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RÉSUMÉ FRANÇAIS

L’augmentation du nombre d’utilisateurs des réseaux sans-fil et la diversification de
leurs usages amène à faire évoluer les méthodes de gestion des ressources. L’allocation
de ressources consiste à distribuer les ressources disponibles de la station de base aux
différents utilisateurs dans la zone de couverture du réseau. L’utilisation de techniques
sans-fil induit des performances changeantes en fonction des propriétés du lien radio. Ces
propriétés dépendent notamment de la position de l’utilisateur, des obstacles qui l’entoure
ou encore des interférences venant d’autres stations ou utilisateurs. Combiné avec la vari-
ations des demandes en quantités de données, la variété des situations devient importante
et la qualité des décisions d’allocation de ressources peut jouer un rôle déterminant. Cette
thèse porte sur les stratégies d’allocation des ressources dans les réseaux sans-fils et profite
des nouvelles techniques proposées par la 5G.

Dans les réseaux sans-fil classiques, les cellules sont considérées comme indépendantes
et les utilisateurs ne peuvent interagir qu’avec une seule cellule. C’est un sujet de recherche
où beaucoup de stratégies ont été proposées et ces solutions sont principalement axées
sur des résolutions de problèmes spécifiques. Cependant les conditions rencontrées dans
les réseaux sont rarement figées et peuvent dépendre de la période de la journée ou en-
core d’évènements spéciaux à proximité. Deux contraintes principales apparaissent dans
les réseaux modernes. Premièrement, les besoins en débit sont grandissant et doivent
s’adapter aux nouvelles applications. De plus, il est important de garantir un niveau
de service équitable entre les différents utilisateurs afin de garantir un même niveau de
satisfaction. Deuxièmement, les contraintes liées à la consommation énergétique doivent
être prises en compte. Un réseau trop gourmand engendrerait des coûts importants à
l’opérateur. De même pour l’utilisateur, plus l’impact est important sur l’autonomie de sa
batterie, plus les sessions d’utilisation seront courtes. Dans ce contexte, nous proposons
un algorithme d’allocation de ressources dont l’objectif est de garantir équitablement le
meilleur service aux utilisateurs, tout en préservant leurs batteries. Lorsque la charge de
la cellule est suffisamment faible pour garantir un service nécessaire, l’algorithme réori-
ente dynamiquement ses priorités vers l’économie d’énergie. Ce comportement permet un
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compromis efficace entre la capacité et la consommation énergétique à différents niveaux
de charge. Les évaluations de performances montrent que notre algorithme est au moins
aussi efficace que les algorithmes dédiés dans leurs zone de prédilection. Il a cependant
l’avantage de s’adapter lorsque la situation change contrairement aux algorithmes avec
un objectif fixe.

Afin d’étendre la capacité des réseaux, l’ajout de nouvelles cellules permet d’élargir la
bande passante et de réduire l’atténuation du signal liée à la distance. Grâce à des solutions
permettant de centraliser le contrôle des stations de bases, les cellules peuvent être gérées
simultanément pour optimiser les ressources du réseaux à une plus large échelle. Cette co-
ordination permet une meilleure gestion des interférences et de la mobilité des utilisateurs.
De plus, différentes techniques de réseau sans-fil peuvent être utilisées pour augmenter la
densité tout en limitant les interférences, par exemple par l’ajout de micro-cellules dans
des cellules plus large. Ces micro-cellules ont des propriétés propres, comme une zone de
couverture plus restreinte ou l’utilisation de bandes plus hautes en fréquence. Ces cel-
lules sont déployées principalement dans des zones avec une forte densité d’utilisateurs
(stade de sport, aéroport, rue passagère...). Ce gain en flexibilité améliore les capacités et
performances des réseaux, mais nécessite une adaptation des systèmes classiques. Nous
présentons un algorithme de répartition des utilisateurs dans ce contexte multicellulaire
qui intervient avant l’étape d’allocation de ressources. Cette répartition aura de fortes
répercussions sur l’équilibre des charges des cellules et sur la qualité de service générale
du système. En priorisant les allocations des micro-cellules, notre algorithme décharge
au maximum la cellule principale, lui permettant ainsi de gérer les utilisateurs qui ne
sont couverts que par celle-ci. Après cette étape, l’ensemble des algorithmes d’allocation
de ressources des systèmes monocellulaires peuvent être utilisés et ainsi profiter de leurs
performances et spécialités.

Bien que la densification des réseaux augmente fortement leurs capacités, le nombre
de cellules dans un secteur est limité par sa géographie. Afin de encore améliorer les
performances, l’amélioration des performances des stations elles-mêmes reste nécessaire.
Une de ces solutions, le Massive-MIMO, permet d’accroître les fonctionnalités des cel-
lules en permettant une directivité de l’énergie et ainsi ajoute la composante spatiale à
l’allocation de ressources. Cette technique, appelée beamforming, augmente la distance
de propagation et le débit, tout en réduisant les interférences. Le beamforming néces-
site un accroissement du nombre d’antennes, ainsi qu’un traitement du signal complexe.
Plusieurs faisceaux peuvent être formés dans des directions différentes en utilisant la même
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fréquence, permettant aux utilisateurs de recevoir des informations simultanément sur la
même fréquence. Les utilisateurs partageant les mêmes ressources doivent être sélection-
nés avec soin pour limiter leurs interférences mutuelles. Dans ce contexte particulier, nous
proposons un nouvel indicateur de compatibilité spatiale des utilisateurs qui se base sur
les allocations passées. Une fois intégré dans un algorithme d’allocation de ressources, il
profite des capacités supérieures du Massive-MIMO et ses performances sont supérieures
aux systèmes auxquels il est comparé. Cet indicateur pourrait être associé à d’autres
métriques, notamment de qualité de service (QoS), pour répondre au mieux à des besoins
spécifiques dans les réseaux modernes.

Dans tous les types de réseaux et particulièrement dans les réseaux sans-fil, l’allocation
de ressource peut jouer un rôle déterminant sur les performances. L’allocation de ressource
dans les réseaux classiques est un sujet très exploité dont les nouveaux systèmes devraient
pouvoir bénéficier. Afin d’adapter les stratégies classiques dans ces nouveaux systèmes, il
faut comprendre quels sont leurs indicateurs et leviers qui leurs sont propres. Les objectifs
de cette thèse sont de d’abord présenter les systèmes classiques et les stratégies d’allocation
de ressources qui y sont adaptées, pour ensuite proposer des solutions pour adapter ces
stratégies aux futures techniques de réseaux sans-fils.
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Chapter 1

INTRODUCTION

1.1 Motivations

Network usage is continuously evolving towards a wireless access with a more no-
mad usage of the networks. Mobile devices are expected to be used by 70 percent of the
population by 2023 [1], with up to 5.7 billion mobile subscribers. The network usage of
those nomad users ranged from light social networks notifications to very high quality
video streaming. Higher definition video formats such as 4K double the necessary bit
rate compared to High Definition (HD) video. This new format is now commonly used
on streaming platforms and 8K contents are now emerging [2]. The combination of an
increased number of wireless users with larger bit rate requirements necessitates an adap-
tation or a change of existing wireless networks. These changes must be in line with the
mobile nature of users. They rely on their batteries to transmit, receive and consume
data, therefore energy-intensive networks lead to a low Quality of Experience (QoE). In
addition to users’ QoE, energy saving helps to reduce the impact of wireless networks on
global warming. With more and more people using a smartphone to access the Internet
[3], the impact of wireless communications is not negligible. To respond to these growing
challenges, in this thesis, we explore different resource allocation strategies to increase the
networks capacity while preserving the energy consumption

Resource allocation aims at distributing available network resources to reachable users.
In wireless networks, those users are said to be inside the coverage area. The use of Radio
Frequency (RF) induces unequal performance across the coverage area: users close to the
Base Station (BS) have a higher achievable bit rate than users far from the BS, due to a
loss increasing with the distance (pathloss). Combined with the fluctuation of the services’
requested resources, the variety of user characteristics is very important. With this user
diversity, the choice of the resource allocation strategy has a strong impact on the users’
QoE.
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Introduction

The basic resource allocation system is a large single-cell (macro cell), where users
can interact with only one BS in Single Input Single Output (SISO) configuration. This
single cell is managed independently of the other cells in the network. This is a well known
studied topic, where solutions aim at providing dedicated strategies for specific use cases.
However, the traffic in wireless networks is not constant and fluctuates, depending on
the time period of the day or special events nearby. Two major constraints can emerge
from modern use of wireless networks. Firstly and foremost, the constraints such as the
maximum delay and minimum data bit rate should be fulfilled according to the specific
application requirements. To ensure that all users reach an equivalent level of QoE, they
should be considered with fairness according to their needs and constraints. This is par-
ticularly challenging in crowded places or for edge users, where user disparity is strong.
Secondly, another major constraint is the energy consumption, users being mainly nomad,
battery life is crucial to maintain their services. With this basic wireless network design,
additional macro cells must be added to increase the overall capacity. However, due to
geographical constraints and interference between cells, the creation of new macro cell is
very limited [4].

To allow a larger connectivity than a typical BS coverage area, wireless networks
are composed of several BS, allowing to densify the network with the aim of capacity
increase. Thanks to cloud based solutions (C-RAN) and their centralized management
approach, cells are managed jointly to optimize resource allocation on a larger scale. This
coordination allows a better inter-cell interference management, as seen in [5], and limit
handovers [6]. In addition, different cell types can be used to increase network density,
without raising the interference level, by adding micro cells within the coverage area of
a macro cell. Those cell types have different properties, such as different ranges and/or
different frequencies and are mostly deployed in very crowed places (stadium, airport,
major streets...). This flexibility increases the wireless networks’ capability and improves
performance, at the expense of a new layer of complexity. On top of the traditional problem
of resource allocation, new challenges have emerged, such as the balancing of cell loads. By
using different types of cells, one may be more profitable than the others (better wireless
conditions) and therefore be more chosen, resulting in unbalanced cell loads. This aspect
is crucial and has to be considered during the resource allocation process.

Network densification can dramatically increase network capacity. However, depending
on the geographical situation and in regard to the environmental issue, increasing the
number of micro BS can reach a limit. A solution is to improve the BS’s capability.
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Introduction

The Massive-Multiple Input Multiple Output (MIMO) technique allows the BS, by the
use of several antennas and complex signal processing, to accurately focus the energy
in space. This main feature, called beamforming, increases the range and bit rate while
reducing interference. Several beams can be formed simultaneously on the same frequency,
allowing different users to receive data on the same time and frequency resource. This
technique called Multiple Users Multiple Input Multiple Output (MU-MIMO) greatly
improves network performance without increasing the number of BSs or the energy spent.
However, in some cases the transmissions interfer to each other and this decreasees the
overall capacity. Users sharing the same resource need to be selected with care and most
MU-MIMO resource allocation processes are based on the same indicator of compatibility:
the channel matrix correlation. The MU-MIMO technique increases the BS performance
and improves the system capacity while preserving the energy consumption and without
increasing the number of BS deployed.

Regardless of the wireless network deployed or the BS characteristics, resource alloca-
tion plays an important role in system performance and users’ Quality of Service (QoS)
fairness. Traditional resource allocation schemes is a topic well covered and new systems
should benefit from it. To adapt classical resource allocation strategies to different wireless
network deployments, new algorithms should consider the right indicators and parameters.

1.2 Contributions and outline of the thesis

In this thesis, divided in 4 chapters, we propose resource allocation solutions for dif-
ferent system constraints. The main results are summarized in the following:

1.2.1 Spectral efficiency and energy efficiency dynamic trade-off
for SISO system

Chapter 2 presents the general principles of resource allocation and the main issues
encountered. Guaranteeing the QoS and the energy efficiency is essential in wireless net-
works, but those objectives are often opposed and rarely simultaneously considered by
existing solutions. We present several classical resource allocation algorithms and their
strategies for solving these problems. In a real scenario, networks are not always saturated
and QoS requirements are easily met, allowing for more energy efficiency considerations.
We propose a new resource allocation scheduler that dynamically balances energy and
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capacity according to system load and fulfills the gap between existing solutions. Our
solution is compared to others in a performance evaluation to enlight its versatile capabil-
ities. Main results show that our scheduler reaches the same system capacity as spectral
efficiency oriented schedulers while saving energy when possible.

1.2.2 Resource allocation adaptation from single-cell to multi-
cell systems

Chapter 3 enlarges the resource allocation description to a multi-cell context. Wireless
networks were traditionally composed of several base stations managing their resources
independently. In new system designs, those stations operate conjointly to reduce interfer-
ence and optimize users’ distribution [7, 8]. Those users’ repartition can lead to unbalanced
cells and furthermore have a strong impact on scheduler performance and policy. A first
example is given on a naive approach of distributing users in two different cells as a basis
of our solution. We then propose a pre-scheduler able to adapt existing single cell sched-
ulers to multi-frequency multi-cell systems. The pre-scheduler distributes users to the
most suitable cell. This distribution depends on the cells’ capacity and prevents uneven
loads. After this pre-scheduling stage, any scheduler can be used and retain its specific
properties. The performance evaluation shows that our solution improves performances
in all tested context.

1.2.3 Resource allocation indicator for MU-MIMO system

Chapter 4 introduces the specificities of the MU-MIMO technique and its strong im-
pact on resource allocation due to the fact that several users share the same resource.
The spatial allocation of MU-MIMO is a new paradigm for resource allocation, opening
to a third dimension for resource allocation. Users sharing the same resource need to be
associated carefully. MU-MIMO grouping strategies are often based on the users’ channel
correlation [9, 10]. While presenting some advantages, this indicator has significant limi-
tations in terms of updating rate or the accuracy of losses. To overcome the limits of the
existing strategies, we propose a strategy using a new indicator that is based on the past
group allocations. This users’ compatibility indicator is more stable in time with overall
better system capacity.
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1.2.4 Conclusion and perspectives

Chapter 5 summarizes the main contributions and provides perspectives for future
work and the development of resource allocation.
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Chapter 2

SISO RESOURCE ALLOCATION

2.1 Introduction and motivations

In this chapter we focus on resource allocation in Single Input Single Output (SISO)
systems 1. Many research efforts have been done in this field and solutions already exist
to increase capacity, fairness or energy efficiency. The resource allocation process needs to
conjugate between medium management of the physical layer and application constraints
of higher layers. In this process, the strategy to choose the right user at the right time
might be crucial for the system and frequency stability. These strategies, implemented in
the schedulers, try to solve problems encountered in wireless networks. To measure the
efficiency of a scheduler we can use different Key Performance Indicators (KPIs). Those
metrics allow to evaluate different aspects of a network:

— Throughput capacity: the number of user bits that a system is able to manage in a
given time. A higher value will lead to a stronger congestion resistance.

— Spectral efficiency: the number of user bits that the system is able to transmit on
a Resource Unit (RU). Directly linked to the throughput capacity, a higher value
means a better usage of system resources.

— Bandwidth usage ratio: the ratio between the number of RUs used and the total
number of RUs made available by the access point. A ratio of 100 % indicates a
congested system. Schedulers must reach this limit as late as possible: once it has
been reached, users’ Quality of Service (QoS) can no longer be guaranteed.

— Delay: the time that is needed for a packet to arrive at its destination. A value lower
than the application constraints is required for the user to be satisfied.

— Energy efficiency: the consumption in mWatt for a bit. We can also look at the
total energy consumption of a system. To reduce the impact of wireless networks

1. This work has been published in [11, 12]
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on global warming or to extend the life of users’ batteries, it is always preferable to
minimize the energy consumption.

