizations of the
closure model was obtained. With this result in mind, we hope that given the sparse wall-
pressure measurements in the building configuration, the reconstructed flow by correcting
the turbulence model would keep most of the physical features and complexity of the real
flow.

This chapter is organized as follows. First (section 6.2), we will start by addressing the
possible errors of the model structure resulting from the choice of the eddy-viscosity and
the realizable k − ε models. Comments will be given on the various possible corrections
at each level of the closure vis-a-vis the robustness of the DA procedure. Conclusions will
be valid only for the presented flow configuration, but we believe that practices can be
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generalised to some extent to other aerodynamic studies. Then, in the light of these exam-
inations (section 6.3), we will introduce corrective models with new spatially distributed
forms of closure. Thus, in contrast with the rigid approach by calibration of global closure
coefficients (examined in chapter 4), we attempt to address more efficiently the closure
problem. Later on section 6.4, we introduce the changes to be made to the adjoint models
and on the optimality conditions. In section 6.5, after an initial sensitivity analysis, we
will present the data-assimilation results by comparing reconstructed flows obtained with
the proposed corrective models. Finally, in an attempt for a more efficient reconstruction,
a modified model that embeds a deformation corrective parameter in conjunction with
turbulence closure adjustment is investigated in section 6.5.

6.2 The choice of the parameter
Assumptions are introduced in several stages whilst constructing a Reynolds-averaged

model. These multi-layer simplifications start from applying the time (or ensemble) aver-
aging operator to the non-linear advection term. This makes appear the Reynolds stress
tensor, and the first assumption consists in relating this tensor to the mean flow through an
eddy viscosity. This eddy viscosity is determined by an algebraic equation involving turbu-
lence variables that are statistical quantities governed by transport equations. The choice
of these variables defines the class of considered turbulence model. Let us recall that,
considering a transport by the mean velocity, a diffusion mechanism, and through scaling
analysis (often related to the role of the mean strain in vortex stretching), source/sink
terms are often included with a set of coefficients that must be calibrated to represent
some known flow features, as in the data-driven process presented in chapter 4. This
constitutes a second layer of approximation. In the present section, we first address the
closure uncertainties at the first layer, i.e. the linear eddy viscosity model. Then, we will
consider the second layer in which a specific model structure is invoked: the realizable
k − ε model.

6.2.1 Parametrising the Reynolds stress modelling
In the first layer, it is a question of defining a constitutive relation, which relates the

Reynolds stress to the strain, function of the mean velocity gradients. This relation, by
analogy with Newtonian behaviour of molecular viscosity, is usually considered as

ρu⊗ u = −2µt (S) + 2
3Iρk,

where S is the strain tensor (symmetric part of the mean velocity gradient). The commonly
denoted turbulent viscosity µt is a scaling factor. This factor, assumed to depend on the
local turbulent agitations, is then expressed as a function of quantities considered to
characterize the turbulence (e.g., turbulence length scales, turbulent energy, and energy
dissipation rate).
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The validity of this modelling of the Reynolds stresses for turbulent flows were ques-
tioned by many authors Shih and Lumley (1993); Pope (1975); Schmitt (2007), and a brief
historical remark can be found inSchmitt (2007). Nevertheless, as being acceded by Shih
and Lumley (1993), a more general constitutive relation for turbulent stress u⊗ u can
be possibly derived at condition that turbulence length and time scales are smaller than
those of the mean flow. However, as in our situation, the turbulence scales(stemming from
atmospheric boundary layer) are of the same order of magnitude as those of the mean
aerodynamic flow. The validity of such approximations is not a priori guaranteed. As
proposed by Lumley Lumley and McMichael (1995), a formal procedure of deriving more
general constitutive relations may includes two steps. Through dimensional analysis (π
theorem), the first step is to assume the relationship between the unresolved turbulent
correlation and some reduced number of resolved statistics. In the second step, using the
invariant theory, various forms of the relationship can be derived. In brief, using general-
ized Cayley-Hamilton formulas, that relates matrices of higher extension 1 to matrices of
lower extension Spencer and Rivlin (1959), the most important procedure is to determine
the number of tensor’s independent invariants, such as the trace or the determinant.

Therefore, when applied to the modelling of the Reynolds stress matrix, using the
assumption that it is only dependent on the mean velocity gradients (and not only its
strain S) and the characteristic turbulence statistics (say k and ε), this is shown to provide
full information of the mean flow while respecting the symmetric nature of the stress
tensor, i.e. combinations of matrix product between the mean rotation Ω and the mean
strain part Ω weighted by matrix invariants and calibrated coefficients Shih et al. (1995).

If embedded in a data-driven process, this generalised constitutive relation would offer
more degrees of freedom of the control parameter. Under this framework, we interpret the
polynomial expansion physically as a progressive loosening of the Boussinesq’s hypothesis,
as one may truncate at any order. The second order Reynolds stress algebraic relationship,
proposed by Shih et al. (1995), can be considered along with the realizable k−ε turbulence
model:

ρu⊗ u = −2µt (S) + 2
3Iρk + 2C2

k3

ε2
(−SΩ + ΩS). (6.1)

In the present work, the algebraic relationship was implemented. However, sever nu-
merical instabilities were encountered. In fact, after few iterations, the RANS budgets were
hardly satisfied, especially while imposing the incompressibility condition. This caused the
RANS solution to diverge rapidly. Although some attempts for more relaxations along the
iterative SIMPLE step and the asymptotic pre-treatments that avoid evaluating function
outside the domain of their arguments, this behavior is persistent, and no solution could
be found at the first iteration of the data assimilation procedure. In fact, we think that
this is mostly due to the relatively high turbulence level and momentum of the atmo-
spheric boundary layer and relatively high shear, since Sk

ε
� O(1) at the separations at

the building sharp angles. This presents challenges for the realizability constraints, i.e.

1. For a given matrices A and B, the matrix product AnBm with n,m ∈ N leads to the p = n+m ∈ N
polynomial extension
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u2
i > 0 and uiuj
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≤ 1, to be verified. Nevertheless, we believe that with intermediate levels
of shear, such a model may be token as a key entrance for flow reconstructions under a
loose relaxation of the Boussinesq hypothesis. In fact, we do expect that the structure
of the force induced by the Reynolds stresses would correspond to an intermediate be-
tween an added direct forcing on the deformation and the default predicted one relying
on the Boussinesq assumption. However, in the present work, no further investigation
has proceeded along this strategy. Therefore in what follows, we choose to maintain the
Boussinesq approximation and, hence, structural errors 2 will be all addressed to the last
layer of closure. Thereafter, we will refer to uncertainties underlying the closure terms in
the transport equations of the turbulence variables k and ε.

6.2.2 Parametrising the turbulence variables transport equa-
tions

Similar to Singh and Duraisamy (2016); Franceschini and Sipp (2020), functional errors
arising from the modelled transport of the turbulence quantities are targeted. Before
proceeding with the turbulence model chosen in this thesis, we recall the generic structure
of the turbulence equation, and we present the possible ways of correction. In a general
manner, turbulence variables (e.g. k, ε) would have to respect a balance equation of the
form

0 = Tmean + Tturb + Tvis + P −D

in which Tmean, Tturb and Tvis are their spatial redistribution by the mean flow, by fluc-
tuations, and through viscous diffusion, respectively. P stands for production and D for
sink. Hence, possible corrections on their balance could be interpreted either as “punc-
tual” sources (or sinks) adjustments, as well as “fluxes” balancing effects (e.g convective
or diffusion fluxes). However, in practice, depending on the specific mechanisms we are
addressing, some corrections might not be admissible. As a matter of fact, this is related
to the degree of regularity in space that might have the modelled term once discretized.
While irregularities are fairly treated in common turbulence models, due to well-balanced
mechanisms that ensure, for instance, enough diffusion, treatment may, however, not hold
when the turbulence budgets are “strongly” guided by data. That is per saying, given
a noticeable deviation from data, what we may call “term-by-term” adjustment might
involve undesirable behaviors causing the budget to be strongly biased by the corrections
and may affects the conditioning of the matrices. In the next section, functional errors
will be investigated to the realizable k − ε model under our flow configurations. Hence,
model corrective parameters will be proposed.

2. By structural errors, we refer to the uncertainties in the structure of the model, at any layer of
approximation.
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6.3 Corrective models for turbulent statistics budget

In the present work, various attempts for a term-by-term correction have been tested.
Only spatially distributed additive parameters are considered in this work, allowing to
maintain good conditioning of the adjoint system during the optimisation procedure. Be-
fore introducing these new variables, some comments can be made on the issues encoun-
tered in identification of the term-by-term error and correction. Let the exact transport
equation of the turbulent kinetic energy for a homogeneous turbulence Pope (2000) be,

∇ · (U k) = −∇ · u′
(
p′

ρ
+ k

)
− u′ ⊗ u′· ∇U + ν∆k − ν∇u′· ∇u′.

I II III IV V

It turns out that most of the terms in the turbulence model (except I and IV) are modeled.
Hence, one may straightforwardly address corrections to these uncertain terms.

Regarding the redistributions mechanisms (II and IV), exact terms are modeled by
a simpler diffusive transport, i.e ∇ ·

(
(ν + νt

σk
)∇k

)
. An explicit correction case consists of

multiplying by a pre-factor the effective diffusivity into the divergence, as (1 + fk)(ν +
νt
σk

). Thus, guided by the data, one may expect some adjustment to how the energy
is redistributed. Proceeding for correction have led to a highly non-robust procedure,
in particular for the resolution of k∗. An explanation of this lack of robustness is that
fk is free to change sign, as a consequence a negative value can reduce strongly the
diagonal dominance of the matrices solved for k∗ and then the conditioning. This issue
concerns the adjoint model more than the direct RANS model; this might points out
the poor conditioning of the adjoint matrices. This observation is consistent with the
results of chapter 4, with the optimisation of σk coefficient, in which the robustness was
conditioned by the scaling of the turbulent energy mixing. Indeed, σk = 1 improved
robustness compared to higher values.

Further attempt on the correction of the modeled production (III) term has led to sim-
ilar undesirable behavior. Aside from numerical issue encountered with the adjoint system,
this choice raised some concerns with the treatment at the wall region denoted Ωw. Such
a correction choice seems to violate the modelled physics in the logarithmic sub-layer. By
only correcting the turbulence production, the inertial equilibrium, i.e Pk − ε = fkPk 6= 0
in Ωw, is no more represented and does not provide a physical constraint to the turbu-
lence model in the bulk. With regards to the adjoint field k∗, positive deviations from
the equilibrium (i.e fkPk > 0) would translate to a very localized source term in the
adjoint equation. In that situation, diffusion is not strong enough by itself compared to
the adjoint production to redistribute k∗. We believe however that additional spatially
distributed information on turbulence, e.g velocity fluctuations, would help to balance
these local peaks. Nevertheless, the measure of this kind of quantity would require sophis-
ticated experimental apparatus (such us PIV measurements) making flow reconstruction
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impractical from a wind engineering perspective. Summing up, such a correction choice
might indeed be discarded in urban full-scale studies in which flow cannot be solved until
the viscous sublayer.

This would leave one last term in which the errors can be addressed, that is, the
modeled dissipation rate term (V). In this case, a similar issue is indeed encountered
regarding the inertial equilibrium constraint near the wall. Hence, to overcome this issue,
we might come up with two possible corrective solutions. On the one hand, we propose an
additional corrective term that balances the budget of the turbulent kinetic energy. The
whole balance between all terms is corrected with this choice, and we safely impose the
equilibrium within the inertial sublayer. Moreover, with the data, we hopefully reconstruct
a smooth and continuous parameter field in Ω . We can assume either that fk is an
additive term without any particular structure, or that it is an explicit function of k.
As proposed in chapter 5, a parameter constrained by the state variable would damp
unphysical behaviours compared to a direct additive term. Without loss of generality,
expressing it as a linear function of k ensures both consistency of the correction field
vis-a-vis turbulence model structure and, hence, the robustness of the DA procedure.
This dependency actually adds some (minimalistic) physical structuration to the added
parameter as we expressed as a function of the state variable. Thus, a model of correction
to the turbulent kinetic energy transport may read

∂ρUjk

∂xj
− ∂

∂xj

[(
µ+ µt

σk

)
∂k

∂xi

]
− µt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
∂Ui
∂xj

+ ρε = −fkk. (6.2)

The basic idea is to state that corrections of the transport of k are due to the turbulence
and thus, we reject unphysical corrections in regions with no turbulent kinetic energy.

