Thèse soutenue

Contributions relatives à la génération quantique d’aléa
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Don Akou Jean Baptiste Anoman
Direction : François Arnault
Type : Thèse de doctorat
Discipline(s) : Mathematiques et applications
Date : Soutenance le 02/12/2021
Etablissement(s) : Limoges
Ecole(s) doctorale(s) : École doctorale Sciences et Ingénierie des Systèmes, Mathématiques, Informatique (Limoges ; 2018-2022)
Partenaire(s) de recherche : Laboratoire : XLIM
Jury : Examinateurs / Examinatrices : François Arnault, Eleni Diamanti, Philippe Gaborit, Simone Naldi
Rapporteurs / Rapporteuses : Ayoub Otmani, Victor Magron

Résumé

FR  |  
EN

La physique classique, par son caractère fondamentalement déterministe, ne permet pas la production d’aléa vrai. La physique quantique, quant à elle, fait des prévisions probabilistes, sur des processus qui paraissent fondamentalement aléatoires. De plus, les réponses apportées aux paradoxes de types EPR, comme la réponse formulée par les inégalités de Bell [16] et leurs expérimentations par Alain Aspect, montrent que la physique quantique ne peut être complétée en une théorie entièrement prédictive. Une question émane alors: Quelles sont les expériences quantiques fondamentalement aléatoires ? Cristian S.Calude et Al [4] montrent que presque toutes les mesures quantiques produisent de l’aléa (Théorème Strong Kochen Specker). Dans le cadre de cette thèse, notre but est ainsi de proposer de nouveaux schémas de génération quantique d’aléa (voir [10,13]) basés sur ce caractère aléatoire intrinsèque aux expériences quantiques. Ces protocoles explorent l’utilisation de produits d’observables incompatibles implémentées l’une à la suite de l’autre comme le font les auteurs de [36]. Pour un apport en sécurité à ces protocoles, nous dérivons, à partir d’inégalités de Bell déjà existantes notamment CHSH [28] et CHSH-3 (initialement CGLMP pour qutrits [29]), de nouvelles inégalités. Cette fois-ci, l’on considère des configurations constituées d’un unique Qutrit où la contrainte de commutativité des observables n’est pas imposée. La borne classique est cette fois-ci obtenue sous l’hypothèse du Réalisme macroscopique [51], comme celles des inégalités temporelles [36]. Ces bornes classiques sont égales à celles obtenues dans le cadre du réalisme locale. Cependant, les bornes quantiques, obtenues par SDP, peuvent être plus grandes que celles des expressions originelles permettant ainsi une meilleure résistance au bruit et donc à de potentielles attaques. Ces violations par rapport au cadre classique ne sont plus dues à la non localité mais plutôt au caractère indéfini des résultats de presque toutes les mesures quantiques. Avec les observables et états optimum de ces inégalités, nous donnons des arguments d'auto-test pour nos protocoles. Cette thèse a aussi été l’occasion de revisiter certains aspects de la cryptographie quantique comme la distribution quantique de clé.