Étude morpho-statistique des réseaux sociaux. Application aux collaborations inter-organisationnelles
Auteur / Autrice : | Quentin Laporte |
Direction : | François Charoy |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 12/01/2021 |
Etablissement(s) : | Université de Lorraine |
Ecole(s) doctorale(s) : | École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire lorrain de recherche en informatique et ses applications |
Jury : | Président / Présidente : Radu Stefan Stoica |
Examinateurs / Examinatrices : François Charoy, Florence Sèdes, Myriam Maumy-Bertrand, Gérald Oster, Arnaud Martin | |
Rapporteur / Rapporteuse : Florence Sèdes, Myriam Maumy-Bertrand |
Mots clés
Résumé
Les applications collaboratives décentralisées permettent de répondre aux problèmes de confidentialité, de disponibilité et de sécurité inhérents aux plateformes collaboratives centralisées. Elles reposent sur un paradigme de communication pair-à-pair selon lequel tous les utilisateurs sont directement connectés les uns aux autres. Les collaborations ayant tendance à s'élargir et dépasser les frontières des organisations, il est nécessaire de garantir aux utilisateurs le contrôle sur leurs données tout en assurant la disponibilité de la collaboration. Pour ce faire, il est possible d'utiliser comme topologie le réseau social qui s'est tissé entre les collaborateurs. Le manque d'information sur ce maillage de confiance nous amène à développer une approche pour étudier ses propriétés morphologiques. Dans cette thèse, nous développons et mettons en œuvre une approche permettant d'étudier la structure sociale des interactions dans le cadre de collaborations inter-organisationnelles. Nous proposons une approche stochastique qui s'inspire des Exponential Random Graph Models (ERGM) et des modèles spatiaux. Nous définissons un formalisme qui met en avant la structure des interactions et intègre la dimension organisationnelle. Nous proposons d'utiliser une méthode d'inférence bayésienne, ABC Shdadow, pour contourner les difficultés liées à l'estimation de ce modèle. Cette approche est mise en œuvre sur un exemple réel : les collaborations initiées par les chercheurs d'un laboratoire. Elle permet notamment de montrer la faible propension, pour un chercheur, à tisser des liens avec d'autres laboratoires. Nous montrons que cette approche peut être appliquée à d'autres types d'interactions sociales, comme les interactions entre les enfants d'une école primaire. Enfin, nous présentons une stratégie de parallélisation de l'échantillonneur de Gibbs visant à traiter des graphes de plus grande taille dans un temps raisonnable.