— User capacity limit with Quality of Experience (QoE) guarantee: the number of
users the system can manage while guaranteeing a global system mean delay less
than the application delay threshold.

— The QoE fairness index: the system ability to ensure fairness regarding users re-
quirements. This one is calculated according the following Raj Jain method (Jain’s
fairness index) [13, 14, 15]:

J (user1, user2, ..., usern) =

(
n∑
i=0

xi

)2

n
n∑
i=0

(xi)2
, (2.1)

where xi represents the evaluated parameter, xi = Delayi or xi = qoei depending of
the case. As described in the section 3.3.3, QoE is determined with the mean ratio
between the number of packets out of delay and the total number of packets.

By focusing on one of these problems, schedulers often neglect other aspects of the
network. For example a scheduler, which focuses on the total throughput may not be
energy efficient. Even if a trade-off exists, it still mainly focuses on one aspect and does
not consider the system globally. Overall system energy and spectral efficiency are ma-
jor issues in wireless network, achieving these objectives jointly seems very difficult and
requires the usage of trade-offs. Moreover, depending on the context, the importance of
the two objectives may differ. In an underloaded context, guaranteeing high QoS is easily
achievable due to a large amount of available radio resources, so the focus should be put
on energy rather than system throughput. On the other hand, in an overloaded context,
the lack of available radio resources requires that scheduling algorithms focus on system
capacity in order to preserve QoS. Since the major issue of the network is to satisfy users,
in this specific case, energy consumption must become less important. Many specialized
solutions that focus either on energy saving or throughput maximization have been pro-
posed [16, 17, 18, 19, 20]. They provide high performance on their specific network traffic
load context but are not optimized outside. Other solutions that proposed static trade-offs
provide average performance but cannot be fully efficient in all scenarios.

We propose a dynamic trade-off between energy and throughput efficiency that adapts
the scheduler priorities to the network context and particularly to the traffic load. Con-
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ns number of subcarriers by RB
nt number of antennas at the eNB
nr number of antennas at the UE
K total number of RB
U set of all active UEs

Table 2.1 – Main system parameters

sidering the context, the scheduler is able to adjust its behavior in order to maintain a
high QoS while reducing the energy as much as possible. Performance evaluation shows
that the proposed solution succeeds in minimizing the energy consumption better than
the energy-focused schedulers in an underloaded context while being able to reach the
same spectral efficiency as throughput-oriented schedulers in a highly loaded context. In
this chapter we propose one solution called the Dynamic Trade-off (DT), which dynam-
ically adjusts the trade-off between throughput and energy efficiency according to the
bandwidth usage.

2.2 General scheduling description

Each evolved Node B (eNB) is equipped with nt antennas. We thus assume that all
eNBs have the same number of antennas. Similarly, each User Equipment (UE) has nr
antennas (same number for all UEs). For the sake of simplicity the system studied is single
cell, with only one eNB. We consider that there are ns subcarriers in one Resource Block
(RB) and K is the total number of RB. Let U be the set of users attached to the eNB
with an active session. In table 2.1 we can find the main system parameters.

At a given time, scheduling can be viewed as an indicator function: δi,k(t) where i the
UE index is, k the RB index and δi,k(t) ∈ [0,min(nt, nr)] gives the number of streams on
resource k allocated to i.

We have the following constraint:

∑
i∈U

δi,k(t) ≤ nt, ∀k ∈ {1, .., K} (2.2)

The potential number of usable resources is given by nt ×K. We assume that there
is no limitation regarding the number of RF chains, the processing capacity. To illustrate
the previous equation, we can consider a number of UEs equal to nt × K, for example
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100. In this case UEs will only have 1 RB among 100 in average per Time Slot (TS). N
Note that in most cases, δi,k(t) = 0: only a small subset of U is really served at a given
slot t.

2.2.1 SISO channel model

In a SISO system nt = 1 and nr = 1, meaning that only one user i can use a resource
k on a given TS. With no interference between users of the same cell, the user throughput
is computed independently from other users. At each frame allocation, the scheduler
computes the maximum number of bits qi,k that can be transmitted using a resource
k if assigned to user i [21, 22], while keeping below its Bit Error Rate (BER) target
(BERtarget,i), for all i and all k:

qi,k ≤

log2

1 +
3P × Ts ×

(
1
di

)β
× α2

i,k

2N0
[
erfc−1

(
BERtarget,i

2

)]2

 , (2.3)

where P is the transmission power, N0 is the spectral density of noise, Ts is the
Orthogonal Frequency-Division Multiplexing (OFDM) symbol duration, di is the distance
to the access point of the user i and α2

i,k represents the flat fading experienced by this
user on resource k. In the following, αi,k is Rayleigh distributed with an expectation
equal to unity. The exponent β corresponds to the experienced path loss and goes from
2 to 4 considering environment density level. Due to multi-path fading, the potential
number of bits that a user can transmit on a RU will fluctuate around this value over the
time. Measurements show that the channel stability set this value over a 50ms period[23].
Because of this stability, resource allocation decisions rarely change from one TS to another
if they are only dependent on wireless conditions. Figure 2.1 shows an example of an
horizontal allocation due to the channel stability. Indeed, once a user is selected to transmit
on a RB, the decision is likely to remain the same until the wireless fading changes.
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Figure 2.1 – Stability of resource allocation decisions

We further assume that the supported Quadrature Amplitude Modulation (QAM)
modulation orders are limited such as q belongs to the set S = {0, 2, 4, . . . , qmax}. Hence,
the maximum number of bits mi,k that will be transmitted on a TS of resource k if this
RU is allocated to the user i is:

mi,k = max {q ∈ S, q ≤ qi,k} . (2.4)

2.3 State of The Art (SoTA) for SISO resource allo-
cation

2.3.1 Non-opportunistic resource allocation scheme

A non-opportunistic scheduler does not take into account the radio condition of the
users before allowing RB. It may lead to a case where the scheduler assigns a RB to a
user that has a momentary low achievable throughput (mi,k). However, a great advantage
is that most of the time it is easier to compute and implement.

Round Robin (RR) [24, 25, 26] is one of the well known algorithm of this type.
Even if there are different ways to implement it, the main principle remains the same. It
successively attributes the RB to users. It attributes n units to a first user i, then n units
to a second user i + 1 and when it reaches the last user, it starts over to the first user
i. By doing so the RR is fair regarding the fact that it distributes the same number of
RB for all users. But this fairness is relatively low because users do not have the same
mean achievable throughput, due to the losses, and therefore with the same number of RB
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they are not all able to transmit the same amount of data. Because it does not consider
the radio conditions of the users, the spectral efficiency is close to the mean achievable
throughput of the users.

Random Access (RA) [27] follows the same principle than RR and attributes the RB
randomly to users that need to transmit data. In average, all users have the same number
of resource units. It has the same level of fairness that RR. Depending on the platform,
it might be easier to implement.

2.3.2 Opportunistic resource allocation scheme

Because they do not consider the radio conditions of users, non-opportunistic sched-
ulers quickly reach their limits in a wireless context. To use the radio conditions’ variability
at their advantage, opportunistic schedulers add the mi,k of a user in the decision process.
It will then prefer users with good radio conditions.

Throughput focus algorithm

One of the main concerns in networks in general is the total throughput, or how much
information a system is able to transmit.

Maximum Signal to Noise Ratio (MaxSNR) [16, 17] is the simplest opportunis-
tic scheduler, which only focuses on throughput. The aim is to use radio conditions to
attribute RB to the user with the best mi,k. The user selection formula is :

u = argmax(mi,k) (2.5)

By doing so, MaxSNR avoids all the bad allocations of a non opportunist algorithm
(Fig. 2.2) and the spectral efficiency is higher than the mean mi,k of the users.

MaxSNR is particularly efficient when the number of users grows and outperforms RR.
In fact, when the number of users is growing, the chance to obtain good conditions also
grows. An opportunistic scheduler needs a great multi-user diversity to exploit its real
potential. By always selecting the user with the best achievable throughput the MaxSNR
can be really unfair. For example if we consider two users, one near the base station and
one at the edge of the coverage area, the closest user will, most likely, receives the RBs
before the far user. This results in a big difference regarding the QoS for those two users.
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Figure 2.2 – Benefit of opportunistic scheduling strategies on spectral efficiency and system
capacity.

Fairness oriented resource allocation scheme

As seen previously, focusing only on throughput may lead to unfair situations. To
maintain a good QoS within a cell regardless of the users distance from the Base Station
(BS), algorithms have to compensate the differences between users.

Proportional Fair (PF) [28, 29, 30, 31, 32] solves this issue by compensating the
average obtained or achievable throughput. Indeed, users close to the access point have
a better average throughput per RU than far users. This implies that, with MaxSNR
scheduler, close users have statistically more chances to have access to the medium. In
consequence, far users will often obtain radio resources after close users making them
overpassing their QoS requirement and being unsatisfied. The basic principle of PF-based
algorithms is to allocate resources to one specific user when its channel conditions are the
most favorable with respect to its time-averaged conditions. The strategy is to calculate
a mean value Mi,k of the user throughput mi, k. The calculation of Mi,k depends on the
implementation and there is a lot of variants of this algorithm. One way to do it is to
calculate the mean number of bits per RB obtained by a user i over a certain period of
the time. The user selection formula is then:

u = argmax(mi,k

Mi,k

) (2.6)
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This approach is more fair than MaxSNR since all users statistically have the same
probability of accessing radio resources. Therefore, PF increases the benefits of multiuser
diversity, which reinforce the opportunistic resource allocation behavior. By considering
all users when their reach their higher achievable throughput, PF-based algorithms are
more spectral efficient than MaxSNR-based algorithms.

FairMaxSNR [33] proposes to solve the fairness problem by focusing on user distance
of the BS. FairMaxSNR compensates for the difference in average throughput between
users by considering a compensation factor (CFi), which decreases as the distance in-
creases. This compensation factor gives users the same chance of accessing RBs regardless
of their distance from from the BS.

u = argmax(mi,k

CFi
) (2.7)

Performance is comparable to the best designed schedulers based on PF.

2.3.3 Energy oriented resource allocation scheme

In order to offer more battery autonomy to users, solutions focusing on energy saving
have been developed. With Power-based Proportional Fairness (PPF) [18], the authors
propose a PF-based scheduler that avoids the inefficient allocations, with low Signal to
Noise Ratio (SNR), and buffers transmissions that have high average energy consump-
tion. This slightly increases energy efficiency since this gives access to the medium only to
users with good SNR, allowing to always use higher modulation orders which are the most
profitable, but potentially could segregate users with high traffic load (that will use more
radio resources and consequently use more energy). In addition, the best way to mini-
mize energy consumption is not only to optimize the modulation but mainly to maximize
the sleep time. The Opportunistic Energy Aware (OEA) [19] is built on this principle.
It exploits active-sleep mode and channel condition together. While other schedulers can
potentially activate all users, the OEA limits this number. This allows to compress the
transmission time (i.e. active mode), which is greedy in energy. Considering the channel
condition in the allocation process, only allocations with high modulations are also con-
served. T-MAC [20] is another strategy that can be considered as an extreme version of
OEA. It only schedules a single user by TS, which strongly maximizes sleep time but, by
losing multiuser diversity benefit, provides lower throughput. All these energy-specialized
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schedulers lack fairness and have limited spectral efficiency. Therefore this limits their
scope of usage to underloaded context. Since energy efficiency guarantee must not evade
QoS requirement and the system capacity optimization, new approaches must be devel-
oped in order to bring together: high spectral efficiency, fairness and energy consumption
minimization whatever the considered traffic load.

2.4 Dynamic trade-off proposal

Even though system energy and spectral efficiency are major issues in wireless net-
work, reaching these objectives conjointly seems very difficult and requires the usage of
trade-offs. In under-loaded context, guaranteeing high QoS is easily achieved due to a large
amount of available radio resources and the focus should be put on energy rather than on
system throughput. At the opposite, in an overloaded context, the lack of available radio
resources required that resource allocation algorithms focus on system capacity in order to
preserve QoS. Since the major issue of the network is to satisfy users, in this specific case,
energy consumption must become less important. As seen in section 2.3, many special-
ized solutions that focus either on energy saving or throughput maximization have been
proposed. They provide high performance in their specific traffic load context, previously
described, but are not optimized outside. Other solutions that proposed static trade-offs
provide average performance, but cannot be fully efficient in all scenarios. To fill the gap
between throughput and energy oriented schedulers, we propose a new algorithm called
DT that dynamically adjust its behavior to the traffic load context. In an under-loaded
system, radio resources are abundant and the system can easily satisfy all users. Conse-
quently, in these contexts, DT detects the surplus of unused radio resources and orients
its scheduling strategy to be energy aware. It makes a better usage of multiuser diversity
than OEA: this allows to preserve more energy than this specialized algorithm even in
the scope of usage of OEA. In an overloaded system, radio resources are highly valued
and the system is experiencing great difficulties to satisfy all users. In these contexts,
DT detects the lack of available radio resources and orients its scheduling strategy to
increase the spectral efficiency in order to withstand the load increase. It offers the same
system capacity than PF and outperforms MaxSNR. Between these two extreme con-
texts, DT takes into account the bandwidth usage ratio to smoothly adapt and adjust its
energy-throughput trade-off to the traffic load. Performance evaluation shows that user
are always satisfied with fairness as well as PF while always preserving as much energy
as possible.
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The DT scheduling algorithm relies on weights that set the dynamic priorities for
allocating the radio resources. These weights are built in order to satisfy three major
objectives that are explained separately in the following: system capacity maximization,
fairness and energy consumption minimization. Then we present a calibration of the func-
tion that adds an ability for the scheduler to adequately tune the multiuser diversity usage
considering the context and relative objectives, merging previous weights in a balanced
DT solution.

2.4.1 System Throughput Maximization

The main KPI to consider in a resource-constrained network is capacity. As seen
in section 2.3.2, MaxSNR-based schemes allocate the RU to the terminals that have
the greatest mi,k (eq. 2.4) values. This strategy maximizes the system capacity at short
time scale. To provide an opportunistic behavior to DT and to maximize its spectral
efficient, DT is inspired by MaxSNR. However, it is highly unfair considering users far
to the access point that are often treated outside their delay requirement. In order to
provide more fairness considering users’ locations while preserving the system throughput
maximization, a fairness parameter is introduced in the DT formula.

2.4.2 Fairness guarantee

DT integrates in its scheduling process the fairness parameter proposed in [33]. Called
Compensation Factor (CF) and denoted by CFi, this parameter takes into account the
current path loss impact on the average achievable bit rate of mobile i:

CFi = bref
bi
. (2.8)

bref is a reference number of bits that may be transmitted on a subcarrier considering
a reference free space path loss aref for a reference distance dref to the access point and
a multipath fading equal to unity:

bref = log2

1 + 3Pmax × Ts × aref
2N0

[
erfc−1

(
BERtarget

2

)]2
 . (2.9)
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bi represents the same quantity, but considering a distance di to the access point:

bi = log2

1 +
3Pmax × Ts × aref ×

(
dref

di

)β
2N0

[
erfc−1

(
BERtarget

2

)]2
 , (2.10)

with β the experienced path loss exponent.
Adequately combining and taking into account bothmi,k and CFi in the allocation pro-

cess (mi,k×CFi), DT considers all mobiles virtually at the same position in the scheduling
decision. CFi adequately compensates the lower spectral efficiency of far mobiles bringing
high fairness in the allocation process. An equal throughput can be provided for each
mobile while keeping the MaxSNR opportunistic scheduling advantages thanks to the
mi,k parameters, which take into account the Channel State Information (CSI). More-
over, in contrast with MaxSNR, which satisfies preferably the mobiles close to the access
point, DT keeps more mobiles active but with a relatively low traffic backlog. Satisfaction
of delay constraints is more uniform and, by better preserving the multiuser diversity,
a more efficient usage of the bandwidth has been highlighted. This jointly ensures fair-
ness and system throughput maximization. If two mobiles have an equal priority for a
RU, one is given to the mobile that has the highest Buffer Occupancy (BO) in order to
further strengthen fairness. At this step, DT optimizes the throughput and guarantees
high fairness, but highly suffers of an inefficient energy management at a same level than
PF. In order to provide energy consumption minimization while preserving the system
throughput maximization and fairness, an energy parameter is introduced as explained
in the next section.

