Simulation haute-fidélité du transfert thermique conjugué entre un fluide turbulent et le corps d'une conduite hydraulique
Auteur / Autrice : | Rodrigo Vicente Cruz |
Direction : | Éric Lamballais |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique des milieux fluides |
Date : | Soutenance le 10/12/2021 |
Etablissement(s) : | Poitiers |
Ecole(s) doctorale(s) : | Ecole doctorale Sciences et ingénierie des matériaux, mécanique, énergétique (Poitiers ; 2018-2022) |
Partenaire(s) de recherche : | Laboratoire : Pôle poitevin de recherche pour l'ingénieur en mécanique, matériaux et énergétique - PPRIMME (Poitiers) - Institut Pprime / PPRIME |
faculte : Université de Poitiers. UFR des sciences fondamentales et appliquées | |
Jury : | Président / Présidente : Paola Cinnella |
Examinateurs / Examinatrices : Éric Lamballais, Sébastien Deck, Florent Duchaine, Cédric Flageul | |
Rapporteurs / Rapporteuses : Helge I. Andersson, Guillaume Balarac |
Mots clés
Mots clés contrôlés
Résumé
Cette étude est consacrée au développement d’une nouvelle technique numérique pour la simulation du transfert thermique conjugué avec une application pour la reproduction de l’écoulement turbulent dans une conduite. La méthode est construite progressivement pour atteindre la haute-fidélité souhaitée. Tous les développements numériques et simulations sont effectués sur la base du code libre et massivement parallèle Incompact3d/Xcompact3d. Dans une première phase, le potentiel de la stratégie numérique choisie est étendu puis évalué par simulation directe et implicite à grande échelle pour mieux cerner la façon de combiner avantageusement ses caractéristiques. Parmi ces dernières, on peut mentionner la méthode des frontières immergées basée sur des interpolations polynomiales de Lagrange, la technique originale de filtrage visqueux et la modélisation implicite de turbulence pariétale par utilisation d’une dissipation numérique d’ordre élevé comme ersatz de la contribution sous-maille.La deuxième partie est consacrée à l’introduction d’une stratégie originale pour la simulation du transfert thermique turbulent pariétal. Dans ce but, la méthode des frontières immergées est adaptée pour permettre l’imposition de conditions aux limites thermiques spécifiques. L’approche est validée par simulation numérique directe du transfert de chaleur en turbulence de conduite avec des conditions aux limites de type Isoflux ou mixte. Une attention particulière est accordée au cas Isoflux qui nécessite des développements pour permettre l’imposition d’une condition aux limites de type Neumann. Cette stratégie est ensuite mise à profit pour mettre au point une méthode polyvalente qui permet la reproduction d’un phénomène de transfert thermique conjugué entre un fluide turbulent et le corps de la conduite qui le contient. Il est démontré que cette technique de couplage est capable de fournir une description précise de l’interaction thermique entre les milieux fluide et solide, ce qui peut être utile, par exemple, pour améliorer la modélisation RANS/LES dans les applications industrielles pour lesquelles les contraintes thermiques fluctuantes sont une préoccupation. La conduite cylindrique considérée ici,sans lien avec la nature Cartésienne du maillage, peut être vue comme un prototype de géométrie complexe, ceci ouvrant la voie à la réalisation de simulations haute-fidélité en géométrie réaliste telle que celle d’un Té de mélange avec plus largement des applications dans le cadre des centrales nucléaires ou solaires.