Thèse soutenue

Conceptions optimales de réacteurs à lit fixe par fabrication additive

FR  |  
EN
Auteur / Autrice : Alexis Courtais
Direction : François LesageAbderrazak Latifi
Type : Thèse de doctorat
Discipline(s) : Génie des procédés, des produits et des molécules
Date : Soutenance le 15/01/2021
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale SIMPPé - Sciences et ingénierie des molécules, des produits, des procédés, et de l'énergie (Lorraine)
Partenaire(s) de recherche : Laboratoire : Laboratoire réactions et génie des procédés
Jury : Président / Présidente : Yannick Privat
Examinateurs / Examinatrices : Benoît Chachuat, Brahim Benyahia, Marcela Gabriela Szopos
Rapporteurs / Rapporteuses : Benoît Chachuat, Brahim Benyahia

Résumé

FR  |  
EN

Cette thèse est un travail prospectif qui vise à appliquer en Génie des Procédés des méthodes d’optimisation de forme développées dans d'autres domaines d'ingénierie. La première partie de ce travail est dédiée au développement d'une méthodologie d'optimisation de forme et à son implantation dans le logiciel libre OpenFOAM. Elle a ensuite été appliquée afin de déterminer la configuration optimale du garnissage d'un réacteur à lit fixe en deux dimensions en écoulement monophasique de liquide. La méthodologie développée est ensuite testée pour déterminer la forme du garnissage qui minimise la dissipation d'énergie dans le fluide due aux frottements visqueux, la concentration moyenne de réactif en sortie, ou les deux simultanément à l'aide de l'optimisation multicritère. Les configurations optimales déterminées sont satisfaisantes et permettent une amélioration significative de la conversion du réacteur ou de la perte d'énergie dans le fluide. Dans une seconde partie, une campagne expérimentale a été réalisée dans l'objectif de valider la modélisation CFD effectuée par le logiciel OpenFOAM, nécessaire à l'optimisation de forme et simulant l'écoulement et les réactions mises en jeu dans le réacteur. Pour cela, des maquettes à l'échelle 1 du réacteur initial et des réacteurs optimaux ont été fabriquées par impression 3D dans le but de les expérimenter. Les expériences s'articulent autour de 3 techniques de mesure, la PIV (Vélocimétrie par Image de Particules), la mesure de DTS (Distribution des Temps de Séjour) et la mesure de la conversion à la sortie du réacteur. Finalement, il a été montré que l'optimisation du réacteur sous sa forme 2D permet une amélioration significative de ses performances même si la configuration déterminée est sûrement sous-optimale. En effet, après avoir comparé les mesures expérimentales aux simulations en deux et trois dimensions, il a été constaté que la simulation 3D est plus représentative de la réalité que la simulation 2D. Ainsi, optimiser le réacteur sous sa forme 3D serait une perspective intéressante pour la suite à condition d'améliorer le traitement des contraintes liées à l'étape de fabrication additive des réacteurs.