2.4.3 Energy consumption minimization

The third major objective of the DT is to provide efficient energy management in addi-
tion to the system throughput optimization and fairness. Existing opportunistic resource
mapping (as MaxSNR or PF for example) basically overexploit multiuser diversity, which
induces horizontal allocation. Indeed, due to flat fading during a frame, often same user
experienced the best channel condition on each TS of a given RB. Consequently, with
classical opportunistic schedulers, same user often receives all the TS of a RB and needs
to stay in active mode during a long time. We can potentially have as many selected users
as the number of RB. Therefore, during all TSs, many selected users cannot be set in
sleep mode. They consume a lot of power to transmit few bits during a long time (with
many allocated TS but on few RBs).
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The DT scheduler integrates a modified version of the energy efficient OEA solution
[19], keeping its energy benefit without its fairness and system capacity failure. Energy
consumption is minimized particularly by increasing the sleeping mode duration. In order
to achieve this goal, DT extends the classical OEA opportunistic cross-layer design to
obtain a new vertical opportunistic resource mapping.When a user is in active mode, DT
tries, like OEA, to benefit from its activation in order to compress its time of activity and
to transmit more bit per “used" TS. Like this, DT allows to significantly increase sleeping
mode duration and energy preservation. Originally, OEA scheduler computed an “Energy
Transmission Cost" (ETCi) parameter (in Watt). It is based on the energy cost of user i
to transmit on a RU:

ETCi = Ai × Cni + (1− Ai)× (Ci + Cni), (2.11)

When the user k is in active mode, Ai = 1 otherwise Ai = 0 (i.e. sleep mode). In
addition, Cni and Ci are two constants (in Watt). Ci represents the energy needed to
wake up the user i from the sleep mode to the active mode. Cni represents the energy
needed to transmit on a nth allocated RB. The energy cost to transmit on the first RU
(Ci) is higher than the cost to transmit on nth (Cni) since the cost to move to sleep mode
to active mode and transmit is greatly higher than just transmit some supplementary bits
while user is already active.

ETCi is used in OEA scheduler but has the negative side effect to highly reduce the
exploitation of the multiuser diversity. This drastically and negatively impacts the OEA
system capacity optimization. In order to keep its energy minimization properties while
fixing this throughput issue, DT integrates a modified ETCi parameter that we called
“Throughput-Energy trade-off" parameter TETi:

TETi = Ai × Cni + (1− Ai)× ( Ci
MD

+ Cni), (2.12)

where MD is a Multiuser Diversity factor. The higher MD is, the more the system
increases the number of active users at the same time, intensifying the multiuser usage and
jointly the global system throughput at the expense of the energy consumption (infinite
MD value makes TETi constant and induces DT similar to a PF resource allocation).
At the opposite, low MD value makes DT decreasing the number of active users at the
same time, reducing energy consumption at the expense of the multiuser diversity usage
that provides a resource allocation close to OEA scheduling (excepting that this version
is strongly more fair due to section 2.4.2).
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2.4.4 DT merging of priorities

The DT scheduler allocates the radio resource k to the mobile i that has the greatest
DTi,k value where:

DTi,k = mi,k × CFi
TETi

(2.13)

DTi,k = mi,k × CFi
Ai × Cni + (1− Ai)×

(
Ci

MD
+ Cni

) (2.14)

Taking into account mi,k allows to optimize system capacity, avoiding unprofitable
radio resource allocation, CFi allows to stay fair in the allocation process regarding user
location and the other parameter allows to fight versus energy waste. Particularly, by
adjusting the multiuser diversity usage thanks to good function of MD, DT could select
the minimum number of users per TS to have a good energy efficiency while respecting
the QoS requirements. However, when the system is more loaded, DT could increase the
multiuser diversity thanks to an higher value of MD in order to obtain a better spectral
efficiency to support the load.

2.5 Simulation setup

2.5.1 Simulator

The simulations are computed using our own simulator written in C++. The main
reason for this choice is to be able to run only the necessary features to accelerate the
simulations. Indeed, to simulate 16 minutes of real-time, it takes 1 million iterations of
the main loop which corresponds to 100 hours on an 8 core computer using multi-threads
processing. To ensure our simulator reliability, we validated our simulations using results
from the state-of-the-art.

2.5.2 Traffic model

An important aspect of a wireless network simulation is the users’ traffic. In fact, most
of the simulations are done in full buffer, which means that all users have always something
to transmit. Using this kind of simulations, it is not possible to observe the delay of any
packet, because there is an infinite number of packets waiting to be transmitted. This
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(b) Non full buffer traffic.

Figure 2.3 – Spectral efficiency in full buffer and in non full buffer traffics

situation corresponds to a particular case where the system is overloaded where normal
users would leave the network. This scenario can be used when trying to optimize the
physical layer or the overall capacity, but not the QoE of the users. A non full buffer
system allows us to access information like delay, jitters or buffer occupancy, which are
useful to accurately determine the QoS of our algorithm. This allows us to change the
load from an unsaturated to a saturated system and see how schedulers adapt in all these
situations.

In addition, a full buffer system may lead to false interpretation. For example, MaxSNR
is very efficient (regarding the total throughput) in a full buffer system, but not in the
general case where FairMaxSNR is more efficient (Figure 2.3). MaxSNR considers only
close users at first and then far users, while the FairMaxSNR considers everyone in the
same time, increasing the multi-user diversity. The result is the opposite in full buffer,
because MaxSNR can only choose close users due to their infinite buffers and has better
spectral efficiency than FairMaxSNR which still has to manage both groups.

There are several ways to design the generation of packets. One way is to do a Constant
Bit Rate (CBR), which means that all users create a fixed number of packets at each
frame. It has the advantage of being easy to build, and the results can be obtained in a
few frames. Indeed, when the scheduler can manage the volume of bits once, it will be
able to manage it every time if nothing changes.

But to be more realistic and make things more complex for the scheduler, we chose to
implement a Variable Bit Rate (VBR). The traffic source is a multi-phase process. At the
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beginning of each phase, a data block is generated. The size of the block is an exponential
random variable, allowing very high burst. The duration is n times a frame duration,
where n is a geometrically distributed random integer. This type of generation is a good
compromise between CBR and very complicated traffic models[34] regarding simulation
time and realism needs.

2.5.3 User deployment

To evaluate the fairness of the schedulers, users are divided into two groups: close and
far users. Users inside the same group are placed at the same distance from the BS. Those
distances are set to respectively obtain a mi,k of 8 and 6 for close and far users. Each user
application requires 560 kbits/s in mean. The 100% of bandwidth usage is reached around
20 users, using RR and varies depending on schedulers’ spectral efficiency. To keep the
system stable, users are added two by two, one close and one far. By doing so, there is
always the same number of users in both groups.

2.5.4 Frame design

Our simulation uses a scaled down LTE frame. The size of a RB is one subcarrier
over 7 symbols, while the frame is divided in 32 RB over 50 TS. This configuration is
based on one configuration encountered in the literature[19]. In the 4G LTE, a frame
has a duration of 10ms and is divided in 20 time slots that are divided in 7 symbols.
The bandwidth can be divided up to 100 RBs with 100 × 12 subcarriers (for a 20 MHz
bandwidth in downlink). A smaller system, like the one we use, reduces the simulation
time without changing the performance differences between schedulers. Figure 2.4 shows
the spectral efficiency difference between two simulations computed with our simulator:
one using the LTE parameters and one using our scaled down parameters. Indeed, even if
the gap between two schedulers may change with two different configurations, the order
between them will not. A more spectral efficient scheduler will also be more efficient in a
standard LTE configuration.

2.6 Study of the Multiuser Diversity factor

The multiuser diversity has an important impact on the load resistance and on the
energy consumption. Finding an efficient way to adapt its usage to the context thanks to
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Figure 2.4 – Spectral efficiency compared between LTE frame and scaled down frame

a well tuned MD factor is challenging:

— The first step is to determine the extreme values of the MD which correspond to
the best extreme configurations : when the system is clearly underloaded, the only
concern is the energy consumption, when the system is largely overloaded, the main
focus has to be on the QoS requirements.

— The second step is to find a smooth and adequate transition between those two
extreme values based on adapted inputs.

2.6.1 Static MD value proposition

In a previous extensive study we found that MD = 10 provides a very efficient static
trade-off between energy consumption minimization and spectral efficiency. This study
had lead to a proposition of a new scheduler called Fairness-Energy-Throughput Opti-
mized Trade-off (FETOT) 2. FETOT uses a static MD factor fixed at 10. It allowed to
make an adequate usage of the multiuser diversity in order to provide, the same system
capacity than MaxSNR, same Fairness than PF and an energy minimization very close to
the OEA results. However, we are convinced that the usage of a static MD value is not
optimal. Even if FETOT provides a very good static overall trade-off, this can be highly
improved with a solution able to adapt and tune the MD (and therefore the trade-off

2. This work was part of a prior master degree internship and has been published in [11]
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Figure 2.5 – System capacity and spectral efficiency study obtained with different static
MD values.

settings) to the network traffic load context. Indeed, in very low traffic load context, en-
ergy minimization must be the only objective. With the increase of the traffic load, more
attention must be done on spectral efficiency in adequate trade-off. In high traffic load,
to improve spectral efficiency becomes the primary goal in order to continue to satisfy
users and energy minimization priority must be relegated. The main contribution of this
chapter is to propose a new scheduler that combines all previously described parameters
and use a dynamic MD parameter to adapt priority to the context.
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2.6.2 Study of extreme static MD values

Figure 2.5 shows the performance of preliminary versions of DT using static values of
MD factor. For different traffic loads it shows the energy transmission cost per bit (Fig.
2.5(a)), the spectral efficiency (Fig. 2.5(b)), the bandwidth usage ratio (Fig. 2.5(c)) and
the packet delay (Fig. 2.5(d)). The bandwidth usage ratio is the number of allocated RU
divided by the total number of radio RUs in the system, in average, per frame.

In a non-congested system (i.e. when delay and bandwidth usage ratio are low, here
with a number of users lower than 15 users), the focus should exclusively be put on the
energy efficiency. As we can see in figure 2.5(a) a too high value of MD (> 10) induces
excessive consumption due to several users simultaneously active on same TSs. However,
choosing the smallest value is not a good option either. Indeed, if the MD is too small,
opportunistic behavior is drastically reduced, and the spectral efficiency (Fig. 2.5(b)) is
not good enough to evacuate the necessary amount of information in a short time. Even if
the scheduler could appear to be more energy efficient due to a drastically limited number
of active users at a same time, it is not at the long time scale since users will transmit
during longer periods due to very low spectral efficiency. Consequently, in extreme and
very low loaded context, MD = 3 seems to be the most adequate value in order to reach
the minimization energy consumption objective (Fig. 2.5(a)).

In a congested system (i.e. when delay is high, bandwidth usage ratio very close or
equal to 100 %, here with a number of users is over 20 users), the focus should exclusively
be put on the spectral efficiency since the priority is to maintain a good level of QoS.
Concerning bandwidth usage ratio, figure 2.5(c) underlines that all MD values greater
than or equal to 100 allow to better withstand extreme traffic loads providing same
spectral efficiency (Fig. 2.5(b)) and best delays (Fig. 2.5(d)). However, having a look
at the energy efficiency (Fig. 2.5(a)), we notice a slight advantage to MD = 100 over
larger values. In conclusion, a MD value around 100 is the most adequate values in this
extremely high loaded context.

2.6.3 Dynamic MD function calibration

Originally in preliminary works (FETOT is described in section 2.6.1), we have shown
that a fixed MD value set at 10 could represent an average good trade-off. However, it is
not the best suitable solution for extreme cases as shown above. An adaptive solution can
be developed to outperform FETOT in those situations with a dynamic usage of multiuser

38



2.7. Study of the reactivity parameter α

diversity that can be obtained thanks to a dynamic MD according to the context and
particularly to the traffic load (that should define the scheduler priorities/goals). We
propose in DT to define MD as an increasing function of the bandwidth usage ratio.
This parameter simply and accurately informs about the state of the system and on the
difficulties or not for the scheduler to maintain the QoS to the user. Low bandwidth usage
ratio values, inducing low MD value (MD=3), underlines to DT to focus on energy. High
bandwidth usage ratio, which required to focus on spectral efficiency, will induce high MD
value (MD around 100) that will improve multiuser diversity usage. In order to link these
two extreme limits, we proposed the intuition-based formula:

MDx = C + βxα (2.15)

where x is the bandwidth usage ratio, C is a constant that defined the starting value of
the MD function when the system is underloaded and β corresponds to the other extreme
when the system is overloaded. In the following, we set C to 3 and β to 100 according to
the results obtained is section 2.6.2. The parameter α allows to set the reactivity of the
function to the traffic load variation. An appropriate calibration of α is highly important
and is studied hereafter.

2.7 Study of the reactivity parameter α

It is important that the MD function gives low values when the bandwidth usage
ratio is low. Since QoS is easily guaranteed, DT has to limit the multiuser diversity usage
in order to focus on energy consumption minimization. When the traffic load increases,
the MD function must increase its output in adequacy with the difficulties met by the
scheduler to conserve high QoS. Figure 2.7 represents MD variation depending on traffic
load (measured with the bandwidth usage ratio) for different value of α. As we can notice
in this figure, the α parameter directly impacts how this MD value will increase from the
traffic load. If α is set equal to 1, the MD function is linear and multiuser diversity usage
will be constantly increased with the bandwidth usage ratio. It is no optimal since no QoS
difficulties are met with low bandwidth usage ratio values and problems are experienced
only when we they come closer to 100%. At the opposite, a high value of α (typically
α = 40) make MD function growing too late in order to satisfy the QoS. Indeed, in
realistic scenarios, with the variability of the traffic, even with an average measurable
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Figure 2.6 – Study of α on system capacity and delay.
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Figure 2.7 – Variation of MD according to α value.

bandwidth usage ratio inferior to 100% but close to this limit, temporary short term
congestion can occur decreasing QoS. In these cases multiuser diversity usage must be
intensified and this can be done by the DT scheduler if MD function is well calibrated.
Detect when MD function must begin to grow is a difficult task and relies on the elasticity
of the traffic. In order to define the best value of α, we decide to evaluate all possible α
values performance in extensive simulations (Fig. 2.6).

Figure 2.6(a) shows the impact of α regarding the energy efficiency. It is the most
important objective for all the left parts of the figure since delay values are very low
(Fig. 2.6(b)). Choosing a small α value such as 1 has a very bad impact on the energy
consumption that increases quickly. This is due to the fact that the algorithm is too
much reactive on the traffic load increase, uselessly exploits a supplementary of multiuser
diversity and futilely tries to focus on the QoS. Indeed, very good value of delay is obtained
for all α values inferior or equal to 20 (Fig. 2.6(b)). Higher values than 20 increase MD too
late and provide worst delay, whereas lower value provides same delay but more energy
consumption. If we consider that a final goal is to be able to maintain the best QoS while
minimizing energy as much as possible, the most suitable α value for the MD function is
equal to 20.

