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Résumé

L’objectif de cette thèse est de proposer des méthodes variationnelles pour l’analyse mathématiques
et numérique d’une classe d’équations d’HJ. Le caractère métrique de ces équations permet de car-
actériser l’ensemble des sous-solutions, à savoir, elles sont 1-Lipschitz par rapport à la distance Fins-
lerienne associée au Hamiltonien. De manière équivalente, cela revient à dire que le gradient de ces
fonctions appartient à une certaine boule Finslerienne. La solution recherchée est la sous-solution
maximale, qui peut être décrite par une formule du type Hopf-Lax, qui résout un problème de max-
imisation avec contrainte sur le gradient. Nous dérivons un problème dual associé faisant intervenir
la variation totale Finslerienne de mesures vectorielles avec contrainte divergente. Nous exploitons
la structure de point-selle pour proposer une résolution numérique avec la méthode du Lagrang-
ien augmenté. Cette caractérisation de l’équation d’HJ montre aussi le lien avec des problèmes de
transport optimal vers/depuis le bord. Ce lien avec le transport optimal de masse nous amène à
généraliser l’approche d’Evans-Gangbo. En e�et, nous montrons que la sous-solution maximale de
l’équation d’HJ s’obtient en faisant tendre p→∞ dans une classe de p-Laplaciens de type Finsler
avec des obstacles sur le bord. Cela nous permet aussi de construire le �ux optimal pour le problème
de Beckmann associé. Parmi les applications que l’on regarde, le problème du Shape from Shading
qui consiste à reconstruire la surface d’un objet en 3D à partir d’une image en nuances de gris de
cet objet.
Mots clés: Équations d’Hamilton-Jacobi, transport optimal, dualité de Fenchel-Rockafellar, La-
grangien augmenté, Shape from Shading.

Abstract

In this thesis we propose some variational methods for the mathematical and numerical analysis
of a class of HJ equations. Thanks to the metric character of these equations, the set of subsolu-
tion corresponds to the set of 1-Lipschitz functions with respect to the Finsler metric associated to
the Hamiltonian. Equivalently, it corresponds to the set of functions whose gradient belongs to a
Finsler ball. The solution we are looking for is the maximal one, which can be described via a Hopf-
Lax formula, solves a maximization problem under gradient constraint. We derive the associated
dual problem which involves the Finsler total variation of vector measures under a divergence con-
straint. We take advantage of this saddle-point structure to use the augmented Lagrangian method
for the numerical approximation of HJ equation. This characterization of the HJ equation allows
making the link with some optimal transport problems. This link with optimal transport leads us
to generalize the Evans-Gangbo approach. In fact, we show that the maximal viscosity subsolution
of the HJ equation can be recovered by taking p → ∞ in a class of Finsler p-Laplace problems
with boundary obstacles. In addition, this allows us to construct the optimal �ow for the associ-
ated Beckmann problem. As an application, we use our variational approach for the Shape from
Shading problem.
Keywords: Hamilton-Jacobi equations, optimal transport, Fenchel-Rockafellar duality, aug-
mented Lagrangian, Shape from Shading.
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1 General introduction

This thesis is devoted to the mathematical and numerical analysis of a class of Hamilton-
Jacobi (HJ) equations with some applications. We will be mainly concerned with equa-
tions of �rst order of the form

H(x,∇u) = 0 in Ω, (1.1)

where Ω ⊂ RN is an open bounded set andH : Ω×RN → R is a continuous function,
called the Hamiltonian, satisfying some suitable assumptions that will be recalled later.

These equations have attracted the attention of mathematicians and physicists as
they appear in many �elds such as classical mechanics, geometry (especially symplectic
geometry) with the study of Hamiltonian systems and in optics, more particularly,
with Fermat and Huygens’s principles (see e.g.[5, 60, 73, 103]). They also arise in the
study of Helmhlolz and Schrödinger equations in the framework of WKB1 method (see
e.g.[8]). In addition to this, they have plenty of applications in computer vision and
computational geometry, amongst them the Shape from Shading problem which will
be the content of Chapter 4, and geodesic extraction which will be discussed in Section
7.4 (see the book of J.Sethian [100] for further examples). Another area of application
of HJ equations is optimal control where the dynamical programming principle
allows the characterization of the value function as a solution of a subfamily of HJ
equations, usually called Hamilton-Jacobi-Bellman (HJB) equations (see e.g.[7, 25, 80]).
Lately, they are in the core of the newborn theory of mean �eld games (see e.g.[74, 75, 76]).

As we will see in the next chapter, the notion of classical solutions, i.e., smooth func-
tions satisfying the equation pointwise, is not a suitable as a notion of solutions, and
viscosity theory, introduced by C.Crandall and P.L.Lions in the 1980s (see [9, 31, 32,
80]) provides an adequate framework to study these equations. The omnipresence of
HJ equations led to a various methods and techniques to approximate the solutions, we
will present some of them in Chapter 2.

1Named after Wentzel, Kramer and Brillouin
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1 General introduction

Outline

This thesis is organised as follows. In Chapter 2, we recall the main notions and tools from
the theoretical background on HJ equations, to the duality results and primal-dual algo-
rithms we propose to solve them. In particular, Section 2.1 contains some reminders on
viscosity theory, the metric character as well as a brief survey on some existing numerical
methods to deal with HJ equations. Section 2.2 concerns some reminders from optimal
transport theory which are needed essentially in Chapters 5,6. We recall in Section 2.3
the notion of tangential measure and tangential gradient which plays a major role in op-
timization on measure spaces. Finally, we recall in Section 2.4 duality results in convex
optimization as well as primal-dual algorithms.

Chapter 3 contains our main result proposing a variational formulation for the HJ
equation. The starting point is that every Hamiltonian H induces a geodesic distance
(actually a quasi-distance) of Finsler type dσ, where

dσ(x, y) = inf
ξ∈Γ(x,y)

∫ 1

0

σ(ξ(t), ξ̇(t))dt,

Γ(x, y) being the set of Lipschitz curves joining two points x, y ∈ Ω, and σ being the
support function of the zero sublevels of H (see (2.6)). This quasi-distance appears to
characterize all the subsolutions of the HJ equation, and more generally, it intervene
in representing any viscosity solution via Hopf-Lax type formulas. Indeed, every vis-
cosity subsolution u of (1.1) turns to be 1−Lipschitz with respect to dσ, i.e., satis�es
u(x) − u(y) ≤ dσ(y, x) for any x, y ∈ Ω. We prove that this property is equivalent
to saying that the gradient of u belongs to some convex ball. More precisely, we show
that∇u ∈ Bσ∗ a.e, where Bσ∗ is the unit ball of the dual function σ∗. Coupling (1.1)
with a Dirichlet boundary condition u = g on ∂Ω, for some "compatible" continuous
function g : ∂Ω→ R, we prove that he maximal viscosity subsolution given by

u(x) = min
y∈D

dσ(y, x) + g(y),

is the unique solution of the problem

max
{∫

Ω

z(x)dx, σ∗(x,∇z(x)) ≤ 1 and z = g on ∂Ω
}
. (1.2)

To prove duality, we consider a general version of (1.2) by maximizing
∫

Ω
zdρ for some

positive Radon measureρ instead of
∫

Ω
zdx and we write the problem as an optimization

problem involving the sum of two operators (see Section 2.4). We derive a dual problem
involving some vector measures under a divergence constraint, with a particular atten-
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tion to introduce a trace-like operator for these vector �elds to handle rigorously their
contribution on the boundary. More precisely, we prove the following

Theorem 1.1. Let ρ ∈M+
b (Ω), then

(MD) : max

{∫
ΩD

udρ : σ∗(x,∇u(x)) ≤ 1 and u = g on ΓD

}
,

and

(OFD) : inf
φ∈DMp(ΩD)

{∫
ΩD

σ(x, φ(x))dx− 〈φ · νD, g〉 : −div(φ) = ρ in D′(ΩD \ ΓD)

}
,

coincide. Where ΩD = Ω \ D and DMp(ΩD) is the space of φ ∈ Lp(ΩD)N whose
divergence is a bounded measure on ΩD.

The proof will be done via an appropriate perturbation technique. This will enable
us to solve (MD) and (OFD) simultaneously by looking for saddle points of a suitable
augmented Lagrangian functional Lr:

inf
(u,q)∈W 1,∞(ΩD)×L∞(ΩD)N

sup
φ∈DMp(ΩD)

Lr(u, q;φ).

Keeping in mind that the solution of (1.2) can be recovered by taking ρ ≡ 1, we take
advantage of this saddle-point structure to use the augmented Lagrangian method to ap-
proximate the solution of (MD) (an thus the solution of HJ equation) by considering a
�nite-dimensional optimization problem of the form

inf
u∈Xh

F(u) + G(Λu) (1.3)

for some appropriate functionals F ,G. We apply the ALG2 algorith to solve (1.3) and
we provide several numerical examples.

In Chapter 4 we propose a formulation of the so-called Shape from Shading problem
within the framework of Chapter 3. SfS is a classical problem in computer vision con-
sisting in the reconstruction of the 3D shape of an object, given a greylevel image of its
brightness map. It has been extensively studied, even before the birth of viscosity theory.
The PDE formulation of this problem gives rise to a HJ equation. Complementing this
equation with a compatible boundary data g, we can recover the maximal viscosity sub-
solution via (1.2). By assuming that g ∈ H1/2(∂Ω), we derive a slightly di�erent dual
problem from the one presented in Chapter 3. More precisely, we prove the following

Theorem 1.2. The extremal values

(M) : max
u∈W 1,∞(Ω)

{∫
Ω

u(x)dx, σ∗(x,∇u(x)) ≤ 1 and u = g on ∂Ω
}
,

3



1 General introduction

and

(OF) : inf
φ∈L2(Ω)N

{∫
Ω

σ(x, φ)dx− 〈g, φ · n〉H1/2,H−1/2 : −div(φ) = 1 in D′(Ω)

}
,

coincide.

As we will see, our variational approach allows handling the degeneracy of the Hamil-
tonian, which in this case corresponds to points with maximal brightness. More partic-
ularly, no regularisation is needed to avoid these points. In contrast with Chapter 3, we
opt for Chambolle-Pock’s primal-dual algorithm to approximate the solution since it is
suitable when working on images and doesn’t require solving some linear PDE. More
precisely, we write the discrete version of (M) in an inf-sup form

(M)d : inf
u∈X

sup
φ∈Y
Fh(u) + 〈φ,∇hu〉 − Gh(φ),

where Fh,Gh are discrete functions to be precised later, and∇h is the discrete gradient
operator de�ned via �nite di�erences. In addition, we prove the following result conver-
gence of our discretization

Proposition 1.3. Assume that the Finsler metric σ associated with the Hamiltionian H
is non-degenerate (i.e. H(x, 0) < 0,∀x ∈ Ω) and that g = 0. Let uh ∈ X and φh =
(φ1

h, φ
2
h) ∈ Y be a pair of primal-dual solutions to the discrete optimization problem (M)d

and its dual problem. Then ũh ⇒ u and φ̃h ⇀ φ as the step size h→ 0. Moreover, u and
φ are optimal solutions to (M) and its dual problem, respectively.

At the end we show several shapes and tests.
Chapter 5 investigates the connection between HJ equation and the Beckmann prob-

lem. As one can see, our formulation (1.2) is close to the so-called Kantorovich-
Rubinstein problem (see Section 2.2). The main di�erence is the presence of the bound-
ary constraint u = g on ∂Ω and the lack of a target measure since µ1 = LN Ω and
µ2 = 0. In fact, we show that the HJ equation is connected to the following problem

min
ν∈Mb(∂Ω)

max
u

{∫
Ω

u(dx− dν)−
∫
∂Ω

g dν : u is 1− Lipschitz w.r.t dσ
}
, (1.4)

for which suitable Beckmann and Monge-Kantorovich problems are presented. Again,
considering a general version of (1.2),

(MD) : max

{∫
Ω

u dρ : u(y)− u(x) ≤ dσ(x, y), ∀x, y ∈ Ω and u = g onD
}
,

where ρ ∈ Mb(Ω), we prove the following result using perturbation techniques and
approximation of degenerate Finsler metrics:
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Theorem 1.4. The optimization problem (MD) coincides with the following Beckmann-
type problem

(BK) : min
φ∈Mb(Ω)N ,ν∈Mb(D)

{∫
Ω

σ(x,
φ

|φ|
(x))d|φ|+

∫
D

gdν : − div(φ) = ρ− ν in D′(RN)

}
.

Observing that

min
φ∈Mb(Ω)N

{∫
Ω

σ(x,
φ

|φ|
(x))d|φ| : − div(φ) = ρ− ν in D′(RN)

}
= Wdσ(ρ−+ν+, ρ++ν−),

whereWdσ(ρ−+ ν+, ρ+ + ν−) is Monge-Kantorovich work between ν and ρ, we get by
Kantorovich-Rubinstein dualiy (see Section 2.2) that

Wdσ(ρ− + ν+, ρ+ + ν−) = max
u

{∫
Ω

ud(ρ− ν) : u is 1− Lipschitz w.r.t dσ
}
.

At the end, by minimizing over allν ∈M(D), we obtain of the following general version
of (1.4)

(MN) : min
ν∈Mb(D)

max
u

{∫
Ω

ud(ρ− ν) +

∫
D

gdν : u is 1− Lipschitz w.r.t dσ
}
,

as well as the following Monge-Kantorovich problem

(MK) : min
γ∈M+(Ω×Ω),ν∈Mb(D)

{
Wdσ(ρ−+ν+, ρ++ν−)+

∫
D

gdν : π1]γ = ρ−+ν+, π2]γ = ρ++ν−
}
.

Using optimal transport techniques, we prove the following

Theorem 1.5. Under the assumptions (H1-H3) (see Section 2.1.2), we have

max(MD) = min(BK) = min(MN) = min(MK).

Finally, we provide some numerical examples showing the potential u and the �ow Φ.
In particular, we see that the set of degeneracy of dσ, called the Aubry set (see Section
2.1), plays a role of free-transport region for the optimal transport problems associated to
HJ equation.

In chapter 6 we examine a PDE approach à la Evans Gangbo [44] for the following HJ
equation with obstacles on the boundary

H(x,∇u) = 0 in Ω, and φ ≤ u ≤ ψ on ∂Ω, (1.5)
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1 General introduction

where φ, ψ ∈ C(∂Ω) satisfying some compatibility condition that will be recalled later.
Again, seeking to recover the maximal viscosity subsolution of (1.5), we will consider the
following problem

max
{∫

Ω

udx : σ∗(x,∇u) ≤ 1 a.e., φ ≤ u ≤ ψ on ∂Ω
}
,

where σ∗ is the dual of the support function of the 0-sublevels ofH . To do further anal-
ysis, we consider for a Finsler metricH on Ω (not to be confused with the Hamiltonian)
and ρ ∈ L2(Ω)

(KR)H : max
{∫

Ω

udρ : H∗(x,∇u) ≤ 1 a.e., φ ≤ u ≤ ψ on ∂Ω
}
,

which appears to be the Kantorovich-Rubinstein problem associated to the following
mass transport problem

(K)H : min
γ∈Π(ρ+,ρ−)

{∫
Ω×Ω

dH(x, y)dγ(x, y)+

∫
∂Ω

ψ(y)d(πy)]γ−
∫
∂Ω

φ(x)d(πx)]γ
}
.

Moreover, duality arguments show that the associated Beckamann’s problem reads

(B)H : min
Φ∈MN (Ω)
ν∈M(∂Ω)

{∫
Ω

H(x,
Φ

|Φ|
)d|Φ|+

∫
∂Ω

ψdν−−
∫
∂Ω

φdν+ : −div(Φ) = ρ+ν inD′(RN)
}
.

The strategy consists in considering a family of Finsler p-Laplace problems with obstacles
on the boundary whose solutions will be obtained by minimizing the functional:

Fp(u) :=

∫
Ω

H∗(x,∇u)p

p
dx−

∫
Ω

uρdx,

overWφ,ψ = {u ∈ W 1,p(Ω) : φ ≤ u ≤ ψ on ∂Ω}.
We derive suitable estimates to pass to the limit as p→∞, and thus recover the Kan-

torovich potential. More precisely, we prove the following

Proposition 1.6. Let up be a minimizer ofFp. Then, up to a subsequence, up ⇒ u on Ω.
Moreover, u solves (KR)H .

Next, we de�ne for p > N

Θp = H∗(x,∇up)p−1∂ξH
∗(x,∇up).

We show that the measures Θp and Θp ·n are equibounded in Ω and ∂Ω respectively, and
thus converge to some measures Θ ∈ M(Ω)N and θ ∈ M(∂Ω), and we prove that the
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couple (Θ, θ) solves (B)H . At the end, we relate the Kantorovich potential u to (K)H .
More precisely, we prove the following

Proposition 1.7. Let u be the potential constructed in Proposition 1.6. Then u is a Kan-
torovich potentional for the classical optimal transport problem between ρ+ Ω + θ+ and
ρ− Ω + θ−. Moreover ∫

Ω

uρdx = min(K)H .

Finally, in Chapter 7 we present results from some works in progress as well as some
perspectives and future works.

Publications
• Augmented Lagrangian method for degenerate Hamilton-Jacobi equations,

H.Ennaji, N.Igbida and V.T.Nguyen. (submitted).

• Continuous Lambertian Shape From Shading: A primal-dual algorithm,
H.Ennaji, N.Igbida and V.T.Nguyen. (submitted).

• Beckmann-type problem for degenerate Hamilton-Jacobi equations. H.Ennaji,
N.Igbida and V.T.Nguyen. (submitted).

• Quasi-convex Hamilton–Jacobi equations via limits of Finsler p-Laplace problems
as p→∞, H.Ennaji, N.Igbida and V.T.Nguyen. (submitted).
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2 Preliminaries

In this chapter we recall some notions and tools from PDE theory, optimal transport,
optimization and numerical analysis. We start by an overview on HJ equations and their
metric character which will play a major role in this thesis. Then, we provide some pre-
liminaries on optimal transport theory. More particularly, the dual formulations of the
so-called Monge-Kantorovich problem are recalled. Finally, we recall Fenchel-Rockafellar
duality result and we present the two main algorithms that will be used in this manuscript:
ALG2 algorithm and the so-called Chambolle-Pock’s primal dual algorithm.

2.1 An overview on HJ equations

2.1.1 On viscosity solutions

Given an open bounded domain Ω ⊂ RN and consider the following Laplace equation

−∆u := −trace(D2u) = 0 in Ω. (2.1)

A priori, one would say that a function u : Ω → R is a solution of (2.1) if ∇u,D2u
exist for all x ∈ Ω and that (2.1) is satis�ed for every x ∈ Ω. This is known as the
notion of classical solution. Due to di�erentiablity requirement, it is not easy to look for
classical solutions, and in practice, one de�nes a notion of weak solution and then checks
for di�erentiablity. Very often, the weak solutions are de�ned thanks to integration by
parts. Notice that (2.1) is in divergence form as we may write ∆u = div(∇u). So that
a weak solution can be easily de�ned via integrals. Now considering an equation of the
form

H(x,∇u) = 0 in Ω, (2.2)

where H : Ω × RN → R is a continuous convex function. One can easily see that
integration by parts is not possible by considering the example

|∇u| = 1 in Ω, (2.3)

which is highly nonlinear in contrast to (2.1). Moreover, under the Dirichlet condition
u = 0 on ∂Ω, one can prove that noC1 solutions exists to (2.3) (see �gure 2.1).
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2 Preliminaries

x

y

Figure 2.1: Several solutions of (2.3) on Ω = (−1, 1).