On the other hand, concerning the dissipation rate V, it is modelled by ε the solution
of a dedicated transport equation. In order to correct it, one can consider an additive
corrective term on this equation. A corrective model on the dissipation rate budget may
read as

∂ρUjε

∂xj
− ∂

∂xj

[(
µ+ µt

σε

)
∂ε

∂xi

]
− C1(S, k, ε)Sε+ C2

ε2

k +√µε = −fεε, (6.3)

Like the energy transport equation, we choose an additive term offering both robustness
and some physical structuration through premultiplication by the variable ε. In fact, it can
be understood that this alternative model might allow a more structured representation
to the uncertainty underling the term (V) in the k budget. Corrections brought to the
energy dissipation rate budget in (6.3) are, first, redistributed before to being taken into
account in the kinetic energy budget model.

Given these two possibilities, it can be seen that a direct correction of the kinetic energy
budget would target both modeled energy input (from mean-shear by III) and energy
output (or dissipation by V). The effect would be similar to the correction through the
transport of eddy-viscosity in a model such as Spalart and Allmaras (1992), constituted
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by one closure equation, in the work by Franceschini and Sipp (2020). However, having
in hand what we call a two-equation model, structural errors is indeed targeted only at
the level of the kinetic energy output.

6.4 Sensitivities estimation

6.4.1 Adjoint models

The fact that, in both proposed models, additive terms are dependent on the state
variables, some modifications of the adjoint model are required. Yet, due to the linear
dependency of the source term on the state variable, the additional adjoint term is similar
to the term in the direct equations. Thus, in the case of a direct turbulent energy budget
correction, the adjoint equation on k∗ reads, in compact form, as

Mk∗ = −fkk∗, (6.4)

where Mk∗ is the adjoint turbulent kinetic equation derived from the original model (see
derivation in chapter 3). The minus sign on the right hand side is chosen only for conve-
nience, since it enables straightforward interpretation of the additive term as an energy
sink. Similarly, with the alternative correction model, the adjoint equation on ε∗ is intro-
duced as

Mε∗ = −fεε∗, (6.5)
for which Mε∗ is the default adjoint equation for ε. With regards to the adjoint boundary
conditions, since no flux are involved through the boundaries, no changes have to be
performed here. Hence, the same boundary conditions, derived from the original model,
is applied.

6.4.2 Optimality conditions and descent direction

Model correction for k budget Augmenting the cost by (6.4) and assuming no ex-
plicit dependency of the cost to the parameter fk, directional derivative of the Lagrangian
w.r.t. infinitesimal variations δfk leads to〈

∂L
∂fk

, δfk

〉
Ω

= 〈kδfk, k∗〉Ω ,

leading straightforwardly to express Lagrangian sensitivity to fk as

∂L
∂fk

= kk∗. (6.6)
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Model correction for ε budget Similarly, the Lagrangian sensitivity to the parameter
fε reads

∂L
∂fε

= εε∗. (6.7)

Regularization Here the explicit dependency of the cost function to both parameter
cases is omitted. For its remarkable improvement to the steepest descent algorithm (ad-
dressed in chapter 5), sensitivity fields are first projected onto the Sobolev space, i.e.
providing an alternative inner product than L2, in order to provide the descent direc-
tions and a regularization. Hence, the optimality condition with Sobolev gradient can be
determined by solving the following Helmholtz equation

∂L
∂β

H1

=
(

1
1 + l2sob

(I− l2sob∆)
)−1

∂L
∂β

for β = fk or fε,

in which the characteristic length scale lsob, i.e. the filtering size, is chosen to smooth
non-physical small scales.

6.5 Results
This section is dedicated to the results related to the investigation of the adjunction on

the realizable k− ε model of a distributed control parameter. First, we analyse parameter
sensitivity fields given by each of the two models, which corresponds to the first iteration
step of the data assimilation procedure, i.e. the gradient of the cost functional with respect
to the distributed control parameters for fk = fε = 0. Qualitative comparisons with
an additive forcing independent of the state variable are presented on the three planes
(two horizontal planes at z/D = 3.33, 0, 63 and the symmetry plane). Then, the data-
assimilation results are analysed.

6.5.1 Sensitivity fields
.

Structured control for k budget correction We analyse the sensitivity fields to
highlight the spatial locations where the transport equation of k requires a structural
correction. A quantitative validation is first performed to check the numerical consistency
of these sensitivity fields. As in the previous chapters, the computed sensitivities are
integrated into a volume of interest that surrounds the regions where sensitivities are the
most important to account for, e.g. the building and the wake region. We choose the same
volume of interest as before (centered around the building and of size 2.5H × 4H × 1.5H)
in which we perform the cell-volume weighted sum. This sum is then compared with
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∂J
∂fk

(×108)
AD 7.06
FD (δfk = 10−2) 12.89
FD (δfk = 10−3) 9.87
FD (δfk = 10−4) 9.56
FD (δfk = 10−5) 9.56

Table 6.1 – Sensitivity derivative w.r.t. fk computed from the proposed adjoint model
(AD) and the finite difference (FD) with different perturbation sizes.

Figure 6.1 – Adjoint turbulence kinetic and the constrained control at horizontal plane
with normalized height z/D = 0.63. Variables are normalized by their in-plan peak values.

the finite differences on the cost value for various uniform step sizes δfk, as shown in
table 6.1. The comparison shows that the adjoint based sensitivities become close to the
finite differences values as the step size decreases and converges to error levels of the
continuous adjoint method (Othmer, 2008; Zymaris et al., 2010).

Figures 6.1, 6.2 and 6.3 compare the sensitivity maps for the added control parameter
against a direct forcing, which corresponds to the adjoint variable on k∗. Let us recall that
the effect of pre-multiplication is to reject regions of high sensitivity but with less relevance
for turbulence modeling. For instance, in contrast with very diffused sensitivity maps for
the direct forcing, we note a tendency to bring significant adjustments starting from the
leading edges and progressing within the lateral shear layers, and more downstream in
the edges of the wake region. More specifically, constrained sensitivity maps show peaks
of interest in both shear layers from leading edges to the saddle point near the opposite
edge of the building around z/D = 0.63.

Moreover, let us note that the multiplication of the corrective source by the variable k
has damped sensitivities at regions where actually both production and dissipation terms
should contribute very slightly in the energy budget. This can be seen in figure 6.4 at the
high peaks of sensitivity observed around the wake centerline for the direct forcing visible
in figure 6.1.
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Figure 6.2 – Adjoint turbulence kinetic and the constrained control at horizontal plane
with normalized height z/D = 3.33. Variables are normalized by their in-plan peak values.

Figure 6.3 – Adjoint turbulence kinetic and the constrained control at symmetry plane.
Variables are normalized by their in-plan peak values.
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Figure 6.4 – Adjoint turbulence kinetic and the constrained control at horizontal plane
with normalized height z/D = 0.63. Variables are normalized by their in-plan peak values.
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∂J
∂fε

(×108)
AD -3.55
FD (δfε = 10−1) -14.03
FD (δfε = 10−2) -4.03
FD (δfε = 10−3) -4.45
FD (δfε = 10−4) -4.48

Table 6.2 – Sensitivity derivative w.r.t. fε computed from the proposed adjoint model
(AD) and the finite difference (FD) with different perturbation sizes.

Further remarks regarding the upstream flow, due to a relatively low level of inho-
mogeneity of turbulent kinetic energy (being originally homogeneous at the far inlet),
sensitivity is reduced with the modified forcing term as compared with a direct forcing
(see figure 6.3).

Due to the sign convention in model (6.4), we have to keep in mind that contributions
to the k budget correspond to a loss of kinetic energy. In other words, a negative fk would
be counted as an energy source and, inversely, it relates to a sink when it is positive.
Along leading top and lateral shear layers (x/D < 0.5), the additive term suggests to
reduce the energy production. Thus, parameters here deals with a commonly encountered
issue of an over-production by most k − ε closure models Singh and Duraisamy (2016);
Murakami (1990, 1997). Whereas in contrary, in the wake region, the parameter would
act as a feeding source of turbulent energy around x/D 0.5. This can be explained by the
fact, that in the standard k− ε model, the overly produced energy in the upstream region
is not enough entrained downstream to the recirculation region. This tendency is indeed
consistent with the need for a higher turbulent mixing (eddy viscosity) in the wake region
behind the building Shirzadi et al. (2017).

Structured control for ε budget correction This paragraph analyses the sensi-
tivity fields to highlight the spatial locations where the closure form of ε budget ap-
pears inadequate to reproduce the measurements. For quantitative validation, adjoint
sensitivities are compared with finite differences in table 6.3 for different perturbations,
δfε = {10−5, . . . , 10−1} constant inside Ωin and zero elsewhere. Thus, the lower deviation
obtained for a step size of 10−2, for which rounding errors are less effective, confirms the
validity of the implementation.

Figures 6.5, 6.6, and 6.7 compare the sensitivity maps for the added control param-
eter against a direct forcing, which corresponds to the adjoint variable on ε∗. Globally,
sensitivity to the proposed parameter fε shows a strong response in a restricted flow area.
They correspond, though, to the same regions as those designated by the sensitivity maps
of the global constants and the added control on k in the previous section: the shear layers
and the wake frontier.

As shown at height z/D = 3.33 in figure 6.6, the maps actually reveal a change of
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Figure 6.5 – Adjoint turbulence dissipation and the constrained control at horizontal plane
with normalised height z/D = 0.63. Variables are normalised by their in-plan peak values.

Figure 6.6 – Adjoint turbulence dissipation and the constrained control at horizontal plane
with normalised height z/D = 3.33. Variables are normalised by their in-plan peak values.

Figure 6.7 – Adjoint turbulence dissipation and the constrained control at symmetry
plane. Variables are normalised by their in-plan peak values.
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sign as we go from separated flow regions, i.e. bounded by the lateral and top shear
layers, toward the wake region. This change of sign is not observed at z/D = 0.63,
where the interest in correction is focused at the leading-edge extended shear layers.
Furthermore, concerning the sign, eventual contributions to the ε budget are interpreted
as follows. A negative value of fε would increase the dissipation rate, while a positive value
would instead decrease it. Hence, on both lateral and top separated flows, the parameter
suggests an increase of the dissipation rate. The sensitivity analysis points here an over-
production of turbulent kinetic energy, a common default of the k − ε closure models in
such flow configurations. This has been reported for instance in (Murakami, 1990, 1997;
Rodi, 1997). Moreover, along the outer edges of the lateral shears toward the wake edges,
the sensitivity maps suggest reducing the dissipation rate. This tendency is consistent
with an under-predicted turbulent mixing, resulting in the overly extended wake region
behind the building (Tominaga and Stathopoulos, 2010, 2017).

6.5.2 Reconstructed flows
We consider now the solutions of the data-model coupling using each of the modified

closure equations (6.5) and (6.4) . A steepest descent algorithm is used with the Sobolev
gradient descent direction. Regarding the choice of filtering, two values lsob = 0.1D and
0.2D are tested. Let us note that with lsob = 0, i.e no smoothing of the L2 gradient,
the procedure is notably unstable, showing the need for regularisation. As for a higher
value of lsob = 0.2D = 6 m, this choice leads to an over smoothing. As the sensitivity
varies by length scales that are quite small in comparison to this length, this advocates a
value of lsob ∼ lateral recirculation width. Therefore, a filtering length scale equivalent to
10% of the building’s width seems to give a good compromise to filter the small-scales,
also suggested also in Tissot et al. (2020). A maximum step size λ = 0.05 1

max( ∂L
∂α

) is fixed
for both models based on the sensitivity validation test, providing an upper bound to
the line-search. This upper bounding has provided a well scaled search direction and,
therefore a step length that is accepted in most iterations. Moreover, it is worth-noting
that shifting toward a first order upwind scheme, in both direct and adjoint computations,
was necessary to ensure the robustness of the procedure. Such a choice was mandatory
since second order schemes caused poor conditioning of the adjoint matrices and more
diffusion where it is needed.