41



Chapter 2 – SISO resource allocation

0 5 10 15 20 25 30 35

Number of users

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

S
p
e
ct
ra
l 
e
ff
ic
ie
n
cy

(b
it
s 
b
y
 R
U
)

RR

MaxSNR

FairMaxSNR

DT

OEA

WPF

T−MAC
FETOT

(a) Spectral efficiency.

0 5 10 15 20 25 30 35

Number of users

0

20

40

60

80

100

B
a
n
d
w

id
th

 u
sa

g
e
 r

a
ti

o
 (

%
)

RR

MaxSNR

FairMaxSNR

DT

OEA

WPF

T−MAC
FETOT

(b) Percentage of RU used.

Figure 2.8 – Schedulers system capacity study.
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Figure 2.9 – Schedulers abilities to guarantee high QoS.
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Figure 2.10 – Scheduler energy efficiency.
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2.8 Performance evaluations

2.8.1 Context and simulation setup

Performance evaluation results are obtained using discrete event simulations. In the
simulations, we assume Ci and Cni fixed respectively equal to 110.2 mW and 46.8 mW, for
all i in accordance with measured hardware consumption[19]. The BER target is taken
equal to 10−3. We also consider that all users run VBR applications that generates a
high volume of data with high sporadicity and require tight delay constraints, which
substantially complicates the task of the scheduler. In order to study the influence of the
distance of users on the scheduling performance, a first half of mobiles are situated close
to the BS and have a mean mi,k equal to 8 bits. The second half are farthest from the BS
such as their mean mi,k equal to 6 bits. All performance criteria are done by studying the
influence of the traffic load. This one varies adding users 2 by 2 (each time, 1 close user
and 1 far user). Simulation parameters are summarized in Table 2.2 and are described in
section 2.5.

Close users Far users
Mean mi,k 8 bits 6 bits

Throughput requirements 560 kbits/s
Traffic model VBR

Ci 110.2 mW
Cni 46.8 mW

Base Station
Number of RB 32
Number of TS 50

Table 2.2 – Simulation parameters

2.8.2 Spectral efficiency and throughput

Figure 2.8(a) shows the spectral efficiency obtained with each scheduler for different
traffic load in the system. Since RR does not take into account radio conditions and
therefore is not opportunistic, it does not take any advantage of multiuser diversity and its
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spectral efficiency is constant and low. SoTA energy focused schedulers (T-MAC, OEA),
drastically limit the usage of the multiuser diversity in their allocation process offering
slightly better results. On the contrary MaxSNR, highly opportunist provides a large gain.
However, as explained in section 2.4.1, MaxSNR has a lack of fairness and is not able to
take all the benefits of the multiuser diversity and is highly outperformed by PF. FETOT
makes a trade-off between energy and throughput and provides spectral efficiency results
close to MaxSNR.

Thanks to its dynamic MD parameter based on the bandwidth usage ratio, DT has
lower spectral efficiency in low traffic load context using a moderate usage of the multiuser
diversity focusing its efforts on energy. However, when it becomes necessary, and while
energy specialized scheduler approach congestion (Fig. 2.8(b)), its MD factor adequately
increases and raises the DT usage of the multiuser diversity, improving the spectral ef-
ficiency at the same level than PF reaching the same overall maximum system capacity
(Fig. 2.8(b)).

2.8.3 Delay and fairness

A major QoS key performance indicator is the latency. Figure 2.9(a) represents the
mean packet delay experienced in the system in milliseconds according to the number of
users showing the traffic load. We can notice that 2 groups emerged:

— First, RR, T-MAC and OEA that have the worst results. Having a low spectral
efficiency (Fig. 2.8(a)), they failed to support a large amount of traffic load with
good QoS.

— Secondary, MaxSNR, PF, FETOT and DT are able to better sustain higher load
increase with acceptable delay.

Figure 2.9(b) focus on fairness computed thanks to the jain’s fairness index applied
on mean packet delay, With U defined as the current number of users in the system.
Jain’s fairness index can vary between 1

i
and 1 respectively associated to the most unfair

scheduling with the most fair. T-MAC, OEA and MaxSNR significantly penalize user
far from the BS and have decreasingly fairness results with the traffic load increase.
On the contrary more fair solutions as RR, PF, FETOT and DT achieve to reach a
high fairness index. Note that after congestion fairness cannot be guaranteed since the
global mean packet delay is infinite. Consequently, the capacity of these schedulers to
maintain high fairness is directly related to their spectral efficiency and when they have
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no longer available radio resources, fairness disappeared. Note that when the system
capacity is highly overpassed, jain’s fairness index can increase due to comparison of close
but unacceptable huge value of delay. Respectively the most fair schedulers are: PF, DT,
FETOT, RR, MaxSNR, OEA, T-MAC.

2.8.4 Energy consumption

Figure 2.10 shows the abilities of each scheduler to be energy efficient. RR widely pro-
vides the worst results. This is due to its non opportunistic behavior that makes possible
highly inefficient resource allocation in term of bit per RU and therefore a significant
energy and RU wastes. In addition, due to a cycling user selection, many users can be si-
multaneously activated (Fig. 2.10(d)) increasing again the energy waste since more users
pay a higher transmission activation price Ci. With more than 20 users, the system is
overloaded and RR fails to provide the sufficient amount of RUs required by each user.
They are often forced to stay in sleep mode even with data to transmit due to the lack
of RUs. More often forced into sleep mode, the users consumed less energy over the time.
This explains why with more than 20 users, the RR curve decreases (Fig. 2.10(c)). Limit-
ing the usage of the multiuser diversity to a low value whatever the context (Fig. 2.10(d)),
T-MAC and OEA provide very good energy consumption (Fig. 2.10(c)). Note that these
good results must be put into perspectives. Indeed, those solutions continue to search
to minimize energy consumption, even when the traffic loads increase and this stubborn
behavior conducts these schedulers to quickly reach congestion (Fig. 2.8(b)) with high
delay (Fig. 2.9(a)). At the opposite, PF, fully exploiting the multiuser diversity (Fig.
2.10(d)), consumes more energy (Fig. 2.10(c)) but less than RR thanks to strongly better
spectral efficiency. Focusing on MaxSNR, its energy results are slightly better than PF.
Indeed, this scheduler has a tendency to segregate a part of users (far from the BS) and
therefore obtains reduced benefits of multiuser diversity usage. This is a weakness in order
to improve spectral efficiency, but an advantage to increase user sleep duration. FETOT
provides better energy efficiency than MaxSNR, very close to the OEA, when the traffic
load is low (below 20 users). Using an adequate static trade-off, energy consumption stays
reasonable, even when traffic reaches higher values but, when necessary and contrary to
the OEA, this is less done at the expense of spectral efficiency that stay closer than
MaxSNR (Fig. 2.8(a)).
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Considering underloaded contexts (number of users inferior to 20), guaranteeing high
QoS is easily achievable by DT (Fig. 2.9(a)) due to a large surplus of available radio RUs
(Fig. 2.8(b)) and focus should be put on energy rather than system throughput. Figures
2.10(a), 2.10(b) and 2.10(c) underline that DT is the scheduler that better optimizes the
multiuser diversity usage in this context. Few users are simultaneously activated per TS
(close to T-Mac and OEA (Fig 2.10(d))) but, contrary to the specialized SoTA energy
aware schedulers, DT provides an adequate spectral efficiency forbidden inefficient re-
source allocation. This combination allows to better compress the transmission time and
therefore better optimize energy consumption. Considering a highly loaded context (num-
ber of users greater than 20), the lack of available radio resources (Fig. 2.8(b)) required
that schedulers focus on system capacity in order to preserve QoS: energy consumption
must become a lower priority. In this context, DT behavior slightly sacrifices energy in
order to sustain the network viability and then favors high spectral efficiency that reach
values closer than PF (Fig. 2.8(a)), which provides acceptable delay as long as possible
(close to PF).

2.9 Conclusion on SISO resource allocation

Reaching both low system energy consumption and high spectral efficiency are very
difficult tasks in a wireless network. Specialized solutions as MaxSNR, PF or T-MAC have
been designed to well answer one of these criteria failing for the second. Other solutions
propose static trade-offs that provide better average results on these two metrics without
outperforming specialized schedulers in their focused domain. In this chapter, we underline
that the network objectives must be dependent on the context and particularly to the
traffic load. In underloaded context, guaranteeing high QoS is easily achieved due to a
large surplus of available radio resources and the focus must be put on energy rather than
system throughput. At the opposite, in a high traffic loaded context, the lack of available
radio resources required that resource allocation algorithms focus on system capacity in
order to preserve QoS, satisfy users, thus energy consumption must become less important.
The main contribution of this chapter is to propose a DT scheduler able to tune its
priorities, by adjusting the multiuser usage, according to the network traffic load context.
It provides a better energy efficiency than specialized energy aware scheduler when it is
feasible while providing the same spectral efficiency and delays than throughput oriented
scheduler when it is required. This is achieved thanks to a special focus on fairness, which
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is also guaranteed. Surpassing specialized schedulers both in their preferred context and
in their ability to adapt, the main limitation of DT is wireless network technology. In a
macro cell SISO network, the main way to improve the spectral efficiency is to increase the
available bandwidth. However, in frequencies below 6 GHz, bandwidth is rather scarce,
opening the way for smaller, higher frequency cells and the need to manage them. In the
following chapter, a strategy for adapting existing SISO resource allocation schemes to
multi-cell networks is presented.
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Chapter 3

MULTI-CELL RESOURCE ALLOCATIONS

3.1 Introduction and motivation

Network resources such as bandwidth are often scarce and need to be shared between
users inside the same coverage area. In order to manage this traffic, network densification
constitutes a major evolution of network deployment. This system, called Hierarchical
Cell Structure (HCS) [35], lies in the multiplication of the number of access points or
Base Station (BS) with which users can establish a connection. In a fifth generation (5G)
multicell context, we generally consider that micro cells (µgNB) are deployed in addition
to the traditional 5G-based macro cell (next generation Node B (gNB))[36]. These cells
allow to locally offload the system in dense areas where the demand in data may be
higher (shopping centers, stadiums, train stations...). Access points are then divided into
two categories whose characteristics are presented as follows:

— A macro cell layer provides a wide-area coverage due to their low frequencies band
(<6GHz), facilitating a geographical continuous connection to users. Traditionally
a macro cell BS can cover up to 10 km in rural areas and up to 1 km in dense urban
area.

— Micro cell access points are low-power hotspots providing short range coverage area.
Operating in high frequency bands (millimeter waves for 5G), these access points
allow to deliver high data throughput thanks to large spectrum bandwidth. However,
these frequencies suffer from stronger pathloss, shadowing and multipath fading
significantly affecting the coverage area.

In this context, the management of all these access points can be done by a central
processing unit. This unit (Figure 3.1) performs all the scheduling decisions and allocates
resources to the users. This hierarchical management [37] optimizes the decision-making
on how the network operates and allocates resources depending on user demands and
channel quality.
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Figure 3.1 – Typical 5G multicell scenario

In this type of wireless network, a new problematic lies in the allocation process. In-
deed, in a typical 5G multicell scenario, radio layer evolution allows a user to be connected
to several access points at the same time. This leads to the emergence of new allocation
strategy issues. One of them lies in optimizing user traffic repartition between micro cell
and macro cell access points. This depends on a lot of parameters such as users channel
quality, services type and system load. Hereinafter, the study proposes different allocation
strategies when the system suffers from high traffic load and tends to be overload.

A well studied topic, Coordinated MultiPoint (CoMP) transmissions, tackles the users
repartition in multi-cell context, as seen in [7] and [8]. However, our solution takes benefit
from different frequency bands for each station type. The macro cell and the micro cell
work at different frequencies, eliminating the interference problem. Moreover, our pre-
scheduler proposal is compatible with all allocation strategies (schedulers). Four of them
are summarized in section 2.3.

This chapter aims to present our pre-scheduling solution called Multi-Cell Pre-Scheduler
(MCPS) and evaluate its performance impact when applied upstream these four sched-
ulers 1 [24, 17, 32, 19]. MCPS computes user-expected throughput with all the access
points they can establish a connection. It assigns to each user a priority index. Depending
on the micro cell maximal capacity, users with the higher priority index are assigned to

1. This work was done in association with an intern that I co-supervised and the work has been
published in [38] and is part of the One5G project [39]
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the micro while the rest of the users are assigned to the macro. This allows to assign to the
macro cell the users who take the highest benefit. By dynamically arrange users between
the two access points, the user traffic repartition is optimized guaranteeing a high system
capacity.

The chapter is organized as follows. Section 3.2 describes related work concerning
multi-cell algorithms. Section 3.3 provides a detailed description of the system under study
and gives an important preliminary result attesting the use of a pre-scheduler. Section
3.4 introduces MCPS pre-scheduler principles. Section 3.5 presents two users deployment
scenarii in order to evaluate the performance of our pre-scheduling solution. Section 3.6
concludes the chapter.

3.2 State of The Art (SoTA) for multi-cell algorithms

Using the same frequency for all access points leads to the need of advanced interference
management. CoMP [7, 8, 40, 41] is a topic well covered in the literature and aims at
covering this problem. The objective is to provide a fair throughput regarding the position
of the users, where edge users may suffer from interference of nearby cells. In our context,
edge users are covered by the micro-cell and do not suffer from interference thanks to the
use of different frequencies.

One solution to limit interference for edge users is to identify users type (edge or center)
during the resource allocation process. In [7], authors propose to divide the allocation
process in three steps. The first step aims at classifying users in two groups: center users
and edge users. The second step divides the resources available on these two user groups.
The third step allocates resources to users in need. While MCPS also classifies users into
two categories, resources are not shared between user groups, thanks to the use of different
frequencies.

Another approach is to communicate with all surrounding BSs on the same resource
to increase the signal and prevent those BSs from allocating that resource to another user
and interfering with the first user. This technique is used by [40] and is divided into three
steps. During the first step, users estimate the average power from surrounding BSs. In
the second step, users rank the BSs according to the received power. In the third step,
if two BSs have similar power, the user enables the CoMP-mode and authorizes the user
to be served by both stations. If one BS has a higher power than others, the user does
not activate the CoMP-mode and is only served by a single BS. Using MCPS, users are
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also able to receive from both cells. However, to prevent a cell from being selected by
all the users, the distribution of users is done according to cell loads and not just user
preferences.

Another main advantage of our solution is to be compatible with different types of
schedulers, without changing their resource allocation policy, where CoMP algorithms
often integrate a predefined scheduler.

3.3 System description

3.3.1 Deployment scenario

In the studied deployment scenarii, the entire bandwidth is split into several subcar-
riers. We assume that each subcarrier has independent Channel State Information (CSI)
values [42]. Depending on the numerology used [43], Time Slot (TS) duration and sub-
carrier bandwidth may differ. The packets issued from the backhaul network are buffered
in the access points, which schedules the downlink transmission. The radio resources are
further divided in the time domain in frames. Each frame is itself divided in TSs, with
a duration depending of the numerology. The TS duration is an integer multiple of the
Orthogonal Frequency-Division Multiplexing (OFDM) symbol duration. The number of
subcarriers is chosen so that the width of each Physical Resource Block (PRB) is less
than the coherence bandwidth of the channel. Moreover, the frame duration is fixed to a
value much smaller than the coherence time of the channel. We consider two access points
with available Resource Units (RUs). Each RU is characterized by a {frequency ; time}
pair and represents an unbreakable element, which is entirely made available to one user
(Figure 3.2).

