Thèse soutenue

Approches d'apprentissage profond pour la détection en couche physique de télécommunications multi-accès

FR  |  
EN
Auteur / Autrice : Cyrille Morin
Direction : Jean-Marie Gorce
Type : Thèse de doctorat
Discipline(s) : Traitement du signal et des images
Date : Soutenance le 22/07/2021
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : CITI - Centre d'Innovation en Télécommunications et Intégration de services (Lyon, INSA) - CITI Centre of Innovation in Telecommunications and Integration of services / CITI
Equipe de recherche : MARACAS - Modèle et algorithmes pour des systèmes de communication fiables
Jury : Président / Présidente : Christophe Moy
Examinateurs / Examinatrices : Jean-Marie Gorce, Christophe Moy, Symeon Chatzinotas, Marco Di Renzo, Marwa Chafii, Catherine Douillard, Jakob Hoydis, Leonardo Sampaio Cardoso
Rapporteurs / Rapporteuses : Symeon Chatzinotas, Marco Di Renzo

Résumé

FR  |  
EN

Les tendances actuelles pointent vers une accélération de l'augmentation du nombre d'objets cherchant à accéder au spectre radio, à la fois par la démocratisation des objets grand public, smartphones, ordinateurs, montres connectées,... et par le déploiement d'objets et capteurs connectés. Des avancées technologiques, protocolaires et législatives augmentent les bandes de fréquence disponibles en ouvrant l'accès à la zone des GHz, mais la densité des objets communicant sur le spectre tend quand même à augmenter. L'accès multiple à une ressource radio partagée mène à des situations qui sont à la fois complexes à modéliser et à aborder avec les algorithmes actuels, et c'est particulièrement vrai pour les taches de type détection présentes au niveau des couches physiques des communications sans fil. Les algorithmes d'apprentissage profond sont particulièrement utiles dans ce type de situation, sans modèle ou avec des algorithmes existant peu pratiques, pour peu qu'une grande quantité de données soit disponible pour entraîner les réseaux de neurones. Cette thèse vise à adapter l'outil de l'apprentissage profond aux problèmes de détection de la couche physique, à différentes étapes de la chaîne de décodage. D'abord par le problème de la détection d'origine d'un paquet reçu, commençant par l'identification de caractéristiques matérielles d'un l'objet émetteur, puis étendant ce scénario à un ensemble d'objets actifs simultanément. L'étape suivant la détection de l'origine d'un paquet est la détection des bits, pour décoder les messages transmis. Dans ce cadre, l'apprentissage profond est employé pour apprendre des constellations permettant une détection efficace des bits dans un scénario multi-accès non orthogonal à deux utilisateurs. Les données servant à l'apprentissage des réseaux de neurones impliqués dans cette thèse sont récoltées soit dans des modèles simulés, soit par des expériences implémentées dans l'équipement de radio logicielle FIT CorteXlab.