To introduce an appropriate notion of weak solutions one uses the vanishing viscosity
method as follows. For ε > 0, consider the variant of (2.2):

−ε∆uε +H(x,∇uε) = 0 in Ω. (2.4)

Then we can prove the existence of a solution uε of (2.4), and thanks to the maximum
principle (see e.g.[53]), we get uniqueness. Moreover, standard Bernstein techniques (see
e.g.[80, 98, 99]) allow deriving some appropriate estimates to prove the boundedness and
equicontinuity of {uε}ε. Using Ascoli-Arzelà Theorem, we deduce that the sequence
{uε}ε has a uniform limit u, which is a candidate solution of (2.2). In fact, we can prove
the following

Proposition 2.1 ([9, 80]). • Let uε ∈ C(Ω) ∩ C1(Ω) be a classical subsolution of
(2.4). If uε converges to u ∈ C(Ω) uniformly on compact subsets of Ω, then

H(x,∇w(x)) ≤ 0,

for anyw ∈ C1(Ω) such that u− w reaches a maximum at x ∈ Ω.

• Let uε ∈ C(Ω) ∩ C1(Ω) be a classical supersolution of (2.4). If uε converges to
u ∈ C(Ω) uniformly on compact subsets of Ω, then

H(x,∇w(x)) ≥ 0,

for anyw ∈ C1(Ω) such that u− w reaches a minimum at x ∈ Ω.

This motivates the following de�nitions:
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2.1 An overview on HJ equations

De�nition 2.2. Given two continuous functions u and w, one says that w is a strict
supertangent (respectively subtangent) to u at some point x ∈ Ω if x is a strict local
maximizer (respectively minimizer) of u− w.

De�nition 2.3. Let u : Ω→ R be a continuous function.

• We say thatu is a viscosity subsolution of (2.2) ifH(x,∇w(x)) ≤ 0 for anyx ∈ Ω
and anyC1 supertangent functionw to u at x.

• We say that u is a viscosity supersolution of (2.2) if H(x,∇ψ(x)) ≥ 0 for any
x ∈ Ω and anyC1 subtangent function ψ to u at x.

• Finally, u is a viscosity solution of (2.2) if it is both a subsolution and a supersolu-
tion.

In sequel, we denote by S−H(Ω) the family of subsolutions of (2.5). One pertinent
property of this family is its stability with respect to uniform convergence, which is not
the case for a.e. solutions as we can see by considering a sawtooth function. More-
over, whenever we consider a family C ⊂ S−H(Ω) of locally equibounded functions,
then infu∈C u(x) and supu∈C u(x) are still subsolutions to (2.5). We similarly denote
by S+

H(Ω) (resp. SH(Ω)) the family of supersolutions (resp. solutions) of (2.5). For a
detailed exposition on viscosity solutions, we refer the reader to [7, 9, 31, 80] and the ref-
erences therein.

2.1.2 Metric character of HJ equations
The recent developments of metric formulas related to HJ equations appear essentially
in the papers of A.Fathi, F.Camilli, A.Siconol� [23, 24, 48], for Hamiltonians of Eikonal
type, i.e., depending only on the space variable x and the momentum p, and they have
played a major role more particularly in the framework of the so-called weak KAM theory.
These formulas are of main interest since they turn to provide a characterisation of the
set of all subsolutions of HJ equation. In addition, they only depend on the sublevel sets
of the Hamiltonian, so the convexity assumption on the Hamiltonian can be weakened
by assuming only convexity of sublevel sets. Moreover, as we will see in Chapters 5,6
these metrics appear also as costs in some optimal transport problems associated to our
variational approximation of the HJ equation. Other formulas for general Hamiltonians
arising in optimal control or Finsler geometry can be found for example in [7, 25, 78, 80].

Let Ω ⊂ RN be a regular connected open domain. We consider the following HJ
equation

H(x,∇u) = 0, x ∈ Ω, (2.5)

withH : Ω× RN → R a continuous Hamiltonian satisfying
1Named after Kolmogorvov, Arnold and Moser.

11



2 Preliminaries

(H1) Coercivity: Z(x) is compact;

(H2) Convexity: Z(x) is convex for any x ∈ Ω;

(H3) H(x, 0) ≤ 0, i.e., 0 ∈ Z(x) for any x ∈ Ω.

where for any x ∈ Ω,

Z(x) := {p ∈ RN , H(x, p) ≤ 0},

is the 0-sublevel set ofH .
Unless otherwise speci�ed, the assumptions (H1)-(H3) will hold true for the rest of

this manuscript. The solution are to be understood in the sense of viscosity. For x ∈ Ω,
we de�ne the support function of the 0-sublevel setZ(x) by

σ(x, q) := sup q · Z(x) = sup{q · p, p ∈ Z(x)} for q ∈ RN . (2.6)

The assumption (H1)-(H2) ensures that σ is a continuous nonnegative function in
Ω×RN , convex and positively homogeneous with respect to q. In addition, under (H2),
we will say that the HamiltonianH is quasiconvex. Due to the assumption (H3), σ(x, q)
is possible to equal to 0 for q 6= 0, which leads to the degeneracy and its dual σ∗, as given
below, may take the value +∞. Here, the dual (or polar) σ∗ is de�ned by

σ∗(x, p) := sup
q
{p · q : σ(x, q) ≤ 1}.

A typical example is the Eikonal equation with

H(x, p) = |p| − k(x), (2.7)

for a nonnegative continuous function k. In this case, one has σ(x, q) = k(x)|q| and
σ∗(x, p) = 1

k(x)
|p|. We see that σ∗(x, p) take the value +∞ for p 6= 0, on the zero set

of k. We denote by Γ(x, y) the set of Lipschitz curves de�ned on [0, 1] joining x, y in Ω.
We then de�ne the intrinsic distance by

dσ(x, y) := inf
ζ∈Γ(x,y)

∫ 1

0

σ(ζ(t), ζ̇(t))dt, (2.8)

which is a quasi-distance, i.e. satisfying dσ(x, x) = 0 and the triangular inequality, but
not necessarily symmetric. Some basic properties of dσ can be summerized in the follow-
ing

Proposition 2.4. ([48])

1) dσ is a quasi-metric, in the sense that for anyx, y ∈ Ωdσ(x, y) ≥ 0 anddσ(x, x) =
0. Moreover, for all x, y, z ∈ Ω one has dσ(x, y) ≤ dσ(x, z) + dσ(z, y).
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2) For any x ∈ Ω dσ(x, .) ∈ S−H(Ω) ∪ S+
H(Ω \ {x}).

3) Compatibility condition:

v ∈ S−H(Ω) if and only if v(x)− v(y) ≤ dσ(y, x) for any x, y ∈ Ω. (2.9)

Example 2.5. In the case of the Eikonal equation (2.7), we get a Riemannian metric:

dk(x, y) := inf
ζ∈Γ(x,y)

∫ 1

0

k(ζ(t))|ζ̇(t)|dt.

Thanks to the previous proposition, any subsolution of (2.7) is 1-Lipschitz with respect
to dk. Moreover, when k ≡ 1, d1 is nothing by the Euclidean distance, i.e., d1(x, y) =
|x− y|.

Example 2.6. Another interesting example can be given from convex geometry. Take a
compact, convex setC of RN such that 0 ∈ int(C), then its gauge function reads

jC(p) = inf{λ ≥ 0; λp ∈ C}.

It can be shown that jC∗ = σC whereC∗ is the polar set ofC de�ned though

C∗ = {p ∈ RN : p · q ≤ 1, ∀q ∈ C},

andσC is the support function ofC de�ned throughσC(p) = supq∈C p·q. Considering
the following HamiltonianH(x, p) = jC(p)− 1, the metric formula (2.8) becomes

dC(x, y) = jC∗(y − x), for all x, y ∈ Ω.

Indeed, take x, y ∈ Ω and let ζ be a Lipschitz curve joining them. We then have∫ 1

0

σ(ζ(t), ζ̇(t))dt =

∫ 1

0

j∗C(ζ̇(t))dt =

∫ 1

0

jC∗(ζ̇(t))dt ≥ jC∗

(∫ 1

0

ζ̇(t)dt

)
= jC∗(y−x),

where we have used Jensen’s inequality. Taking the inf over ζ , we get

dC(x, y) ≥ jC∗(y − x).

On the other hand, for t ∈ [0, 1], de�ne ζx,y(t) = x(1−t)+ty, which satis�es ζx,y(0) =
x and ζx,y(1) = y. We get

dC(x, y) ≤
∫ 1

0

jC∗(ζ̇x,y(t))dt = jC∗(y − x),
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as claimed.

Example 2.7 (see [59]). Consider a Hamiltonian of the form

H(x, p) = 〈b(x), p〉+
1

2
|p|2M(x), (2.10)

where b(x) is called the drift vector �eld and M(x) = D(x)D†(x) is a positive de�nite
matrix,D is called the di�usion matrix and |·|M is the norm associted to the scalar product
induced by M . Actually, the Hamiltonian (2.10) is related to the following stochastic
di�erential equation in RN

dXt = b(Xε
t )dt+

√
εM(Xε

t )dWt, X
ε
0 = x1 ∈ RN .

where ε > 0 and (Wt)t≥0 is an N -dimensional Brownian motion. Then, the associated
metric formula reads

dM(x, y) = inf
ξ∈Γ(x,y)

∫ 1

0

σM(ξ(t), ξ̇(t))dt,

with
σM(x, p) = |b(x)|M−1(x)|p|M−1(x) − 〈b(x), p〉M−1(x),

for anyx ∈ Ω, p ∈ RN . Let us stress that for general Hamiltonians, the support function
σ can’t be expressed in closed form.

The so called Aubry set is de�ned as the set where the quasi-metric dσ degenerates.
Prescribing a boundary value on ∂Ω does not guarantee the uniqueness of viscosity solu-
tions to (2.5) unlessA = ∅, which is not the case in our situation due to the assumption
(H3). The Aubry setA appears then to be a uniqueness set for (2.5).

De�nition 2.8. We de�ne the Aubry setA as the set of points x ∈ Ω such that there
exists (ζn)n ∈ Γ(x, x) with l(ζn) ≥ δ > 0 for some δ > 0 and

inf
n

{∫ 1

0

σ(ζn(t), ζ̇n(t))dt
}

= 0,

where l(ζn) is the Euclidean length of the curve ζn.

Proposition 2.9. ([48],[24])

1) The Aubry setA is a closed subset of Ω.

2) If x ∈ A then dσ(x, .) ∈ SH(Ω). Moreover, x /∈ A if and only if (2.5) admits a
strict subsolution around x.
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3) If g : A ∪ ∂Ω → R is a continuous function satisfying the compatibility condition
g(x)− g(y) ≤ dσ(y, x) onA ∪ ∂Ω, then

u(x) = min
y∈A∪∂Ω

{dσ(y, x) + g(y)}

is the unique viscosity solution of the equation (2.5) such that u = g onA ∪ ∂Ω.

2.1.3 Numerical methods to solve HJ equations

We present here some di�erent works and methods concerned with the approximation of
HJ equations. This list is non exhaustive and the reader can check [49, 100] for a general
presentation of numerical methods for HJ equations, or [46] for a more recent overview.

Optimal control. In [23] the authors propose an optimal control approach to approx-
imate the maximal subsolutions of some degenerate HJ equation. More precisely, they
study equations of the form: {

H(x,∇u) = f in Ω

u = g on ∂Ω
(2.11)

where Ω ⊂ RN and f and g are continuous nonnegative functions. They consider a
dynamic

v̇(t) = p(t) for t ∈ [0,∞), v(0) = x, (2.12)

where p is a measurable function and they introduce a cost functional

J(x, p) =

∫ T

0

σ(v(t), p(t))dt+ g(v(T )) (2.13)

where σ is the support function of the sublevel-sets ofH . It is well known that the asso-
ciated dynamic programming equation of this optimal control problem reads

sup
|p|≤1

p · ∇u(x)− σ(x, p) = 0

which is equivalent to �nding sub/super-viscosity solutions to (2.11). Then, they solve
the optimal control problem (2.12)-(2.13) via a semidiscrete scheme. More precisely, they
choose a step in time hε ∈ (0, 1) for a �xed ε > 0 and de�ne the sequence

xi+1 = xi + hεpi, i ∈ N, x0 = x

15



2 Preliminaries

for x ∈ Ω and qi ∈ Sd−1. The discrete cost function becomes

Jhε(x, pn) =
n−1∑
i=0

hεσε(xi, pi) + g(xn)

with n = inf{i ∈ N : xi 6∈ Ω}. The value function is

uhε(x) = inf
pi:n<∞

Jhε(x, pi)

which solves by means of the discrete dynamic programming principle, the problemuhε(x) = inf
|p|=1

hεσε(x, p) + uhε(x+ hp) x ∈ Ω

uhε(x) = g(x) x ∈ RN \ Ω.

Finally, they show that for appropriate ε, hε, the approximated solution converges to the
maximal solution of (2.11) as ε, hε → 0 using stability results. For comprehensive expo-
sition of HJ equations and optimal control one can see for example [25, 80].

Dijkstra type algorithms. One of the famous methods, at especially for Eikonal equa-
tions, remains the Fast Sweeping Method (FSM) and the Fast Marching Method (FMM).
For the seek of simplicity, we consider the following equation{

|∇u| = f in Ω

u = 0 on Γ ⊂ ∂Ω.

The FSM is based on an upwind di�erence discretization solved via Gauss-Seidel itera-
tions with alternating sweeping ordering. More precisely, given a discretization {xi,j}ij
of Ω, and denoting by ui,j the solution at the grid point xi,j , the equation can be rewrit-
ten (

(ui,j − uxmin)+

)2

+
(

(ui,j − uymin)+

)2

= h2f 2
i,j (2.14)

where h is the step size and uxmin = min(ui−1,j, ui+1,j), uymin = min(ui,j−1, ui,j+1).
We initialize by ui,j = 0 if (i, j) ∈ Γ and∞ otherwise. We compute the solution ũi,j
of (2.14) and we update ui,j by taking min(ui,j, ũi,j), in such a way we sweep the whole
domain following the ordering

1) i = 1, · · · ,M, j = 1, · · · , N

2) i = M, · · · , 1, j = 1, · · · , N

3) i = M, · · · , 1, j = N, · · · , 1

4) i = 1, · · · ,M, j = N, · · · , 1
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The FSM is easy to implement and converges within few iterations. However, less is
known about its convergence and complexity for general HJ equations. As for the FMM,
the grid points are divided into three categories: Accepted nodes which are points where
the value of the solution are already known, Narrow Band nodes where the computa-
tions take place and �nally Far nodes which will be computed in the next iterations. The
Eikonal equation is written via an upwind �nite di�erence approximation. We then com-
pute the solution ui,j at a grid point (i, j) using the �nite-di�erence scheme on the Nar-
row Band, we take the minimum value of ui,j . The grid point (i, j) becomes an Accepted
point and is removed from the Narrow Band. We add the �rst neighbours of this node
to the Narrow Band and we continue this way until all points are Accepted.

Elliptic approach. In [20], the authors use an elliptic approach to solve the Eikonal
equation {

|∇u| = 1 in Ω

u = g on ∂Ω
(2.15)

for a nonnegative continuous function g. To ensure the uniqueness, the authors look
for u maximizing

∫
Ω
udx among functions v ∈ H1(Ω) solving (2.15). The constraint

|∇u| = 1 being nonlinear, they minimize J(v) =
∫

Ω
|∇v|2dx−c

∫
Ω
vdx for some c >

0 instead of
∫

Ω
udx , on Eg = {v ∈ H1(Ω) : v solves (2.15)}. Then they penalize and

regularize the problem by minimizing J̃(v) = J(v) + ε1
2

∫
Ω
|∆v|2dx+ 1

4ε2

∫
Ω

(|∇v|2−
1)2dx among all v ∈ H2(Ω) with v = g on the boundary. By setting p = ∇u, an
equivalent formulation becomes

min
q∈Q

{
1

2

∫
Ω

|q|2dx− c
∫

Ω

∇φ · qdx+
1

4ε2

∫
Ω

(|q|2 − 1)2dx+G(q)

}
(2.16)

whereQ = {q ∈ L2(Ω)2}, and φ is the unique solution of Dirichlet problem

−∆φ = 1 in Ω and u = 0 on ∂Ω

and

G(q) =

{
ε1
2

∫
Ω
|∇ · q|dx if q ∈ {∇v : v ∈ H2(Ω) and v = g on ∂Ω}

∞ otherwise.

Finally, they associate a �ow to (2.16) and discretize it by an operator-splitting method.
Yet, this method seems to be restrictive to the Eikonal equation (2.15) and it is not clear
how to adapt it for general Hamiltonians.
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2.2 Optimal Transport Theory
All the results of this section can be found in the following classical books [4, 94, 102].

2.2.1 Monge and Kantorovich problem
The classical optimal transport problem goes back to Gaspard Monge with his celebrated
paper "Mémoire sur la théorie des déblais et des remblais". Concretely, let us imagine that
we have a certain amount of soil which should be moved to �ll some holes in the ground,
or imagine some bakeries that should supply some co�ee shops. All this tasks need be
done while minimizing a certain cost, which could be the travelled distance or the e�ort
of transporting some quantity from a position to another etc.
So if µ and ν are probability measures on two subsets X and Y of RN , representing the
initial and the target distributions, the modern formulation of Monge problem, consists
in minimizing the quantity

∫
|x − T (x)|2dµ(x), where T is a Borel Map from X to Y

that pushes µ onto ν, i.e, ν coincides with the measure obtained by picking every atom
at x and putting it at T (x). More precisely, Monge’s problem reads

(MP) : min

∫
X

|x− T (x)|2dµ(x), µ(T−1(B)) = ν(B),

for any Borelian B ⊂ Y . It is well known that this problem is di�cult to solve due to
the nonlinear constraint T]µ = ν. Moreover, such maps T may not exist as we can see by
taking a Dirac mass µ = δx and another atomless measure ν. Monge’s optimal transport
problem remained unstudied until around 1940 when Leonid Kantoroivich proposed a
"relaxation" of the problem in his paper [70] by allowing mass splitting. More formally,
he considered the problem

(KP) : min

∫
X×Y

cdγ, γ ∈ Π(µ, ν)

where Π(µ, ν) is the set of probability measures onX×Y with marginalsµ and ν respec-
tively, i.e., (πX)]γ = µ and (πY )]γ = ν, where πX , πY are the projections fromX × Y
ontoX and Y respectively. Contrary to (MP), the set Π(µ, ν) is always nonempty since
it contains µ ⊗ ν. Moreover, it’s richer than the set of transport maps, in the sense that
a transport map T induces a transport plan γT = (id × T )]µ. In addition, Γ(µ, ν) is a
convex and compact subset ofP(X×Y ) endowed with narrow topology, which helps to
get existence results under weak assumptions on the cost function c. All these properties
make the analysis of (KP) easier. We have the following

Theorem 2.10. [94] LetX and Y be compact metric spaces, µ ∈ P(X), ν ∈ P(Y ) and
c : X × Y → R(R ∪ {∞}) a continuous function (respectively, lower semi-continuous
and bounded from bellow). Then (KP) admits a solution.
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2.2 Optimal Transport Theory

We notice that (KP) is a linear optimization problem under convex constraints. So it
is natural to derive its dual (see Section 2.4) formulation. This can be achieved (at least
formally) by performing a min−max interchange.
Let γ ∈M+(X × Y ) and v ∈ Cb(X), w ∈ Cb(Y ). We have

sup
v,w

∫
X

vdµ+

∫
Y

wdν −
∫
X×Y

v ⊕ wdγ =

{
0 if γ ∈ Π(µ, ν),

∞ otherwise,

where (v ⊕ w)(x, y) = v(x) + w(y). So we can replace the constraint γ ∈ Π(µ, ν) in
(KP) by the previous sup. This gives

min
γ

∫
cdγ + sup

v,w

∫
X

vdµ+

∫
Y

wdν −
∫
X×Y

v ⊕ wdγ.