We assume a simple deployment scenario by considering a unique micro cell access
point whose coverage area (represented in red on figures) is fully included in the macro
cell one (represented in blue). We also assume that a user achievable throughput is linked
to the power he receives and is limited due to his distance from the access point, the BS
power and multipath fading [21, 22]. We consider that each BS has a full knowledge of
the channel for each user. Each of the two access points made available its own RUs. By
using different frequency bands, they do not interfere with each other.

We also consider an admission control that denies the connection between a user and
an access point if its received power and therefore its achievable throughput is below
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Figure 3.2 – 5G frame structure in TDD mode

a given threshold. This situation may happen when a user is far from a BS and need
too much RUs to guarantee a sufficient Quality of Experience (QoE). In the rest of the
chapter, we also consider that users covered by the micro cell are also covered by the
macro cell.

3.3.2 Simulation parameters

In order to evaluate the performance of the multi-cells strategies we decide to simulate
a simple user deployment scenario. We consider a random uniform user deployment in
which some users are inside the micro cell coverage and some users outside. Simulation
results were averaged over 100 different user position patterns. One of them is presented
in Figure 3.3.

The potential number of bits that can be transmitted on a given RU is given by
equation 2.3 and fluctuates over time. For the sake of simplicity, both BS types use the
same numerology. In the following, αi,k is Rayleigh distributed with an expectation equal
to unity. In the rest of the chapter we consider that all users get the same BERtarget of
10−3.

We also consider a variable traffic, which is described in section 2.5.2. During a sim-
ulation, system load increases by adding users 2 by 2. BSs and users characteristics are
given in table 3.1.
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Figure 3.3 – Random user position deployment

Users
Throughput requirements 560 kbits/s

Traffic model Variable Bit Rate (VBR)
Ci 110.2 mW
Cni 46.8 mW

Micro cell BS Macro cell BS
Frequency 26.6 GHz 4 GHz
Power 33 dBm 44 dBm

Numerology 0

Table 3.1 – BSs and users characteristics

3.3.3 Preliminary result

The main objective of this subsection is to validate an important preliminary assump-
tion necessary to set the implementation of the pre-scheduler. In a typical 5G multicell
scenario in which a user may be in the coverage area of several BSs, the main problem is
to find the optimal way to share the traffic between all access points. This lies in giving
a priority order to each access point in the allocation process. This priority order allows
to always select the best access point to establish a connection. Three different states can
describe this multicell scenario:

— State 1: The system is not overloaded, both access points can provide RUs.
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Figure 3.4 – MiLP/MaLP performance results comparison

— State 2: The system is in the process of congestion. One of the two access points
can’t provide RUs anymore. Two different subcases are presented:

(a) The micro cell is congested, the macro cell is not.
(b) The macro cell is congested, the micro cell is not.

— State 3: The system is totally congested, no more access points can provide RUs.

As the load in a system increases, it goes from State 1 to State 2 (2(a) or (2(b))
and finally to State 3. Two allocation strategies acting during State 1 are studied. These
two strategies are called “MiLP" and “MaLP" for “Micro Load Priority" and “Macro
Load Priority" respectively. MiLP solution prioritizes State 2(a) by allocating users to the
micro in priority (if they are in its coverage area) while MaLP solution favors State 2(b) by
allocating users to the macro in priority. In other words, with MiLP strategy, traditional
schedulers (Round Robin (RR), Maximum Signal to Noise Ratio (MaxSNR),...) firstly
allocate users with the micro cell access point. When this one overloads, the latter macro
cell deals with users which couldn’t be assigned to the micro (due to overloading) but
also with users outside micro coverage. With MaLP solution, traditional schedulers firstly
allocate users with the macro cell access and then to micro cell when the first one overloads.
An important result lies in finding the best allocation strategy allowing the system to be
more robust to the system congestion keeping user QoE at its highest level.

Figure 3.4 gives the performance results in terms of global system mean packet delay
(3.4(a)) and QoE (3.4(b)) for the four SoTA schedulers. Delay indicator represents the
time duration between a packet creation in the backhaul network and its reception by the
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User Equipment (UE). A packet is considered out of delay if the time constraint imposed
by the user service (streaming video, web,...) is not respected. The QoE is expressed as
the proportion of packets that experience a delay below a threshold. At the end of each
communication, we determine the ratio between the number of packets out of delay and
the total number of packets sent to the user.

Mean delay result shows that by applying MiLP strategy, the mean delay experienced
by users is more robust to the system load increase. For example, with MaxSNR scheduler,
about 35 users are needed to reach a mean delay of 20ms with MaLP solution and up to
56 users for MiLP strategy (Figure 3.4(a)). In other words MiLP deployment allows to
accept 60% more users while guaranteeing a QoE beyond 90% (Figure 3.4(b)).

By keeping the MiLP solution, the system can improve the probabilities that all users
are in the radio coverage to an access point, which is not overloaded. Indeed, if all micro-
cell users are firstly assigned to the macro cell leading to its congestion (MaLP solution), a
user outside the micro cell coverage can no longer receive RU from it (State 2b). This leads
to a sub-optimal solution knowing that several users are inside micro coverage (which is
not overloaded) but assigned to the macro cell. These same users should be assigned to
the micro cell releasing the macro bandwidth to users that are outside the micro coverage.
This result constitutes an important preliminary result before applying the MCPS pre-
scheduler (introduced in the next section 3.4). In the rest of the document, MCPS pre-
scheduler is implemented by considering MiLP strategy, which allows to be more robust
to traffic congestion.

3.4 Multi-Cell Pre-Scheduler (MCPS)

MCPS pre-scheduler objective is to avoid the system congestion by solving an allo-
cation optimization problem when the micro cell tends to be overloaded. This situation
may occur when too many users are located in the micro cell coverage area causing a high
traffic peak demand leading to its congestion. In this case some traffic (i.e. some users)
need to be moved to the macro cell. MCPS pre-scheduler allows to adequately choose the
users located in the micro cell coverage area, which are assigned to the macro cell in the
allocation process since some users are more profitable to be assigned to the macro cell.
MCPS allows to effectively choose these users by allocating to each one a priority index.
The higher a user index is, the higher its probability to be allocated by the micro cell is.
The main objective is to keep in the micro cell the more profitable users and thus exclude
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them for the macro (considering throughput). MCPS pre-scheduler, whose main objective
is to increase system capacity, is based on user-expected throughput calculation and is
described in subsection 3.4.1.

3.4.1 Algorithm description

MCPS pre-scheduler is based on the calculation of the user-expected throughput with
the access points they can establish a connection. To each mobile i, aMCPSi is associated
whose value is updated at each allocation decision instant.MCPSi is calculated following
equation (3.1).

MCPSi = Dmicro
i −Dmacro

i , (3.1)

where Dmicro
i and Dmacro

i represent the mean user i expected throughput on a RU with
the micro cell and the macro cell access points, respectively. So MCPSi values is mainly
linked to user location (pathloss) and the implemented scheduler.

All users are then classified according to their MCPS value with an index between 1
and imax (where imax is the number of users in the micro BS coverage and then concerned
by MCPS). The user with higher MCPS value gets index 1 and the user with lower
MCPS value gets index imax. A positive (correspondingly negative)MCPSi value reflects
the interest of connecting user i to the micro cell (correspondingly macro cell) access point
with which its expected throughput is higher. Unfortunately, because of micro cell limited
capacity, all users with a positive MCPS value could not necessarily be allocated by the
micro cell. Users with higher MCPS value get higher index priority. The second step is
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then to determine the maximal number of users the micro cell can manage. This limit is
calculated as follows:

Limit [%] = 100× Dmicro ×Nmicro
RB

imax∑
i=1

BOi(t)
, (3.2)

where:

— Dmicro [bit/RU] is the mean spectral efficiency of the micro cell and is measured
from the previous allocations.

— Nmicro
RB [RU] is the number of Resource Blocks (RBs) made available by the micro

cell access point and is constant.

— ∑imax
i=1 BOi(t) [bit] corresponds to the Buffer Occupancy (BO) of user i at time t.

The BO is the number of bits that have to be transmitted to a given user. imax is
the total number of users in the coverage area of the micro cell BS.

This limit corresponds to the ratio between the number of RUs the micro cell can
provide and the total traffic (bits) created by users in the micro cell at a given time.
In other words, this limit value gives the ratio of RUs the micro can handle until its
congestion which corresponds to a bandwidth usage ratio equal to 100%. According to
this limit ratio of users, the micro cell manages the percentage of the imax users that have
the higherMCPS value letting the macro cell the other users with lowerMCPS. By doing
so, the system allows the macro cell to allocate the users, which are the most beneficial to
it. So the system dynamically manages all the users by adequately arrange them between
the two access points in order to increase the global system capacity. Once the MCPS has
made this pre-allocation by assigning each user to an access point, traditional schedulers
(RR, MaxSNR,...) take over their own assigned users in both cells. This pre-scheduling
process is summarized by the Figure 3.6 with its flow chart.

3.4.2 MCPS example

In order to well understand MCPS operation, this subsection is dedicated to give an
example presented on Figure 3.7(a). This example considers a group of 10 users all covered
by both micro and macro cell access points. They are therefore concerned by MCPS
pre-scheduling. In this implementation, MCPS value (fourth column) is calculated from
expected throughput in micro (second column) and in macro (third column) respectively.
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Figure 3.6 – MCPS pre-scheduler algorithm flow chart
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In this example, micro cell that has a fixed capacity, can provide RU to the six first
users with high MCPS values (users 7, 2, 1, 5, 9 and 10). The other four users (users
3, 8, 6 and 4) with lower MCPS are allocated by the macro cell. Figure 3.7(b) shows
the importance to sort users in order to maximize the mean system throughput. The
upper table represents the previous situation 3.7(a) for which users are classified (MCPS
applied). In this case system throughput reaches 21.8 MBit/sec. Bottom table of Figure
3.7(a) considers that MCPS is not applied and therefore users are not classified. So the
excess traffic is randomly chosen. In this case, the mean global throughput reaches 19.5
MBit/sec. It shows that MCPS users sort efficiently assigns a given user to the access
point allowing him to reach a good throughput.

Note that the MCPS limit (i.e. the number of users considered by the micro cell) is
closely linked to the generated traffic at the decision-making instant. Each user produces
its own variable traffic and so get a weighting that depends on what he generates. At a
given time t, some users may generate high traffic peak while some others very stable one.
This impacts the MCPS limit value and so the number of users assigned to the micro
cell. Figure 3.7(c) gives an example of two scenarii impacted by different traffic peaks.
Scenario A is a visualization of the table issued from Figure 3.7(a)

In scenario B, user 7 with a high MCPS value produces a high traffic peak that
occupy a large portion of the microcell bandwidth. This impacts the rest of the micro cell
in bandwidth availability. The result is that the number of users assigned to the micro
cell may decrease. This is the case in Scenario B for which only 5 users are assigned to the
micro cell. The traffic generated by the kmax users being totally independent to the micro
cell capacity, micro cell limit is rarely fixed between two distinct users. This is the case
in Scenario A with user 10 and scenario B with user 9. Their generated traffic allows to
achieve 100+ ε% of the total micro cell bandwidth. MCPS considers that, if the micro cell
bandwidth usage ratio is less than 100%, it assigned to it one more user by slightly exceed
its maximal capacity. In that case, the micro cell capacity is fully exploited allowing to
achieve better performance due to higher multi-user diversity in the micro cell. Then, the
ε% overflowed traffic is transferred to the macro cell.

3.4.3 Discussion concerning MCPS value

As explained in previous subsection 3.4.1, MCPS is linked to the user throughput
and so closely depends on their channel condition. Experienced throughput is also linked
to the implemented scheduler and on the way it favors users compared to some others.
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User index micro bit rate
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(a) User classification according their MCPS value

If users are classified : MCPS is applied
User index 7 2 1 5 9 10 3 8 6 4

Realized throughput 30.3 33.2 20.6 21.5 31.7 18.8 13.0 22.3 12.3 14.1
Total mean throughput 21.8 MBit/sec

If users are not classified : MCPS is not applied
User index 6 7 1 8 2 3 5 4 10 9

Realized throughput 8.9 30.3 20.6 20.8 33.2 15.1 12.8 14.1 14.9 24.6
Total mean throughput 19.5 MBit/sec

(b) Impact of user classification on total system mean throughput
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Figure 3.7 – MCPS example
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According to the channel conditions, path loss affects the user achievable throughput. If
we consider a Gaussian channel without fading attenuation, αi,k = 1 in equation (2.3) so
MCPS value can be written as:

MCPS = log2


1 + η

Pmicro
d3.5
imicro

1 + ηPmacro
d3.5

imacro

 , (3.3)

where η is a constant, which is common to all users and equal to 3× Ts
2N0

[
erfc−1

(
BERtarget,k

2
)]2 .

In this case, MCPS mainly depends on BS radiating power and user location. Figure
3.8 shows that MCPS value can take value from 12 (red part close to the micro cell base
station) to -6 (blue part close to the macro cell BS). Circles of same MCPS values are
notable around micro cell BS. This phenomenon is closely linked to the distance as shown
in equation 2.3. The theoretical locations where MCPS = 0 represent the neutral user
locations and there is no advantage to assigned the user either to the micro or to the macro.
We can easily show that MCPS = 0 under the condition that Pmicro× d3.5

imacro
= Pmacro×

d3.5
imicro

. This shows that assigning a user to an access point depends on its location, on
BSs power and also on relative position of the two access points. Some users deployments
bring more benefits to MCPS pre-scheduler than some others. Indeed, given the presence
of only two BSs, it is clear that MCPS value admits a symmetry behavior along the axis
of the two access points.
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3.5 Performance evaluation

3.5.1 Simulation setup and studied Key Performance Indicators
(KPIs)

This section aims to study the performance of the four SoTA schedulers, introduced
in first section, when they are applied or not downstream to the MCPS pre-scheduler.
All simulation parameters are described in section 3.3.1 and summarized in table 3.2.

Micro cell BS Macro cell BS
Frequency 26.6 GHz 4GHz
Power 33dBm 44 dBm

Access Point 5G
Numerology 0

Table 3.2 – Base stations parameters

In the next two subsections 3.5.2 and 3.5.3, two users deployment scenarii and their
respective obtained performance are presented. The base station deployment (BS power,
frequency and position) remains unchanged from the preliminary results presented in
subsection 3.3.3. Performance results are obtained using discrete event simulations. The
KPIs (described in section 2.1) are studied according to the load in the system and
more precisely following the number of users connected to the system. Application delay
threshold is fixed to 100 ms in the following. For each discrete point, simulation results
are averaged over a communication duration of 1000 Frames.

3.5.2 Scenario 1: Proof of concept deployment

In order to clearly underline the MCPS pre-scheduler behavior, we first study the
simple users deployment scenario presented on Figure 3.9. This lies in considering two
groups of users located at the same distance from the micro cell BS (100m). One group
is far (400m) and the other one close (200m) from the macro cell BS. A random position
variation is assigned to each user in its group. These horizontal and vertical variations ∆x

and ∆y follow a uniform distribution on [−20m,20m]. This allows users to be assigned
to uncorrelated fading allowing to have a better multi-user diversity. So opportunistic
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Figure 3.9 – Grouped position deployment

schedulers and MCPS can operate by always having a wide range of choices. We also
consider that each user generates a realistic variable traffic [44, 45].