In terms of objective, as shown in figure 6.8, the discrepancy with experiments has
reduced significantly using both models. In direct energy correction, the reduction of
the cost functional is of the order JJ0

' 0.3. This is more accurate than with ε budget
correction where J

J0
' 0.42. Indeed, this difference is consistent with the fact that the

effect of the additive parameter fk is less constrained by the turbulence model than fε.
Moreover, as compared to calibration in chapter 4, the cost functional reduction has more
than doubled compared to the calibration results obtained using the best scenario B
( JJ0
' 0.85). Indeed, this difference is consistent because the additive parameter fε is less

constrained by the parametric rigidity associated with the global coefficients.
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Figure 6.8 – Cost function reduction with local turbulence budget correction. Comparison
is made between a direct k budget correction and ε budget correction.

Wind load profiles The reconstructed pressure loads are compared with the experi-
mental data (Sheng et al., 2018) and the non-assimilated model in figure 6.9. We can see
that, in comparison with the coefficient calibration, the modified closure models produce
far better results in most of the building’s wall regions. Yet, globally, direct correction on
the k budget yields relatively better results. In figure 6.9(a), both models give a very good
agreement with data along the windward facade in the symmetry plane. At the leading
edges, both modified closure models manage to capture well suction at both top edge in
the symmetry plane (point B in sub-figure(a)) and lateral edges (see figure 6.9(b), (c), and
(d)). However, while a good agreement with the data is obtained along the lateral facades,
minor to important deviations are apparent as we get closer to the trailing edges, and
especially when we approach the high-end. This gradually leads to poorer pressure inter-
polation as the discrepancy reaches a maximum value at the upper leeward facade around
Href (sub-figure(a) and (b)). However across the windward facade, although the pre-
sumable erroneousness within data (near B in sub-figure(b) and (c)), both reconstructed
profiles preserve the symmetry. Therefore, both closure models improve the data-model
capability, at this level of comparison compared with the calibration process, with slightly
better results being achieved by direct correction in the k budget. The remaining regions
where no improvement is seen might reflect the limited controllability of such turbulence
model with wall pressure measurement, in comparison with the deformation corrections
(in the previous chapter). Nevertheless, it is noteworthy to mention that reconstructed
wall-pressure is robust vis-a-vis any eventual localized errors within the data. This shows
the advantage of giving confidence in the model structure by choosing a more “indirect”
parameter.

Wake centreline profiles Further results of the streamwise velocity in the wake cen-
treline, at two height levels (z/D = 0.63 and z/D = 3.33), are confronted to data from
the non-assimilated PIV results Sheng et al. (2018) in figure 6.10. In term of recirculation
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Figure 6.9 – Pressure coefficient profiles along building facades with local turbulence
budget correction. Comparison is made between a direct k budget correction and ε budget
correction.

Figure 6.10 – Streamwise velocity along centreline at z/D = 0.63 and z/D = 3.33 ele-
vations with local turbulence budget correction. Comparison is made between a direct k
budget correction and ε budget correction.
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Figure 6.11 – Streamwise velocity in the wake transverse at z/D = 3.33 with local con-
straint correction. Comparison is made between a direct k budget correction and ε budget
correction across streamwise positions x

D
= 1,2 and 3.

length, both models show a considerable reduction leading to a great agreement with the
experimental length at both elevations. Near the ground (z/D = 0.63), reconstructed
velocity profiles fits well with the experiments in the near wake. On the other hand, along
the upper recirculation motions at z/D = 3.33, a significant difference with data was
obtained with both models, in which the peak of streamwise velocity is under-predicted.
Let us note that the default model does already under-estimate this peak, which is related
to the under prediction of wall-pressure observed at the upper half of the leeward wall.
In fact, this tendency has to be expected as turbulence model output will always extract
momentum from high to low momentum flow regions through eddy diffusion effects. As
previously seen in the sensitivity analysis for both models, control parameters advocate
higher turbulent energy (and equivalently lower dissipation for ε) at the wake edges. With
this informations being entrained toward the symmetry plan, this seems to increase the
extraction of mean streamwise momentum, as k, ε and hence µt have seen their value in-
creased at the symmetry plane. This effect continues to play a role as we go downstream
with the far wake (x/D > 2) that deviates progressively from the data.

Wake transverse profiles With regards to the transverse-wise distributions (in the
y direction), streamwise velocity distribution is also shown at three streamwise locations
x−xb
D

= 1, 2, 3 downstream of the building leeward wall (xb = 0.5D) in figure 6.11. Despite
the significant mismatch around the wake centerline at (z/D = 3.33), both reconstructed
profiles agree well with experiments on the recirculation edges (see 6.11(a)). Note that
globally, symmetry with the plane y/D = 0 is well preserved by both corrective models.

Further results on the transverse velocity component are compared in figures 6.12
and 6.13. Across the wake, both reconstruction strategies leads to a significant profile’s
adjustment at y/D ' ±0.9, as the free-stream flow (with high streamwise momentum) is
being entrained toward the symmetry plane. As we go downstream, both reconstructed
profiles gradually deviate toward the non-assimilated model’s predictions.

In addition, the fact we correct the quantity of the turbulence description, which
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Figure 6.12 – Transverse-wise velocity in the wake transverse at normalized height z/D =
0.63 with local constraint correction. Comparison is made between a direct k budget
correction and ε budget correction across streamwise positions x

D
= 1,2 and 3.

Figure 6.13 – Transverse-wise velocity in the wake transverse at normalized height z/D =
0.63 with local constraint correction. Comparison is made between a direct k budget
correction and ε budget correction across streamwise positions x

D
= 1,2 and 3.
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Figure 6.14 – 2D contours of Reynolds stress component < uv > on horizontal plane
at normalized height z/D = 3.33 with local constraint correction. Comparison is made
between a direct k budget correction and ε budget correction

is directly involved in the eddy viscosity relationship, comments on the reconstructed
Reynolds tensor by each of the models can then be addressed. Two dimensional con-
tours of the off-diagonal component u⊗ v (transverse-wise) are presented in comparison
with the processed PIV data (see figures 6.15 and 6.14). Within the upper recirculation
region (figure 6.14), compared with the non-assimilated model (figure 6.14(a)), both re-
constructed maps show increased turbulent stress component particularly on the edges
of the wake region. This increase is remarkably achieved with a direct correction in the
k budget (figure 6.14(c)). Although the better agreement on the location of the peak
anisotropy ((x/D, y/D) ' (2,∓0.9), both models still under-predicts this peak value, as
anisotropy still arises from the mean flow strain and not from turbulent scales. Never-
theless, the tendency is indeed consistent with the data while the default model fails.

Flow topology In order to assess if the solution can be considered as physical, the
reconstructed flow structure is further analysed here. Figure 6.16 shows time averaged
sectional streamlines at the y = 0 symmetry plane. Thus, regarding the wake’s exten-
sion, the modified closure models leads to a drastic reduction of the recirculation region
(figures 6.16(b) and (c)). Two types of typical average streamlines are produced: an up-
per recirculation starting at the roof-top and a lower recirculation region raised from the
ground wall. Both are separated by a saddle point. This can be quantified by the position
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Figure 6.15 – 2D contours of Reynolds stress component < uv > on horizontal plane
at normalized height z/D = 0.63 with local constraint correction. Comparison is made
between a direct k budget correction and ε budget correction.

Figure 6.16 – Flow topology (2D) on symmetry plane with local constraint correction.
Comparison is made between a direct k budget correction and ε budget correction.
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Figure 6.17 – Flow topology (2D) on horizontal plane at normalized height z/D = 0.63
with local constraint correction. Comparison is made between a direct k budget correction
and ε budget correction.

of the saddle point (x/D = 4,z/D = 2) in the RANS model which has been moved around
(x/D = 2,z/D = 2) with fε as a parameter and (x/D = 1,z/D = 2) with fk instead. This
striking result is mitigated by the fact that this saddle point has been pulled slightly too
far upstream, especially with the correction on the k budget. It should be recalled that
only pressure measurements in the facade have been available and that PIV measurements
are used here only for validation. This good agreement with external data proves that we
are neither in overfitting nor in an over-constrained situation. So far, parameter structura-
tion through ε closure equation seems to yields a more realistic upper/lower recirculation
flow topology.

With regards to the spanwise flow structure, figures 6.17 and 6.18 show sectional
streamlines at both z/D = 0.63 and z/D = 3.33 heights, respectively.

Both reconstruction models preserved symmetry of the two distinct pairs of averaged
vortex structures at both elevations. Moreover, note a fair agreement in its transverse
extension and the position of their respective focal points. At both elevations, no major
difference is observed in between the two reconstructions. However, due to the overly
retracted recirculation in the case of k budget correction, connections between the base
and top vortices was broken around the saddle point level, as shown in 3D reconstructed
streamlines (see figure 6.19(a)). Nevertheless, with fε as a control parameter, the two-
dimensional vortices at both elevations (z/D = 0.63, 3.33) are a transverse projection of
the three-dimensional rolls, one on each side of the wake symmetry plan, reminiscent of the
vortex shedding. The saddle point thus marks the early change of orientation of the mean
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Figure 6.18 – Flow topology (2D) on horizontal plane at normalized height z/D = 3.33
with local constraint correction. Comparison is made between a direct k budget correction
and ε budget correction.

wake vortices; from spanwise rolls (although the PIV suggests an arch-like structure with
upstream inclination) in the bottom, toward a transverse down-wash vortex resulting from
the high end. Such structure is consistent with some model descriptions brought on wakes
of finite length square cylinders, with similar height/width ratio, subject to boundary
layer flows of various thicknesses (Kawamura et al., 1984; Wang and Zhou, 2009).

Note that the exaggerated retraction of the saddle point, for fk as a parameter, co-
incides with the height z/D ' 3 where wall-pressure errors reach their minimum at the
leeward wall (6.9(a) section ’"CD"’). Indeed, to achieve lower pressure discrepancy under
recirculating fluid, model have significantly increased turbulent diffusivity, leading to an
over-estimation of the diagonal components of the Reynolds stress tensor (dominated by
uz

2). The latter peak value was reached in the vicinity of the leeward wall region (centred
on the symmetry plan) at the saddle point. This observation holds with the fε parameter,
yet, with lower peak values and with slight shift upward and downstream (but still miss-
ing the PIV measured position). This explains the slightly better wake extension. This
recalls an intrinsic limiting factor of the turbulence model, i.e. isotropic assumption of
the eddy viscosity, which prevents the DA reconstruction from a proper redistribution of
turbulent shears. However, we suspect that this would have concerned other turbulence
models built based on this assumption.

Besides, as the corrections to the flow should come only from diffusive effects (Boussi-
nesq assumption), this clearly adds another limiting barrier as we still miss other energy
exchange mechanisms. For instance, some authors denoted a possibly negative eddy vis-
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(a) (b)

Figure 6.19 – Flow topology (3D) with local constraint correction. Comparison is made
between a direct k budget correction, (a) and ε budget correction, (b).

cosity, i.e. acting as an anti diffusion. It provides instead energy into the mean flow, e.g in
the shear of separated flow (Cimarelli et al., 2019). Note that computing the stress tensor
from the available PIV data by assuming the Boussinesq relation between the measured
Mean-strain and the shear-stress components, suggest that this is a plausible idea for the
flow configuration we are considering at the symmetry plane. To propose an alternative
solution, while maintaining the positive assumption on νt, we propose to investigate the
coupling of the two kind of corrections; the ones considered in the direct correction of
deformation (from chapter 5) and the one which acts on the turbulence closure equa-
tion. The choice of the forms of control parameter plays a huge role here, as we intend
an efficient hybridization such that their contributions complement themselves. We note
that this is far from being an easy task as it requires a proper scaling between the two
corrections.

6.6 Guidelines for efficient flow reconstruction

6.6.1 Control parameter
In order to refine flow reconstructions, we consider in this section to consider two

kind of control parameters; one forcing vector field acting on the momentum equations
and a scalar forcing field acting on the transport equation of ε. A structured form of the
forcing on the momentum equation is chosen. The present choice is motivated based on
the numerical tests performed in the previous chapters, in view of acting on two different
physical mechanisms.

This choice is motivated based on the following observations. It has been shown in
chapter 5, that forcing directly on the momentum equation leads to overfitting. Indeed,
the wall-pressure is well represented, but the flow field is unphysical. A way to structure
this forcing on the momentum equation is to premultiply it by |∇k|. This leads to a good
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reduction of the wall-pressure discrepancy, with perfromances comparable to the direct
forcing. However with regards to the flow field, from its sensitivity maps, the corrections
are mainly performed in the lateral and top shear layers, but not in the wake region.
Consequently, it was observed that this forcing did not lead to reduction of the wake
extension. This can be interpreted as a missing component necessary for better momentum
mixing representation.