By interchanging the inf and sup we get

sup
v,w

∫
X

vdµ+

∫
Y

wdν + inf
γ

∫
(c− v ⊕ w)dγ.

Rewriting the inf on γ as a constraint on the potentials v, w, we get:

inf
γ

∫
(c− v ⊕ w)dγ =

{
0 if v ⊕ w ≤ c onX × Y,
−∞ otherwise.

We de�ne the dual problem (KD) as follows

(KD) : sup
{∫

X

vdµ+

∫
Y

wdν, v ∈ Cb(X), w ∈ Cb(Y ) and v ⊕ w ≤ c
}
.

Proposition 2.11. Suppose that X and Y are compact and c is continuous. Then there
exists a solution (v, w) to (KD).

Moreover, if the cost c is a distance on X , then one can obtain the so-called
Kantorovich-Rubinstein variant of (KD) as follows. Fix some x0 ∈ X and 1 ≤
p ≤ ∞. We de�ne the pth moment of a measure µ ∈ P(X) by: Momp(µ;x0) =
1
p

∫
X
c(x, x0)pdµ(x), and

Pp(X) = {µ ∈ P(X) : ∃x0 ∈ X : Mom(µ;x0) <∞}.

Clearly this de�nition is independent from x0: If Momp(µ;x0) <∞ for some x0 ∈ X ,
then Momp(µ;x) <∞ for any x ∈ X . This being said, we have the following
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Proposition 2.12 (Kantorovich-Rubinstein). Let µ, ν ∈ P1(X), then

min
γ∈Π(µ,ν)

∫
X×X

c(x, y)dγ(x, y) = max
v

{∫
X

vd(µ− ν) : v : X → R, 1− Lipschitz w.r.t c
}
.

2.2.2 Beckmann’s transportation problem

Beckmann’s problem is a minimal �ow type problem. It was proposed by Martin Beck-
mann [14] in 1952 as a model for transportation. One can think about optimal transfer-
ence in an urban area represented by a bounded domain Ω ⊂ R2, between two distribu-
tions of residents and services. These distributions can be represented by two nonnegative
Radon measures ρ1 and ρ2, respectively. So, the signed measure ρ := ρ2 − ρ1 represents
the local measure of excess demand. The consumers tra�c is given by a tra�c �ow �eld,
i.e. a vector �eld Φ : Ω→ RN whose direction indicates the consumers’ travel direction
and whose modulus |Φ| is the intensity of the tra�c. The relationship between the excess
demand and the tra�c �ow is obtained from the equilibrium condition:

− div(Φ) = ρ inD′(Ω).

This condition describes some kind of equilibrium: the out�ow of consumers equals the
excess demand in any subregion ω ⊂ Ω, i.e.

∫
∂ω

Φ · n ds = ρ(ω). Since the measures ρ1

and ρ2 have equal masses (a balanced condition between residents and services), and the
urban area is assumed to be isolated, i.e., no tra�c �ow should cross the boundary of the
city Ω, the tra�c �ow Φ is subject to the boundary condition

Φ · n = 0 on ∂Ω,

where n denotes the outward normal vector to the boundary. Assuming the transporta-
tion cost per consumer is given by the quantity |Φ(x)|, Beckmann therefore argued that
one may de�ne the transportation cost between ρ1 and ρ2 as the in�mum of the total cost
of the tra�c

∫
Ω
|Φ(x)| dx. So the considered problem reads:

(BP) : min
Φ∈L1(Ω)N

{∫
Ω

|Φ(x)| dx : − div(Φ) = ρ inD′(Ω)

}
.

It can be shown that (BP) is actually equivallent to (KP) in the case of the Euclidean cost,
i.e., c(x, y) = |x− y|. Again, let us express the divergence constraint on Φ as follows

sup
w
−
∫

Ω

Φ · ∇wdx+

∫
Ω

wdρ =

{
0 if − div(Φ) = ρ,

∞ otherwise.
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2.3 Tangential measure and tangential gradient

So we may rewrite (BP) as

inf
Φ

{∫
Ω

|Φ|dx+ sup
w
−
∫

Ω

Φ · ∇wdx+

∫
Ω

wdρ

}
,

and by a formal inf-sup interchange, we get

sup
w

∫
Ω

wdρ+ inf
Φ

{∫
Ω

|Φ|dx−
∫

Ω

Φ · ∇wdx

}
.

Noticing that the in�mum on Φ expresses the constraint |∇w| ≤ 1 or alternatively
w ∈ Lip(Ω), we get the equivalence with (KP) thanks to Proposition (2.12). This can be
proved rigorously via Fenchel-Rockafellar duality. Notice that the existence of a solution
to (BP) inL1(Ω)N is not true in general since the latter is nonre�exive. Setting this prob-
lem on a re�exive Banach space, say L2(Ω)N , the direct method of calculus of variations
would provide a minimizer thanks to weak compactness. However, it is convenient to
consider this problem in the framework of divergence measure �elds, i.e., consider �ows
Φ ∈ Mb(Ω)N with div(Φ) ∈ Mb(Ω). Some new variants of Beckmann’s problem will
be addressed in Chapter 5-6.

2.3 Tangential measure and tangential gradient

Let us recall some facts concerning the notion of tangential gradient which played a main
role in this manuscript. To give a glimpse on the necessity to introduce this notion, let
us remember that, as an example, Beckmann’s problem is an optimisation problem on
measure space under divergence constraint. More particularly, the optimal �ow satis�es
−div(Φ) = ρ ∈ M(Ω). To do further analysis on such a problem and particularly to
derive its dual problem we are naturally tempted to integrate by parts in the divergence
constraint and write, for some Lipchitz function u∫

∇u · υ dγ =

∫
udρ.

where γ = |Φ| is the total variation of the vectorial measure Φ and υ = Φ
|Φ| is the Radon-

Nikodym derivative of Φ with respect to |Φ|. Observe that∇u may not be de�ned on
a |Φ|-positive measure set and thus the previous formula may not have sense. Thanks to
[18] it is possible to give a sens to the previous formula as follows. First we can de�ne the
tangent space to γ

Xγ(x) = γ − ess
⋃{

υ(x) : υ ∈ L1
γ(Ω,RN), div(υγ) ∈Mb(Ω)

}
,
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where the γ−essential union is de�ned as a γ−measurable closed multivalued function
such that

• Ifυ ∈ L1
γ(Ω,RN) and div(υγ) ∈Mb(Ω), thenυ(x) ∈ Xγ(x), forγ−a.ex ∈ Ω.

• Theγ essential union is minimal amongst multivalued functions satisfying the pre-
vious properties.

Then, the tangential gradient∇γ(x) to a function u ∈ C1(Ω) with respect to the mea-
sure γ is the orthogonal projection of ∇u(x) onto Xγ(x). Indeed, denoting by Pγ(x)
the orthogonal projection on Xγ(x), it has been shown in [17] that the linear operator
u ∈ C1(Ω) → Pγ(x)∇u(x) ∈ L∞γ (Ω,RN) can be uniquely extended to a linear con-
tinuous operator

∇γ : u ∈ Lip(Ω)→ ∇u ∈ L∞γ (Ω,RN).

Moreover, we have the following useful integration by parts formula

Proposition 2.13 ([17]). Given γ ∈ M+
b (Ω) and υ ∈ L1

γ(Ω,RN) such that υ(x) ∈
Xγ(x) for γ−a.e x. and div(γυ) := ρ ∈Mb(Ω). We then have∫

udρ =

∫
υ∇γudγ,

for any u ∈ Lip(Ω).

As it was pointed out in [65, 92], it is possible to adapt this notion in the Finsler setting.

2.4 Fenchel-Rockafellar duality, Primal-Dual
methods

Unless otherwise speci�ed, we denote X ,Y two Banach spaces and by X ∗,Y ∗ their
topological dual spaces.

2.4.1 Fenchel-Rockafellar duality
Fenchel-Rockafellar duality is one of the main tools in convex optimization. It allows
rigorous derivation of the dual problem associated to an optimization problem, and thus
reposes on the notion of the dual functional, also called Fenchel-Legendre transform.

De�nition 2.14. LetF : X → R ∪ {∞} be a proper, l.s.c. and convex function. We
de�ne its dual functionalF∗ : X ∗ → R ∪ {∞} by

F∗(f) = sup
u∈X
〈f, u〉X ∗,X −F(u) for any f ∈X ∗.
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2.4 Fenchel-Rockafellar duality, Primal-Dual methods

Following the notations of [42], we sometimes denote by Γ0(X ) the set of proper, l.s.c
and convex functions on X . It can be shown that the Fenchel-Legendre conjugation is
an involution, that is, it is its own inverse: F∗∗ = F for allF ∈ Γ0(X ).

Many of the problems that we encounter fall into the scope of the following class of
optimization problems

(P) : inf
u∈X
F(u) + G(Λu) (2.17)

where F : X → (−∞,+∞], G : Y → (−∞,+∞] are proper, l.s.c., convex func-
tions and Λ : X → Y is a linear operator. Let us sketch how to derive the dual problem
of (P). We start by exploiting the fact that G∗∗ = G to write

G(Λu) = sup
v∈Y ∗
〈v,Λu〉 − G∗(v),

and plugging this in (2.17), the problem (P) becomes:

inf
u∈X

sup
v∈Y ∗

F(u) + 〈v,Λu〉 − G∗(v),

and by a formal inf-sup interchange we get

sup
v∈Y ∗

inf
u∈X
〈−Λ∗v,−u〉+ F(u)− G∗(v) = sup

v∈Y ∗
−F∗(−Λu)− G∗(v),

where Λ∗ is the adjoint operator of Λ. So the associated dual problem to (P) reads:

(D) : sup
v∈Y ∗

−F∗(−Λ∗v)− G∗(v).

Using the de�nitions ofF∗,G∗ and Λ∗, it is not di�cult to get the following inequality

sup
v∈Y ∗

(
−F∗(−Λ∗v)− G∗(v)

)
≤ inf

u∈X
F(u) + G(Λu),

usually called weak duality. The reverse inequality, the so-called strong duality gives a
su�cient condition to justify the previous inf-sup interchange.

Before stating the main result of this section, let us recall the notion of subdi�eren-
tiability. Suppose that u is an optimal solution of (P), then the Euler-Lagrange equation
would give

DF(u) + Λ∗DG(Λu) = 0.

Unfortunately, one of the functions F or G may not be di�erentiable (typically in this
manuscript G will be and indicator function of some convex set), so one need to use a
more general notion of derivative.
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De�nition 2.15. Given a convex functional F : X → (−∞,+∞]. We say that p ∈
X ∗ is a subgradient ofF at u ∈X if

F(u) + 〈p, w − u〉X ∗,X ≤ F(w), for allw ∈X .

The set of all subgradients ofF atu is called the subdi�erential and is denoted by ∂F(u).
More precisely

∂F(u) = {p ∈X ∗ : F(u) + 〈p, w − u〉X ∗,X ≤ F(w), for allw ∈X }.

Now, let us state the Fenchel-Rockafellar duality result.

Theorem 2.16. (Strong duality [42, Chap. III]) Assume moreover that there existsu0 ∈X
such that F(u0) < +∞, G(Λu0) < +∞ and G is continuous at Λu0. Then the dual
problem admits at least a solution v ∈ Y ∗ and the strong duality holds, i.e.

max
v∈Y ∗

−F∗(−Λ∗v)− G∗(v) = inf
u∈X
F(u) + G(Λu).

Moreover, the pair (u, v) solves the primal-dual problem (P)-(D) if and only if

−Λ∗u ∈ ∂F(u) and v ∈ ∂G(Λu).

Before ending this subsection, let us recall the notion of Moreau’s proximal mapping
which plays a major role in many algorithms.

De�nition 2.17. Assume that X is a real Hilbert space and let J ∈ Γ0(X ). Then for
every η > 0, the proximal mapping of ηJ is de�ned though

ProxηJ(u) = arg min
w∈X

{
1

2
‖w − u‖2

X + ηJ(w)

}
, for any u ∈X .

Remark 2.18. ProxηJ is also denoted by (id + η∂J)−1 and is called the resolvent of ∂J .
Let us recall some basic computations of proximal opertors that will be used later

Proposition 2.19 ([12, 13]). Let J ∈ Γ0(X ) , u ∈X and η > 0 then

• Proxη(J+λ)(u) = ProxηJ(u), for any λ ∈ R.

• For v ∈X , then Proxη(J+〈v,.〉)(u) = ProxηJ(u− ηv).

• Moreau’s identity:

u = ProxηJ(u) + η Proxη−1J∗

(
u

η

)
.
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2.4 Fenchel-Rockafellar duality, Primal-Dual methods

For more details concerning the proximal operator and its properties, we refer the
reader to these recent books [12, 13].

2.4.2 Perturbation

As Theorem 2.16 gives only a su�cient condition to prove duality, we will see in Chapter
3 that the quali�cation constraints are not always easy to check. Yet, one can still prove
duality using some perturbation techniques as presented in [42]. Perturbation techniques
are more or less known for the optimization community. Besides its employment to prove
some regularity results for the incompressible Euler equation (see [2]) or degenerate ellip-
tic equations (see [95]), it is less present in PDE or calculus of variations literature.

Take a function J ∈ Γ0(X ), and consider the following minimization problem

(P) : inf
u∈X

J(u).

We introduce a functionT : X ×Y → [−∞,∞] as well as the following minimization
problem

(Pp) : inf
u∈X

T (u, p),

such that T (u, 0) = J(u). This being said, the problem (P0) is just (P). The idea is that
we can recover the dual problem of (P) by considering the one of (Pp). Indeed, if T ∗ is
the dual function of T , then

(D) : inf
q∈Y ∗

−T ∗(0, q),

is the dual problem of (P) with respect toT . An interesting situation is when the function
J is of the form

J(u) = J̃(u,Λu),

with J̃ : X × Y → [−∞,∞] and Λ ∈ L(X ,Y ). In this case, the perturbed
function becomes T (u, p) = J̃(u,Λu − p) for p ∈ Y . In all this manuscript, we are
more concerned with the case where J can be split into the sum of two operators, i.e.,
problems of the form (2.17). For more details, we refer the reader to [42, Chap. III].

2.4.3 Primal-Dual methods

The main idea behind Primal-Dual methods is that we can recover simultaneously the
solutions of (P) and (D) by looking for saddle-points of some appropriate functional. To
see this, de�ne the so called Langrangian

L(u, v) = F(u) + 〈v,Λu〉 − G∗(v). (2.18)
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We observe that if (u,φ) is a primal-dual solution as in Theorem 2.16, we have

L(u,φ) ≤ sup
p∈Y ∗

L(u, p) = inf
q∈X
F(q) + G(Λq)

= sup
p∈Y ∗

−F∗(−Λ∗p)− G(−p) = inf
q∈X

L(q,φ) ≤ L(u,φ),

so that (u,φ) is a saddle-point ofL. Conversely, if (u,φ) is a saddle-point ofL, we easily
see that

L(u,φ) = sup
p∈Y ∗

L(u, p) = F(u) + G(Λu) = inf
q∈X

L(q,φ)

= −F∗(−Λ∗φ)− G∗(−φ),

so that (u,φ) solve the Primal-Dual problem.

ALG2 algorithm

Consider as before the following optimization problem

(P) : inf
u∈X
F(u) + G(Λu).

The idea is to introduce a new primal variable q ∈X so the previous problem reads

(P) : inf
(u,q)∈X ×Y ,Λu=q

F(u) + G(q),

and then introduce an Lagrange multiplier φ ∈ Y ∗ for the constraint Λu = q. Then
the problem (P) can be written as a saddle-point problem for an augmented Lagrangian
(cf [55])

Lr(u, q;φ) = F(u) + G(q) + 〈φ,Λu− q〉+
r

2
|Λu− q|2, for r > 0.

Then, as we presented in the begning of the section, (P) can be solved by �nding the
saddle-points of Lr, i.e, by solving

inf
(u,q)∈X ×Y ∗

sup
φ∈Y ∗

Lr(u, q;φ). (2.19)

The so called ALG2 algorithm, a.k.a, Alternating Direction Method of Multipliers, al-
lows solving (2.19) by alternatively minimizing the augmented Lagrangian Lr in the
primal direction and maximizing in the dual one. More explicitly, we initialise with
u0 ∈ X , q0 ∈ Y and φ0 ∈ Y ∗, and we generate sequences {ui}i, {qi}i and {φi}
for i ∈ N∗, as follows:
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• Minimise in u:

ui+1 ∈ arg min
u∈X

Lr(u, qi;φi) = arg min
u∈X

{
F(u) + 〈φi,Λu〉+

r

2
|Λu− qi|2

}
.

• Minimise in q:

qi+1 ∈ arg min
q∈Y

Lr(ui+1, q;φi) = arg min
q∈Y

{
G(q)− 〈φi, q〉+

r

2
|Λui+1 − q|2

}
.

• Maximise in φ:

φi+1 ∈ arg min
φ∈Y ∗

{
Lr(u, qi;φi)−

1

2r
|φ− φi|2

}
= φi + r(Λui+1 − qi+1).

The convergence can be also established in the case of in�nite-dimensional Hilbert spaces.
For further details in this direction and about the ALG2, we refer the reader to [41, 51,
55].

Chambolle-Pock’s algorithm

As we discussed previously, the solutions of the problems (P)-(D) are exactly the saddle-
points of the LagrangianLde�ned in (2.18). Now �x some (u, φ) ∈ dom(F)×dom(G∗)
and de�ne the partial Lagrangians:

Lu(φ) = L(u, φ) and Lφ(u) = L(u, φ).

Then, (u, φ) is a saddle point of L if and only if

φ solves min
v∈Y
−Lu(v) and u solves min

w∈X
Lφ(u),

this is equivalent to saying that 0 ∈ ∂(−Lu)(φ) and 0 ∈ ∂Lφ(u). Thus, we have for
η, τ > 0:

0 ∈ ∂(−Lu)(φ) and 0 ∈ ∂Lφ(u)⇔
{
φ ∈ φ+ τ(−∂Lu)(φ)
u ∈ u+ η∂Lφ(u),

⇔
{
φ = Prox−τLū(φ)
u = ProxηLφ̄(u),

⇔
{
φ = ProxτG∗(φ+ τΛū)
u = ProxηF(u− ηΛ∗φ̄).
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where we have used extra variables (ū, φ̄) ∈X ×Y ∗and standard formulas from calcu-
lus of resolvents recalled in Proposition 2.19. Then Chambolle-Pock’s algorithm reads:

• Step 1: un+1 = ProxηF
(
un − ηΛ∗φ̄n

)
.

• Step 2: φn+1 = ProxτG∗(φn + τΛun+1).

• Step 3: φ̄n+1 = φn+1 + θ(φn+1 − φn), for θ ∈ [0, 1].