First results are exposed on Figure 3.11 and present the performance of the studied
deployment scenario for the four SoTA schedulers when they are applied (full line), or
not (dashed line) downstream to our MCPS pre-scheduling solution. In order to well un-
derstand the system behaviour facing the increase of the traffic load, bandwidth usage
ratio graph (Figure 3.11(a)) gives the result both for micro and macro cells. We consider
that the full system (micro+macro) is totally congested when both cells admit a band-
width usage ratio of 100%. Before starting any technical explanation, it is important to
remember that MiLP allocation strategy has been implemented: users are firstly assigned
to micro cell, if possible, before the macro cell.

Concerning the bandwidth usage ratio, results (Figure 3.11(a)) highlights that the
global system resists to a higher load (higher number of users) when the MCPS pre-
scheduler is applied. With MCPS, schedulers are able to absorb more traffic and are more
robust to unexpected traffic peaks. For example MCPS allows Round Robin to accept 24
users in the system without MCPS and 32 with MCPS. This lead to accept 33.3% more
users with MCPS. In the same way MCPS allows the system to deal with 17.4% more
users with MaxSNR. Figure 3.11(b) is linked to this result and shows the number of users
considered by schedulers in the micro cell when applied with MCPS (and in dashed line
without MCPS). For very low traffic loads the total numbers of users considered by the
micro cell is equal to the total number of users in the system. When traffic load increases,
the MCPS attributes the most beneficial users to the micro and macro cell respectively.
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Figure 3.10 – MCPS behavior with grouped users deployment
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(d) Spectral efficiency in the macro cell

Figure 3.11 – Performance results for scenario 1
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Figure 3.11 – Performance results for scenario 1
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Chapter 3 – Multi-cell resources allocations

Maintaining the maximum number of user manageable by the micro, curve flat appears
when micro cell reaches maximum capacity and macro begins to manage the overloaded
traffic. The asymptotic behavior testifies of the maximal number of users the micro cell
can manage depending of the scheduler.

Bandwidth usage behaviour is closely linked to the spectral efficiency one. By applying
MCPS pre-scheduler, a significant decrease of the spectral efficiency for opportunistic
schedulers (MaxSNR, Proportional Fair (PF), Opportunistic Energy Aware (OEA)) is
notable in the micro cell (Figure 3.11(c)). This loss in the micro cell is mainly due to
this type of scheduler that needs a high multi-users diversity in order to always choose
the best user allowing to offer him the highest system capacity. By offloading some users
to the macro cell (case (b) on Figure 3.10), MCPS pre-scheduler restrains the optimal
operation of schedulers when selecting the best user. This degradation is perceptible from
a given number of users (' 14 for OEA, ' 16 MaxSNR and PF), that underlines when
MCPS begins to operates. Indeed, below this number of users, congestion probabilities
are negligible and MCPS is inactive. Round Robin which is a non opportunistic scheduler
admits a slight gain in the micro by applying MCPS. Round Robin does not take into
account channel conditions and user diversity. By applying MCPS with Round Robin, the
loss of multi-user diversity has therefore no consequence on spectral efficiency. The impact
of MCPS is even positive on spectral efficiency. Indeed, according to Figure 3.10(b) when
the micro cell saturates, close users from the macro access point (and the farthest to the
micro) are the first assigned to the macro (MCPS behaviour). Users staying in the micro
cell admit a higher mean achievable throughput due to better path loss, spectral efficiency
for RR increases in the micro cell.

However, this micro cell spectral efficiency loss is largely compensated by a gain in
the macro cell (Figure 3.11(d)). As soon as the load exceeds a given threshold specific
to each scheduler, MCPS detects the micro cell congestion risk and adequately share the
most beneficial users between micro and macro cells. This threshold is reached when the
micro cell has managed the number of users corresponding to its maximal capacity (Figure
3.11(b)). Macro cell spectral efficiency behaviour can be divided into four parts:

— For very low loads (<10 users), system is widely underloaded and macro spectral
efficiency does not exist since all users are allocated by the micro cell (Figure3.10(a)).
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— When the micro cell overloads, first users that are assigned to the macro cell are
the one with good throughput (close users - low MCPS). Spectral efficiency in the
macro increases (Figure3.10(b)). The spectral efficiency gain with MCPS is linked
to a better management of users. Macro cell receives the more profitable users to it.

— When the micro reached its maximal users capacity, the macro cell has to manage
far users, which are less advantageous in terms of throughput. This slowdown is
noticeable on Figure 3.11(d) from 20 to 32 users for RR, 30 to 42 users for OEA,
and from 40 to 50 users for MaxSNR and PF. The curve with MCPS solution tends
to get closer from the curve without MCPS solution (compared to Figure3.10(d)).
But the increase still persists due to a better users-cells repartition.

— For very high loads this gap seems to be maintained or even increased. With MCPS,
opportunistic schedulers resume their normal operation reaching good performance
due to the supplementary of multi-users diversity (Figure3.10(e)). A significant
throughput gain with MCPS is obtain over non-MCPS solutions thanks to more
close users assignation.

In addition to increase the overall capacity of the system (bandwidth usage ratio and
spectral efficiency previously studied), some additional KPIs are improved by applying
MCPS pre-scheduler (fairness, energy saving). For example Figure 3.11(a) shows that the
global system energy consumption are improved with MCPS. Indeed, MCPS effectively
assigned users with the access point they can achieve a good throughput and therefore
they are able to finish their connection quicker. Users are then in an active mode for a
shorter time and then consume less.

Figure 3.11(c) also shows the MCPS ability to keep QoE fairness between users as
the load increases. Considering MaxSNR scheduler at 40 users in the system, the fairness
index reaches 60% and 72% without and with MCPS respectively. This gain is perceptible
for the four schedulers. When users are assigned to BS, they share the access point with
other users whose throughput difference is not significant. More users obtain a good QoE
satisfying their application requirements (3.11(b)).
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(d) Realistic stadium deployment

macro cell  
access point

micro cell  
access point

macro cell  
access point

micro cell  
access point

(e) dessin

Figure 3.12 – Realistic scenario representation

These first simulation results constitute a proof of concept testifying the performance
bring by MCPS pre-scheduling. A more realistic deployment is studied in the following
subsection.

3.5.3 Scenario 2: Realistic user deployment

In order to confirm the previous performance results bring by MCPS pre-scheduling,
we simulate a more realistic users deployment scenario. This deployment is inspired by
3GPP deployment specifications [46] and is represented on Figure 3.12. We consider an
ultra-dense deployment scenario for which a user group is distributed around an access
point. This access point allows to offload the macro cell in this dense area where the
demand is high. Typically, we can consider a stadium deployment (Football stadium, con-
cert arena). A stadium is typically a place where the traffic is high (video uploading,...)
and where a micro cell hotspot deployment makes sense. This deployment represents a
concrete case for which MCPS pre-scheduler can bring a benefit compared to a traditional
solution. This realistic deployment considers a hotspot located in the center of the stadium
(Figure 3.12(d)) providing high data rate broadband coverage to the users located around
it. We evaluate the MCPS performance by studying the same KPIs than previous users
deployment. In order to get reliable KPIs, simulation results were average over 100 dif-
ferent users deployment patterns. The traffic generated by users and BSs characteristics,
remains the same as previous studies. Results are presented on Figure 3.13.
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(c) Spectral efficiency in the micro cell
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Figure 3.13 – Performance results for scenario 2

71



Chapter 3 – Multi-cell resources allocations

0 20 40 60 80 100 120
Number of users

0

50

100

150

200

250

300

350

Gl
ob
al
 sy
st
em
 e
ne
rg
y 
co
ns
um
pt
io
n 
(W

)

RR
MaxSNR
PF
OEA
Without MCPS
With MCPS

(a) System energy consumption

RR maxSNR PF OEA
Schedulers

0

20

40

60

80

100

Nu
m

be
r o

f u
se

rs
 fo

r a
 sy

st
em

 d
el

ay
 o

f 1
00

m
s

48

96 100

72

56

108 112

82

Without MCPS
With MCPS

(b) User capacity limit with QoE guarantee
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Figure 3.13 – Performance results for scenario 2
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3.6. Conclusion on Multi-cell resource allocations

According to Figure 3.13 this scenario confirms MCPS pre-scheduler performance.
Results concerning bandwidth usage ratio show that the system can allocate 9.6% more
users for MaxSNR and 16% more for RR when applying MCPS. We can also notice the
same spectral efficiency trends, meaning a loss in the micro cell compensated by a gain
in the macro. User QoE (Figure 3.13(b)) guarantees and QoE fairness (3.13(c)) are also
improved.

Figure 3.13 (b) shows that the numbers of users considered by the micro cell is always
lower than the total number of users in the system. This shows that some users are
located outside the micro cell BS coverage who necessarily have to be allocated by the
macro cell access point. We also note the same asymptotic behavior testifying the micro
cell maximal capacity and so the number of users the micro cell can manage. The two
scenarios previously studied show the benefit brings by MCPS pre-scheduler in a multicell
scenario.

3.6 Conclusion on Multi-cell resource allocations

In the literature many research efforts have been done focusing on scheduling opti-
mization in a simple deployment scenario with one cell. However these scheduling tech-
niques are often not optimized to a multicell scenario. This chapter proposed a new pre-
scheduling solution called “MCPS" for multicell wireless networks. Taking into account
users achievable throughput, MCPS effectively share the traffic load between the different
access points increasing the global system capacity. Performance results have shown that
the benefits of this new approach allow the system to be more robust to the congestion
and traffic peaks. Although the capabilities of MCPS could be improved by including
opportunistic, fairness or energy consumption in the decision process, it will be at the
expense of the versatility of the algorithm. However, MCPS could be paired with existing
algorithms that dynamically activate BSs depending on the system load to reduce power
consumption [47]. The main solution to improve the performance of multi-cell systems is
to increase the number and variety of micro cells. However, the number of deployable BSs
or the available bandwidth may be geographically or technically constraining. The next
chapter presents a technique able to increase the capability of BS in order to overcome
deployment constraints.
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Chapter 4

MASSIVE-MIMO RESOURCE

ALLOCATIONS

4.1 Introduction and motivation

One of the key technologies for 5G radio transmission is Massive-Multiple Input Mul-
tiple Output (MIMO) [48]. Having a larger number of antennas at the Base Station (BS)
can significantly improve the link budget by focusing the energy in the chosen direction
[49]. Focusing the energy can also be used to serve Multiple Users (MU) on the same time
and frequency resource. This opens the way to conceiving new scheduling algorithms in
order to take a real advantage from Massive-MIMO.

In the MU mode, several users are served on the same time-frequency unit, they are
said to be in the same group. The total system rate is expected to be higher compare
to Single User (SU) mode. However, there is intracell interference, which increases with
the number of users by group and reduces the bit rate. Reducing interference is crucial
but done at the expense of individual throughput. Indeed, an efficient grouping strategy
is necessary to find the best compromise between interference reduction and individual
throughput. The development of such strategies has to rely on efficient indicators. Papers
from the literature propose to use as a grouping indicator the correlation of users’ channel
matrices [9, 10, 50].

The objective of this chapter is to propose a new indicator for group selection in a
Multiple Users Multiple Input Multiple Output (MU-MIMO) context. First, we propose a
study on correlation-based systems. Then, we study different user selection algorithms and
propose a new solution based on previous user selections. Finally, we evaluate the impact
of the group size on overall system throughput. Our solution, called Efficient System
Capacity User Selection (ESCUS) 1, progressively built its indicator upon previous users

1. This work under the publication process
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Chapter 4 – Massive-MIMO resources allocations

selections by storing users throughput and select group of users by considering them couple
by couple. With the capability of the system to manage more users simultaneously, the
algorithms complexity increases.

The chapter is organized as follows. Section 4.2 provides a detailed description of
the system in question. Section 4.4 presents a study of the channel matrix correlation
as interference management. Section 4.5 presents our new algorithm proposal for user
selection. Section 4.6 introduces the main parameters of our simulation set up and the
performance evaluation of our new solution. Section 4.7 concludes the chapter.

4.2 Description of the transmission chain

We consider one BS or next generation Node B (gNB) and several User Equipment
(UE) and we study the downlink transmission. In order to maintain our simulation time
under a reasonable limit, each simulation frame has a duration of 10ms with a usable
bandwidth of 2 MHz. This frame is divided into Resource Unit (RU) with 60 kHz band-
width and 1 ms length. We define B as the bandwidth of the RU, U as the set of all UEs
in the cell, A as the set of all UE allocated simultaneously to the same RU, and nt, nr

the number of antennas at the transmitter (BS) and at the receiver (UE), respectively.
The channel between the set of antennas at the BS and the set of antennas at UE i is
modeled by complex matrix Hi, as shown in figure 4.1.

gNB

nt antennas

UE1

nr antennas

Channel matrix H1

Figure 4.1 – Massive-MIMO description

The precoding matrix at the BS is represented by matrix Fi and the digital combining
matrix at UE i is represented by W∗

i . The white noise average power is denoted by σ2
N.

Note that the interference from neighbouring BSs can be integrated in σ2
N.
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The channel matrix of a UE i is given by Hi[t] ∈ Cnr×nt and is perfectly known at the
gNB. The total number of parallel transmissions that can be made on the same RU by one
gNB is given by nt. The maximum number of transmissions on the same RU to a given
UE is min(nt, nr). The time is considered discrete and ∆t is equivalent to a Time Slot
(TS). We assume that the coherence time of the channel is greater than ∆t and therefore
greater than the scheduling time.

4.2.1 Transmission model

At a given time, scheduling can be viewed as an indicator function: δi(t) where i is
the UE index, k the RU index and δi(t) ∈ [0,min(nt, nr)] gives the number of streams on
the resource k allocated to i.

We have the following constraint:

∑
i∈U

δi(t) ≤ nt. (4.1)

The potential number of usable resources is given by nt ×K, where K is the number
of resource units. We assume that there is no limitation regarding the number of Radio
Frequency (RF) chains and the processing capacity. To illustrate the previous equation,
we can consider a number of UEs equal to nt × K, for example nt × K = 100. In this
case UEs will only have 1 RU among 100 on average per TS. It is then safe to say that in
most cases, δi(t) = 0.

For the sake of clarity we omit t for this part. We denote the precoding matrix asso-
ciated with channel Hi as Fi ∈ Cnt×δi,k . The dimension of Fi depends on the number of
antennas at the gNB and the selected streams. The signal transmitted to UE i is :

xi = Fisi (4.2)

where i ∈ U and si[k] is the δi× 1 transmitted vector of symbols at a given subcarrier
k. Note that si[k] is null if δi = 0. The overall signal transmitted by the BS is:

X =
∑

j∈U ,δj>0
Fjsj (4.3)

At the receiver, the signal is affected by the channel matrix Hi, noise corrupting the
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received signal n of power σ2 and I external cell interference:

yi = HiX︸ ︷︷ ︸
signal

+ I + n︸ ︷︷ ︸
external interference+noise

(4.4)

Due to the fact that we are considering a MU-MIMO transmission the transmitted
signal for other UEs scheduled on the same resource unit has to be considered as internal
interference:

yi = HiFisi︸ ︷︷ ︸
signal

+
∑

j 6=i,δj>0
HiFjsj + (I + n)

︸ ︷︷ ︸
interference+noise

(4.5)

This internal interference depend on the precoders Fj orthogonality to the channel
matrix Hi. The signal at the receiver after combining is finally given by:

zi = W∗
iHiFisi + W∗

i

∑
j 6=i,δj>0

HiFjsj + W∗
i (n + I) (4.6)

where W∗
i [k] is the digital combining matrix [51] and (.)∗ the conjugate transpose of

a complex matrix.