On the other hand, forcing on the transport of ε leads to impressive reduction of the
recirculation length. We interpret this by the fact that it acts on the turbulent mixing,
relevant to predict the shape of the wake. The counterpart uses a very structured model,
whose constraints forbid to reach some states that could be physical.

With the objective of performing the best flow reconstruction possible, we believe that
it is important to combine the advantages of both strategies, since they apparently act
on two separate mechanisms. The model proposed here reads as

∂(ρUjUi)
∂xj

+ ∂

∂xi

(
P + 2

3ρk
)
− ∂

∂xj

[
µeff

(
∂Ui
∂xj

+ ∂Uj
∂xi

)]
= −fui |∇k| (6.8)

∂Ui
∂xi

= 0 (6.9)

Mk = 0, (6.10)
Mε = −fεε (6.11)

where Mk and Mε embeds the terms from of the base model (see chapter 2).

6.6.2 Descent direction

The adjoint model is simply the combination of the adjoints to the individual models
(along with their boundary conditions). Thus, given the adjoint state, the optimality
conditions are collected as follow:

∂L
∂fui

= |∇k|U∗i , (6.12)

∂L
∂fε

= εε∗. (6.13)

The explicit dependency of the cost function to the parameter is omitted here and,
thus, a regularization of the descent direction using Sobolev gradient (in H1)was chosen.
Moreover, we have investigated the combinations of the two regularization techniques; i.e.
the penalization of the gradient and the use of Sobolev gradient. Given the very sparse
observations, we believe that combining both ensures at the same time an improved
descent for the minimization algorithm and a robust data-model coupling.
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6.6.3 Quality assessment for flow reconstructions

Results of the reconstruction by the model are discussed herein compared to the pre-
viously investigated models. The quality of the reconstruction by each coupling strategy
is particularly evaluated upon the definition of some validation metrics. These metrics are
proposed to compare the interpolation quality, i.e. the ability to reconstruct the wall pres-
sure on the building based on sparse measurements, and the extrapolation/generalisation
quality, i.e. the velocity field reconstruction. For the former purpose, we consider the
pressure coefficient error, rescaled by the initial error of the uncorrected RANS model
(with subscript 0). The considered pressure is taken at particular positions, where the
experimental measurements reach a maximum or a minimum. Four positions have been
chosen: along the symmetry plane y/D = 0, the stagnation point, and the maximum
suction position at the roof top. Moreover, maximum suction at one of the lateral facades
at z/D = 0.3 and z/D = 3.33 have been selected. These strategic points are important to
be accurately predicted in terms of structural dimensioning of the building, since they can
be linked to an estimate of the instantaneous peak pressure values if they are informed
by the turbulent intensity (as recommended in (EN, 2005)). At a position j, the pressure
criteria is as follows:

Mj
1 =

∣∣∣∆Cj
p/∆Cj,0

p

∣∣∣ .
Since a criteria based on a punctual value can lack of robustness, an average metric for
the predicted peaks of mean wind loads is defined as

A1(M1) = 1
np

np∑
j

Mj
1. (6.14)

where np denote the number of selected points. We note that, from a structural view
point only, the metric M1 (along with the objective function) is a sufficient validation
quantity as it permits to assess the estimate of peak temporal pressure that results from
wind gusts.

Regarding the prediction of the wind surrounding the building, since the physical
features of the flow may not be retrieved even with accurate wall-pressure predictions,
additional flow metrics are needed. To asses extrapolation performances, we consider two
criteria, namely Mj

2 which quantifies the degree of reduction of the recirculation length
L?,jx (? indicate non dimensionality) measured at a height zj andMj

3 that measures the
error made in the prediction of the largest upstream velocity U?,j

xmin along the line on the
symmetry plane at the height zj. Flow metrics are also normalised by the values of the
uncorrected model

Mj
2 =

∣∣∣∆L?,jx /∆L?,j,0x

∣∣∣ ,
Mj

3 =
∣∣∣∆U?,j

xmin/∆U
?,j,0
xmin

∣∣∣ .
Given these two quantities, two measures of the flow reconstruction quality can be

given by defining their corresponding averages A1(M2) and A1(M3), similarly than equa-
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tion (6.14). Moreover, a third metric representing the overall wake extend prediction is
defined as a weighted sum of the ratio between the improvement made in L? over the loss
in precision on U?

xmin ,

A2(M2,M3) =
(1− 1

nz

∑nz
j M

j
2)

1
nz

∑nz
j M

j
3

where nz denote the number of considered heights. Note that this averaged metric is
considered to be the most relevant among the three flow averaged metrics (the other two
are A1(M2), A1(M3)) as it enables evaluating the compromise between the two measures
and provides an insight to the quality of reconstruction. The choice of metric is not
unique, and the present choice has the advantage to be more sensitive than a standard
L2(Ω) norm, by being oriented toward a worst-case scenario in identifying maximum
values. The average over several peak values confers robustness in the metric.

The first wall-pressure metric (M1) was computed for four measurement points at
the locations (x/D, y/D, z/D) where mean pressure reaches its local extrema (table 6.3);
at the stagnation point (−0.5, 0, 4.13) and at the maximum suction points (0, 0, 4.9 =
H/D), (0.45, 0.5, 3.3) and (−0.33, 0.5, 0.33). The other two metrics are given in table 6.4,
measured at three heights, namely z/D = 0.33, 2, 5, 3.33 in the symmetry plane.

Averaged metrics are collected in table 6.5. Tables summarize results of the current
(hybrid) parametrization with different regularization levels, the individual, direct forcing
form, the structured force alone, and the corrected closure on ε budget alone.

These quantitative comparisons are accompanied with plot of the cost function reduc-
tion, illustrated in figure 6.20, and wall-pressure distributions, in figure 6.21.

Objective reduction assessment Here, we explore the effect of adding a penalty reg-
ularisation in addition to the Sobolev descent direction. Three penalization scaling factors
of the momentum forcing were considered: ζfui = 0.1, 0.25, 0.5, with a given penalization
to ε fixed at ζfε = 15. At the opposite, let us note that fixing instead ζfui and sweeping
ζfε , leads to a symmetric trend. As expected, high values of ζfui leads to large constraints
to the optimisation, while lower values does not efficiently suppress non-physical oscilla-
tions. For the penalty on ε, low values of 0 � ζfε < 15 tested with ζfui = 0.1 does not
lead to a further improvement in the objective. The fact that penalization of fε has only
a slight effect on the minimum objective, confirms the dominance of the direct forcing
in correcting the wall-pressure. Nonetheless, a high impact on the flow field should be
expected; as fε affects the bulk momentum diffusion.

Optimizing with Sobolev filtering solely shows that the added force with modified
closure allows further reduction of the objective compared with the same forcing and no
closure correction. Yet, with the addition of penalty terms, the coupled scaling (ζfui , ζfε) =
(0.1, 15) enables the objective to reach its lowest level so far. However, the average wall-
metric (A1(M1)) favours the structured force with both standard and modified closure,
with an average reduction by 85−89% from the uncorrected model. This was particularly
observed without penalty. Thus, the conjunction of L2penalization/Sobolev gradient bury

128



6.6. Guidelines for efficient flow reconstruction

C
p

m
ax
,C

p
m

in
(y
/
D

=
0)

C
p

m
in

(z
/
D

=
3.

33
,

0.
33

)
M

1
(%

)

Sh
en
g
et

al
.(

20
18
)

1.
05
,-
1.
16
6

-0
.9
9,

-1
.0
87

-
re
a
li
z
a
bl
e
k
−
ε

1.
11
7,

-0
.7
99

-0
.5
69
,-
0.
70
6

10
0

f u
,
l s
o
b

=
0.

1D
1.
04
6,

-1
.1
15

-0
.8
73
,-
0.
97
2

5.
97
,1

3.
89
,2

7.
79
,3

0.
18

|∇
k
|f
u
,
l s
o
b

=
0.

1D
1.
06
5,

-1
.1
60

-0
.9
96
,-
1.
00
6

22
.3
8,

1.
63
,1

.4
2,

21
.2
6

|∇
k
|f
u
f ε
,
l s
o
b

=
0.

1D
1.
06
9,

-1
.1
68

-0
.9
60
,-
1.
00
1

28
.3
5,

0.
54
,7

.1
2,

22
.5
7

|∇
k
|f
u
,
f ε
,
l s
o
b

=
0.

1D
,

(ζ
f
u
,ζ
f
ε
)=

(0
.1
,1

5)
1.
02
98
,-
1.
15
2

-0
.9
24
,-
0.
97
4

30
.1
5,

3.
81
,1

5.
67
,2

9.
66

|∇
k
|f
u
,
f ε
,
l s
o
b

=
0.

1D
,

(ζ
f
u
,ζ
f
ε
)=

(0
.2

5,
15

)
1.
04
0,

-1
.1
44

-0
.8
83
,-
0.
94
9

14
.9
2,

5.
99
,2

5.
41
,3

6.
22

|∇
k
|f
u
,
f ε
,
l s
o
b

=
0.

1D
,

(ζ
f
u
,ζ
f
ε
)=

(0
.5
,1

5)
1.
06
0,

-1
.1
27

-0
.8
42
,-
0.
93
1

14
.9
2,

10
.6
2,

35
.1
5,

40
.9
4

f ε
,
l s
o
b

=
0.

1D
1.
12
4,

-0
.9
18

-0
.6
99
,-
0.
98
3

11
0.
4,

67
.5
7,

69
.1
2,

27
.2
9

Ta
bl
e
6.
3
–
M
ax

im
um

st
ag
na

tio
n
(lo

ca
te
d
by

th
e
do

tt
ed

lin
e
in

fig
ur
e
6.
21

(a
))

an
d
m
ax

im
um

su
ct
io
n
(lo

ca
te
d
by

th
e

da
sh
ed

lin
es

in
fig

ur
e
6.
21
(a
),(

b)
,(d

))
w
ith

di
ffe

re
nt

pa
ra
m
et
riz

at
io
n.

L
? x

U
? x

m
in

M
2(

%
)

M
3(

%
)

Sh
en
g
et

al
.(

20
18
)

1.
85
5,

2.
13
2,

1.
93
4

-0
.1
69
7,

-0
.4
69
6,

-0
.4
21

-
-

re
a
li
z
a
bl
e
k
−
ε

4.
15
4,

4.
01
,3

.1
77

-0
.1
97
,-
0.
20
3,

-0
.1
81

10
0,

10
0,

10
0

10
0,

10
0,

10
0

f u
,
l s
o
b

=
0.

1D
2.
92
4,

2.
89
,2

.1
6

-0
.1
46
,-
0.
13
8,

-0
.0
95
,

46
.4
9,

40
.3
,1

8.
18

86
.8
1,

12
4.
4,

13
5.
83

|∇
k
|f
u
,
l s
o
b

=
0.

1D
2.
63
5,

3.
56
,2

.7
5

-0
.1
77
,-
0.
26
4,

-0
.2
11

33
.9
,7

6,
65
.6
4

26
.7
4,

77
.1
,8

7.
5

|∇
k
|f
u
f ε
,
l s
o
b

=
0.

1D
2.
43
3,

2.
40
4,

2.
33
2

-0
.1
58
,-
0.
12
,-
0.
15
8

25
.1
4,

14
.5
,3

2.
02

43
.2
2,

13
1.
1,

10
9.
6

|∇
k
|f
u
,
f ε
,
l s
o
b

=
0.

1D
,

(ζ
f
u
,ζ
f
ε
)=

(0
.1
,1

5)
2.
28
9,

2.
42
,2

.3
61

-0
.1
14
8,

-0
.1
05
,-
0.
14
35

18
.8
7,
15
.3
,3

4.
35

20
1,

13
6.
7,

11
5.
6

|∇
k
|f
u
,
f ε
,
l s
o
b

=
0.

1D
,

(ζ
f
u
,ζ
f
ε
)=

(0
.2

5,
15

)
2.
18
8,

2.
32
,2

.3
03

-0
.0
98
9,

-0
.0
91
,-
0.
13
45

14
.4
8,

10
,2

9.
68

25
9.
3,

14
2,

11
9.
3

|∇
k
|f
u
,
f ε
,
l s
o
b

=
0.