The variable φ̄ is called an extra gradient variable and Step 3 can be replaced by a simi-
lar one for u. The convergence of this algorithm is studied in [26, 27]. More precisely,
when X ,Y are �nite dimensional Hilbert spaces, it can be proven that for θ = 1 and
ητ‖Λ‖2 < 1, where ‖Λ‖ is the operator norm of Λ, then the sequence {un, φn}n gen-
erated by this algorithm converges to a saddle point of L and thus to a solution of the
primal and dual problems (P)-(D). This method is widely applied in image problems. It
is worth mentioning that this is a particular case of the so-called Arrow-Hurwicz method.
We refer the reader to the papers of A.Chambolle and T.Pock [26, 27] for more details,
and to [19] for a recent overview with further applications in image processing.
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3 Augmented Lagrangian
approach for HJ equation

3.1 Equivalence between HJ and maximization
problem

We present the main result showing the correspondence between HJ equation and a max-
imization problem. To this end, we will consider a general version of (2.5) coupled with
Dirichlet boundary condition. Given a closed subset D ⊂ Ω (typically D = ∂Ω or
D = {x} for some x ∈ Ω), we consider the following HJ equation{

H(x,∇u) = 0 Ω \D
u = g D

(3.1)

where g : D → R is continuous function satisfying compatibility condition

g(x)− g(y) ≤ dσ(y, x) onD.

Then the unique maximal viscosity subsolution of the equation (3.1) such that u(x) =
g(x) for any x ∈ D, is given by

u(x) = min
y∈D

dσ(y, x) + g(y). (3.2)

The considerations given in the introduction lead us to look for the maximal subsolu-
tions of the HJ equation, i.e., H(x,∇u) ≤ 0 or equivalently u(x) − u(y) ≤ dσ(y, x).
We will show that such functions are precisely the ones with gradient in the unit ball of
σ∗. More precisely, we prove the following

Proposition 3.1. S−H(Ω) = {u ∈ W 1,∞(Ω) and σ∗(x,∇u(x)) ≤ 1 for a.e x ∈
Ω} := Bσ∗ .

Then, we transform the problem into a question of maximization of the volume∫
Ω
udx among the subsolutions u. This leads to the following theorem which is an im-

portant step to treat the equation (3.1) via augmented Lagrangian methods.
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Theorem 3.2. The maximal viscosity subsolution of (3.1), given by (3.2), is the unique
solution of the problem

max
u∈W 1,∞(Ω)

{∫
Ω

z(x)dx, σ∗(x,∇z(x)) ≤ 1 and z = g onD
}
. (3.3)

For the proof of Proposition 3.1, we recall that the result is more or less known in the
case where H(x, 0) < 0 which corresponds toA = ∅ (see [66, 68] for example). Here,
under the general condition (H3), we need the following Cauchy-Schwartz-like lemma.

Lemma 3.3. For any q ∈ RN , and for any x ∈ Ω we have

σ∗(x, q) ≤ 1⇔ 〈p, q〉 ≤ σ(x, p) for any p ∈ RN .

Proof. Assume �rst that σ∗(x, q) ≤ 1. If 〈p, q〉 = 0, it is obvious. For the case
〈p, q〉 > 0, if σ(x, p) = 0 then by homogeneity of σ, σ(x, λp) = 0 for every λ ≥ 0.
Consequently, σ∗(x, q) ≥ λ〈p, q〉 → ∞ as λ → ∞, this contradicts σ∗(x, q) ≤ 1.
This implies that σ(x, p) > 0 and 〈 p

σ(x,p)
, q〉 ≤ σ∗(x, q) ≤ 1, as desired. Conversely, if

〈p, q〉 ≤ σ(x, p), by de�nition of σ∗, we take the sup over all p such that σ(x, p) ≤ 1 in
the previous inequality to obtain that σ∗(x, q) ≤ 1.

Proof of Proposition 3.1. We divide the proof into two parts. Firstly,S−H(Ω) ⊂ Bσ∗ .Take
a point x ∈ Ω such that u is di�erentiable at x. For every vector v ∈ SN−1 on the unit
sphere, we take ζh(t) = tx + (1 − t)(x − hv) for every h > 0 and t ∈ [0, 1] and we
notice that ζh ∈ Γ(x− hv, x) and for h small enough, ζh is close to x. We then have

〈∇u(x), v〉 ≤ lim
h→0+

h−1(u(x)− u(x− hv))

≤ lim inf
h→0+

h−1dσ(x− hv, x)

≤ lim inf
h→0+

h−1

∫ 1

0

σ(ζh, ζ̇h)dt = lim inf
h→0+

∫ 1

0

σ(ζh, v)dt ≤ σ(x, v),

where we have used the continuity of x 7→ σ(., v) and Lebesgue theorem. Using the
de�nition of σ∗, we deduce that σ∗(x,∇u(x)) ≤ 1 as desired.
Secondly, Bσ∗ ⊂ S−H(Ω). Assume now that σ∗(x,∇u(x)) ≤ 1 at any di�erentiable
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point x of u, i.e., 〈∇u(x), p〉 ≤ σ(x, p) for all p ∈ RN . For smooth function u, the
argument is simply given by

u(y)− u(x) =

1∫
0

∇u(ξ(s)) · ξ̇(s)ds

≤
∫ 1

0

σ(ξ(s), ξ̇(s))ds,

for Lipschitz curves ξ joining x to y in Ω. This implies that u(y) − u(x) ≤ dσ(x, y).
For general Lipschitz function u, one can make use of smooth approximation (see [68,
Proposition 5]).

Proof of Theorem 3.2. Let us see that for any subsolution v (3.1), we have v ≤ u. Pick
any subsolution v of (3.1) satisfying the condition v = g on D. Let x ∈ Ω, we have for
any y ∈ D

v(x) = v(x)− v(y) + g(y)

≤ dσ(y, x) + g(y).

This gives that v ≤ u in Ω and then
∫

Ω
v(x)dx ≤

∫
Ω
u(x)dx. Clearly u is 1−Lipschitz

with respect to dσ, hence by Proposition (3.1) we have σ∗(x,∇u) ≤ 1.Consequently u
solves (3.3). Ifw is another solution, then

∫
Ω
u(x)dx =

∫
Ω
w(x)dx andw ≤ u in Ω by

the �rst step. Consequently u = w, as desired.

3.2 HJ and duality results
As we said in the introduction among our main interests in this chapter is to use aug-
mented Lagrangian methods to give a direct algorithm to approximate the solution of
the HJ equation.

To this end, we observe that problem (3.3) falls into the scope of the following class of
optimization problem (see 2.4)

(P) : inf
u∈X
F(u) + G(Λu)

where X and Y are two Banach spaces with the topological dual spaces X ∗ and Y ∗,
F : X → (−∞,+∞], G : Y → (−∞,+∞] are proper, l.s.c., convex functions and
Λ : X → Y is a linear operator, that we will precise later.

As we pointed out in the introduction, because of the degeneracy of the Hamiltonian,
we can not directly use Theorem 2.16 to show duality between the maximization problem
and its dual problem. The main goal of this section is to show rigorously that the duality
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3 Augmented Lagrangian approach for HJ equation

still holds true. As a typical example we will consider an HJ equation of Eikonal type,
coupled with a zero Dirichlet boundary condtion,{

|∇u(x)| = k(x) in Ω

u = 0 on ∂Ω.

In other words, H(x, p) = |p| − k(x) where k is a continuous, nonnegative function
on Ω. In this case, the problem (3.3) can be rewritten as

sup

{∫
Ω

udx : |∇u| ≤ k and u = 0 ∂Ω

}
,

or
(P) : inf

u∈V
{F(u) + G(Λu)}

where V = C1(Ω) ∩H1
0 (Ω),

F(u) = −
∫

Ω

udx, Λu = ∇u and G(q) =

{
0 if |q| ≤ k

+∞ otherwise.

For the case of non-degeneracy, i.e., k(x) > 0 on Ω, the Fenchel-Rockafellar duality,
since the quali�cation conditions are satis�ed ( Theorem 2.16, Section 2.4), gives

sup

{∫
Ω

udx : |∇u| ≤ k and u = 0 on ∂Ω

}
= min

φ∈Mb(Ω)N

{∫
Ω

k d|φ| : − div(φ) = ρ inD′(Ω)

}
.

3.2.1 Duality for HJ equation

To the duality, we consider a more general problem by considering, for a nonnegative
Radon measure ρ ∈M+

b (Ω) and a closed subsetD ⊂ Ω, the problem

max
u∈W 1,∞(Ω)

{∫
Ω

udρ : σ∗(x,∇u(x)) ≤ 1 and u = g onD
}
.

Since the values of u are prescribed onD and the solution of (3.1) is given by the distance
toD, we can consider the following problem

(MD) : max
u∈W 1,∞(Ω)

{∫
ΩD

udρ : σ∗(x,∇u(x)) ≤ 1 and u = g on ΓD

}
,
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3.2 HJ and duality results

where ΩD := Ω \D, ΓD := ∂ΩD ∩ ∂D and Γ̃ = ∂ΩD \ ΓD. In particular, ifD = ∂Ω
then ΩD = Ω and ΓD = ∂Ω, Γ̃ = ∅.

Example 3.4. Consider for example Ω = (0, 2)2 and D = [1, 2] × [0, 2]. Then, we
immediately �nd ΩD = (0, 1)× (0, 2) and ∂ΩD = ΓD ∪ Γ̃ with

Γ̃ = (0, 1)× {0} ∪ (0, 1)× {2} ∪ {0} × (0, 2), and ΓD = {1} × (0, 2).

As we will see, our dual formulation challenges some kind of trace-like operator for
the so called divergence-measure �eld. To begin with let us sort out formally and brie�y
our approach, at least in the case where D = ∂Ω. Taking X to be the Banach space
W 1,∞(Ω) and Y to be the space L∞(Ω)N , we consider simply

F(u) =


−
∫

Ω
u dρ if u ∈ W 1,∞(Ω) and u = g on ∂Ω

+∞ otherwise,
, Λu = ∇u,

and

G(η) =


0 if σ∗(x, η) ≤ 1

+∞ otherwise,

so that the problem (MD) reads as (P). For a formal computation of the dual problem,
let us notice that G∗ : Y ∗ → (−∞,+∞],

G∗(Φ) =

∫
Ω

σ(x,Φ) for any Φ ∈ Y ∗.

The operator Λ∗ : Y ∗ →X ∗ is given by

〈Λ∗Φ, ξ〉 = 〈Φ,∇ξ〉 for any ξ ∈X .

Also,

F∗(−Λ∗Φ) = sup
u∈X ,u=g on ∂Ω

∫
Ω

−Φ · ∇u dx−F(u)

= sup
u∈X ,u=g on ∂Ω

∫
Ω

−Φ · ∇u dx+

∫
Ω

u dρ

= sup
u∈X ,u=g on ∂Ω

∫
Ω

udiv(Φ)−
∫
∂Ω

Φ · ν u+

∫
Ω

u dρ

=

{
−
∫
∂Ω

Φ · ν g if − div(Φ) = ρ

+∞ otherwise.

33



3 Augmented Lagrangian approach for HJ equation

In other words, the dual problem reads

inf

{∫
Ω

σ(x,Φ)−
∫
∂Ω

Φ · ν g : Φ ∈ Y ∗, −div(Φ) = ρ inD′(Ω)

}
. (3.4)

Note that the above computation is very formal by the appearance of the trace-like term
Φ · ν which is not well de�ned for all Φ.

To handle rigorously the normal trace of the vector-valued dual variable Φ in the dual
problem of the type (3.4), we recall the trace-like operator for the so called divergence-
measure �eld (cf. [28, 29, 30]). To this aim, we assume in this section that

ΩD = Ω \D is a regular domain with a deformable Lipschitz boundary ∂ΩD.

This is achieved for instance in the case where Ω is a regular domain and D = ∂Ω or
D = ω with a regular domain ω ⊂⊂ Ω.

For any 1 ≤ p ≤ ∞,we de�ne the set

DMp(ΩD) :=
{
F ∈ Lp(ΩD)N : div F =: µ ∈Mb(ΩD)

}
,

where µ = div F is taken inD′(ΩD). See here, that for any F ∈ DMp(ΩD), the total
variation of div F is given by

|div F |(ΩD) := sup

{∫
ϕ dµ : ϕ ∈ C0(ΩD), |ϕ(x)| ≤ 1 for any x ∈ ΩD

}
= sup

{∫
ϕ dµ : ϕ ∈ C1

0(ΩD), |ϕ(x)| ≤ 1 for any x ∈ ΩD

}
= sup

{∫
F · ∇ϕ : ϕ ∈ C1

0(ΩD), |ϕ(x)| ≤ 1 for any x ∈ ΩD

}
.

In particular, the spaceDMp(ΩD) endowed with the norm

‖F‖DMp(ΩD) := ‖F‖Lp(ΩD) + |div F |(ΩD)

is a Banach space.
Thanks to [28, 29, 30], for any 1 < p ≤ ∞, it is possible to de�ne a trace-like operator

on the set DMp(ΩD). Actually, for any F ∈ DMp(ΩD), we de�ne F · ν the normal
trace of F on ∂ΩD, given by F · ν : Lip(∂ΩD)→ R the continuous linear functional
such that

〈F · ν, ξ/∂ΩD〉 =

∫
ΩD

ξ divF +

∫
ΩD

∇ξ · F, for any ξ ∈ C1(ΩD).
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3.2 HJ and duality results

Moreover, since ΓD is a deformable Lipschitz boundary, then the restriction of F · ν to
ΓD is well de�ned, this will be denoted by F · νD (cf. [28, 29, 30], see also Remark 3.5).
Remark 3.5. 1. Thanks to [28, 29, 30], for any F ∈ DMp(ΩD), with 1 < p ≤ ∞,

it is possible to de�ne the normal traceF ·ν locally by using Lipschitz deformation
of the boundary. This formulation is very useful in the case where the boundary is
partitioned into disjoint deformable Lipschitz patches.

2. In the case where p = 1 as well as the case whereLp(ΩD)N is replaced by the space
Mb(ΩD)N , the trace may be de�ned as well, but only as continuous linear form
on a subset of Lip(∂ΩD) (cf. [28, 29, 30]).

Now, combining this consideration with the formal computation for (3.4), we intro-
duce the following optimization problem

(OFD) : inf
φ∈DMp(ΩD)

{∫
ΩD

σ(x, φ(x))dx− 〈φ · νD, g〉 : −div (φ) = ρ in D′(ΩD \ ΓD)

}
,

where the divergence constraint is understood as follows:∫
ΩD

∇ξ · φ dx− 〈φ · νD, ξ〉 =

∫
ΩD\ΓD

ξdρ, for any ξ ∈ Lip(ΩD),

with φ · νD being trace-like term on ΓD as de�ned above. In other words, we impose that
φ · νΓ̃ = 0 on Γ̃.

Our main result in this section is the following duality result.

Theorem 3.6. Let ρ ∈M+
b (Ω), then (MD) and (OFD) coincide.

Proof. Consider onMb(ΩD) the following functional F : Mb(ΩD) 7→] − ∞,∞]
de�ned by

F (h) = inf
φ∈DMp(ΩD)

{∫
ΩD

σ(x, φ(x))dx+

∫
ΓD

gdh−〈φ·νD, g〉 : − div(φ) = ρ+h in D′(ΩD \ ΓD)
}
,

for any h ∈ Mb(ΩD). Then F is convex and l.s.c. Indeed, take h1, h2 ∈ Mb(ΩD) and
set h := th1 + (1 − t)h2 for t ∈ [0, 1]. Let φ1,n, φ2,n ∈ DMp(ΩD) be two mini-
mizing sequences of �uxes corresponding to h1 and h2 respectively, i.e. −div(φi,n) =
ρ+ hi, inD′(ΩD \ ΓD) and

F (hi) = lim
n

∫
ΩD

σ(x, φi,n(x))dx+

∫
ΓD

g dhi − 〈φi,n · νD, g〉 for i = 1, 2.
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3 Augmented Lagrangian approach for HJ equation

Set φn = tφ1,n + (1− t)φ2,n. We clearly see that φn are admissible for h and

F (h) ≤ lim inf
n

∫
ΩD

σ(x, φn(x))dx+

∫
ΓD

g dh− 〈φn · νD, g〉

= lim inf
n

∫
ΩD

σ(x, tφ1,n + (1− t)φ2,n)dx+

∫
ΓD

g dh− 〈(tφ1,n + (1− t)φ2,n) · νD, g〉

≤ lim
n
t
(∫

ΩD

σ(x, φ1,n)dx+

∫
ΓD

g dh− 〈φ1,n · νD, g〉
)

+ (1− t)
(∫

ΩD

σ(x, φ2,n)dx+

∫
ΓD

g dh− 〈φ2,n · νD, g〉
)

≤ tF (h1) + (1− t)F (h2)

and this proves convexity. For the lower semicontinuity, take a sequence hn ⇀ h in
Mb(ΩD). For every n ∈ N, we consider a sequence (φkn)k∈N ofDMp(ΩD) such that

F (hn) = lim
k→∞

∫
ΩD

σ(x, φkn(x))dx+

∫
ΓD

g dhn − 〈φkn · νD, g〉.

We may �nd some ψn ∈ L1(ΩD,RN) such that−div(ψn) = h− hn inD′(ΩD \ ΓD),
‖ψn‖L1 → 0 and 〈ψn·νD, g〉 → 0. In fact, we haveh−hn ∈Mb(ΩD) ↪→ W−1,p′(ΩD)
for p > N and p′ := p

p−1
. We consider the following p-Laplace equation
−∆pun = h− hn in ΩD

un = 0 on ΓD

|∇un|p−2∇un · νΓ̃ = 0 on Γ̃.

(3.5)

The system (3.5) admits a unique solution un ∈ W 1,p(ΩD) such that un = 0 on
ΓD. Hence, if we set ψn = |∇un|p−2∇un, we see that ψn ∈ Lp

′
(ΩD), and then in

L1(ΩD). Moreover, we have−div(ψn) = h− hn inD′(ΩD). Since h− hn is bounded
inW−1,p′(ΩD), it is not di�cult to prove thatun is bounded inW 1,p(ΩD). So, by taking
a subsequence if necessary, we have un ⇀ u inW 1,p(ΩD), and uniformly in ΩD.On the
other hand, we have∫

ΩD

|ψn|p
′
dx =

∫
ΩD

|∇un|pdx = 〈h− hn, un〉W−1,p′ (ΩD),W 1,p(ΩD) −→
n→∞

0.
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3.2 HJ and duality results

In particular, this implies that |ψn| −→
n→∞

0 in L1(ΩD). Moreover, taking g̃ ∈ Lip(ΩD)

be such that g̃ = g on ΓD, we have

〈ψn · νD, g〉 =

∫
ΩD

ψn · ∇g̃ dx−
∫

ΩD

g̃ d(h− hn) −→
n→∞

0.

This being said, we clearly have−div(φkn + ψn) = ρ + h, i.e. φkn + ψn are admissible
�uxes for h. By semicontinuity of the integral, we have

F (h) ≤
∫

ΩD

σ(x, (φkn + ψn)(x))dx+

∫
ΓD

g dh− 〈(φkn + ψn) · νD, g〉

≤
∫

ΩD

σ(x, φkn(x))dx+

∫
ΓD

g dhn − 〈φkn · νD, g〉

+

∫
ΩD

σ(x, ψn(x))dx+

∫
ΓD

g d(h− hn)− 〈ψn · νD, g〉.

Letting k →∞we get

F (h) ≤ F (hn) +

∫
ΩD

σ(x, ψn(x))dx+

∫
ΓD

g d(h− hn)− 〈ψn · νD, g〉.

Now, letting n → ∞, and using the fact that ψn → 0 in L1(ΩD)N , and hn ⇀ h in
Mb(ΩD), as n→∞, we obtain the lower semicontinuity, i.e.

F (h) ≤ lim inf
n

F (hn).