4.2.2 Precoding techniques

Fully digital precoding

We consider two precoding methods. Singular-Value Decomposition (SVD), which aims
at maximizing the throughput in SU context and Block Diagonal (BD) which focus on
interference management in MU context.

singular-value decomposition

A MIMO channel Hi of a user i can be decomposed using the SVD as follow:

Hi = UiΣiV
∗
i (4.7)

The optimal precoder in Single User Multiple Input Multiple Output (SU-MIMO) for i
is Fi[49]:

Fi = ViΛ1/2 (4.8)
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BD precoding [52][53]

In MU-MIMO several users can be scheduled simultaneously on the same RU. In
such conditions, users can experience interference from other users. The objective of the
Block Diagonal precoder is to eliminate UEs interference when they are scheduled in a
MU-MIMO context. Therefore, all users that are simultaneously scheduled have to be
considered in the precoding process.
We define H̃T

i the concatenation of channel matrices of all users in A except i:

H̃T
i = [H∗1...H∗i−1H∗i+1...H∗A]∗ (4.9)

where A = card(A). Note that H̃T
i is a nr× (A−1) rows and nt columns complex matrix.

We are using the SVD on H̃T
i .

H̃T
i = UT

i Σi[V (1)
i V

(0)
i ]∗ (4.10)

where [V (1)
i V

(0)
i ] is a nt×nt matrix. V (1)

i contains vectors corresponding to nonzero singular
values and V (0)

i contains vectors corresponding to zero singular values.

H̃T
i Ṽ

(0)
i = ŨiΣ̃i[Ṽ (1)

i Ṽ
(0)
i ]∗ (4.11)

The total precoding matrix is given by:

TBD = [Ṽ (0)
1 V

(1)
1 Ṽ

(0)
2 V

(1)
2 ...Ṽ

(0)
A V

(1)
A ]Λ1/2 (4.12)

where Λ1/2 is a diagonal matrix of which the element λi scales the power transmitted.

4.2.3 UE throughput in MU mode

For the MU mode, we consider the BD precoding technique because the BD precoder
is focused on interference management and therefore limits the reduction of the bit rate
due to the intracell interference. The bit rate for UE i is given by [54] :

Ri = B log2

∣∣∣∣∣∣∣∣1nr + W∗
i Hi Fi (W∗

i Hi Fi)∗
W∗

i (σ21nr + ∑
j 6=i,δj>0

Hi Fj ( Hi Fj)∗)Wi

∣∣∣∣∣∣∣∣ (4.13)
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where 1nr is an identity matrix of size nr.
In MU, nt/nr is the limit on users served at the same time. We define ns as the number

of simultaneously scheduled users, where ns ≤ nt/nr. The mean system rate R is:

R = E

[
ns∑
i=1

Ri

]
, (4.14)

where E is the mathematical expectation. We consider a large set of random deployment
of terminals, which are deployed randomly thanks to the properties of the channel model.
Thus, Hi is a random matrix. In the following, for different configurations, we study R,
which is our main performance indicator.

4.2.4 UE throughput in SU mode

In the in SU mode, δi is non-zero for only one value of i. Thus, there is no intracell
interference and the rate Ci is maximized. Equation (4.13) is simplified as:

Ci = B log2

∣∣∣∣∣1nr + W∗
i Hi Fi (W∗

i Hi Fi)∗
W∗

i (σ21nr)Wi

∣∣∣∣∣ (4.15)

User throughput in in SU mode is used as an indicator for classical opportunistic
resource allocation schedulers. It is the main indicator for opportunistic scheduler, such
as Maximum Signal to Noise Ratio (MaxSNR) [16].

4.3 State of The Art (SoTA) for MU-MIMO resource
allocation

The objective of an algorithm for users selection is to build the most profitable set of
users to share a Resource Block (RB). In MU-MIMO a good interference management is
crucial to fully benefit from the technique. The channels matrices correlation is commonly
used as an indicator of the interference level between UEs. The correlation of two UEs
channel matrices indicates the interference level if they are using simultaneously the same
RU simultaneously. The correlation of two UEs is defined by [55]:

ξ(i, j) =
|tr( Hi H∗j)|
||Hi||F ||Hj||F

(4.16)

80



4.3. SoTA for MU-MIMO resource allocation

where (.)∗ denotes the conjugate transpose operation and ||.||F the Forbenius norm of a
matrix.

4.3.1 Common strategy for user selection

Correlation Based User Selection (CBUS) [9] proposes to construct the grouping
strategy of users on this correlation parameter. The first step is to select the first user in
the group. To maximize the system capacity, the first user is selected depending on the
best potential throughput, similarly to MaxSNR 2.3.

1. u = argmax(Ci) (4.17)

To include the following users, CBUS relies on the correlation as an indicator. Users
are added until the total throughput start to decrease.

2. u = argmin(ξ(i, j)) (4.18)

By sharing the same properties as MaxSNR, CBUS encounters the same flaws, such
as the lack of fairness or energy concerns.

4.3.2 Fairness aware user selection

Proportional Fair (PF)-based user selection are proposed to overcome MaxSNR lack
of fairness.

Orthogonality Probing based UserSelection (OPUS) [50] selects the first user de-
pending on a throughput fairness criterion. This criterion considers the obtained through-
put of all the users. The probability of a user being selected decreases as the user’s
throughput increases. All other users are selected using a strategy MaxSNR on previously
probed orthogonal directions.

Weighted Users’ Correlation and FairnesS (WUCFS) [10] proposes to integrate
the fairness criterion in each user selection. Users that are added to the group needs to
maximize a criterion based on both a fairness factor and channels’ correlation. By using
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(a) Correlation distribution depending on antenna
numbers

(b) Spectral efficiency gain of MU-MIMO over SU-
MIMO

Figure 4.2 – Algorithms impact on total system capacity.

a fairness indicator and then reducing the impact of interference, WUCFS prevents users
to starve from bad geographical (high interference) or radio (strong pathloss) conditions.

4.4 Channel matrix correlation as interference man-
agement

4.4.1 Impact of the number of antennas on the correlation dis-
tribution

The number of antennas is a main parameter of Massive-MIMO. The more antennas
there are, the more precise the spatial separation will be. However, due to technical
limitations, such as precoding complexity or room space available for mobile devices, the
number of antennas is limited. 3GPP fixes the number of antennas at the transmitter
and at the receiver in the system evaluation framework. In our performance evaluation,
we study different configurations to understand the impact on the correlation. In the
following example we show the impact of the number of antennas, at the transmitter nt

and at the receiver nr, on UEs correlation distribution. For each sample we compute the
channel correlations of two UEs.

Figure 4.2(a) shows the empirical PDF of the correlation. The in Cumulative Distri-
bution Function (CDF) can be easily deduced from the in Probability Density Func-
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tion (PDF). Several observations can be highlighted from figure 4.2(a). The product
of the number of antennas determines the correlation distribution. Two antenna con-
figurations having the same product have a close correlation distribution: configurations
nr = 2 & nt = 64 and nr = 8 & nt = 16 have a nearly similar correlation distribution.
Having a greater number of antennas allows the system to have more narrow beams, re-
sulting in a lower average correlation. With nr = 8 & nt = 64 there is a larger number of
low correlation than with nr = 2 & nt = 16.

4.4.2 Impact of the correlation on throughput

The main objective when designing a resource allocation algorithm is to increase the
capacity of the system. To understand if the correlation is a good indicator for a scheduling
process, we study the correlation impact on throughput. For each sample, we calculate
the throughput gain from the MU-MIMO allocation, that is given by 4.14.

Figure 4.2(b) shows χ values, computed in (4.14), for different antenna configurations.
Each antenna configuration is represented tree boxes with 0.1, 0.2 and 0.3 correlations.
Concerning the throughput gain, for example, with nr = 2 & nt = 16, between 0.1 and
0.3 correlations, less than 3% of capacity is lost on average. The Block Diagonal precoding
technique is built to withstand the increase of interference. When the correlation increases,
even if the spectral efficiency decreases, the precoder is able to contain the degradation.
With an antenna configuration nr = 2 & nt = 16 at a correlation of 0.2 they may be more
than 10% between the highest and lowest value of throughput. This difference depends
on the degree of freedom available in the precoding process. To reduce the deviation the
ratio nt

nr
should be larger. The main issue in this example, is the ability to predict the

gain. In all configurations there is an intersection between throughput values, meaning
that the same throughput gain can be experienced with different correlation values. Note
that in the case of nr = 8 & nt = 16 and nr = 4 & nt = 8, it is not even profitable to
schedule two UEs at the same time. They will both experience a smaller throughput than
if they were scheduled in Single-User mode.

4.4.3 Mobility impact on the correlation between UEs

In order to be able to use the correlation as an indicator, the correlation should be
stable in frequency and in time when users are moving. The more variable the channel, the
more frequent the correlation should be updated. There is thus a feasibility issue: requiring
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(a) (b)

Figure 4.3 – Correlation over 100 MHz bandwidth at 26GHz

(a) (b)

Figure 4.4 – Correlation over 10λ
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more Channel State Information (CSI) feedbacks and more CPU resources. As seen in the
simulation setup, we are considering two users with independent channel matrices. The
results are computed on one snapshot in each configuration. One user is static during the
simulation, while the other user is moving and its channel adjusts accordingly. The purpose
of this experiment is to determine if the correlation is stable enough to be calculated as
often as possible for two UEs during a period of time and over a given bandwidth.

Figure 4.3 shows the correlation evolution between two users depending on the fre-
quency. Over 100 MHz bandwidth, the correlation significantly varies in amplitude but
slowly in time. This shows that the variation of phase offset is not negligible over a large
bandwidth. However, the rate variation is slow enough and only a few correlation calcu-
lations are needed by TS. Another variable factor is the displacement over time. Figure
4.4 shows the correlation evolution when a user moves from its original position. Distance
is represented in λ, which is the wavelength, and 10λ at 26 GHz is traveled in roughly
84 ms. We can observe a high variability of the correlation with the distance changes,
with a similar amplitude gap compares to figure 4.3. When the variation in frequency and
distance are combined, the correlation stability might not be sufficient for an accurate
calculation between scheduling decisions.

4.4.4 Discussion on the correlation as an indicator

Correlation is often used in the user selection process as an indicator to maximize
the global throughput. In this study, we show the correlation distribution, the relation
between correlation and throughput and the mobility impact on the correlation when using
a Block Diagonal precoder. The distribution of the correlation depends on the product
of the number of antennas at the transmitter and at the receiver. A higher product
reduces the probability of high correlation values and diversity. The ratio between the
number of receive and transmit antennas determines the variability of the throughput
gain. A large number of transmitting antennas compared to number of receiver antennas
makes the throughput gain more predictable. Finally, the correlation variability quickly
changes over frequency and time, when a user is mobile. There is a substantial number of
correlation calculations needed over time. As a summary, a user selection process, using
Block Diagonal precoding, can barely benefit from a correlation indicator in different
configurations, due to high variability with minimum effect on the throughput.
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4.5 New algorithm proposal for user selection

We propose a solution, called ESCUS, based on previous group allocations. Our so-
lution is based on a matrix M that stores the capacity values obtained when 2 users
are served in the same group. This matrix is gradually built from previous allocations.
ESCUS presents several advantages over correlation based solutions [9, 10, 56]. It does
not rely on complex calculation for each pair of users. Indeed, correlation-based solutions
must periodically update the value of correlation between users (equation 4.16) in order
to correctly group users, due to the instability of correlations (see section 4.4.3). While
ESCUS only relies on a card(U) × card(U) matrix which is updated at the end of the
allocation process. Compare to a full MaxSNR strategy, our solution does not increase
complexity, the metrics compared are not updated during the user selection process. This
solution is very flexible and will be easy to adapt to any MIMO system thanks to the
channel hardening [57] consideration.

ESCUS is divided in two main phases, the exploration and the exploitation. When the
system starts, users’ compatibility (group quality) are unknown. During the exploration
phase, ESCUS associates users in a certain order, in order to populate its database with
throughput of different pairs of users. When the database completion reaches a certain
level, ESCUS enters in an exploitation phase. During this phase, ESCUS selects users to
be served depending on the best obtained throughput in the database. In each cases, the
database is always updated if the obtained throughput evolves. In this way, users can be
served with the highest compatibility, based on their previous association.

The indicator used by ESCUS is the cumulated throughput of all pairs of users in
previous groups. When the number of users per group increases, the number of possible
combination increases as well. Storing the obtained throughput for each combination
would require a large database, which would grow with the number of users per group (a
n-dimensional matrix, with n the number of users per group). The larger the database
is, the longer it takes to fill it, leading to more exploration than exploitation. To avoid
such constraints, ESCUS database only stores the throughput obtained by a pair of users.
The data to be stored corresponds to a card(U) × card(U) matrix. Another advantage
of using a bi-dimensional matrix is its flexibility concerning the number of users per
group, allowing the same database structure to be used regardless of the group size.
The following example illustrates the database structure. We consider a group of 3 users
A = {a, b, c}. ESCUS stores the sum of the rate for each possible pair set in A. For
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example, Ma,b = Mb,a = Ra +Rb.

Independently from the current phase of ESCUS, the first user of the group is always
selected according to a MaxSNR strategy [16] in order to maximize the total system rate.
The objective of ESCUS is only to maximize the system rate. If fairness is considered,
then another first-user selection strategy can be applied, such as proportional fair [28, 29].

The first phase aims at discovering unknown shared throughput between users. This
exploration phase selects secondary users, to complete the group, having the best instan-
taneous in SU throughput (Ci). As stated previously, this MaxSNR strategy might be
replaced by another strategy to reach different goals. During this selection, only users
with unknown throughput, when associated with the first user, are selected. This process
stops when the number of selected users reaches the maximum group size.

When the database contains enough information, ESCUS switches to the exploitation
mode. The threshold for this transition depends on the system configuration and is set to
1
4 × card(U) in our examples, as it was found to be efficient in all antenna configurations
and allows for sufficient group diversity.

During this second phase ESCUS uses the data gathered previously. Secondary users
are selected according to the best value in the database when associated with the first
user. To prevent allocating low value, the selected value is compared to the mean of the
database. When the value is lower, ESCUS switches to exploration in order to find a more
suitable pair of users.

At the end of this selection process, the resource is allocated to selected users. After
this allocation, the matrix M is updated with experienced throughput from each pair of
users. This full process is described in Figure 4.5.

4.6 Performance evaluation

4.6.1 Simulation set up

Twenty UE, randomly distributed in the cell, are considered. The UEs channels are
mutually independent. A channel for a user i is generated using the Saleh-Valenzuela
model [58] extended to millimeter waves, where the Obstructed Line Of Sight (OLOS)
parameters are given in table 4.1.
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M ∈ R+,card(U)×card(U),Mi,j = 0,∀i,j ∈ U

Select a,
where a = argmax(Ci)

A = {a}

na = card({Ma,j > 0})

if na > threshold

Select b,
where b = argmax(Ma,j),

∀j /∈ A

if Ma,b > E(Mi,j) s.t. Mi,j > 0
or na = card(U)− 1

Add b to set A

if card(A) < group size
or card(A) < nt

nr

Allocate resource to A,
δi(t) = 1, ∀i ∈ A

Set Ma,b = Ra +Rb, ∀a ∈ A,∀b ∈ A, b 6= a

Select b,
where b = argmax(Cj),
s.t. Ma,j = 0,∀j /∈ A

False

False

False

True

True

True

Figure 4.5 – Diagram of the proposed solution
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(a) 2 UEs per group (b) 3 UEs per group

Figure 4.6 – Algorithms impact on total system capacity.

f 26 GHz Frequency
Λ 5 ns Cluster arrival rate
λ 1 ns Ray arrival rate
Γ 8.7 ns Cluster decay rate
γ 4.7 ns Ray decay rate
σ 0.1 rad Intra-cluster angles standard deviation

Table 4.1 – Channel model parameters, from [58]

We consider one sector in a typical 3-sector configuration: the angle between the
terminal and the BS is between 0° and 120° horizontally and between −45° and 45°
vertically. Antennas arrays at the BS and on the user side are Uniform Linear Array
(ULA), with λ

2 distance between antenna elements, where λ is the wavelength of the
central frequency. We assume that the transmitter has a full knowledge of the channel for
each UE.

