Thèse soutenue

Contribution à l'estimation de l'état de santé en vue de la prédiction de la durée de vie utile résiduelle des batteries au lithium ion. Application : véhicules électriques

FR  |  
EN
Auteur / Autrice : Hamza El Jebbari
Direction : Hamid GualousRachid Outbib
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 03/03/2021
Etablissement(s) : Normandie
Ecole(s) doctorale(s) : École doctorale physique, sciences de l’ingénieur, matériaux, énergie (Saint-Etienne du Rouvray, Seine Maritime)
Partenaire(s) de recherche : Laboratoire : Laboratoire universitaire des sciences appliquées de Cherbourg (1994-....)
établissement de préparation : Université de Caen Normandie (1971-....)
Jury : Président / Présidente : Ali Sari
Examinateurs / Examinatrices : Hamid Gualous, Rachid Outbib, Melika Hinaje, Ahmed Rachid, Abdesslem Djerdir, Mohammed M'Saad, Raffaele Petrone
Rapporteurs / Rapporteuses : Melika Hinaje, Ahmed Rachid

Mots clés

FR  |  
EN

Mots clés libres

Résumé

FR  |  
EN

Les batteries au lithium ion sont considérées comme un des vecteurs principaux de la transition énergétique. Elles sont dotées d’une importante densité d’énergie, combinée avec un faible effet de mémoire. Grâce à ces avantages, la technologie Li-ion est largement privilégiée pour des applications de stockage embarqué, notamment à bord des véhicules électriques. Cependant, l’intégration réussite des batteries Li-ion est confrontée à un défi majeur qui est le vieillissement de ces éléments. En effet, les performances de ces batteries se dégradent au fil du temps et d’usage. Ceci se traduit par la diminution de la quantité d’énergie et la perte de la puissance délivrée par la batterie. Dans ce cadre, deux objectifs principaux sont visés à travers ce travail. D’une part, l’étude expérimentale du comportement ainsi que du vieillissement des batteries Li-ion sous différentes conditions d’opération. Et d’autre part, l’élaboration d’une nouvelle approche pour l’estimation de l’état de santé des batteries. Ainsi, une intense activité de caractérisation est conduite après la prise en main d’un nouveau dispositif expérimental d’une échelle industrielle. Ensuite, la question de l’estimation du SoH est abordée. D’abord, une synthèse exhaustive des méthodes existantes est réalisée. Puis, deux solutions sont proposées afin de répondre au mieux aux exigences d’une application en ligne.La première campagne expérimentale a été menée pour étudier le comportement d’un paramètre clé des batteries qui est la tension en circuit ouvert. Ce dernier rentre en jeu lors de l’élaboration des modèles de simulation. Ainsi, deux technologies de batteries ont été testées à plusieurs niveaux de températures. Cette étude a permis d’apporter une nouvelle évaluation de l’impact des variations de l’OCV sous l’effet de la température sur le comportement des éléments du circuit équivalent de la batterie. La deuxième campagne expérimentale était consacrée à la mise en place du vieillissement accéléré des batteries. Le protocole des tests est élaboré en alternant des phases de sollicitions dynamiques émulant deux modes d’opération en véhicule tout électrique et hybride. Ensuite, un test de référence fut réalisé afin de mesurer les caractéristiques des batteries et ainsi quantifier leurs niveaux de dégradation.Une nouvelle méthode d’estimation de la dégradation est développée dans ce travail. Elle consiste en la combinaison d’un modèle de comportement sous forme de circuit équivalent et un modèle d’évolution de la dégradation qui est le processus de Wiener. Dans cette configuration, le premier modèle fourni au deuxième l’information sur l’état actuel des paramètres internes de la batterie. Ce dernier délivre une projection future de l’évolution de l’état de la batterie. Cette nouvelle combinaison permet de réaliser deux objectifs à la fois. D’abord, la RUL peut être prédite grâce à l’estimation de l’évolution de la dégradation qu’offre le processus de Wiener. Ce dernier a été toujours employé d’une façon hors ligne, où ses paramètres sont mis à jour en se basant sur une information qui n’est pas obtenue en temps réel. Grâce à la solution proposée, l’information sur la dégradation est acquise à travers le circuit équivalent pour mettre à jour le processus de Wiener en temps réel. Ceci est le deuxième objectif réalisé. En somme, les deux modèles se complètent pour tirer le maximum de profits de leurs propriétés respectives.Enfin, une amélioration des techniques d’apprentissage automatique pour l’estimation de la dégradation des batteries Li-ion est proposée. En particulier, l’attention a été protée aux caractéristiques qui représentent les signatures de la dégradation. D’abord, un grand nombre est extrait englobant pour la première fois toutes les caractéristiques citées en littérature dans un seul modèle d’estimation. Ensuite, nous avons intégré la méthode du « meilleur sous ensemble » pour tirer l’information la plus pertinente des caractéristiques.