Next let us compute F ∗. For any u ∈ C(ΩD),we have

F ∗(u) = sup
h∈Mb(ΩD)

∫
ΩD

udh− F (h)

= sup
h∈Mb(ΩD)
φ∈DMp(ΩD)

{∫
ΩD

udh−
∫

ΩD

σ(x, φ(x))dx−
∫

ΓD

g dh+ 〈φ · νD, g〉 :

−div(φ) = ρ+ h inD′(ΩD \ ΓD)
}

= I1(u) + I2(u),
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where I1(u) := −
∫

ΩD
udρ and

I2(u) := sup
h∈Mb(ΩD)
φ∈DMp(ΩD)

{∫
ΩD\ΓD

ud(ρ+h)−
∫

ΩD

σ(x, φ(x))dx+

∫
ΓD

(u−g)dh+〈φ·νD, g〉

: − div(φ) = ρ+ h inD′(ΩD \ ΓD)
}
.

Using Lemma 3.7 below, we deduce that, for any u ∈ Lip(ΩD),we have

F ∗(u) =


−
∫

ΩD
udρ if

{
σ∗(x,∇u) ≤ 1

and u = g on ΓD

∞ otherwise.

Finally, using the fact

inf(OFD) = F (0) = F ∗∗(0) = sup
u∈Lip(ΩD)

−F ∗(u) = max(MD),

we deduce the result.

Lemma 3.7. Let u ∈ Lip(ΩD), we have

sup
h∈Mb(ΩD)
φ∈DMp(ΩD)

{∫
ΩD\ΓD

ud(ρ+ h)−
∫

ΩD

σ(x, φ(x))dx+

∫
ΓD

(u− g) dh+ 〈φ · νD, g〉

: − div(φ) = ρ+ h inD′(ΩD \ ΓD)
}

=


0 if

{
σ∗(x,∇u) ≤ 1

and u = g on ΓD

∞ otherwise.

Proof. Take u as a test function in the divergence constraint −div(φ) = ρ +
h inD′(ΩD \ ΓD), we get

I(h, φ) :=

∫
ΩD\ΓD

ud(ρ+ h)−
∫

ΩD

σ(x, φ(x))dx+

∫
ΓD

(u− g) dh+ 〈φ · νD, g〉

=

∫
ΩD

∇u · φdx−
∫

ΩD

σ(x, φ(x))dx+

∫
ΓD

(u− g) dh+ 〈φ · νD, g − u〉.
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If σ∗(x,∇u) ≤ 1 and u = g on ΓD, then following Lemma 3.3, we obtain
sup I(h, φ) ≤ 0. Actually, sup I(h, φ) = 0 in this case by taking h ≡ −ρ and
φ ≡ 0. If u(x0) 6= g(x0) for some x0 ∈ ΓD, then we consider Dirac mass at x0,
h = n sign(u(x0) − g(x0))δx0 for n ∈ N, and �x Φ0 ∈ DMp(ΩD) such that
−div Φ0 = ρ inD′(ΩD \ ΓD),we have

sup I(h, φ) ≥
∫

ΩD

Φ0·∇u−
∫

ΩD

σ(x,Φ0(x))dx+n|u(x0)−g(x0)|+〈Φ0·νD, g−u〉.

Letting n → ∞, we get the result. For the remaining case, i.e. u = g on ΓD and
σ∗(x,∇u) > 1 on a non negligible set, we see �rst that, for any u ∈ Lip(ΩD), there
exists a measurable function that we denote by qu : ΩD → RN , such that

qu(x) · ∇u(x) = σ∗(x,∇u(x)), a.e. in ΩD.

Indeed, recall that σ∗(x,∇u(x)) = maxp{〈p,∇u(x)〉 : σ(x, p) = 1} and the func-
tion x → 〈p,∇u(x)〉 + II[σ(x,.)=1] is measurable. Then, qu is given by the measurable
representation in the set

arg max
p
{〈p,∇u〉 : σ(x, p) = 1}.

Now, if u = g on ΓD and σ∗(x,∇u) > 1 in a subset A ⊂ ΩD such that |A| 6= 0, we
consider Φnε = n qu

|qu|χA ∗ ηε, where ηε is a sequence of molli�ers. It is clear that there
exists h ∈Mb(ΩD), such that−div Φnε = ρ+ h. For any n,we have

sup I(h, φ) ≥
∫

ΩD

Φnε · ∇u−
∫

ΩD

σ(x,Φnε(x))dx.

Letting ε→ 0,we get

sup I(h, φ) ≥ n

∫
A

1

|qu|
(qu · ∇u− σ(x, qu))dx ≥ n

∫
A

1

|qu|
(σ∗(x,∇u(x))− 1)dx.

Then, letting n→∞,we get the result.

Remark 3.8. Going over the duality inferred by Theorem 3.6, we have

inf

{∫
ΩD

σ(x, φ(x))dx− 〈φ · νD, g〉 : φ ∈ DMp(ΩD), −div (φ) = ρ in D′(ΩD \ ΓD)

}

= max
u∈W 1,∞(Ω)

{∫
ΩD

u(x)dρ, σ∗(x,∇u(x)) ≤ 1 a.e. x in ΩD and u = g on ΓD

}
.

39



3 Augmented Lagrangian approach for HJ equation

It is not clear if the inf is a min .This is closely connected to the regularity of the trace of
divergence-measure �eld. However, one sees that if this is true, i.e. the inf is a min, then
the respective extremums u and φ satisfy the following PDE:

− div(φ) = ρ inD′(ΩD \ ΓD)

φ(x) · ∇u(x) = σ(x, φ(x)) in ΩD

u = g on ΓD

σ∗(x,∇u(x)) ≤ 1 in ΩD

φ · νΓ̃ = 0 on Γ̃.

3.3 The augmented Lagrangian technique

3.3.1 Formulation of the problem

We set again X = W 1,∞(ΩD) and Y = L∞(ΩD)N . For any u ∈ X and η ∈ Y , we
de�ne

F(u) =


−
∫

ΩD
u dρ if u = g on ΓD

+∞ otherwise
, G(η) =


0 if σ∗(x, η) ≤ 1

+∞ otherwise
, and Λu = ∇u.

Thus, the problem (MD) can be rewritten in the form

− inf
u∈X
F(u) + G(Λu).

Thanks to Theorem 3.6, we can write

−min
{
F(u)+G(Λu) : u ∈X

}
= − sup

{
−F∗(−Λ∗φ)−G∗(φ) : φ ∈ DMp(ΩD)

}
= inf

{∫
ΩD

σ(x, φ(x))dx− 〈φ · νD, g〉 : φ ∈ DMp(ΩD), −div (φ) = ρ in D′(ΩD \ ΓD)

}
.

Introducing a new primal variable q ∈ Y we can write (MD) in the following alternative
form

− inf
(u,q)∈X ×Y

Λu=q

F(u) + G(q) (3.6)
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so that (MD) and (OFD) can be recast in a saddle point form

inf
(u,q)∈X ×Y

sup
φ∈DMp(ΩD)

L(u, q;φ)

where

L(u, q;φ) = F(u)+G(q)+

∫
ΩD

φ·(Λ(u)−q)dx, for any (u, q, φ) ∈X ×Y ×DMp(ΩD).

More precisely, we have

Proposition 3.9. u is a solution of (MD) if and only if the couple (u, q := Λu) ∈
X × Y is a solution of

sup
φ∈DMp(ΩD)

min
(u,q)∈X ×Y

L(u, q;φ)

which is equal to
min

(u,q)∈X ×Y
sup

φ∈DMp(ΩD)

L(u, q;φ).

Proof. The proof of this result is standard. For completeness let us give the main argu-
ments showing how the duality of the previous section takes part of this result. Using
(3.6), it is not di�cult to see that

min
{
F(u) + G(Λu) : u ∈X

}
= min

(u,q)∈X ×Y
sup

φ∈DMp(ΩD)

L(u, q;φ).

On the other hand, using the de�nition ofF∗, G∗ and Λ∗, one sees that

sup
φ∈DMp(ΩD)

min
(u,q)∈X ×Y

L(u, q;φ) = sup
{
−F∗(−Λ∗φ)−G∗(φ) : φ ∈ DMp(ΩD)

}
.

Thus using Theorem 3.6, the result of the proposition follows.

For a given r > 0,we recall that the augmented Lagrangian (cf. [55]) is given by

Lr(u, q;φ) = F(u)+G(q)+〈φ,Λu−q〉+r

2
|Λu−q|2, for any (u, q, φ) ∈X ×Y ×DMp(ΩD).

In the same way, it can easily be proved that

Proposition 3.10. Let r > 0. Then, u is a solution of (MD) if and only if the couple
(u, q := Λu) ∈X × Y is a solution of

sup
φ∈DMp(ΩD)

min
(u,q)∈X ×Y

Lr(u, q;φ)
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3 Augmented Lagrangian approach for HJ equation

which is equal to
(Sr) : min

(u,q)∈X ×Y
sup

φ∈DMp(ΩD)

Lr(u, q;φ).

Now for the numerical computation concerning the problem (MD),we will focus on
the saddle point problem (Sr).Recall that the addition of the quadratic term r

2
|Λu−q|2

has the advantage of improving the convergence of the dual approach (one can see [42,
54]).

3.3.2 Application of ALG2
We approximate the domain ΩD via a triangulation Th. For k ≥ 1, we denote by
Pk the space of polynomials with real coe�cients and of degree at most k. We de�ne
Xh ⊂ W 1,∞(ΩD) as the space of continuous functions on ΩD belonging to Pk on each
triangle. Similarly, Yh is the space of vector valued functions belonging to (Pk−1)d on
each triangle. Then the problem (MD) is discretized by the following �nite-dimensional
optimization problem:

inf
u∈Xh

F(u) + G(Λu).

Then, as recalled in Section 2.4, for a given q0 ∈ Yh, φ0 ∈ Y ∗
h , using ALG2 algorithm

we construct a sequence {ui}i, {qi}i, {φi}i by optimizing alternatively in u and q, for
i ≥ 1.

Algorithm 1 ALG2 iterations

1st step: ui+1 ∈ arg minu∈Xh

{
F(u) + 〈φi,Λ(u)〉+ r

2
|Λ(u)− qi|2

}
.

2nd step: qi+1 ∈ arg minq∈Yh

{
G(q)− 〈φi, q〉+ r

2
|Λ(ui+1)− q|2

}
.

3rd step: We update the multiplier φ by

φi+1 = φi + r(∇ui+1 − qi+1).

The steps of the Algorithm 1 can be detailed as follows:

• The �rst step amounts to solve a Laplace equation with mixed boundary condi-
tions. Indeed, we have for every z ∈Xh with z = 0 on ΓD

r〈∇ui+1,∇z〉 = 〈ρ, z〉+ 〈(rqi − φi),∇z〉

which is equivalent to solve

−r∆u = ρ+ div(φ− rq) in ΩD,
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3.3 The augmented Lagrangian technique

together with the following mixed boundary conditions:
Dirichlet boundary condition u = g on ΓD

Homogeneous Neumann boundary condition (r∇u+ φ− rq) · νΓ̃ = 0 on Γ̃.

• The second step is a pointwise projection. Indeed, we use P1 �nite element for q
and φ, we have at each vertex xk

0 ∈ ∂IIB∗(xk,.)(qi+1(xk))− φi(xk)− r(∇ui+1(xk)− qi+1(xk)),

which is equivalent to perform pointwise projections:

qi+1(xk) = ProjB∗(xk,.)

(φi(xk)
r

+∇ui+1(xk)
)

whereB∗(x, .) = {p ∈ RN : σ∗(x, p) ≤ 1}.

3.3.3 Error criterion

Basing on the primal-dual optimality conditions, we use the following stopping criterion

1. MaxLip := supx σ
∗(x,∇u(x)),

2. Div := ‖ − div(φ)− ρ‖L2 ,

3. Dual := ‖σ(x, φ(x))− φ(x) · ∇u‖L2 ,

4. NBDφ :=
( ∫

Γ̃
(φ · ν)2

)1/2

.

We expect MaxLip ≤ 1 and Div,Dual,NBDφ to be small. In addition, we compute
‖u−uexact‖ for di�erent norms where u is the computed solution and uexact is the exact
solution, whenever the latter is easily found. Let us mention that NBDφ will concern
only the Test 2 where we prescribe data on a closed setD, so that Γ̃ 6= ∅.

To implement the algorithm we use FreeFem++ [58], which is particularly adapted to
solve the Laplace equation in the �rst step of ALG2. We use P2 �nite element for u and
P1 �nite element for φ and q (see e.g. [15]). All the tests are executed on a macOs Mojave
10.14.4.
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3 Augmented Lagrangian approach for HJ equation

3.4 Numerical experiments

3.4.1 Test 1:
We �rst examine the case |∇u| = f(x, y) ≡ 1 in Ω = (0, 1)2 and u = 0 on ∂Ω.

(a)

IsoValue
0.0122589
0.0367766
0.0612943
0.085812
0.11033
0.134847
0.159365
0.183883
0.208401
0.232918
0.257436
0.281954
0.306472
0.330989
0.355507
0.380025
0.404542
0.42906
0.453578
0.478096

(b)

Vec Value
0
0.0274978
0.0549956
0.0824933
0.109991
0.137489
0.164987
0.192484
0.219982
0.24748
0.274978
0.302476
0.329973
0.357471
0.384969
0.412467
0.439964
0.467462
0.49496
0.522458

(c)

Figure 3.1: Left to right: 3D plot of the solution u, contour plot of u, the �ux φ
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(a) Feasibility of u.
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(b) Divergence and Dual errors

Figure 3.2: Error criterion for 1000 iterations withNh = 120

The exact solution is uexact(x, y) = d((x, y), ∂Ω) = min(x, 1 − x, y, 1 − y). We
measure ‖u− uexact‖ in di�erent norms, with di�erent mesh sizesNh and for 1000 iter-
ations.

Nh Time execution ‖u− uexact‖L2 ‖u− uexact‖L1 ‖u− uexact‖L∞
30 55.3254s 1.19311e-3 1.2476e-3 9.71803e-4
60 212.838s 3.68023e-4 3.82991e-4 3.48313e-4
120 855.136s 1.64122e-4 1.7198e-4 1.66483e-4

This test shows us that ALG2 iteration converges to the accurate solution u as the mesh
is re�ned.
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3.4 Numerical experiments

3.4.2 Test 2:

We consider the same equation |∇u| = 1 on Ω = (−1, 1)2\DwhereD is the euclidean
ball centered at (0.05, 0.09) and of radius 0.25, and we set u to be equal to 0 onD.

(a)

IsoValue
0.0283175
0.0900488
0.15178
0.213511
0.275243
0.336974
0.398705
0.460437
0.522168
0.583899
0.64563
0.707362
0.769093
0.830824
0.892556
0.954287
1.01602
1.07775
1.13948
1.20121

(b)

Vec Value
0
0.205054
0.410107
0.615161
0.820215
1.02527
1.23032
1.43538
1.64043
1.84548
2.05054
2.25559
2.46064
2.6657
2.87075
3.07581
3.28086
3.48591
3.69097
3.89602

(c)

Figure 3.3: Left to right: 3D plot of the solution u, contour plot of u, the �ux φ
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(a) Feasibility of u.
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Figure 3.4: Error criterion for 500 iterations withNh = 50
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3 Augmented Lagrangian approach for HJ equation

3.4.3 Test 3:

Always with the Eikonal case, take f(x, y) =
√

(1− |x|)2 + (1− |y|)2. The exact
solution in Ω = (−1, 1)2 is uexact(x, y) = (1− |x|).(1− |y|).

(a)

IsoValue
0.024445
0.0733351
0.122225
0.171115
0.220005
0.268895
0.317786
0.366676
0.415566
0.464456
0.513346
0.562236
0.611126
0.660016
0.708906
0.757796
0.806686
0.855577
0.904467
0.953357

(b)

Vec Value
0
0.0360819
0.0721639
0.108246
0.144328
0.18041
0.216492
0.252574
0.288655
0.324737
0.360819
0.396901
0.432983
0.469065
0.505147
0.541229
0.577311
0.613393
0.649475
0.685557

(c)

Figure 3.5: Left to right: 3D plot of the solution u, contour plot of u, the �ux φ
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Figure 3.6: Error criterion for 600 iterations withNh = 120

Nh Time execution ‖u− uexact‖L2 ‖u− uexact‖L1 ‖u− uexact‖L∞
30 39.1138s 2.27077e-3 2.54665e-3 2.47988e-3
60 158.138s 6.49636e-4 7.41279e-4 1.57558e-3
120 647.024s 2.99273e-4 3.22747e-4 6.54593e-4
240 2610.03s 6.97158e-05 7.83619e-05 2.807e-4
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3.4 Numerical experiments

3.4.4 Riemannian case

We take σ((x, y), v) =
√
β1v2

1 + β2v2
2 , with β1, β2 > 0. It is not di�cult to see

that σ∗(q) =
√

q2
1

β1
+

q2
2

β2
. As in [16], the projection onto the unit ball of σ∗, B∗ =

{q, σ∗(q) ≤ 1} is given by

ProjB∗(q) =

{
q if q ∈ B∗(
β1q1
β1+ζ

, β2q2
β2+ζ

)
otherwise,

where ζ is the zero of the function

F (ζ) = 1−
( β1q1

(β1 + ζ)2
+

β2q1

(β2 + ζ)2

)
,

which can be computed with a dichotomy algorithm.

For this test, we take

β1 =
1

e
−2

(√
2(x−0.5)2+2(x−0.5)(y−0.5)+(y−0.5)2)

) and β2 =
2

e
−2

(√
2(x−0.5)2+2(x−0.5)(y−0.5)+(y−0.5)2)

) .

(a)

IsoValue
0.0179358
0.0538075
0.0896791
0.125551
0.161422
0.197294
0.233166
0.269037
0.304909
0.340781
0.376652
0.412524
0.448396
0.484267
0.520139
0.556011
0.591882
0.627754
0.663626
0.699497

(b)

Vec Value
0
0.0311718
0.0623435
0.0935153
0.124687
0.155859
0.187031
0.218202
0.249374
0.280546
0.311718
0.342889
0.374061
0.405233
0.436405
0.467577
0.498748
0.52992
0.561092
0.592264

(c)

Figure 3.7: Left to right: 3D plot of the solution u, contour plot of u, the �ux φ
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3 Augmented Lagrangian approach for HJ equation
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Figure 3.8: Error criterion for 400 iterations withNh = 64

3.4.5 Anisotropic Eikonal equation:

One interesting case is the so called anisotropic Eikonal equation. Consider a symmetric
positive de�nite matrixM modelling the anisotropy, and de�ne the following equation

H(x,∇u) =
√
∇u†M∇u− 1 in Ω and u = 0 on ∂Ω.

In this caseB∗ is an ellipse and the projection can be computed as in the Riemannian case
[72]:

ProjB∗(q) =

{
q if q ∈ B∗

(ζM + In)−1q otherwise,

where ζ is the unique positive root of the function

F (ζ) = q̄†ζMq̄ζ − 1 with q̄ζ = (ζM + In)−1q,

which can be found with a dichotomy method. We perform a test as in [81, Example 2] by
taking

M =

(
l1(x, y) −l3(x, y)
−l3(x, y) l2(x, y)

)
with

l1(x, y) =
1

e
−2

(√
2.(x−0.5)2+2.(x−0.5).(y−0.5)+(y−0.5)2

)
l2(x, y) = 2l1(x, y)

l3(x, y) = l1(x, y).
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3.4 Numerical experiments

(a)

IsoValue
0.00732994
0.0219898
0.0366497
0.0513095
0.0659694
0.0806293
0.0952892
0.109949
0.124609
0.139269
0.153929
0.168589
0.183248
0.197908
0.212568
0.227228
0.241888
0.256548
0.271208
0.285867

(b)

Vec Value
0
0.0293957
0.0587915
0.0881872
0.117583
0.146979
0.176374
0.20577
0.235166
0.264562
0.293957
0.323353
0.352749
0.382145
0.41154
0.440936
0.470332
0.499728
0.529123
0.558519

(c)

Figure 3.9: Left to right: 3D plot of the solution u, contour plot of u, the �ux φ
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Figure 3.10: Error criterion for 300 iterations withNh = 80.