1D
,

(ζ
f
u
,ζ
f
ε
)=

(0
.5
,1

5)
2.
21
7,

2.
17
4,

2.
24
5

-0
.1
04
,-
0.
08
,-
0.
11
97

15
.7
4,

2.
2,

25
.0
2

24
0.
65
,1

47
,1

25
.5
4

f ε
,
l s
o
b

=
0.

1D
2.
05
5,

1.
76
6,

1.
98
3

-0
.1
34
5,

-0
.0
55
,-
0.
10
63

8.
69
,1
8.
9,

3.
94

12
8.
9,

15
5.
5,

13
1.
1

Ta
bl
e
6.
4
–
N
or
m
al
iz
ed

R
ec
irc

ul
at
io
n
le
ng

th
L
? x
an

d
pe

ak
st
re
am

w
ise

ve
lo
ci
ty

U
? x
in
sid

e
th
e
re
ci
rc
ul
at
in
g
flo

w
at

tw
o

he
ig
ht
z/
D

=
(0
.6

3,
2.

5,
3.

33
)o

n
th
e
sy
m
m
et
ry

pl
an

e
(y
/D

=
0)

w
ith

di
ffe

re
nt

pa
ra
m
et
riz

at
io
n.

Va
ria

bl
es

ar
e
no

rm
al
iz
ed

by
D

an
d
U
r
ef
,r
es
pe

ct
iv
el
y.

129



Chapter 6 – data-assimilation for structured corrections through turbulence modelling

εJ = J end/J 0(%) A1(M1)(%) A1(M2) (%) A1(M3) (% ) A2(M2,M3)

Sheng et al. (2018) - - - - -
realizable k − ε 100 100 100 100 -

fu, lsob = 0.1D 20.9 19.45 34.99 115.68 0.56
|∇k|fu, lsob = 0.1D 26.9 11.67 58.51 63.78 0.65
|∇k|fu fε, lsob = 0.1D 23.69 14.645 23.89 94.64 0.8
|∇k|fu, fε, lsob = 0.1D, (ζfu , ζfε) = (0.1, 15) 20.25 19.82 22.84 151.1 0.51
|∇k|fu, fε, lsob = 0.1D, (ζfu , ζfε) = (0.25, 15) 25.2 20.63 18.05 173.5 0.47
|∇k|fu, fε, lsob = 0.1D, (ζfu , ζfε) = (0.5, 15) 28.97 25.40 14.32 171.06 0.50
fε, lsob = 0.1D 43.4 68.59 10.51 138.5 0.64

Table 6.5 – Summarizing scores for reconstruction quality assessment.

Figure 6.20 – Cost function reduction under a correction of a structured force with a mod-
ified closure applied on ε budget for different penalization (ζfu , ζfε) = ([0.1 0.25 0.5], 15).
Comparison is made with the separate optimisation of:(black cercle), raw-force, (blue
square), structured force, with default closure, and (yellow triangle), modified closure
made at the ε budget. The steepest descent direction is improved for all algorithms by
the use of Sobolev gradient with filtering length scale lsob = 0.1D.
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6.6. Guidelines for efficient flow reconstruction

Figure 6.21 – Pressure coefficient profiles along building facades under a correction of
a structured force with a modified closure applied on ε budget for different penaliza-
tion (ζfu , ζfε) = ([0.1 0.25 0.5], 15). Comparison is made with the separate optimisation
of:(black cercle), raw-force, (blue square), structured force, with default closure, and (yel-
low triangle), modified closure made at the ε budget. The steepest descent direction is
improved for all algorithms by the use of Sobolev gradient with filtering length scale
lsob = 0.1D.
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Chapter 6 – data-assimilation for structured corrections through turbulence modelling

a limited capability to capture theses extrema. Let us note that dealing with experimental
data, that are susceptible to imperfections, leads to errors deemed important whatever
parametrization is used. For instance, this can be seen in the suction point located at the
lateral face (at z/D = 0.33) in which improvement stays within 60− 79% for all models
(in table 6.3). Moreover, although the qualitatively good agreement with data obtained in
the leeward faces with the direct forcing (see figure 6.21), averaged wall-metric does not
favour it over a more structured forcing. Recall that the great agreement in the leeward was
associated with a consequent loss of flow features in the near wake, especially the spanwise
vortex created downstream of the roof-top trailing edge. So far, with this wall-metric, it
can be concluded that a structured forcing is actually better suited to estimate peak
wall pressure than a highly flexible form. Moreover, a good prediction of the momentum
diffusion adjustment can be achieved by the closure parameter fε. Evermore, by combining
structured forcing on the momentum equation and correction on the closure parameter
fε with a slight penalty still leads to good performances for wall-pressure reconstruction.

Wake predictions Examining the averaged flow metrics A1(M2), A1(M3) reveals a
reversed trend between them. As a matter of fact, the more reduction of the recirculation
length, the worst the prediction of the peak streamwise velocity. With no penalization took
into consideration, the only adjustment of the closure (by fε) enables the lowest bubble
extension but leads to the least accurate predictions, falling outside the base model error.
On the other hand, the only correction of the structured force leads to the least wake
contraction and the best error decrease.

With the penalty, this dis-proportionality is more accentuated, as the parameter is
further smoothed. In order to properly account for this dis- proportionality and derive a
concise performance evaluation, the compromise quantity A2(M2,M3) becomes relevant
(table 6.5). We recall that this quantity relates the degree of improvement in recirculation
length (and not the error itself) with the peak error upstream velocity. Since both quanti-
ties have opposite trend, it measures the compromise between them. From table 6.5, it can
be observed that the synchronous adjustment of the closure with the force provides the
better compromise (A2 = 0.8), and this is better achieved with no penalization, A2 with
penalty ranging around 0.5. It can be also seen that the direct forcing gives even a lower
compromise (A2 = 0.56) as compared with the most constrained parametrization by only
correcting fε (A2 = 0.64). This suggests that this metric can be partially representative
of the quality of reproduction of flow features. As the former fails in reproducing physical
patterns in the recirculation region, such as the spanwise vortex in at the high end, while
the latter fairly reproduces it. So far, it is noteworthy to mention that the trend of the
performance given by A2 for each parametrization seems to agree with the trend of the
wall-pressure accuracy. Both point out that the structured form with and without closure
adjustment offers overall better quality in reconstruction. Let us note that this agreement
suggests a consistency between wall pressure and wake, since dynamics of the wake drives
the back pressure of the building. In such a complex three-dimensional flow, this consis-
tency between metrics is not staightforward and is dependant on the metric definition.
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6.7. Conclusions

The conditions for consistency may be investigated in future work.
As we go further and examine the actual flow topology, illustrated in figures 6.23

and 6.22, it can be seen that correcting at the same time (|∇k|fu, fε) leads to a solution,
intermediate between both individual corrections (|∇k|fu, 0) and (0, fε).

In the symmetry plan, we clearly see a recirculation bubble greatly reduced and a
saddle point location in a good agreement with PIV data. It is however still noted that
the model pulls the focal point near the high end to the leeward facade, effect performed
to (over)fit the wall-pressure at the high end of the leeward facade. Nonetheless, this re-
maining overfitting artefact is very limited in space as the transverse structures are greatly
retrieved. The reconstructed flow still recovers the lateral vortex rolls, which extend from
the ground and meet at the high-end vortex on the symmetry plan, with the focal points
in the horizontal planes being well captured until height z/D = 3.33 with downstream
location of x/D ' 1.5. This location is right intermediate between the base RANS and
the PIV (x/D ' 1) (see figure 6.23). Note that, except with the correction of fε solely,
both structured/raw form of forcing with default closure does not capture them at all.

Therefore, by considering both the qualitative observations of the flow features and the
proposed wall/flow metrics, it can be summarized that combination of a direct forcing
on the momentum equation with simple structuring form along with a forcing on the
transport equation of ε is a quite promising strategy, as it ensures overall a good quality to
the reconstruction. However, it is worth-noting that although the quantitative flow metric
A2 did not favours the penalization, examining the qualitative flow topology suggests
possible restitution of some physical features. This was observed by the re-capturing of
the high-end focal point with the couple of scaling (ζfui , ζfε) = (0.5, 15), which is otherwise
absent (see figure 6.24). Therefore, providing a penalization plays an important role in
refining the flow features; yet, an adequate couple of scaling is required to provide a good
compromise between a well interpolated wall-pressure and a best retrieval of realistic flow
patterns.

Despite the quality benefits on the final flow field, it can be noticed that with a penalty,
a robust DA procedure can be ensured. In this study, the L2 norm of the gradient was
minimized. Regularisation in minimisation problems is a wide research area in itself, and
other strategies exist, such as L-curve method, physical-based background covariance ma-
trix definitions, or sparsity promoting with L1 norm regularisation (Farchi and Bocquet,
2019). Moreover, by further expanding its dimension, a supervised tuning of the scaling
factor can be performed on a specific region.

6.7 Conclusions
In this chapter, we performed a further investigation of the variational approach for

the reconstruction of mean flow around the high-rise building. We recall that only pressure
measurements in the facades have been assimilated. After addressing possible sources of
modelling errors, underlying the different layer of assumptions used to build the closure,
it was seen that inferring a control parameter embedded in a term-by-term basis, yields
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Figure 6.22 – Flow topology (2D) on symmetry plane. Comparison with flow reconstruc-
tion,(e) , under a correction of a structured force with a modified closure applied on ε
budget with no penalization, (b), raw-force, (c), structured force, with default closure, and
(d), modified closure made at the ε budget. The steepest descent direction is improved
for all algorithms by the use of Sobolev gradient with filtering length scale lsob = 0.1D.
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6.7. Conclusions

Figure 6.23 – Flow topology (2D) on horizontal plane at normalized height z/D = 3.33.
Comparison with flow reconstruction,(e) , under a correction of a structured force with a
modified closure applied on ε budget with no penalization, (b), raw-force, (c), structured
force, with default closure, and (d), modified closure made at the ε budget. The steepest
descent direction is improved for all algorithms by the use of Sobolev gradient with filtering
length scale lsob = 0.1D.
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Figure 6.24 – Flow topology (2D) on symmetry plane. Comparison with flow recon-
struction,(a) , under a correction of a structured force with a modified closure applied
on ε budget with no penalization, (b), with penalization (ζfui , ζfε) = (0.1, 15), (c),
(ζfui , ζfε) = (0.5, 15). The steepest descent direction is improved for all algorithms by
the use of Sobolev gradient with filtering length scale lsob = 0.1D.

136



6.7. Conclusions

ill-conditioned matrices of the adjoint model which leads to numerical instabilities. For
example, a correction of the production term for k just by itself, causes inconsistency
of the model with the near-wall treatment. To overcome these limiting factors, we have
considered the adjunction of distributed parameters, enabling the reconsideration of the
closure at a structural level. With the considered turbulence model, we have introduced
two corrective strategies for its closure; one on the transport equation for the energy k,
and the second one on its dissipation rate ε. The shape of the parameters were chosen
to complement the turbulence model in terms of local source/sink mechanism. As a sen-
sitivity field is generally not very regular for distributed parameters, searching for the
control parameter in Sobolev’s space H1(Ω) was proposed here for both a regularisation
purpose and to define an improved descent direction for the minimising technique. Let
us note that, along with the use of Sobolev gradient, the robustness of the DA procedure
was enabled as a first order numerical scheme to solve the dual dynamics.