ESCUS is compared to several simple and known algorithms. As a representative cor-
relation based algorithm, CBUS [9] presents the advantage of focusing only on system rate
maximization, as opposed to fairness-oriented strategies [10, 50] (which are not directly
comparable to our solution):

— 1stMaxSNR, is a MaxSNR for the first user and then all following users of the group
are chosen using a random function.
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(a) Antenna configuration nr:4 and nt:32 (b) Antenna configuration nr:4 and nt:64

Figure 4.7 – Group sizes impact on the system rate (for a 2 MHz bandwidth)

— FullMaxSNR, is a MaxSNR for the first user and then all following users of the
group are chosen depending on their Signal to Noise Ratio (SNR).

— CBUS, is a MaxSNR for the first user and then all following users of the group are
chosen according to the lowest correlation with the first user. This solution from the
literature is described in [9].

— ESCUS, is our proposed solution and is described in Section 4.5
— Optimal, is the exhaustive search of the best group. This optimal solution guarantees

the maximum system throughput.
Two types of performance evaluation were conducted, either with a small system or

with larger systems (regarding the number of users and possible group sizes). A first study
with a small system allowed us to compare our solution with all previously described
strategies, including the optimal one. A second study is focused on Massive-MIMO sys-
tems, where large groups of users can be simultaneously allocated. However, maximizing
the number of users per group did not always provide the best system capacity, due to
a strong increase in inter-group interference. Another limiting factor is the number of
RF chains, which defines the limit of group size. A 3GPP technical report [59] sets the
maximum number of RF chains at 12. At this group size, it is not possible to compute an
optimal solution in reasonable time, due to its polynomial complexity depending on the
number of users per group. The optimal strategy is then excluded in section 4.6.3. Results
are obtained with the mean of one hundred frame samples, to avoid non-representative
statistical event.
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4.6.2 Performance evaluation with small number of users per
group

Figure 4.6 shows the percentage gain over a full random solution for different algo-
rithms on the total system rate. With two users per group (see Figure 4.6(a)) the gain
for all the solutions is significant over a random selection. The use of MaxSNR increases
the capacity by 8.7% when used only on the first user and 14.8% when used on both
users. The use of the correlation on the second user (CBUS) only increases the gain by
1.3% compared to a random second user. Our ESCUS solution based on previous alloca-
tions selection, represents an important gain over all the other solutions, 6.2% over full
MaxSNR, and is only 3.1% below the optimal strategy.

With three users per group (see Figure 4.6(b)) the gain compared to random allocation
is lower for all the classical solutions. MaxSNR applied only on the first user is only 2.9%
higher than random allocation and 9.2% when applied to all users. The solution using
the correlation, CBUS, benefits from the high interference environment and is now 2.3%
higher than a random allocation on the following users. However its performance is still
4% below full system MaxSNR allocation. Our solution is the only one with an increase
in its performance, with 20.4% higher than full MaxSNR, but is now 20.6% below the
optimal strategy.

When the number of users per group increases, the level of interference becomes harder
to manage. ESCUS allows to maintain its performance when we increase the group size
thanks to the knowledge of previous allocations, whereas other solutions see their per-
formance decrease due to their lack of consideration for group quality. Finally, the gap
between our solution and the optimal selection for three users per group is still large and
further work is needed to achieve the optimal performance.

4.6.3 Performance evaluation with large number of users per
group

In this section, results with large user group sizes are studied. Users are chosen among
a set of 60 users randomly distributed in the cell, thus increasing the group diversity
compared to the previous setup.

Figure 4.7 shows the evolution of the total system rate depending on the group size for
two antenna configurations. All algorithms show a slow increase up to their best system
rate and a fast decrease. Communicating simultaneously with an increasing number of
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users, increases the overall data rate, but also causes interference between users in the
same group. When the number of users reaches a given size, interference has a greater
impact than the gain from MU-MIMO, leading to a decrease in the total system rate.
Depending on the user selection algorithm, this achievable size may differ.

Algorithm performance matches those obtained in section 4.6.2: random allocation is
the worst solution, followed by 1stMaxSNR and then by CBUS [9] (solution from the
SoTA based on the often used channel matrix correlation) and finally by FullMaxSNR
and our ESCUS solution.

As shown in Figure 4.7(a) the system experiences a strong gain by using ESCUS over
FullMaxSNR with an increase of 11.7% with a group size of 5 users and an increase of
30.9% with a group size of 6 users. In Figure 4.7(b) the gain over FullMaxSNR is slightly
less with a gain of 7.5% with a group size of 9 users and 12.4% with a group size of 10
users.

Compared to correlation based algorithms, ESCUS performs better for all group con-
figurations with a higher total system rate. The results in Figure 4.7(a) show an increase
of 18.8% for ESCUS compared to CBUS regarding the highest value of the total system
rate for any group size with nr:4 and nt:32. Figure 4.7(b), with nr:4 and nt:64, shows a
lower increase of 13.4%.

4.6.4 Impact of the precoder on user selection strategies

The precoder BD has a strong impact on interference mitigation. Because ESCUS
does not take into account the channel matrix correlation, one can imagine that when it
is associated with a precoder not oriented towards interference management, performance
decreases. To avoid this misunderstanding, we propose to compare ESCUS to CBUS and
a random distribution, using the precoder BD and the precoder SVD. While BD focuses
on interference management, SVD focuses only on maximizing SU throughput, without
considering other users within the group.

Figure 4.8 shows the total system rate evolution for both a BD precoder and a SVD
precoder, depending on the number of users per group. The results of figure 4.8(a) are
similar to the results of figure 4.7(a) and are described in section 4.6.3. These results show
that ESCUS outperforms CBUS in all user configurations, while CBUS is slightly better
than a random distribution. With the SVD precoder, as shown in figure 4.8(b), results are
confirmed and ESCUS is still presenting better performance than CBUS. Note that the
system throughput is lower using SVD than BD, indeed the focus on MU of the precoder
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Figure 4.8 – System rate depending on the precoder (for a 2 MHz bandwidth)

BD allows a better interference cancellation and thus a better system throughput when
the number of users increases.

4.7 Conclusion on Massive-MIMO resource alloca-
tions

New techniques such as MU-MIMO greatly improve performance over Single-User
techniques. To enable the BS to smartly select users, user selection algorithms are often
based on users channel matrix correlation. In this chapter we showed that the correlation
as an indicator was not suitable for our context. We then propose a solution called ESCUS
based on a new principle which uses previous group allocations as an indicator. This
indicator depends on the obtained throughput between pairs of users and does not increase
in complexity when the number of users per group increases. Thanks to channel stability
due to the channel hardening, this indicator is stable in time and frequency. Results show
a strong increase in the system throughput compare to correlation based algorithm. This
solution is easier to calculate than correlation based strategies when the number of users
per group increases. In terms of performance ESCUS presents an important improvement
compared to classical solutions. As the potential throughput of the MaxSNR is used as
the main indicator for opportunistic Single Input Single Output (SISO) algorithms, the
indicator of ESCUS could be used to transpose schedulers from a SISO to a MU-MIMO
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context. Due to the large number of antennas required for MU-MIMO, the algorithm
is more suitable for a micro cell deployment. However, ESCUS is easily adaptable in a
multi-cell context on top of the Multi-Cell Pre-Scheduler (MCPS) described in chapter 3.

94



Chapter 5

CONCLUSION

5.1 Summary of the main results

The results presented in this thesis focus on resource allocation problems encountered
in modern wireless networks. These solutions are designed for three different wireless
network systems with their own specificities and challenges.

5.1.1 Dynamic SISO scheduler

Chapter 2 introduces the resource allocation principle in classic Single Input Single
Output (SISO) systems, these systems consider a user to be covered by only one Base
Station (BS). We then describe some of the best-known schedulers and their main charac-
teristics. In these schedulers, spectral efficiency and power consumption are often opposed.
To overcome this problem, we propose a new scheduler called Dynamic Trade-off (DT).
DT addresses this issue using a dynamic trade-off between spectral efficiency and energy
consumption. Thanks to an adequate heuristic, DT adapts its priorities to the system
load and provides the best performance compared to dedicated schedulers in their field of
interest.

5.1.2 Multi-cell pre-scheduler

In chapter 3, we extend the resource allocation description to a multi-cell context.
In such a system, coordination between cells is primordial and the user’s distribution
algorithms aim to optimally distribute the load between cells and provide a homogeneous
Quality of Service (QoS). An unbalanced distribution can lead to unsatisfied users while
some system resources are not used. Our solution called Multi-Cell Pre-Scheduler (MCPS)
attempts to maximize the efficiency of the micro cell to discharge as much as possible
the macro cell. This technique allows the macro cell to serve more users who are not
covered by the micro cells, and the performance evaluation shows a significant increase in
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system capacity. Another major advantage of the MCPS is its compatibility with existing
schedulers, maintaining their features.

5.1.3 Indicator for MU-Massive-MIMO resource allocation

Finally, in Chapter 4, we introduced a new paradigm in the allocation of resources, the
Multiple Users Multiple Input Multiple Output (MU-MIMO). Indeed, when schedulers
traditionally distribute time and frequency resources to a single user, with the massive-
Multiple Input Multiple Output (MIMO) more users can receive that same resource.
However, sharing the same resource can introduce strong interference between users and
their selection must be done correctly. We first proposed an evaluation of the channel ma-
trix correlation as an indicator for user selection, this indicator is frequently used in this
context. The results show that it is not well suited for this purpose due to its lack of preci-
sion and stability. We then introduced a new algorithm, called Efficient System Capacity
User Selection (ESCUS), which uses past allocations as an indicator. The performance
evaluation shows a significant increase in system capacity compared to a correlation-based
solution.

5.2 Perspectives

Wireless networks are constantly evolving towards greater functionality and efficiency.
In this respect, our contributions could be extended to different system configurations or
scenarios. Two main axes that emerge from our work and which could be treated as future
work are presented below, along with a long term objective.

5.2.1 Reinforcement learning based MU-Massive-MIMO algo-
rithm

Our solution ESCUS presented in chapter 4 is divided into two parts. The first part is
to explore the possible combinations of users among all users. The second part is to take
advantage of experienced groups and increase overall capacity. This approach is very close
to a known algorithm of Reinforcement learning (RL) called multi-armed bandit [60, 61].
Future work could focus on adapting ESCUS to the RL problem and benefit from related
knowledge.
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5.2.2 Multi-cell Massive-MIMO

Since MU-MIMO is mainly associated with small high-frequency cells, it is supposed
to be included within a macro cellular coverage area, similar to the systems described in
Chapter 3. However, due to the high complexity of massive-MIMO and multi-cell alone,
when combined, the complete system will be very complex to manage. Therefore, future
work could focus on designing accessible solutions for a massive-MIMO multi-cell system.

5.2.3 Service-oriented multi-cell user placement

Due to the variety of uses of wireless network (smart cities, autonomous cars, industrial
IoT...) services could also be included in a multi-cell resource allocation process. Macro
and micro cells do not offer the same properties and users must be placed according
to their current applications. Fast-moving users, typically autonomous cars, may benefit
from the large coverage area of the macro cell, while static users who download large files
may benefit from the wide bandwidth of the micro cell. Considering user services in the
user selection process dramatically increases the variability due to the large number of
existing and future services. These service-oriented user placement algorithms could be
combined with cached content delivery strategies [62] to reduce latency. An ideal solution
would be to provide a fair QoS to the users of the system, regardless of the services they
use, while guaranteeing the necessary resources for critical applications.
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Titre : Allocation de ressources et ordonnancement dans les réseaux de 5ème génération.

Mot clés : Allocation de ressources, réseau sans-fil, MU-MIMO, 5G, QoS

Résumé : L’augmentation du nombre d’utilisateurs des
réseaux sans-fil et la diversification de leurs usages
amène à faire évoluer les méthodes de gestion des res-
sources. Cette thèse porte sur les techniques d’alloca-
tion des ressources dans les réseaux de 5G.

Dans le contexte des systèmes classiques de ré-
seaux sans-fil, nous proposons un algorithme d’alloca-
tion de ressources dont l’objectif est de garantir équi-
tablement le meilleur service aux utilisateurs. Lorsque
la charge de la cellule est suffisament faible pour ga-
rantir un service suffisant, l’algorithme réoriente dyna-
miquement ses priorités vers l’économie d’énergie. Ce
comportement permet un compromis efficace entre la
capacité et la consommation energétique à différents
niveaux de charge.

Afin d’étendre la capacité des réseaux, l’ajout de
nouvelles cellules permet d’élargir la bande passante

et de reduire l’atténuation du signal liée à la distance.
Nous présentons un algorithme de répartition des utili-
sateurs dans un contexte multi-cellulaire qui intervient
avant l’étape d’allocation de ressources. Cette répar-
tition aura de fortes répércussions sur l’équilibre des
charges des cellules et sur la qualité de service géné-
rale du système.

Le nombre de cellules dans un secteur est limité par
sa géographie. Le Massive-MIMO permet d’accroître
les fonctionnalités des cellules en permettant une direc-
tivité de l’energie et ainsi ajoute la composante spatiale
à l’allocation de ressources. Nous proposons un nouvel
indicateur de compatibilité spatiale des utilisateurs en
se basant sur les allocations passées. Une fois intégré
dans un algorithme d’allocation, il profite des capacités
supérieures du Massive-MIMO.

Title: Resource allocation and scheduling in 5th generation networks.

Keywords: Resource allocation, wireless network, MU-MIMO, 5G, QoS

Abstract: The increasing number of wireless network
users and the diversification of their usage call for an
evolution of the resource management methods. This
thesis is based on 5G resource allocation techniques.

In regular wireless networks, cells are managed in-
dependently. In this context, we propose a resource al-
location algorithm with the aim of fairly guaranteeing
the best service to users. When the cell charge is low
enough to guarantee a sufficient quality of service, the
algorithm redirects dynamically its priorities towards en-
ergy saving. This behavior allows to obtain an efficient
compromise between capacity and energy consump-
tion at different charge levels.

In order to extend network capacity, the adding of
new cells allows to broaden the available bandwidth
and to reduce the distance induced signal attenuation.

We present an algorithm of user repartition in a multi-
cell context, which intervenes before the resource al-
location stage. A user can be covered by several cells
using different frequencies, thus its repartition will have
strong repercussions on the cell charge balance and on
the general quality of service in the system.

The maximal number of cells in a sector is limited
by its geographical environment. The Massive-MIMO
allows to increase the cell functionalities while allow-
ing a better energy directivity, and thus adding the spa-
tial component to the resource allocation. We propose
a new indicator evaluating the spatial compatibility of
users based on past allocations. Once integrated in an
allocation algorithm, it takes advantage of the superior
capacities of Massive-MIMO.
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