3.4.6 Polyhedral case
Consider k vectors p1, · · · , pk and de�ne for any v ∈ RN the following Finsler metric

σ(v) = max
1≤i≤k

< v, pi >

usually called a crystalline norm. We can easily check that the unit ballB∗ ofσ∗ is nothing
but the convex hull of the vectors p1, · · · , pk:

B∗ = conv(p1, · · · , pk).

The projection onto B∗ can be performed easily (see [16, 66]). We start by determining
the vertices s1, · · · , sk of B∗ and the corresponding outward normal vectors νi to the
edges ofB∗. Afterwards, if v 6∈ B∗, we distinguish to cases: either v ∈ [si, si+1]+R+νi,
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3 Augmented Lagrangian approach for HJ equation

and in this case we project v onto the segment [si, si+1], or it belongs to a sector si +
R+νi + R+νi+1 and in this case its projection is si.

We perform a test with p1 = (1,−1), p2 = (1,−0.8), p3 = (−0.8, 1), p4 =
(−1, 1), p5 = (−1,−1). We takeNh = 64 and 600 iterations.

(a)

IsoValue
0.00408771
0.0122631
0.0204385
0.028614
0.0367894
0.0449648
0.0531402
0.0613156
0.069491
0.0776665
0.0858419
0.0940173
0.102193
0.110368
0.118544
0.126719
0.134894
0.14307
0.151245
0.159421

(b)

Vec Value
0
0.0662808
0.132562
0.198842
0.265123
0.331404
0.397685
0.463966
0.530247
0.596527
0.662808
0.729089
0.79537
0.861651
0.927931
0.994212
1.06049
1.12677
1.19305
1.25934

(c)

Figure 3.11: Left to right: 3D plot of the solution u, contour plot of u, the �ux φ
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Figure 3.12: Error criterion for 600 iterations withNh = 64.
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4 Primal-Dual Algorithm for
Shape from Shading

4.1 Introduction

Shape from Shading (SfS) consists in reconstructing the 3D shape of an object from its
given 2D image brightness. The shape of a surfaceu(x1, x2) is related to the image bright-
ness I(x1, x2) by the Horn image irradiance equation:

R(n(x1, x2)) = I(x1, x2), (4.1)

where I(x1, x2) is the brightness greylevel measured in the image at point (x1, x2);
R(n(x1, x2)) is the re�ectance map and n(x1, x2) is the unit normal at point
(x1, x2, u(x1, x2)) given by

n(x1, x2) =
1√

1 + |∇u(x1, x2)|2
(−∂x1u(x1, x2),−∂x2u(x1, x2), 1).

In (4.1), the irradiance function I(x1, x2) is known since it is measured at each pixel of
the brightness image, for example, in terms of greylevel in the interval [0, 1]. The implicit
unknown is the surface u(x1, x2), which has to be reconstructed.

In the case of Lambertian and the surface illuminated by a simple distant light source
of direction ` = (w, r) = (w1, w2, r) ∈ R3, one has R(n(x1, x2)) = n(x1, x2) ·
(w1, w2, r) and, by (4.1),

I
√

1 + |∇u|2 +∇u · w − r = 0. (4.2)

This equation falls into the scope of Hamilton-Jacobi equations

H(x,∇u) = 0 in Ω, (4.3)
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4 Primal-Dual Algorithm for Shape from Shading

where the HamiltionianH is de�ned byH(x, p) = I
√

1 + |p|2+p·w−r. In particular,
if the object is vertically enlightened, i.e., ` = (0, 0, 1), one obtains the standard Eikonal
equation

|∇u(x1, x2)| =

√
1

I2(x1, x2)
− 1. (4.4)

As pointed out in [39] (see also [104]), there are three major families of numerical methods
allowing the resolution of the SfS problem. Namely, PDE methods (cf [6, 47, 79, 91, 93]),
optimization methods (cf [34, 61]) and approximating the image irradiance equation (cf
[57, 88, 90]).

Here, we are particularly interested in the study of the PDE formulation in terms of
HJ equations (4.3) as it was presented in the previous chapter. As we know, the theory
of viscosity solutions [31, 32, 80] provides a suitable framework to study equations of the
form (4.3), and applications of the viscosity theory to the SfS problem go back to the
works of Lions, Rouy and Tourin [79, 93] and recently in the work of Prados, Camilli
and Faugeras [91]. Several di�culties arise while dealing with the SfS problem, namely
compatibility of boundary conditions and the degeneracy of the Hamiltonian. As we
recalled in Chapter 2,it is well known that for (4.3) coupled with the boundary condition
u = g on ∂Ω, to admit a solution one needs to check that g(x) − g(y) ≤ dσ(y, x)
for all x, y ∈ ∂Ω, where dσ is the intrinsic distance associated to the Hamiltonian (see
(2.8)). In addition, imposing only boundary conditions is not su�cient to ensure the
uniqueness of solution to the HJ equations (4.3). It turns out that the set of degeneracy
of the distance dσ, called the Aubry set, plays the role of a uniqueness set for (4.3) (see e.g.
[48]). In the case of Eikonal equation (4.4), the Aubry setA can be taken as the zero set
[k = 0] of k =

√
I−1/2 − 1. In other words, it corresponds to the points with maximal

intensity I , i.e., I(x1, x2) = 1 so that the right hand side in (4.4) vanishes. Most of
the authors (cf [23, 91, 93] for example) choose to regularize the equation to avoid these
points. We will not encounter this di�culty in our approach since we do not need to deal
with the inverse of possibly vanishing functions. We only need to perform projections
onto euclidean balls whose radii may be equal to zero.

Our approach is based on the results of Chapter 3, we characterize the maximal vis-
cosity subsolution of (4.3) in terms of a maximization problem. We then associate a dual
problem and exploit the saddle-point structure to approximate the solution of (4.3) us-
ing the Chambolle–Pock (CP) algorithm. Our approach lies between the PDE and op-
timization methods since we start by characterizing the maximal viscosity subsolution of
the HJ equation thanks to the intrinsic metric of the Hamiltonian and we end up with
an optimization problem under gradient constraint. Moreover, the convergence of dis-
cretization is also studied in detail.
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4.2 Maximization problem and duality in continuous setting

4.2 Maximization problem and duality in
continuous setting

As we discussed in the introduction, we will consider the PDE formulation of the SfS
problem in terms of HJ equation. Following our setting in Section 3.1, we consider the
following HJ equation whereD ⊂ Ω{

H(x,∇u) = 0 in Ω \D
u = g on D

(4.5)

where g : D → R is a continuous function satisfying the compatibility condition

g(x)− g(y) ≤ dσ(y, x) for any x, y ∈ D.

Thanks to Theorem 3.2, the following result allows us to approach the SfS problem via
a maximization problem.

Theorem 4.1. The unique maximal viscosity subsolution of the equation (4.5) can be re-
covered via the following maximization problem

(M) : max
u∈W 1,∞(Ω)

{∫
Ω

u(x)dx, σ∗(x,∇u(x)) ≤ 1 and u = g onD
}
.

We propose here a di�erent proof of duality than the one presented in Chapter 3. For
simplicity, we will state it for the case D = ∂Ω (which is essentially the case for other
numerical computations). In addition, we assume that g ∈ H1/2(∂Ω).

Theorem 4.2. We have

max
u∈W 1,∞(Ω)

{∫
Ω

u(x)dx, σ∗(x,∇u(x)) ≤ 1 and u = g on ∂Ω
}

= inf
φ∈L2(Ω)N

{∫
Ω

σ(x, φ)dx− 〈g, φ · n〉H1/2,H−1/2 : −div(φ) = 1 in D′(Ω)

}
:= (OF).

Proof. To prove the duality between (M) and (OF), we use a perturbation technique
as follows. De�ne on L2(Ω)N the following functional

E(p) := − sup
{∫

Ω

udx : u ∈ Lip(Ω), σ∗(x,∇u(x)−p(x)) ≤ 1, u = g on ∂Ω
}
.

Then, one can check thatE is convex and lower semicontinuous. To computeE∗we start
by observing that sinceu = g on ∂Ω, we can assume thanks to trace lifting Theorem that
g = γ0(w) for somew inH1(Ω), and u = ξ + w with ξ ∈ H1

0 (Ω) ∩W 1,∞(Ω).
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4 Primal-Dual Algorithm for Shape from Shading

We then have for any φ ∈ L2(Ω)N :

E∗(φ) = sup
p∈L2(Ω)N

∫
Ω

φ · p dx− E(p)

= sup
p∈L2(Ω)N ,ξ∈H1

0 (Ω)

{∫
Ω

φ · p dx+

∫
Ω

ξdρ+

∫
Ω

wdx : σ∗(x,∇(ξ + w)− p) ≤ 1

}
Set q = ∇(ξ + w)− pwe get p = ∇(ξ + w)− q, we then have

E∗(φ) = sup
q∈L2(Ω)N ,ξ∈H1

0 (Ω)

{∫
Ω

φ · (∇(ξ + w)− q)dx+

∫
Ω

ξdx+

∫
Ω

wdx : σ∗(x, q(x)) ≤ 1

}
= sup

ξ∈H1
0 (Ω)

q∈L2(Ω)N , σ∗(x,q(x))≤1

{∫
Ω

φ · ∇ξdx+

∫
Ω

ξdx+

∫
Ω

φ · ∇wdx+

∫
Ω

wdx−
∫

Ω

φ · qdx
}
.

The last quantity is �nite if we impose that
∫

Ω
φ·∇ξdx+

∫
Ω
ξdx = 0 for all ξ ∈ H1

0 (Ω),
which means that−div(−φ) = 1 and consequently φ ∈ Hdiv(Ω), where

Hdiv(Ω) = {φ ∈ L2(Ω)N , div(φ) ∈ L2(Ω)}.

Thus the normal trace of φ is well-de�ned and φ.n ∈ H−1/2(∂Ω). Taking ν = −φ.n,
then−div(−φ) = 1− ν inD′(RN) and therefore, for such a φ, integrating by parts we
get

E∗(−φ) = sup
q∈L2(Ω)N

{∫
Ω

φ · q dx : σ∗(x, q(x)) ≤ 1

}
+ 〈w, ν〉H1/2,H−1/2

=

∫
Ω

σ(x, φ)dx− 〈g, φ.n〉H1/2,H−1/2 .

Finally,

maxM = −E(0) = −E∗∗(0) = − sup−E∗(−φ) = inf E∗(−φ) = inf(OFD),

as desired.

Remark 4.3. When the object is enlightened vertically, i.e., ` = (0, 0, 1) and u = 0 on
∂Ω, the SfS problem amounts to solve the following Eikonal equation
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4.3 Discretization

{
|∇u| = k in Ω

u = 0 on ∂Ω
(4.6)

where k(x) =
√
I−2(x)− 1. In this case, the duality in Theorem 4.2 reads as

max
u∈W 1,∞(Ω)

{∫
Ω

udx : |∇u| ≤ k, u = 0 on ∂Ω

}
= inf

φ∈L2(Ω)N

{∫
Ω

k(x)|φ|dx : −div(φ) = 1 inD′(Ω)

}
.

As for the Aubry setA, it can be taken as the zero set [k = 0] of k =
√
I−2 − 1, which

corresponds to the points with maximal intensity I , i.e., I(x) = 1 so that k(x) vanishes.
As we will see in the next section, dealing with nonempty Aubry set does not represent
an obstacle in our approach. Contrary to the works (e.g [23, 91, 93]) where the authors
approximate the degenerate HJ equation via non-degenerate one (typically, by consider-
ing (4.6) with kε = max(k, ε) for ε > 0), the only step where we deal with degeneracy
points is the projection onto a ball of radius k, which may be equal to zero.
Remark 4.4 (Boundary conditions). It is well known that a natural choice for boundary
conditions is the Dirichlet boundary condition. As pointed out in [39], the images we will
consider contain an occluding boundary (see Fig 4.1) which will be taken as the boundary
∂Ω. Particularly, assuming that the object is placed on a �at table suggests taking u = 0
on ∂Ω or more generally, if the height g of the surface on which is placed is known one
can take u = g on ∂Ω.

Ω

∂Ω

Figure 4.1: An object and its occluding boundary

4.3 Discretization
The main result in this section will be the convergence of primal-dual solutions of the dis-
cretized (�nite-dimensional) problems to the ones of the original problems in continuous
setting.
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4 Primal-Dual Algorithm for Shape from Shading

4.3.1 Discretization of the domain and operators
Let Ω ⊂ Rd be an image domain, which can be taken as Ω = [0, 1]2. Following [26], we
discretize the domain Ω using a regular gridm×n: {(ih, jh) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
for a �xed h > 0. We denote byDd = {(i, j) : (ih, jh) ∈ D} the indexes whose spatial
positions belong to D and by ui,j the values of u at (ih, jh). The space X = Rm×n is
equipped with a scalar product and an associated norm as follows:

〈u, v〉 = h2

m∑
i=1

n∑
j=1

ui,jvi,j and ‖u‖ =
√
〈u, u〉.

For 1 ≤ i ≤ m and 1 ≤ j ≤ n, we de�ne the components of the discrete gradient
operator via �nite di�erences:

(∇hu)1
i,j =

{
ui+1,j−ui,j

h
if i < m

0 if i = m
, (∇hu)2

i,j =

{
ui,j+1−ui,j

h
if j < n

0 if j = n.

Then the discrete gradient ∇h : X −→ Y = Rm×n×2 given by (∇hu)i,j =(
(∇hu)1

i,j, (∇hu)2
i,j

)
. Similar to the continuous setting, we de�ne a discrete divergence

operator divh : Y → X , which is the minus of the adjoint of∇h, given by divh = −∇∗h.
That is, 〈−divhφ, u〉X = 〈φ,∇hu〉Y for any φ = (φ1, φ2) ∈ Y and u ∈ X . It follows
that div is explicitly given by

(divh φ)i,j =


φ1
i,j

h
if i = 1

φ1
i,j−φ1

i−1,j

h
if 1 < i < m

−φ1
m−1,j

h
if i = m

+


φ2
i,j

h
if j = 1

φ2
i,j−φ2

i,j−1

h
if 1 < j < n

−φ2
i,n−1

h
if j = n.

Proposition 4.5. ([26, 27]) Under the above-mentioned definitions and notations, one has
that

• The adjoint operator of∇h is∇∗h = − divh .

• Its norm satisfies: ‖∇h‖2 = ‖ divh ‖2 ≤ 8/h2.

4.3.2 Discretization of the optimization problem
Based on the discrete gradient and divergence operators, we propose a discrete version of
(M) as follows

(M)d : min
u∈X

ui,j=gi,j ∀(i,j)∈Dd

{
− h2

m∑
i=1

n∑
j=1

ui,j + IBσ∗ (∇hu)
}
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4.3 Discretization

whereBσ∗ := {v ∈ Y : σ∗(ih, jh, vi,j) ≤ 1, ∀(i, j)} the unit ball w.r.t. σ∗, and IBσ∗
is the indicator function in the sense of convex analysis, that is,

IBσ∗ (v) =

{
0 if v ∈ Bσ∗

+∞ otherwise.

In other words, the discrete version (M)d can be written as

min
u∈X
Fh(u) + Gh(∇hu),

where

Fh(u) =

{
−h2

∑m
i=1

∑n
j=1 ui,j if ui,j = gi,j ∀(i, j) ∈ Dd

+∞ otherwise
, and Gh = IBσ∗ .

Let u∗ ∈ X∗, we then have

F∗h(u∗) = sup
u∈X
〈u, u∗〉X −Fh(u) = sup

u∈X
ui,j=gi,j ∀(i,j)∈Dd

h2

m∑
i=1

n∑
j=1

ui,ju
∗
i,j + h2

m∑
i=1

n∑
j=1

ui,j

= sup
u∈X

ui,j=gi,j ∀(i,j)∈Dd

h2

m∑
i=1

n∑
j=1

ui,j(u
∗
i,j + 1)

=

{
h2
∑

(i,j)∈Dd gi,j
(
u∗i,j + 1

)
if − u∗i,j = 1 for (i, j) /∈ Dd

+∞ otherwise.

It follows that

F∗h(divhφ) =

{
h2
∑

(i,j)∈Dd gi,j((divhφ)i,j + 1) if (−divhφ)i,j = 1 for (i, j) /∈ Dd

+∞ otherwise.

On the other hand, we have for q = (q1, q2) ∈ Y ∗

G∗h(q) = sup
p=(p1,p2)∈Y

〈p, q〉Y−Gh(p) = sup
p∈Bσ∗

h2

m∑
i=1

n∑
j=1

(
p1
i,jq

1
i,j + p2

i,jq
2
i,j

)
= h2

m∑
i=1

n∑
j=1

σ(ih, jh, qi,j).
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4 Primal-Dual Algorithm for Shape from Shading

Consequently, the corresponding discrete dual problem is given by

(OF)d : max
φ∈Y

{
−F∗h(divhφ)− G∗h(φ)

}
= − min

φ∈Y
(−divhφ)i,j=1 for (i,j)/∈Dd

h2


m∑
i=1

n∑
j=1

σ(ih, jh, φi,j) +
∑

(i,j)∈Dd

gi,j((divhφ)i,j + 1)

.
(4.7)

In the case of Eikonal equations |∇u(x)| = k(x), the primal-dual relations can be ex-
plicitly written as

min
u∈X

ui,j=gi,j ∀(i,j)∈Dd

{
− h2

m∑
i=1

n∑
j=1

ui,j + IB(0,ki,j)(∇hui,j)
}

= − min
φ∈Y

(−divhφ)i,j=1 for (i,j)/∈Dd

h2


m∑
i=1

n∑
j=1

ki,j‖φi,j‖+
∑

(i,j)∈Dd

gi,j((divhφ)i,j + 1)

,
where IB(0,ki,j) is the indicator function of the Euclidean ball with center 0 and radius
ki,j , the latter being the value of k at (ih, jh).

To end this subsection, let us recall that (see Theorem 2.16) a pair (u, φ) ∈ X × Y
solves the primal and dual problems (M)d and (OF)d if and only if

divh(φ) ∈ ∂Fh(u) and φ ∈ ∂Gh(∇hu),

or equivalently, they satisfy the following system
−(div(φ))i,j = 1 for (i, j) 6∈ Dd

φi,j · ∇hui,j = σ(ih, jh, φi,j) for all (i, j)

ui,j = gi,j for every (i, j) ∈ Dd.

(4.8)

4.3.3 The convergence of discretization

In this subsection, we will show a result on the convergence of discretization, i.e, where
the solutions of the discrete optimization and its discrete dual problem converge to the
ones of the corresponding problems in continuous setting. First, let us describe how to
interpolate elements ofX and Y .

We know the values ofuh ∈ X at the vertices (i, j), (i, j+1), (i+1, j+1), (i+1, j)
of a small square (see Fig 4.2). We interpolate uh ∈ X by piecewise a�ne functions on
the sub-triangles, i.e., taking ũh ∈ L2(Ω) as an a�ne function on the sub-triangles and
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4.3 Discretization

coincides with uh on all the vertices. Then ũh is Lispchitz function and its gradient is, by
the de�nition of ũh, given by

∇ũh(x, y) =

(
uh(i+ 1, j)− uh(i, j)

h
,
uh(i, j + 1)− uh(i, j)

h

)
(4.9)

on the sub-triangle of the vertices (i, j), (i, j + 1), (i+ 1, j); and

∇ũh(x, y) =

(
uh(i+ 1, j + 1)− uh(i, j + 1)

h
,
uh(i+ 1, j + 1)− uh(i+ 1, j)

h

)
(4.10)

on the sub-triangle of the vertices (i, j + 1), (i+ 1, j + 1), (i+ 1, j).