Both parameters sensitivity maps highlighted regions where global constants (from
chapter 4) are not too sensitive (i.e. the wake) and exhibit relatively less variability in
term of sign changes. Their maps have actually revealed binary tendencies, separating
the lateral and top shear regions and the wake flow. Regarding the reconstruction ability,
compared with coefficient calibration, the modified closure models produced better results
in most of the building’s wall regions in terms of wind load profiles. An excellent agreement
with PIV experiments was obtained in wake transverse extension. This good agreement
with measurements of different nature and that have not been used in the assimilation
proved that we are neither overfitting the data nor in an over-constrained situation

Yet, as the flow adjustment comes only from diffusive effects (Boussinesq assumption),
results suggest some remaining restrictions as reconstructed profiles tend toward the orig-
inal model in some regions and limiting barrier as we still miss other energy exchange
mechanisms. To propose an alternative solution, while maintaining the Boussinesq as-
sumption, we proposed investigating the coupling of a direct correction of deformation
and the adjustement the turbulence closure equation. Toward an efficient hybridization,
control parameter forms has played a huge role here. The structured force were chosen
over the raw form for its consistency and for its close relation (in its effect) with Reynolds
isotropic part. The reconstruction results were then discussed, and the quality of the re-
construction was evaluated visually and by the definition of some wall/flow validations
metrics. Comparison is made with the direct correction with standard closure. Both the
qualitative observations of the flow features and the proposed wall/flow metrics show
that the combination of a direct forcing with simple structuring form and local closure
adjustment is a quite promising strategy as it ensures overall a good quality to the recon-
struction. Moreover, the conjunction of Sobolev gradient /L2 gradient penalization may
help refine the quality of the flow feature; yet, an adequate couple of scaling is still needed
to provide a satisfactory compromising between wall-pressure interpolation and retrieval
of realistic flow patterns. Besides the quality benefits on the final flow field, it was noticed
that a rather robust DA procedure could be ensured with the addition of penalty. It is
thus suggested that an L1 norm might help to improve toward that end.
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Chapter 7

CONCLUSION

7.1 Work summary

The present investigation aimed to devise and investigate variational data assimilation
(VDA) methodologies for the prediction of turbulent wind flows around big-structures.
The Reynolds Averaged Navier-Stokes equations (RANS) constitute the base mathemati-
cal model to describes the mean flow state. For its improved capability to account for the
energy transfer with strong strain rates, the realizable revision developed by Shih et al.
(1995) is chosen also as a reference turbulence closure. The inflow wind profile models
the lower part of the atmospheric boundary layer, under the assumption of horizontal
homogeneity. The case on which we focus on in this study is dedicated to the analysis of a
high-rise building with a square section and an aspect ratio of H/D ∼ 5. The data we have
considered for the assimilation is the averaged wall-pressure measured on a scaled model
of the building in a wind tunnel experiment by Sheng et al. (2018) at CSTB (Nantes,
France). This constitutes a first step towards the application of VDA procedure to prac-
tical situations in structural wind engineering in which field measurements on significant
part of the whole flow volume are generally not affordable and/or too time consuming.
Note that, in this thesis, the assessment of the quality of the data-assimilated flow field
was conducted with some PIV data plans from the same experiment.

A brief historical review on structural wind engineering studies and a survey of litera-
ture studies on VDA techniques and their application in CFD are provided in chapter 1.

In chapter 2, It has been demonstrated that the numerical grid is sufficiently refined to
obtain approximately a grid-independent reference solution, such that the only remaining
data-model discrepancy arises (almost) only from conceptual consistencies.

Local sensitivity analysis of model closure coefficients conducted in chapter 4 points
out one of the common reasons for the deficiencies of RANS predictions in the regions of
recirculating flow. Indeed, high sensitivites have been located at the formation of shear
layers, which originate from the sharp edges of the body, suggesting strong discrepan-
cies of turbulence modelling in these regions. Despite all the spatial variability of theses
sensitivity maps, it was shown that the optimality condition drastically reduces the high
dimensional dependency of the model to each coefficient, reflecting thus a "rigid" charac-
ter of such closure. Moreover, it was observed that data-assimilation techniques are able
to provide insight on the model variability through coefficient calibration. Regarding the
model hypotheses underlying such closure, a better data coupling can be obtained by en-
forcing the constraint that equates turbulence energy to momentum mixing, even though
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7.1. Work summary

its initial sensitivity suggests globally a thinner turbulent mixing layer. This suggests that
it is a physically valid hypothesis that structures the model and then helps for conver-
gence. On the other hand, a constraint on the local increase of energy dissipation rate
linked to its redistribution (supposedly valid in the inertial layer near the wall), has led to
stiff situation. As both assumptions constitute a common practice for closure definition
in most eddy viscosity models, it is expected that these results extend to several other
models of similar forms when used with realistic wall pressure measurements. Due to the
rigidity of the model, variabilities of the solution were strongly constrained and does not
allow the flow to reach a sufficiently large state space domain for accurate estimations.

To overcome such restrictions, in chapters 5, a reconstruction viewpoint to the prob-
lem was first considered by adopting a weak constraint, i.e. defining an additive forcing
term as control parameter in order to allow the solution to deviate from the default model
constraints. Without a priori knowledge of its nature, an initial raw form was considered
similarly to works by (Foures et al., 2014; Franceschini and Sipp, 2020). Sensitivity maps
analysis has revealed high interest to force at regions encompassing all flow features; the
upstream flow impingement (e.g. upstream separation, horseshoe formation), the lateral
and top shear layers, the wake. To suppress unphysical oscillations of the force, given the
strongly partial observations, we have investigated two regularization approaches; a first
one is performed by penalizing the L2 norm of its gradient, while the second was instead
conducted by the definition of an alternative inner product H1(Ω) of the optimality con-
dition. We have particularly considered the search for a control parameter in Sobolev’s
space (Protas et al., 2004; Tissot et al., 2020). Regarding the effects of regularisation,
cost reduction results with the use of Sobolev gradient yields a much faster convergence
and lower discrepancy levels. With regards to the wall-pressure interpolations, in com-
parison to the coefficients calibration, the model allowed an excellent agreement with the
wall-pressure experiments in most of the building’s wall regions. With regards to flow
reconstruction ability, the models results show a considerable reduction of its downstream
extension, yet, not in a fully satisfactory way by producing non-physical-features in the
near wake flow. This have raised the point about the lack of structuration to the forcing.
In order to remedy this situation, we proceeded by refining the shape of the force with
the aim to ensure some consistency between the deformation correction prescribed by the
direct enforcing and a Reynolds stresses induced force. With anisotropy being quite poorly
represented by eddy viscosity models (and the k − ε closure), we considered addressing
only corrections to the flow inhomogeneity, i.e. regions with a strong gradient of turbulent
energy. From the sensitivity map, it was indeed clear that its new shape has enabled us
to delineate the potential sources of mismatch in the modelled Reynolds stress to a thin
region within the shear layers, i.e the region resulting from the first flow separation at
the leading edges. Meanwhile, it shows fewer interest further downstream in the wake. In
terms of objective, globally, discrepancy with wall-pressure experiments has been reduced
significantly, and in faster way, reaching a state very close to the one achieved with raw
forcing. Moreover, a better retrieval of the wake’s features, e.g. upstream inclination of
the vortex rolls near the ground wall, was noticed. Although, being less sensitive in the
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downstream wake, it only leads to a small contraction recirculation bubble. Even leading
to an imperfect reconstruction, the fact that it accelerates the optimisation with compara-
ble performances suggests that these located regions are mainly responsible of the RANS
failure, and encourages the strategy of refining the structure of the control parameters.

Finally, in chapter (6), we performed a further investigation of the variational approach
for the reconstruction under a parametrization that satisfies the physical constraints given
by the turbulence model, yet, in a more efficient way. After addressing possible sources of
modelling errors, underlying the different layer of assumptions used to build the closure, it
was seen that inferring a control parameter embedded in a term-by-term basis, yields ill-
conditioned matrices of the adjoint model leading hence to numerical instabilities. Thus,
we have considered instead the adjunction of distributed parameters which enables the
reconsideration of the closure at a structural level. With the considered turbulence model,
we have introduced two corrective strategies for its closure; one on the transport equa-
tion for the energy k, and the second one on its dissipation rate ε. Following the similar
reasoning as with the structured force, the shape of the parameters were chosen so as
to complement the turbulence model in terms of local source/sink mechanisms. A search
onto the Sobolev space H1(Ω) was then performed for both a regularisation purpose and
to define the descent direction. Sensitivity maps to theses new closures highlighted regions
where global constants are not too sensitive, i.e. the wake. Besides, a step tendency was
revealed separating the lateral and top shear regions and the wake flow. As for the VDA
procedure, the modified closure models produced improved results in most of the build-
ing’s wall regions in terms of wind load profiles, compared with coefficient calibration, and
an excellent agreement with PIV experiments was obtained in wake transverse extension.
The good agreement with the non-assimilated measurements (of different nature) proved
that we are neither overfitting the data nor in an over-constrained situation. Yet, as the
flow adjustment comes only from diffusive effects (with other energy exchange mechanisms
that are still missing), results suggest some remaining restrictions as reconstructed pro-
files tend toward the original model in some regions. To propose an alternative solution,
while maintaining the Boussinesq assumption, we proposed investigating the coupling of
a direct correction of deformation and the local adjustment of turbulence closure. To-
ward an efficient hybridization, the structured shape of force were chosen over the raw
form for its close relation (in its effect) with Reynolds isotropic part. Both the qualitative
observations of the flow features and a defined wall-pressure/flow validation metrics has
showed that the combination of a direct forcing with a simple structuring form along with
local closure adjustment is a promising strategy as it ensures overall a good quality to
the reconstruction. Moreover it was observed that the conjunction of Sobolev gradient/L2

gradient penalization may help refining the recovery of the flow features. Beside the im-
provement of the qualitative flow features, it was noticed that with the addition of penalty
a more robust VDA procedure can be ensured especially when approaching minimal cost
where the descent direction, giving by the continuous adjoint, is scrambled with numerical
inconsistency.
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7.2 Suggestions for future work

Under the same framework, i.e continuous adjoint model of the realizable k−ε, several
tools for robust minimization can be further explored. The first important component is
the regularization. Indeed, in the current study we have considered solely the Euclidien
norm L2 of the spatial gradient of the parameter in question. However, this is not the only
way to proceed, and various strategies can be considered instead. Note for instance that by
considering a different measure of the magnitude of the gradient, one may promote more
efficiently the sparsity of the parameter field and hopefully yields better interpretation
to the corrections, e.g. L1 norm. Another way to deal with parameter irregularity may
be by penalizing the magnitude itself, provided an initial smooth guess. Of course, the
desired degree of regularity depends on the chosen norm. Moreover, an alternative and less
direct manner of sensitivity regularization can be transmitted through state regularization.
This is formally achieved by augmenting the objective by a distance (L1 or L2 norm)
that measures the deviation of the optimised state from a background one. This state
deviation is then transfered as a constraint to the adjoint system preconditioning thus the
adjoint state for the optimality condition. So far, regardless the penalty term, the trust
given in the local state/parameter deviations were assumed uniformly distributed in space
and non-correlated with neighbouring spatial locations. This uniform and local character
might be a too strong assumption when dealing with flow statistics that cannot be only
determined in local basis (e.g. the Reynolds stress). Relaxing this assumption can be
done by devising a more elaborated covariance matrices that better account for non local
effects and considering the likely correlation between neighbour measures. Furthermore,
instead of a scalar factor, this can lead to a more supervised tuning of the penalty, e.g by
adjustment on specific regions.

Once we ensure some degree of regularity to the sensitivity field, a second major com-
ponent is the descent direction itself. In analogy with the locality issue of the trust given
to the penalty, a more precise estimate of the gradient can be attempted by considering
the curvature of the cost of the parameter. This can be formally achieved using second
order estimate quasi-Newton method, by which the curvature can be estimated by the
Hessian w.r.t to the parameter. As in our study, i.e. dealing with large scale optimization,
the limited memory quasi-Newton methods L-BFGS (Byrd et al., 1995) can be seen as an
adequate tool to accelerate convergence. We note that this latter approach can be seen
as another alternative for gradient projection methods, such as in the Sobolev space, and
an extension to the conjugate gradient.

Another technical solution for the estimation of the gradient, which requires major
changes of the framework we have established in this thesis, consists in the implemen-
tations of the so-called numerically "exact" gradient. A discrete derivation of the adjoint
model can indeed be considered. This will also require integrating the so-called "Auto-
matic" Differentiation tools well suited to the specific structure of the OpenFOAM library.
The "operator overloading" approach seems to be the most appropriate to adopt here such
as ADOL-C (Griewank and Walther, 2008). In practice, this approach consists in evaluat-
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ing (and storing) for each elementary calculation instruction the value of a scalar variable
and its derivative with respect to a variable considered independent. Because at the ele-
mentary level of instruction only simple operators (addition, subtraction, multiplication)
or usual functions (cosine, sine, log) of which we know how to calculate their derivatives
analytically are involved, we would approach orders of "zero machine" error. On the other
hand, in the presence of thresholds (e.g. flux limiter schemes, upwind, max and min), its
performance depends on the way by which we treat these sources of discontinuity.

