Thèse soutenue

Prédiction de matériaux polyazotés AxNy sous pression avec A = Sn, Si et Bi par algorithme évolutionnaire et calculs DFT

FR  |  
EN
Auteur / Autrice : Rabii Larhlimi
Direction : Gilles Frapper
Type : Thèse de doctorat
Discipline(s) : Chimie théorique, physique, analytique
Date : Soutenance le 30/09/2021
Etablissement(s) : Poitiers
Ecole(s) doctorale(s) : École doctorale Chimie, écologie, géosciences et agrosciences Théodore Monod (Poitiers ; 2018-2022)
Partenaire(s) de recherche : Laboratoire : Institut de chimie des milieux et matériaux de Poitiers (2012-....) - Institut de Chimie des Milieux et Matériaux de Poitiers / IC2MP
faculte : Université de Poitiers. UFR des sciences fondamentales et appliquées
Jury : Président / Présidente : Laurent Pizzagalli
Examinateurs / Examinatrices : Gilles Frapper, Frédéric Guégan, Isabelle Braems
Rapporteurs / Rapporteuses : Julia Contreras-García, Adlane D. Sayede

Résumé

FR  |  
EN

L’étude de nouveaux matériaux énergétiques répond à un défi sociétal à qui souhaite diminuer l’emprise des ressources fossiles et faire face au défi du réchauffement climatique. Le diazote, composant 78% de l’atmosphère terrestre, est un composé inerte chimiquement, du fait notamment de sa liaison triple NN, très stabilisée. L’activation de cette liaison, en vue de former des composés riches en azote, est une voie prometteuse de constitution de matériaux à haute densité d’énergie (HEDM). L’oligomérisation, voire la polymérisation du diazote en entités moléculaires discrètes ou étendues et viables en conditions standards devient alors un objectif d’intérêt. Dans cette optique, l’association de l’azote à un élément chimique A plus électropositif peut permettre de faciliter l’activation de la liaison azote-azote sous pression, et autoriser l’émergence de motifs polyazotés anioniques au sein de composés solides. Les travaux de cette thèse s’inscrivent dans ce champ d’activité « propositions de nouveaux matériaux A-N stockeurs d’énergie et émergence de nouvelles entités polyazotées anioniques ». Notre objectif est de prédire, par des simulations numériques, de nouvelles compositions et structures chimiques dans les systèmes binaires A-N sous des pressions allant de 1 atm jusqu’à 200 GPa, où A, élément du bloc p, est l’étain, le silicium ou le bismuth. L’exploration du paysage énergétique de chaque composition AxNy est réalisée par un algorithme évolutionnaire couplé à des calculs de la théorie de la fonctionnelle de la densité (DFT). Plusieurs nouvelles compositions chimiques ont été identifiées comme stables thermodynamiquement, dynamiquement et thermiquement via l’optimisation des structures cristallines, le calcul des phonons, et des simulations en dynamique moléculaire ab initio. Les transitions de phase et les domaines de stabilités de chaque composition AxNy ont été établis. Par l’emploi de modèles théoriques simples (structure de Lewis, VSEPR, Zintl-Klemm) et d’outils d’analyse de la structure électronique basés sur la théorie orbitalaire, des éléments de rationalisation des arrangements structuraux ont en outre pu être fournis. Le premier sujet traite de l’exploration du diagramme de phase de systèmes étain-azote de 0 à 200 GPa. Sept compositions SnxNy stables, réparties en onze phases cristallines, ont été caractérisées. Elles présentent une grande variété d’entités polyazotées : chaînons N2, N3 coudés et N8, cycles à cinq et six chaînons, voire des chaînes infinies poly-(N)y-. Le second sujet aborde plus particulièrement la viabilité de nouveaux composés métastables de silicium et d’azote tels que SiN2, SiN4 et SiN6 sous des pressions allant de 0 à 200 GPa. De plus, une nouvelle phase haute pression du nitrure de silicium Si3N4, de structure monoclinique P21/c, est proposée à P> 145 GPa. Enfin, dans le dernier sujet nous nous sommes intéressés au diagramme de phase binaire Bi-N entre 0 et 80 GPa, en collaboration avec l’équipe Professeur Ken Niwa à l’université de Nagoya (Japon). Nous avons pu identifier avec succès la phase synthétisée expérimentalement à 40 GPa, et au-delà nous proposons de nouvelles phases riches en azote telles que BiN2, BiN3 et BiN8. Ces composés hypothétiques AxNy (A=Sn, Si et Bi) ont des propriétés HEDM analogues au TNT voire supérieures, et invitent la communauté à la synthèse sous pression de ces matériaux polyazotés inédits.