Let φ̃h ∈ L2(Ω)2 be an interpolation of φh ∈ Y such that
∫

Ω
σ(x, φ̃h)dx =

h2
∑m

i=1

∑n
j=1 σ(ih, jh, (φh)i,j).

(i,j) (i+1,j)

(i+1,j+1)(i,j+1)

Figure 4.2: Sub-triangles

Proposition 4.6 (Convergence of discretization). Assume that the Finsler metric σ as-
sociated with the Hamiltionian H is non-degenerate (i.e. H(x, 0) < 0,∀x ∈ Ω) and
that g = 0. Let uh ∈ X and φh = (φ1

h, φ
2
h) ∈ Y be a pair of primal-dual solutions to

the discrete optimization problem (M)d and its dual problem (4.7). Then ũh ⇒ u and
φ̃h ⇀ φ as the step size h → 0. Moreover, u and φ are optimal solutions to (M) and its
dual problem, respectively.

Proof. Since uh is feasible for the discrete optimization problem (M)d, its discrete gra-
dient ∇huh ∈ Bσ∗ is bounded for all small h > 0. In other words, the sequences{
uh(i+1,j)−uh(i,j)

h

}
and
{
uh(i,j+1)−uh(i,j)

h

}
are bounded forh > 0 and i = 1, ...,m, j =

1, ..., n. Following (4.9) and (4.10), the sequence {ũh} is equi-Lispchitz. Combining
with the fact that uh = g on Dd, by Ascoli-Arzelà’s Theorem, up to a subsequence, ũh
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4 Primal-Dual Algorithm for Shape from Shading

converges uniformly to some Lipschitz function u on Ω as the step size h → 0. By the
optimality of uh and φh, we have

Fh(uh) + Gh(∇huh) = −F∗h(divhφh)− G∗h(φh).

More concretely,

h2

m∑
i=1

n∑
j=1

ui,j = h2

m∑
i=1

n∑
j=1

σ(ih, jh, (φh)i,j)

or equivalently ∫
Ω

ũhdx =

∫
Ω

σ(x, φ̃h)dx.

Sinceσ is non-degenerate and ũh is bounded, φ̃h is also bounded inL1(Ω). Hence, φ̃h ⇀
φ weakly* inMb(Ω). Using the lower-semicontinuity of the integrand (see [3, Theorem
2.38]), we deduce that∫

Ω

σ(x, φ)dx ≤ lim
h→0

∫
Ω

σ(x, φ̃h)dx = lim
h→0

∫
Ω

ũhdx =

∫
Ω

udx.

By the duality result in the continuous setting given in Section 2 (Theorem 4.2), we de-
duce that u and φ are primal-dual optimal solutions.

Remark 4.7. In the case where σ is a degenerate Finsler metric, there is no boundedness
on φ̃h and we cannot thus pass to the limit for φ̃h. However, we still have the uniform
convergence of ũh to some Lipschitz function u and moreover u is actually an optimal
solution to the maximization problem (M).

4.4 Numerical resolution
In this section we focus on the case where the light direction is vertical, i.e., ` = (0, 0, 1).

4.4.1 Saddle-point structure
As we pointed out in Section 4.3, the discrete version (M)d of (M) can be rewritten in
the form

inf
u∈X
Fh(u) + Gh(∇hu) (4.11)

or in an inf-sup form as

inf
u∈X

sup
φ∈Y
Fh(u) + 〈φ,∇hu〉 − G∗h(φ)

60



4.4 Numerical resolution

where

Fh(u) =

{
−h2

∑m
i=1

∑n
j=1 ui,j if ui,j = gi,j ∀(i, j) ∈ Dd

+∞ otherwise
, and Gh = IBσ∗ .

Both the functions Fh and Gh are lower-semicontinuous, convex and they are "prox-
imable", i.e. we can compute their proximal operators (see De�ntion 2.17):

ProxτFh(u) = argmin
v∈X

1

2
‖u− v‖2 + τFh(v)

ProxηGh(ψ) = argmin
φ∈Y

1

2
‖ψ − φ‖2 + ηGh(φ)

where τ, η > 0. Then the Chambolle–Pock algorithm [27] can be applied to (4.11):

Algorithm 2 Chambolle–Pock iterations

1st step. Initialization: choose η, τ > 0, θ ∈ [0, 1],u0 and takeφ0 = ∇hu
0, ū0 = u0.

2nd step. For k ≤ Itermax do

φk+1 = ProxηG∗h(φk + η∇h(ū
k));

uk+1 = ProxτFh(uk − τ∇∗h(φk+1));

ūk+1 = uk+1 + θ(uk+1 − uk).

As we pointed out in Section 2.4.3, if θ = 1 and ητ‖∇h‖2 < 1, the sequence
{uk} converges to an optimal solution of (4.11). Contrary to the ALG2 algorithm, the
Chambolle–Pock algorithm does not require to solve a Laplace equation at each itera-
tion, we only need to perform some algebraic operations, namely the multiplication by
apply the gradient and the divergence in each iteration. Moreover, it easy to implement
on Matlab which allows working on images easily contrary to the ALG2 algorithm which
was implemented using FreeFem++ to solve linear PDEs.

In order to compute ProxηG∗h we make use of the celebrated Moreau identity

φ = ProxηG∗h(φ) + ηProxη−1Gh(φ/η), ∀φ ∈ Y.

Moreover, Proxη−1Gh is nothing but the projection ontoB(0, ki,j). Indeed
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4 Primal-Dual Algorithm for Shape from Shading

Proxη−1Gh(ψ) = arg min
q∈Y

1

2
|q − ψ|2 +

1

η
Gh(q)

= arg min
qi,j∈B(0,ki,j)

1

2
|q − ψ|2

= ProjB(0,ki,j)
(ψi,j).

Consequently, (
ProxηG∗h(ψ)

)
i,j

= ψi,j − ηProjB(0,ki,j)
(ψi,j/η).

Let us now compute the proximal operator ofFh. We have

ProxτFh(u) = argmin
v∈X

1

2
‖v−u‖2+τFh(v) = argmin

v=g on Dd

1

2
‖v−u‖2−τh2

m∑
i=1

n∑
j=1

vi,j.

Writing the �rst-order optimality condition we get

(ProxγFh(u))i,j−ui,j−τh2 = 0⇔ (ProxγFh(u))i,j = ui,j+τh
2,∀i = 1, ...,m, j = 1, ..., n.

So in practice, we update un+1 via the previous formula and we then set its values to g on
the Dirichlet domain.

For applications in image, as usual, one can always assume that h = 1 since it only
scales the domain. The details of the 2nd step in Algorithm 1 are then given by

• compute φk+1:

φ̄k+1 = φk + η∇hū
k

φk+1
i,j = φ̄k+1

i,j − ηProjB(0,ki,j)
(φ̄k+1

i,j /η), 1 ≤ i ≤ m, 1 ≤ j ≤ n;

• compute uk+1:

vk+1 = uk + τdivh(φk+1)

uk+1
i,j = vk+1

i,j + τ, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Remark 4.8. Another way to formulate the problem (M) (in the continuous setting) is
to take

F(u) = −
∫

Ω

udx, and G(q, v) =

{
0 if |q| ≤ k and v = g on ∂Ω

∞ otherwise,
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for all u ∈ W 1,∞(Ω), and (q, v) ∈ L∞(Ω)d × L2(∂Ω). In this case, the problem (M)
can be rewritten as

inf
u
F(u) + G(K(u))

whereK = (∇, γ0), and γ0 is the trace operator on the boundary. This being said, at the
second step of the Algorithm 2 we need to compute γ∗0 which turns requiring to solve a
PDE. Indeed, we de�ne

γ0 : H1(Ω)→ L2(∂Ω)

through γ0(u) = u|∂Ω for every u ∈ H1(Ω). By de�nition, for any (u, v) ∈ H1(Ω) ×
L2(∂Ω)

〈γ0u, v〉L2(∂Ω) = 〈u, γ∗0v〉H1(Ω).

This means that ∫
∂Ω

uvdS =

∫
Ω

u(γ∗0v)dx+

∫
Ω

∇u∇(γ∗0v)dx

for any u ∈ H1(Ω). In other words γ∗0v solves the following PDE

−∆z + z = 0 in Ω and ∂nz = v on ∂Ω.

Thus we opt for the �rst formulation in order to avoid additional costs to the computa-
tions.

4.4.2 Error criterion
As usual, we can check the optimality conditions (4.8) associated to (M)d and (OF)d.
Namely we check the following conditions:

• Divergence error: ‖ − divh(φ)− 1‖2.

• Dual error: ‖σ(x, φ)−∇hu · φ‖1.

• Lip error: supi,j σ
∗(ih, jh,∇hui,j).

We expect Divergence error and Dual error to be small. Note that for vertical light di-
rection, the support function σ is easy to compute. More particularly, one has for every
p ∈ Rd, σ(x, p) = k(x)|p|where |p| is the euclidean norm of p. Thus, for the Lip error,
we can check the value supi,j(‖∇hui,j‖ − ki,j) and expect it to be close to zero.

4.4.3 Numerical examples
We test for some commonly used images: Mozart and vase images taken from [104] and
Basilica and vaso images taken from [50].
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4 Primal-Dual Algorithm for Shape from Shading

In these cases, the shapes are reconstructed by solving the Eikonal equation
|∇u(x, y)| = k(x, y) in 2D with g ≡ 0, i.e, with homogeneous Dirichlet boundary
condition u = 0 on ∂Ω. The algorithm was implemented in Matlab and executed on a
2,3 GHz CPU running macOs Catalina system.

Figure 4.3: Left to right: Initial image, the reconstructed shape
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Figure 4.4: Error criterion for 5000 iterations and τ = 0.01 and η = 8/τ
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Figure 4.5: Left to right: Initial image, the reconstructed shape
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Figure 4.6: Error criterion for 5000 iterations and τ = 0.01 and η = 8/τ
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(a)

(b)

Figure 4.7: Left to right: Initial image, the reconstructed shape
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Figure 4.8: Error criterion for 5000 iterations and τ = 0.001 and η = 8/τ
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(a)

(b)

Figure 4.9: Left to right: Initial image, the reconstructed shape
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Figure 4.10: Error criterion for 5000 iterations and τ = 0.001 and η = 8/τ

Shape Execution Time
vase 20.10s
vaso 76.03s

Mozart 76.82s
Basilica 79.31s

Let us mention that for most shapes, only a hundred of iterations is enough to recon-
struct a reasonable solution. We took 5000 iterations in order to check that the error
criteria are getting smaller.
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4 Primal-Dual Algorithm for Shape from Shading

4.5 Comments and extensions
Let us mention that our strategy works (at least theoretically) to a general light direction.
In this case one has to solve a PDE of the form{

H(x,∇u) = 0 in Ω

u = 0 on ∂Ω
(4.12)

Similarly, the maximal viscosity subsolution of (4.12) can be recovered via the following
maximization problem

(M)g : max
u∈W 1,∞(Ω)

{∫
Ω

udx : σ∗(x,∇u) ≤ 1, u = 0 on ∂Ω

}
.

Contrary to the case where the object is enlightened vertically, i.e., ` = (0, 0, 1), where
the ProxG∗ in Algorithm 1 involved projections on euclidean balls, in this general case we
need to be able to project on

Z(x) = {p ∈ Rd : σ∗(x, p) ≤ 1},

for every x ∈ Ω. To this end, one can use the following result.

Theorem 4.9. [13] Let Z = {p ∈ Rd : H(p) ≤ c} where c ∈ R and H : Rd →
(−∞,∞] is a convex, proper function. If there exists p̄ ∈ Rd such thatH(p̄) < c then

ProjZ(p) =

{
Projdom(H)(p) ifH(Projdom(H)(p)) ≤ c

Proxη̄H(p) otherwise.
(4.13)

where η is any positive root of the equation f(η) := H(ProxηH(p))− c = 0.

Taking ` = (1, 0, 1) as light direction in (4.2), we obtain the following Hamiltonian

H(x,∇u) = I
√

1 + |∇u|+ ∂x1u− 1,

for whichZ(x1, x2) = {p ∈ R2 : I(x1, x2)
√

1 + |∇u(x1, x2)|+∂x1u(x1, x2) ≤ 1}.
A priori there is no closed form for the support function σ of Z and its dual σ∗, so in
future works, we are planing to investigate and propose methods to perform e�ciently
projections of the form (4.13), and to adapt our techniques for non-Lambertian surfaces.
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5 Beckmann problem and HJ
equations

5.1 Introduction

Our main interest here lies in the study of the connection between HJ equations of the
type {

H(x,∇u(x)) = 0 in Ω

u = g onD ⊂ Ω.
(5.1)

and the Beckmann problem as well as the Monge-Kantorovich problem in the case where
H is a Hamiltonian satisfying the assumptions (H1)-(H3) recalled in 2.1. Recall that
Beckmann’s problem is a divergence PDE-constrained optimization problem. It is im-
portant in the study of transportation activities. As to the Monge-Kantorovich problem,
it consists in �nding the best way to push forward between two given measures (usu-
ally called goods and consumers) related to some cost function. It is a linear optimiza-
tion problem which appears in the study of optimal transportation and allocation of re-
sources.

Following our presentation in Section 2.2, consider two nonnegative Radon measures
ρ1 and ρ2 representing the distributions of resident and services, and let Φ : Ω → RN

be the tra�c �ow satisfying the equilibrium condition:

− div(Φ) = ρ := ρ2 − ρ1 inD′(Ω),

together with the no-�ux boundary condition, i.e., Φ · n = 0 on ∂Ω. Now, given a
non-degenerate Finsler metric F , and assume that the transportation cost per costumer
is F (x,Φ(x)), then Beckmann’s problem reads

inf
Φ∈L1(Ω)N

{∫
Ω

F (x,Φ(x)) dx : − div(Φ) = ρ2 − ρ1 inD′(RN)

}
.
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5 Beckmann problem and HJ equations

Moreover, thanks to Thereom 2.16 we have duality (see e.g.[16, 65, 67, 94] for details) with

min

{∫∫
Ω×Ω

dF (x, y) dµ : π1#ρ = ρ1, π2#ρ = ρ2

}
= max

{∫
Ω

u d(ρ2 − ρ1) : u(y)− u(x) ≤ dF (x, y) for all x ∈ Ω

}
,

(5.2)

where dF (x, y) := inf
ϕ∈Lip([0,1],Ω)
ϕ(0)=x, ϕ(1)=1

∫ 1

0
F (ϕ(t), ϕ′(t))dt. In the next section we show how

to provide similar results from our formulation to the solution of (5.1).

5.2 Hamilton-Jacobi equation and Beckmann’s
problem

The connection between HJ equation coupled with a Dirichlet condition (5.1) and Beck-
mann’s problem is not straightforward.

In the case whereH(x, p) = |p| − k(x) (i.e., the Eikonal equation |∇u(x)| = k(x))
complemented with Dirichlet boundary condition u = g on ∂Ω, the viscosity solution
of (5.1) can be characterized through the following optimization problem

max

{∫
Ω

u dx : u(x)− u(y) ≤ dk(y, x) and u = g on ∂Ω

}
,

where dk is given by

dk(x, y) = inf

{∫ 1

0

k(ϕ(t)) |ϕ′(t)| dt : ϕ ∈ Lip([0, 1],Ω), ϕ(0) = x, ϕ(1) = 1

}
.

Thanks to Kantorovich duality, it is meaningful to consider this problem as some kind of
push-forward of ρ1 := LN Ω. The o�set is clearly connected to the lack of a measure ρ2

which can �t out the problem with the balanced property. Actually, the linked Beckmann
and Monge-Kantorovich problems aim to �nd moreover the optimal ρ2 concentrated on
∂Ω which will consume ρ1 := χΩ. More precisely, we will prove that the problem is
connected to

min
ν∈Mb(∂Ω)

max
u

{∫
Ω

u(dx− dν)−
∫
∂Ω

g dν : u is 1− Lipschitz w.r.t dk
}
,
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5.2 Hamilton-Jacobi equation and Beckmann’s problem

which provides the following modi�ed Beckmann problem

min
ν∈Mb(∂Ω)

inf
Φ∈L1(Ω)N

{∫
Ω

k(x) |Φ|(x) dx+

∫
∂Ω

g dν : − div(Φ) = 1− ν inD′(RN)

}
.

as well as to the following modi�ed Monge-Kantorovich problem

min
γ∈M+(Ω×Ω),ν∈Mb(∂Ω)

{∫
Ω×Ω

dk(x, y)dγ(x, y)+

∫
∂Ω

gdν : π1]γ = ν+, π2]γ = 1+ν−
}
.

For the general case of degenerate HamiltonianH,we will also obtain the correspond-
ing results by means of the intrinsic distance dσ associated to the Hamiltonian H (see
(2.8)).

The main result of this chapter is the rigorous treatment for the case of degenerate
HamiltionianH and its degenerate intrinsic metric dσ, as well as non-zero Dirichlet con-
dition. Moreover, we also illustrate numerical examples.

Again, recall that we are considering the following HJ equation{
H(x,∇u) = 0 in Ω

u = g on D
(5.3)

a closed subsetD ⊂ Ω (typicallyD = ∂Ω orD = ω for someω ⊂⊂ Ω) and g : D → R
is a continuous function satisfying the compatibility condition

g(x)− g(y) ≤ dσ(y, x) for any x, y ∈ D.

Thanks to Proposition 2.9, the unique maximal viscosity subsolution of the equation
(5.3) can be recovered via the following maximization problem

max

{∫
Ω

u dx : u(x)− u(y) ≤ dσ(y, x), ∀x, y ∈ Ω and u = g onD
}
, (5.4)

where dσ(., .) is the intrinsic distance associated to the Hamiltonian de�ned by (2.8).

5.2.1 Main results

In order to prove the connection between (5.4) and a Beckmann-type problem, we will
consider a slightly more general variant of (5.4) by considering for ρ ∈ Mb(Ω), the
following maximization problem

(MD) : max

{∫
Ω

u dρ : u(y)− u(x) ≤ dσ(x, y), ∀x, y ∈ Ω and u = g onD
}
.
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5 Beckmann problem and HJ equations

We can clearly see that the solution of (5.4) can be recovered by taking ρ ≡ 1.

The connection with the Beckmann problem is given in the following theorem.

Theorem 5.1. The optimization problem (MD) coincides with the following Beckmann-
type problem

(BK) : min
φ∈Mb(Ω)N

ν∈Mb(D)

{∫
Ω

σ(x,
φ

|φ|
(x))d|φ|+

∫
D

gdν : − div(φ) = ρ− ν in D′(RN)

}
.

Moreover, u and (φ, ν) are optimal solutions to (MD) and (BK), respectively, if and only
if 

− div(φ) = ρ− ν in D′(RN)

φ(x) · ∇|φ|u(x) = σ
(
x, φ|φ|(x)

)
|φ| − a.e. x

u = g on D,

where∇|φ|u denotes the tangential gradient with respect to |φ|, the total variation of φ (cf.
[18]).

In particular, we have the following.

Corollary 5.2. Let u be the maximal viscosity subsolution to (3.1) and (φ, ν) an optimal
solution to (BK) with ρ = 1, then

− div(φ) = 1− ν in D′(RN)

φ(x) · ∇|φ|u(x) = σ
(
x, φ|φ|(x)

)
|φ| − a.e. x

u = g on D.