Otherwise, from a modelling viewpoint, to enrich the understanding of the structures
and limits of turbulence modeling with a viewpoint of data-assimilation, this study can
be applied in conjunction with different turbulence models. Besides, as the Boussinesq
assumption clearly enforces a limiting barrier by not representing all the energy exchange
mechanisms (e.g. through the organized big turbulent scales and the possibly negative
eddy viscosity which may acts as an anti diffusion), high fidelity closure to the Reynolds
stress (e.g. RSM) might present an interesting alternative constraint.

Moreover, from a methodological point of view, given only partial pressure measure-
ments, an extension of modal decomposition approaches (decomposition into balanced
truncation modes, resolvent analysis) would present an alternative to provide some struc-
turation to to the optimal parameter. In the context of data-assimilation for flow re-
construction, resolvent analysis was recently investigated by various authors (Beneddine
et al., 2017; Symon et al., 2020; Franceschini, 2019). Indeed, these methods have proved
their efficiency in configurations (2D flow) with matrices of reasonable sizes. Thus, it may
well fit into a future work to be investigated, as in such complex configurations (3D) and
higher, i.e with matrix size ∼ 1.8 107 in the present study, such methodology has not yet
been explored.

Finally, without going through turbulence models, stochastic modeling where turbu-
lence is assimilated to a random process guided by data can also be investigated as an
alternative (Mémin, 2014; Harouna and Mémin, 2017; Bauer et al., 2020b,a).
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APPENDIX : CONTINUOUS ADJOINT
DERIVATION OF RANS MODEL WITH

REALIZABLE k − ε CLOSURE

Under differentiability condition, it can be shown (Le Dimet and Talagrand, 1986;
Gunzburger, 2003) that the problem of determining the optimal set of flow state variables,

X = (U, P, k, ε, µt)

and the set of parameters α, of the cost function J (X, α) under the constraint

M(X, α) = 0

is equivalent to the problem of determining the optimal set of theses variables in addition
to an adjoint state

X∗ = (U∗, P ∗, k∗, ε∗, µ∗t )
of the associated Lagrangian functional L(X,X∗, α). With the inner product defined as
〈ψ, φ〉Ω =

∫
Ω ψ

Tφ dΩ where ψ and φ are any two regular vectorial functions defined on
the domain Ω, the Lagrangian, is

L(X,X∗, α) = J (P, α) +
∫

Ω
(X∗)TM(X, α) dΩ. (7.1)

This extended variable formulations allows to transform a constrained optimisation prob-
lem to an unconstrained optimisation problem. Differenciating the Lagrangian leads to the
resolution of the optimisation problem. The minimum is found by vanishing its directional
derivatives with respect to each of the variables.
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Duality principle and optimality system

The first order variation δL resulting from perturbation (δX, δX∗, δα) of (X,X∗, α),
in compact form, is equal to

δL = ∂J
∂P

δP + ∂J
∂α

δα+
∫

Ω
(X∗)T

(
∂M
∂U δU

)
︸ ︷︷ ︸

I

dΩ +
∫

Ω
(X∗)T

(
∂M
∂P

δP

)
︸ ︷︷ ︸

II

dΩ

+
∫

Ω
(X∗)T

(
∂M
∂k

δk

)
︸ ︷︷ ︸

III

dΩ +
∫

Ω
(X∗)T

(
∂M
∂ε

δε

)
︸ ︷︷ ︸

IV

dΩ +
∫

Ω
(X∗)T

(
∂M
∂µt

δµt

)
︸ ︷︷ ︸

V

dΩ

+
∫

Ω
(X∗)T

(
∂M
∂α

δα

)
dΩ +

∫
Ω

(δX∗)TM(X, α) dΩ. (7.2)

We note that terms (I − V ) will be expanded later in the next section. For conciseness,
we keep it herein compact. Using the duality identity defined as∫

Ω
(Lφ)ψ︸ ︷︷ ︸

i

dΩ =
∫
∂Ω

(LBφ) (LCψ) d∂Ω +
∫

Ω
φ (L∗ψ)︸ ︷︷ ︸

i∗

dΩ

where L is a linear differential operator and (LB,LC) are lower order differential operators,
resulting from the integration by part, that embed the natural boundary condition. The
variation δL becomes

δL = ∂J
∂P

δP + ∂J
∂α

δα−
∫

Ω

(
∂M
∂U

∗
X∗
)T

δU︸ ︷︷ ︸
I∗

dΩ +
∫

Ω

(
∂M
∂P

∗
X∗
)T

δP︸ ︷︷ ︸
II∗

dΩ

+
∫

Ω

(
∂M
∂k

∗
X∗
)T

δk︸ ︷︷ ︸
III∗

dΩ +
∫

Ω

(
∂M
∂ε

∗
X∗
)T

δε︸ ︷︷ ︸
IV ∗

dΩ +
∫

Ω

(
∂M
∂µt

∗
X∗
)T

δµt︸ ︷︷ ︸
V ∗

dΩ

+
∫

Ω

(
∂M
∂α

∗
X∗
)T

δα dΩ +
∫

Ω
(δX∗)TM(X, α) dΩ +

∫
∂Ω

(δX)T (CX∗) d∂Ω

+
∫
∂Ω

(δα)T (DX∗) d∂Ω +
∫
∂Ω

(BδX)TX∗ d∂Ω +
∫
∂Ω

(Eδα)TX∗ d∂Ω, (7.3)

where (B,C,D, E) are boundary differential operators. Terms (I∗ − V ∗) are the adjoint
to their counterpart terms in (7.2), which will be expanded later.

So far, it is worth-noting to mention that prior to the integration by part, eventual
discontinuities underlying the direct terms has to be treated properly, e.g. replacing step
functions by hyperbolic tangents. These discontinuities are most often a result of thresh-
olds, flux limiters of numerical schemes and some times it is purely numerical as it avoid
evaluating function outside the domain of their arguments. If not pretreated, adjoint
model would not be consistent with the tangent linear of the model.

Since the perturbations are arbitrary, setting the first variation of L with respect to
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the Lagrangian arguments equal to zero leads to an optimality system. With respect to an
arbitrary variation of the adjoint state, we recover the constraint equations; while for an
arbitrary variation of the state X all the terms that include the product of adjoint state
to the tangent linear of the constraint has to vanish. Further, with respect to the set of
parameters, vanishing the total variation leads to an optimality condition that constitute
the optimality system. Collecting these results yields to

state equations ⇒ M(X, α) = 0

adjoint equations ⇒
(
∂M
∂X

)∗
X∗ = 0

optimality condition ⇒ ∂J
∂α

+
(
∂M
∂α

)∗
X∗ = 0,

where
(
∂M
∂α

)∗
is the adjoint of the model derivative with respect to the parameters. If it is

possible to solve this coupled optimality system through one-shot methods, then optimal
states and parameters can be obtained without an optimisation iteration. However, due
to non linearity and the very large size of this system (∼ 3 × size(X)) one still have to
iterate in order to solve the optionality system. Thus, having solved the state equations
for X and then X∗ solution of the adjoint system, model parameters can be iterated by a
gradient based optimisation algorithm until optimality condition is satisfied. In a steepest
descent algorithm, the parameter is updated at an iteration n according to:

αn+1 = αn − λn dn (7.4)

where dn is the descent direction which is defined recursively by:

dn = ∂L
∂α

=
(
∂M
∂α

)∗
X∗ + ∂J

∂α
. (7.5)

Concerning adjoint based optimisation methods, we refer the reader to (Gunzburger, 2003;
Gronskis et al., 2013).

Duality with the realizable k − ε

In this section, more details regarding the derivation of the adjoint model are brought.
We illustrate the manner in which model specificities are treated in the adjoint procedure.
More precisely, we consider the modification of the k − ε model to ensure realizability
condition, .

145



Chapter 7 – Conclusion

Thus, expanding the integrands, the expression (7.1) is rewritten as follow,

L(X,X∗, α) = J (P, α) +
∫

Ω

3∑
i=1

U∗i

(
∂(ρUjUi)
∂xj

+ ∂

∂xi
P − ∂

∂xj

[
µeff

(
∂Ui
∂xj

+ ∂Uj
∂xi

)])
︸ ︷︷ ︸

MUi

dΩ

+
∫

Ω
P ∗
(
∂Uj
∂xj

)
︸ ︷︷ ︸
MP

dΩ +
∫

Ω
k∗
(
∂ρUjk

∂xj
− ∂

∂xj

[(
µ+ µt

σk

)
∂k

∂xi

]
− µt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
∂Ui
∂xj

+ ρε

)
︸ ︷︷ ︸

Mk

dΩ

+
∫

Ω
ε∗

∂ρUjε∂xj
− ∂

∂xj

[(
µ+ µt

σε

)
∂ε

∂xi

]
− C1(S, k, ε)Sε︸ ︷︷ ︸

Pε

+C2
ε2

k +√µε︸ ︷︷ ︸
Sε


︸ ︷︷ ︸

Mε

dΩ

+
∫

Ω
µ∗t

(
µt − Cµ(Ui, k, ε)ρ

k2

ε

)
︸ ︷︷ ︸

Mµt

dΩ (7.6)

In fact, upon a first variation of the Lagrangian w.r.t each state component, each
one of the terms (I − V ) in (7.2) is indeed the weighted sum of partial derivative of the
designated terms (MUi −Mµt) in (7.6).

We detail here the directional differentiation w.r.t the state vector. The derivations
w.r.t the parameter α are straightforward for both global coefficients cases, given in chap-
ter (4), and the adjunction of terms in last chapters (5 and 6). In what follows, directional
derivatives of (7.6) are expressed separately.

The Gateau derivation

Term (I) expansion : The partial derivative of (7.6) in direction δUi leads to the
following:〈

∂L
∂Ui

, δUi

〉
Ω

=
∫

Ω

[ 3∑
i=1

U∗i

(
∂(ρδUjUi + UjδUi)

∂xj
− ∂

∂xj

[
µeff

(
∂δUi
∂xj

+ ∂δUj
∂xi

)])
︸ ︷︷ ︸

∂MUi
∂Ui

+ P ∗
(
∂δUj
∂xj

)
︸ ︷︷ ︸

∂MP
∂Ui

+k∗
(
∂ρδUjk

∂xj
− µt

(
∂δUi
∂xj

+ ∂δUj
∂xi

)
∂Ui
∂xj
− µt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
∂δUi
∂xj

)
︸ ︷︷ ︸

∂Mk
∂Ui

+ ε∗
(
∂ρδUjε

∂xj
− ∂Pε
∂Ui

δUi

)
︸ ︷︷ ︸

∂Mε
∂Ui

−µ∗t
(
∂Cµ
∂Ui

δUiρ
k2

ε

)
︸ ︷︷ ︸

∂Mµt
∂Ui

]
dΩ (7.7)
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where
∂Pε
∂Ui

δUi = ∂C1

∂Ui
δUiSε+ C1

∂S

∂Ui
δUiε

=
(

5k
ε(5 + η)2 + 1

)
∂S

∂Ui
δUi

= 1
2S

(
5k

ε(5 + η)2 + 1
)
Sij

(
∂δUi
∂xj

+ ∂δUj
∂xi

)
,

while
∂Cµ
∂Ui

δUi = −C2
µ

k

ε

(
∂As
∂Ui

δUiUs +As
∂Us
∂Ui

δUi

)
,

which, after applying the chain rule, can be rewritten as

∂Cµ
∂Ui

δUi = −C2
µ

k

ε


∂As
∂φ

∂φ

∂W

∂W

∂Sij︸ ︷︷ ︸
∂As
∂Sij

∂Sij
∂Ui

δUi︸ ︷︷ ︸
δSij

+As

 ∂Us∂Sij
δSij + ∂Us

∂Ω̃ij
∂Ω̃ij
∂Ui

δUi︸ ︷︷ ︸
δΩ̃ij


 ,

for which

∂As
∂Sij

=
(
−
√

6 sin(φ)
)−√6

6

[
tanh(s(

√
6W + 1))− tanh(s(

√
6W − 1))

]√
1−min(max(

√
6W,−1), 1)


(

2
√

2
[

3SijSjkS3 − SijSjkSkl(2S + 4)Sij
S6

])
,

and
∂Us
∂Sij

= Sij
Us

,

∂Us

∂Ω̃ij
= Ω̃ij + Ω̃ji

2Us
.

