Thèse soutenue

Effets du procédé sur la structure et du comportement des alliages base Nickel fabriqués par Fabrication Additive

FR  |  
EN
Auteur / Autrice : Laura Delcuse-Robert
Direction : Alexis RusinekMohamed Slim Bahi
Type : Thèse de doctorat
Discipline(s) : Science des matériaux
Date : Soutenance le 14/12/2021
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale C2MP - Chimie mécanique matériaux physique (Lorraine)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (Metz ; 2011-....)
Jury : Président / Présidente : Salima Bouvier
Examinateurs / Examinatrices : Alexis Rusinek, Mohamed Slim Bahi, Nadhir Lebaal, Eric Markiewicz, Teresa Frąś, Christophe Czarnota, Paul Wood
Rapporteurs / Rapporteuses : Nadhir Lebaal, Eric Markiewicz

Résumé

FR  |  
EN

En raison de sa résistance élevée à haute température, l'Inconel 718 est souvent utilisé dans le domaine aérospatial. Grâce à la fabrication additive, de nouvelles structures telles que les structures auxétiques peuvent être produites en Inconel 718 et ainsi offrir de nouvelles opportunités dans de nombreuses applications industrielles. Sous une charge d'impact, la grande capacité d'absorption d'énergie des structures auxétiques offre de nouvelles possibilités, principalement en matière de sécurité dans le domaine routier. Le travail présenté ici est développé autour de cette problématique. Tout d'abord, les paramètres géométriques d'une structure en nid d'abeille inversée ont été optimisés par simulation numérique, en utilisant un plan d’expérience Taguchi et une étude paramétrique. L'influence des paramètres de fusion laser sur lit de poudre - ou Laser Powder Bed Fusion (L-PBF) - a également été abordée sur des structures auxétiques à paroi mince en Inconel 718. La direction d’impression et la densité d'énergie du laser ont été varié afin de déterminer leur effet sur la porosité et la précision d'impression sur des structures minces. Ensuite, le comportement mécanique des structures en nid d’abeille inversée a été étudié en traction et en compression, afin d'identifier la cinétique de déformation de la structure. Pour reproduire ce comportement mécanique, le comportement en compression de l'Inconel 718 imprimé dans les directions d’impressions horizontales (XY) et verticales (ZX) a été étudié en utilisant des conditions quasi-statiques et dynamiques. Les vitesses de déformation appliquées sont comprises entre 10-3 s-1 et 2500 s-1 . Une loi de comportement de Johnson-Cook a été déterminé en tenant compte de l'effet de la direction d’impression sur les propriétés mécaniques. L'anisotropie de l'Inconel 718 imprimé dépend de la direction d’impression, ce qui a été révélée par une étude microstructurale. En utilisant des cartes d'orientat ion EBSD et des micrographies BSE, il a été constaté que la direction de construction horizontale (XY) contient principalement des grains équiaxes par rapport à la présence de grains colonnaires et allongés pour la direction verticale (ZX). De plus, un gradient de microstructure a été observé dans les deux directions d’impression, du bord vers le cœur du matériau, divisé en trois zones : (i) bord, (ii) zone de transition et (iii) zone centrale. Selon l'analyse microstructurale, une nouvelle approche de modélisation de la limite d'élasticité a été développée sur la base de la taille des grains de l'Inconel 718, en fonction de la direction d’impression. Un modèle numérique d’une structure auxétique a été développé sur le logiciel Abaqus, sous un chargement en compression dynamique. La loi de comportement est alors validée par ce modèle , reproduisant le comportement mécanique de la structure auxétique à l’échelle macroscopique.