Note that s >> 1 is a free parameter to the hyperbolic step function, thus dealing with
local discontinuity resulting from min/max operators.

As Sij and Ω̃ij being linear operators of Ui, their total variations are straightforward,

δΩ̃ij = ∂Ω̃ij

∂Ui
δUi = 1

2

(
∂δUi
∂xj

− ∂δUj
∂xi

)
,

δSij = ∂Ω̃ij

∂Ui
δUi = 1

2

(
∂δUi
∂xj

+ ∂δUj
∂xi

)
.

It is worth mentioning that ∂Mµt/∂Ui in (7.7) arises from the so called "realizable form"
of the eddy viscosity relation in (Shih et al., 1995), which for other revision of k− ε model
vanishes naturally.
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Term (II) expansion : With no dynamics being solved for the mean pressure, due to
incompressibility, the expanded form of the term (II) is straightforward. The directional
derivative of the Lagrangian with respect to δP leads to〈

∂L
∂P

, δP

〉
Ω

=
∫

Ω

∂J
∂P

δP dΩ +
∫

Ω
U∗i
∂δP

∂xi
dΩ. (7.8)

Term (III) expansion : Differentiation w.r.t the turbulent kinetic reads as follow:
〈
∂L
∂k

, δk

〉
Ω

=
∫

Ω

[
k∗
(
∂ρUjδk

∂xj
− ∂

∂xj

[(
µ+ µt

σk

)
∂δk

∂xi

])
︸ ︷︷ ︸

∂Mk
∂k

+ε∗
(
−∂C1
∂k

δkSε+ ∂Sε
∂k

δk

)
︸ ︷︷ ︸

∂Mε
∂k

− µ∗t

(
∂Cµ
∂k

δkρ
k2

ε
+ 2ρCµ

k

ε
δk

)
︸ ︷︷ ︸

∂Mµt
∂k

]
dΩ. (7.9)

with
∂C1

∂k
δk = 5

ε(5 + η)2Sδk,
∂Sε
∂k

δk = −
(

ε

k +√µε

)2
δk,

∂Cµ
∂k

δk = −
C2
µAsUs

ε
δk.

Term (IV ) expansion : Differentiation w.r.t the energy dissipation rate reads as follow:〈
∂L
∂ε
, δε

〉
Ω

=
∫

Ω
[ k∗ (ρδε)︸ ︷︷ ︸

∂Mk
∂ε

+ε∗
(
∂ρUjδε

∂xj
− ∂

∂xj

[(
µ+ µt

σε

)
∂δε

∂xi

]
− ∂C1

∂ε
δεSε− C1Sδε+ ∂Sε

∂ε
δε

)
︸ ︷︷ ︸

∂Mε
∂ε

− µ∗t

(
∂Cµ
∂ε

δερ
k2

ε
− 2ρCµ

k

ε2
δε

)
︸ ︷︷ ︸

∂Mµt
∂ε

] dΩ. (7.10)

with
∂C1

∂ε
δε = − 5η

ε(5 + η)2Sδε,
∂Sε
∂ε

δε = −
(

ε

k +√µε

)2
δε,

∂Cµ
∂ε

δε = −
C2
µAsUs

ε
δε.
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Term (V ) expansion : Differentiation w.r.t the eddy viscosity leads to
〈
∂L
∂µt

, δµt

〉
Ω

=
∫

Ω

3∑
i=1

U∗i

(
− ∂

∂xj

[
δµt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)])
︸ ︷︷ ︸

∂MUi
∂µt

+ k∗
(
− ∂

∂xj

[
δµt
σk

∂k

∂xi

]
− δµt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
∂Ui
∂xj

)
︸ ︷︷ ︸

∂Mk
∂µt

+ ε∗
(
− ∂

∂xj

[
δµt
σε

∂ε

∂xi

])
︸ ︷︷ ︸

∂Mε
∂µt

+µ∗t (δµt)︸ ︷︷ ︸
∂Mµt
∂µt

dΩ. (7.11)

The duality application

In this section, integral terms (I∗ − V ∗) are expanded except the boundary integrals
(B.I) which are discussed in chapter (3). In what follows, each collected volume integrals
are constitutive of each of the adjoint differential equations.

Term (I∗) expansion :〈
∂L
∂Ui

, δUi

〉
Ω

=
∫

Ω

3∑
i=1

δUi

(
−ρ∂UjU

∗
i

∂xj
− ρUj

∂U∗j
∂xi
− ∂

∂xj

[
µeff

(
∂U∗i
∂xj

+
∂U∗j
∂xi

)])
dΩ

+
∫

Ω
δUi

∂P ∗

∂xi
dΩ

−
∫

Ω
δUi

(
k
∂k∗

∂xi
− 2

3
∂kk∗

∂xi
+ ∂

∂xi
[µt4Sijk∗]

)
dΩ

−
∫

Ω
δUi

(
ε
∂ε∗

∂xi

)
dΩ

+
∫

Ω
δUi

∂

∂xi

[
2C1εε

∗Sij
S

+ 5
(5 + η)2

(
0.5 tanh( sη

5 + η
)− 0.43) + 0.5

)
kε∗2Sij

]
dΩ

+
∫

Ω
δUi

∂

∂xi

(
∂µt
∂Ui

µ∗t

)
dΩ

+B.I (7.12)
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Term (II∗) expansion :〈
∂L
∂P

, δP

〉
Ω

=
∫

Ω

∂J
∂P

δPdΩ +
∫

Ω
δP

∂U∗j
∂xj

dΩ +B.I. (7.13)

Term (III∗) expansion :〈
∂L
∂k

, δk

〉
Ω

=
∫

Ω
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(
−∂ρUjk

∗
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− ∂
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[(
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)
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3
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)

dΩ

−
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ρ5S2 ε∗
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)
dΩ

+
∫

Ω
δk
(

(2µt
k
− AsUs

µt
k

2
)µ∗t

)
dΩ +B.I. (7.14)

Term (IV ∗) expansion :〈
∂L
∂ε
, δε

〉
Ω

=
∫

Ω
δε (ρk∗) dΩ

+
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dΩ +B.I. (7.15)

Term (V ∗) expansion :〈
∂L
∂µt

, δµt

〉
Ω

=
∫
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∫
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Titre : Étude du couplage modèle-données à l’aide de techniques adjointe pour l’ingénierie du vent

Mot clés : Assimilation de données variationnelle ; Modèle de turbulence ; Ingénierie du vent

Résumé : Dans cette thèse, nous étudions la modélisation de
Navier-Stokes moyennée par Reynolds (RANS) avec modèle de ferme-
ture dans le cadre d’assimilation de données variationnelle (VDA) pré-
dictif des écoulements du vent autour de grandes structures. Les don-
nées considérées proviennent uniquement des mesures de pression
pariétale menées dans des expériences en soufflerie. Ceci constitue
une première étape vers l’application du VDA à des situations pratiques
de l’ingénierie du vent où les mesures en volume de l’écoulement ne
sont généralement pas abordables. La technique VDA est écrite comme
un problème d’optimisation, que nous résolvons en utilisant la méthode
adjointe. Une attention particulière est accordée à la dérivation du mo-
dèle de turbulence adjoint et de la loi de paroi adjointe. La méthodologie
adjointe est utilisée dans cette thèse pour répondre à deux objectifs par-
ticuliers. D’une part, nous étudions un cadre méthodologique permet-
tant un diagnostic approfondi de la fermeture de turbulence. Cela va de
l’analyse des champs adjointe à l’analyse de sensibilité des coefficients
et ensuite à leur calibration. D’autres part, visant un couplage efficace
entre le modèle et les données, nous considérons la méthode comme
un outil de reconstruction de l’écoulement. Dans cette optique, nous
avons considéré une assimilation dite sous contrainte faible par intégra-
tion de nouveaux termes permettant de corriger les erreurs de modéli-
sation. En diagnostic, l’analyse de sensibilité a révélé un grand intérêt
pour l’optimisation des coefficients davantage au niveau des couches
de cisaillement résultant de la séparation et moins dans la région de
sillage. Dans la calibration, la validité de certaines hypothèses de mo-

délisation a été explorée en observant l’effet de relâchement des rela-
tions entre les coefficients. L’application de la contrainte qui assimile le
mélange d’énergie de turbulence au mélange d’impulsion a conduit à un
meilleur accord avec les données. Par ailleur, il a été souligné qu’une
telle fermeture de turbulence est trop rigide pour permettre à la solu-
tion s’écarter de son espace de base. En reconstruction, nous avons
considéré des termes de forçage additif qui peuvent agir sur les équa-
tions de quantité de mouvement et/ou sur les équations de turbulence.
Avec des observations parcimonieuses, le champ de sensibilité est gé-
néralement peu régulier pour des paramètres distribués, une recherche
de paramètre de contrôle dans l’espace de Sobolev est proposée. Il a
été démontré que cela conduit à une procédure d’assimilation des don-
nées très efficace car elle améliore la direction de descente et fournit
un mécanisme de régularisation utile. En résultats, nous montrons que
le forçage sur l’équation de la quantité de mouvement permet d’agir
efficacement à proximité des capteurs pour corriger la pression, et se
trouve en situation de sur-ajustement. Cela peut être amélioré en mul-
tipliant préalablement le forçage par le gradient de l’énergie cinétique.
Au contraire, agir sur l’équation de transport du taux de dissipation de
turbulences améliore la diffusion turbulente qui amène une réduction
significative de la longueur de recirculation, mais avec une pénalité en
termes de contrôlabilité. Enfin, nous montrons que des reconstructions
d’écoulement plus précises peuvent être effectuées en combinant les
deux stratégies.

Title: Investigating Data-Model coupling using adjoint techniques for wind engineering

Keywords: Variational data assimilation, Turbulence modeling, Wind engineering

Abstract: In this thesis, we study Reynolds-averaged Navier-
Stokes modeling (RANS) with closure model in the framework of vari-
ational data assimilation (VDA) predictive of wind flows around large
structures. The data considered come only from wall pressure measure-
ments carried out in wind tunnel experiments. This is a first step towards
the application of VDA to practical wind engineering situations where
volume flow measurements are generally not affordable. The VDA tech-
nique is written as an optimization problem, which we solve using the
adjoint method. Particular attention is given to the derivation of the ad-
joint turbulence model and the adjoint wall law. The adjoint methodology
is used in this thesis to meet two particular objectives. On the one hand,
we propose a methodological framework allowing an in-depth diagnosis
of the turbulence closure. This goes from the analysis of fields added
to the sensitivity analysis of the coefficients and then to their calibra-
tion. On the other hand, aiming at an efficient data-model coupling, we
consider the method as a tool for reconstructing the flow. In this per-
spective, we have considered assimilation under weak constraint by the
integration of new terms allowing us to correct closure modeling errors.
In the diagnostic study, the sensitivity analysis revealed a great interest
in optimizing the coefficients more at the level of the shear layers result-
ing from the separation and less in the wake region. Upon calibration,
the validity of certain modeling assumptions was explored by observ-

ing the effect of relaxing the relationships between the coefficients. The
application of the constraint which equates the mixture of turbulent ki-
netic energy to the impulse mixture led to a better agreement with the
data. Moreover, it has been pointed out that such a turbulence closure
is too rigid to allow the solution to deviate from its initial space. In the
reconstruction study, additive forcing terms acting on the momentum
equations and/or on the turbulence equations were considered. With
sparse observations, the sensitivity field is generally not very regular for
distributed parameters, the search for a control parameter in Sobolev’s
space is proposed. This has been shown to lead to a very efficient data
assimilation procedure as it improves descent direction and provides a
useful regularization mechanism. As a result, we have shown that forc-
ing on the momentum equation makes it possible to act effectively near
the sensors to correct the pressure, and the proposed data assimilation
procedure is in a situation of over-fitting. This can be improved by first
multiplying the forcing by the gradient of the kinetic energy. On the con-
trary, acting on the turbulence dissipation transport equation improve
turbulent mixing which leads to a significant reduction in the recircula-
tion length, but with a penalty in terms of controllability. Finally, we have
shown that more precise flow reconstruction can be performed by com-
bining the two strategies.
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