For the case of non-degenerate Finsler metric σ (i.e., H(x, 0) < 0) we know that, by
(5.2), the minimal value of (BK) is the same with e have (see [36] for the particular case
σ = |.|)

min
φ∈Mb(Ω)N

{∫
Ω

σ(x,
φ

|φ|
(x))d|φ| : − div(φ) = ρ− ν in D′(RN)

}
= Wdσ(ρ−+ν+, ρ++ν−)

the so called Monge-Kantorovich work between ν and ρ given by

Wdσ(ρ−+ν+, ρ++ν−) = min
γ∈M+(Ω×Ω)

{∫
Ω×Ω

dσ(x, y)dγ(x, y) : π1]γ = ρ− + ν+, π2]γ = ρ+ + ν−
}
.
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5.2 Hamilton-Jacobi equation and Beckmann’s problem

Moreover, recall that the Robinstein-Kantorovich duality implies that

Wdσ(ρ− + ν+, ρ+ + ν−) = max
u

{∫
Ω

ud(ρ− ν) : u is 1− Lipschitz w.r.t dσ
}
.

So, minimizing over all ν ∈M(D) leads to the study of the following problem

(MN) : min
ν∈Mb(D)

max
u

{∫
Ω

ud(ρ− ν) +

∫
D

gdν : u is 1− Lipschitz w.r.t dσ
}
,

as well as Monge-Kantorovich problem

(MK) : min
γ∈M+(Ω×Ω),ν∈Mb(D)

{∫
Ω×Ω

dσ(x, y)dγ(x, y)+

∫
D

gdν : π1]γ = ρ−+ν+, π2]γ = ρ++ν−
}
.

The following theorem ensures that the above-mentioned relations still hold true for the
case of degenerate HJ equation, i.e.,H(x, 0) ≤ 0.

Theorem 5.3. Under the assumptions (H1-H3), we have

max(MD) = min(BK) = min(MN) = min(MK).

As a typical example we will consider an HJ equation of Eikonal type, coupled with a
zero Dirichlet boundary condtion,{

|∇u(x)| = k(x) in Ω

u = 0 on ∂Ω.

In other words, H(x, p) = |p| − k(x) where k is a continuous, nonnegative function
on Ω. In this case, the problem (MD) can be rewritten as

sup

{∫
Ω

udx : |∇u| ≤ k and u = 0 ∂Ω

}
,

or
(P) : inf

u∈V
{F(u) + G(Λu)}

where V = C1(Ω) ∩H1
0 (Ω),

F(u) = −
∫

Ω

udx, Λu = ∇u and G(q) =

{
0 if |q| ≤ k

+∞ otherwise.

For the case of non-degeneracy, i.e., k(x) > 0 on Ω, the Fenchel-Rockafellar duality,
since the quali�cation conditions are satis�ed (see e.g. [42, Theorem III 4.1]), gives
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5 Beckmann problem and HJ equations

sup

{∫
Ω

udx : |∇u| ≤ k and u = 0 on ∂Ω

}
= min

φ∈Mb(Ω)N

{∫
Ω

k d|φ| : − div(φ) = ρ inD′(Ω)

}
.

However, dealing with general degenerate Hamiltionians at least two di�culties arise.
Firstly, the quali�cation conditions are not satis�ed to apply directly the Fenchel-
Rockafellar duality. Secondly, in this setting the problem (BK) is not coercive, it follows
that the existence of an optimal solution to (BK) is not trivial. These two issues will be
bypassed via approximation and optimal transport techniques.

Before ending this section, let us mention that thanks to the duality result Chapter 3,
we have the following

Corollary 5.4. The extremal values (BK) and

(OFD) : inf
φ∈DMp(Ω)

{∫
Ω

σ(x, φ(x))dx− 〈φ · n, g〉 : −div(φ) = ρ in D′(Ω)

}
,

coincide.

The formulation of the problem (OFD) as well as the de�nition of DMp(Ω) and
further comments are recalled in Remark 5.8.

5.3 Proofs

5.3.1 Preparatory results
Let ν ∈ Mb(D) satisfy ρ(Ω) = ν(D). We de�ne two functionals T : L1(Ω)N 7→
R ∪ {+∞} and E : Lip(Ω) 7→ R ∪ {−∞} de�ned by:

T : φ 7→ T (φ) =


∫

Ω
σ(x, φ(x))dx if− div(φ) = ρ− ν inD′(RN)

+∞ otherwise,

E :, u 7→ E(u) =


∫

Ω
ud(ρ− ν) if σ∗(x,∇u(x)) ≤ 1 a.e. x ∈ Ω

−∞ otherwise.

Lemma 5.5. Assume that σ is a degenerate Finsler metric. Let T , E be defined as above
and ρ(Ω) = ν(D). Then

inf
φ∈L1(Ω)N

T (φ) = sup
u∈Lip(Ω)

E(u).
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5.3 Proofs

Proof. The proof will be divided into two steps. We �rst prove for the case of non-
degenerate Finsler metric σ, i.e., there exist two positive constantsK1, K2 such that

K1|p| ≤ σ(x, p) ≤ K2|p| for any x ∈ Ω, p ∈ RN .

In this setting, due to the non-degeneracy of σ, the quali�cation conditions are satis�ed
and the result follows directly from the Fenchel-Rockafellar duality (see e.g. [42, Theorem
III 4.1]). For the general case, we check at once that sup E ≤ inf T by taking u as a test
function in the divergence constraint−div(φ) = ρ−ν inD′(RN). Therefore, it remains
to prove that

inf T ≤ sup E . (5.5)

We now proceed by an approximation via non-degenerate Finsler metrics. Forn ∈ N∗
and x ∈ Ω, de�ne

σn(x, p) := max(σ(x, p),
|p|
n

) for every p ∈ RN ,

which establishes a sequence of non-degenerate Finsler metrics σn on Ω satisfying

|p|
n
≤ σn(x, p) ≤ K|p| for some constantK > 0.

Thanks to [35, Thereom 5.1], we have that dσn → dσ in the space of Finsler distances
endowed with the topology induced by uniform convergence on compact subsets of Ω×
Ω. To prove the inverse inequality (5.5), let us introduce for n ∈ N∗ the functionals

Tn : L1(Ω)N 7→ R ∪ {+∞}, φ 7→


∫

Ω
σn(x, φ(x))dx if − div(φ) = ρ− ν inD′(RN)

+∞ otherwise,

En : Lip(Ω) 7→ R ∪ {−∞}, u 7→


∫

Ω
ud(ρ− ν) if σ∗n(x,∇u(x)) ≤ 1 a.e. x ∈ Ω

−∞ otherwise.

It follows from the non-degeneracy of σn and the �rst step of the proof that inf Tn =
sup En. We are now in a position to show that sup En → sup E as n→∞. Let un be a
maximizer for En, i.e., sup En =

∫
Ω
und(ρ − ν) and σ∗n(x,∇un(x)) ≤ 1 a.e. in Ω. Fix

x0 ∈ Ω. Since ρ(Ω) = ν(D), we see that un := un − un(x0) is still a maximizer. Thus
we can assume that un(x0) = 0 for any n. Since

un(y)− un(x) ≤ dσn(x, y) ≤ K|x− y| in Ω× Ω,
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5 Beckmann problem and HJ equations

{un} is equi-Lipschitz continuous. By Ascoli-Arzelà’s theorem, there exists a Lipschitz
function u such that, up to a subsequence, un ⇒ u uniformly in Ω. Since dσn → dσ as
n → ∞ we deduce that u is admissible for E , i.e. u(y) − u(x) ≤ dσ(x, y) in Ω × Ω.
Consequently

lim
n

(sup En) = lim
n

∫
Ω

und(ρ− ν) =

∫
Ω

ud(ρ− ν) ≤ sup E ,

and
inf T ≤ lim

n
(inf Tn) ≤ sup E

as claimed in (5.5).

Before ending up this subsection, we recall the notion of disintegration of measures
which will be useful in the proof of existence of optimal solution to the Beckmann-type
problem.

Theorem 5.6. (cf. [94]) Let X, Y be locally compact metric spaces and π : X → Y a
Borel map. For any η ∈ M+

b (X) there exist a family of probability measures (ηy)y∈Y
on X concentrated on π−1({y}) such that for any test function u ∈ C(X), the mapping
y 7→

∫
X
udηy is Borel measurable and∫

X

u(x)dη(x) =

∫
Y

∫
X

u(x)dηy(x)dπ]η(y).

5.3.2 Proofs of the main results

We get started with the proof of Theorem 5.1 by the following result.

Proposition 5.7. We have

max(MD) = inf(BK) = inf (̃BK),

where

(̃BK) : inf
φ∈L1(Ω)N ,ν∈Mb(D)

{∫
Ω

σ(x, φ(x))dx+

∫
D

gdν : − div(φ) = ρ−ν in D′(RN)
}
.

Proof. First observe that

max(MD) ≤ inf(BK) ≤ inf (̃BK). (5.6)
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Indeed, take u satisfying σ∗(x,∇u(x)) ≤ 1 a.e. x in Ω, u = g onD as a test function in
the divergence constraint− div(φ) = ρ− ν in D′(RN), we get∫

Ω

udρ =

∫
Ω

φ

|φ|
· ∇ud|φ|+

∫
D

gdν ≤
∫

Ω

σ

(
x,

φ

|φ|
(x)

)
d|φ|+

∫
D

gdν.

This implies (5.6).

So, it is su�cient to show the duality between (MD) and (̃BK), i.e. max(MD) =

inf (̃BK). We use a perturbation technique as in [36]. De�ne on C(D) the following
functional

F : v ∈ C(D) 7→ −max
u

{∫
Ω

udρ : u ∈ Lip(Ω), σ∗(x,∇u(x)) ≤ 1, u+v = g on D
}
,

which is well-de�ned. Let us show that F is convex and l.s.c.. Consider v1, v2 ∈ C(D)
and set v = tv1 + (1 − t)v2 for t ∈ [0, 1]. Let u1, u2 ∈ Lip(Ω) be two maximizers
corresponding to v1 and v2 respectively, i.e. σ∗(x,∇ui(x)) ≤ 1, ui + vi = g onD and

F (vi) = −
∫

Ω

uidρ for i = 1, 2.

De�ne u = tu1 + (1 − t)u2. It is evident that u + v = g on D. And using the
homogeneity of σ∗, we obtain σ∗(x,∇u) ≤ tσ∗(x,∇u1) + (1− t)σ∗(x,∇u2) ≤ 1 so
that u is admissible for v. Finally, we get

F (v) ≤ −
∫

Ω

udρ = t

(
−
∫

Ω

u1dρ

)
+(1−t)

(
−
∫

Ω

u2dρ

)
= tF (v1)+(1−t)F (v2),

which proves the convexity. For the lower semicontinuity, take a sequence vn ⇒ v uni-
formly on D. For every n ∈ N, consider a maximizer un corresponding to vn such that
un + vn = g on D, un are 1-Lipschitz w.r.t. dσ (i.e., un(y) − un(x) ≤ dσ(x, y) or
equivalently, σ∗(x,∇un(x)) ≤ 1 a.e. x ∈ Ω), and

F (vn) = −
∫

Ω

undρ.

Since un(y) − un(x) ≤ dσ(x, y) ≤ K|x − y|, the functions un are equi-Lipschitz in
the Euclidean distance. Since the sequence {vn} is convergent, it is bounded on D, and
so is the sequence {un}. By Ascoli-Arzelà ’s theorem, there exists a Lipschitz function
u such that un ⇒ u uniformly in Ω as n → ∞. It is clear that u + v = g on D and
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u(y)−u(x) ≤ dσ(x, y), i.e. u is admissible for v. The lower semicontinuity is completed
by

F (v) ≤ −
∫

Ω

udρ = lim
n→∞

−
∫

Ω

undρ = lim inf
n→∞

F (vn).

SinceF is convex and l.s.c., we haveF = F ∗∗, in particularF (0) = F ∗∗(0). Let us �nish
the proof by computing F ∗ and F ∗∗. For any ν ∈Mb(D),we see that

F ∗(ν) = sup
v∈C(D)

∫
D

vdν − F (v)

= sup
v∈C(D), u∈Lip(Ω)

{∫
D

vdν +

∫
Ω

udρ : σ∗(x,∇u(x))) ≤ 1, u+ v = g on D

}

= sup
u∈Lip(Ω)

{∫
Ω

udρ+

∫
D

(g − u)dν : σ∗(x,∇u(x))) ≤ 1, g − u ∈ C(D)

}
.

For any constant c ∈ R and a Lipschitz extension g̃ of g, one can see that u := g̃ + c is
an admissible test function in the de�nition of F ∗(ν) and∫

Ω

udρ+

∫
D

(g − u)dν = c(ρ(Ω)− ν(D)) +

∫
Ω

g̃ dρ.

So, if ρ(Ω) 6= ν(D), then F ∗(ν) = +∞.This implies that

F ∗(ν) =


supu∈Lip(Ω)

{∫
Ω
udρ+

∫
D

(g − u)dν : σ∗(x,∇u(x))) ≤ 1
}

if ν(D) = ρ(Ω)

+∞ otherwise.

Following Lemma 5.5, for any ν ∈Mb(D) such that ν(D) = ρ(Ω),we have

F ∗(ν) = sup
u∈Lip(Ω)

{∫
Ω

udρ+

∫
D

(g − u)dν : σ∗(x,∇u(x))) ≤ 1
}

=

∫
D

gdν + sup
u∈Lip(Ω)

{∫
Ω

ud(ρ− ν) : σ∗(x,∇u(x))) ≤ 1
}

=

∫
D

gdν + inf
φ∈L1(Ω)N

{∫
Ω

σ(x, φ(x))dx : − div(φ) = ρ− ν inD′(RN)
}

= inf
φ∈L1(Ω)N

{∫
Ω

σ(x, φ(x)) dx+

∫
D

gdν : − div(φ) = ρ− ν inD′(RN)
}
.
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Consequently,

max(MD) = −F (0) = −F ∗∗(0) = − sup
ν∈Mb(D)

−F ∗(ν) = inf (̃BK).

Remark 5.8. Following our approach in Chapter 3, it is possible to show that the optimal
ν in (BK) is somehow related to the trace of the optimal �ow φ. For completeness let
us recall brie�y some of the main ingredients we used, and for a simpler presentation,
consider the case whereD = ∂Ω. Then we prove in [56] the duality between (MD) and

(OFD) : inf
φ∈DMp(Ω)

{∫
Ω

σ(x, φ(x))dx− 〈φ · n, g〉 : −div (φ) = ρ in D′(Ω)

}
,

where we de�ne for 1 ≤ p ≤ ∞,

DMp(Ω) :=
{
φ ∈ Lp(Ω)N : div φ =: µ ∈Mb(Ω)

}
,

endowed with the graph norm

‖φ‖DMp(Ω) := ‖φ‖Lp(Ω) + |div φ|(Ω).

The main interest of introducing such a space is to give a sense to the trace term φ · n
which is not always de�ned for a general measure �eld φ. In particular, for any measure
�eld φ ∈ DMp(Ω), one can de�ne a trace φ ·n on ∂Ω as a linear form on Lip(∂Ω) such
that

〈φ · n, ξ/∂Ω〉 =

∫
Ω

ξ divφ+

∫
Ω

∇ξ · φ, for any ξ ∈ C1(Ω).

One can see that, at least formally, ν plays the role of−φ · n in (OFD).

Our aim now is to use the optimal mass transportation interpretation to prove that the
inf in (BK) is actually a min, i.e. the existence of optimal solution to the Beckmann-type
problem (BK).

Proposition 5.9. There exist ν ∈Mb(D) and a vector measure Φ such that− div(Φ) =
ρ− ν inD′(RN) and

inf(BK) ≤
∫

Ω

σ

(
x,

Φ

|Φ|

)
d|Φ|+

∫
D

gdν ≤ min(MK).

In particular we see that min(BK) = max(MD).
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Proof. Take (γ, ν) be a solution of (MK) and de�ne a vector measure Φγ through

< Φγ, v >=

∫
Ω×Ω

∫ 1

0

v(ξ(t))ξ̇(t)dtdγ(x, y) ∀v ∈ C(Ω)N ,

with ξ being a geodesic joining x and y with respect to dσ. Let us check the feasibility of
Φγ for (BK), i.e.

− div(Φγ) = ρ− ν inD′(RN). (5.7)

For anyw ∈ C1(Ω), by de�nition, we have

< Φγ,∇w > =

∫
Ω×Ω

∫ 1

0

dw(ξ(t))

dt
dtdγ(x, y)

=

∫
Ω×Ω

(w(y)− w(x))dγ(x, y)

=

∫
Ω

wd(ρ− ν),

which gives (5.7). The next task is to show that∫
Ω

σ(x,
Φγ

|Φγ|
(x))d|Φγ|+

∫
D

gdν ≤
∫

Ω×Ω

dσ(x, y)dγ(x, y) +

∫
D

gdν.

To do so, for each t ∈ [0, 1], de�ne vector measure Et by setting Et(v) :=∫
Ω×Ω

v(ξ(t))ξ̇(t)dγ(x, y) for v ∈ C(Ω)N . We get Φγ =
1∫
0

Etdt and, by Jensen’s in-

equality, ∫
Ω

σ(x,
Φγ

|Φγ|
(x))d|Φγ| ≤

∫ 1

0

∫
Ω

σ(x,
Et
|Et|

(x))d|Et|dt. (5.8)

Now de�ne πt : (x, y) ∈ Ω × Ω 7→ ξ(t) for t ∈ [0, 1], where ξ is as before, a geodesic
joining x and y. Consider ηt = (πt)]γ. Using disintegration theorem (see Theorem 5.6)
for γ with respect to πt, we can �nd probability measures γz supported on π−1

t ({z})
such that ∫

Ω×Ω

u(x, y)dγ(x, y) =

∫
Ω×Ω×Ω

u(x, y)dγz(x, y)dηt(z). (5.9)

We check at once thatEt << ηt with the density dEt
dηt

(z) =
∫

Ω×Ω
ξ̇(t)dγz(x, y), which

follows from the fact that, for any test function v,∫
Ω

v(z)dEt =

∫
Ω

v(ξ(t))ξ̇(t)dγ(x, y)
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=

∫
Ω×Ω×Ω

v(ξ(t))ξ̇(t)dγz(x, y)dηt(z)

=

∫
Ω

v(z)

∫
Ω×Ω

ξ̇(t)dγz(x, y)dηt(z).

On the other hand, by (5.9) and Jensen’s inequality,∫
Ω×Ω

σ(ξ(t), ξ̇(t))dγ(x, y) =

∫
Ω×Ω×Ω

σ(ξ(t), ξ̇(t))dγz(x, y)dηt(z)

=

∫
Ω×Ω×Ω

σ(z, ξ̇(t))dγz(x, y)dηt(z)

≥
∫

Ω

σ
(
z,

∫
Ω×Ω

ξ̇(t)dγz(x, y)
)

dηt(z)

=

∫
Ω

σ(z,
Et
|Et|

(z))d|Et|(z).

(5.10)

Finally, we observe that since ξ is a geodesic∫
Ω×Ω

dσ(x, y)dγ(x, y) +

∫
D

gdν =

∫
Ω×Ω

∫ 1

0

σ(ξ(t), ξ̇(t))dγ(x, y)dt+

∫
D

gdν

≥
∫ 1

0

∫
Ω

σ(z,
Et
|Et|

(z))d|Et|(z) +

∫
D

gdν (by (5.10))

≥
∫

Ω

σ(x,
Φγ

|Φγ|
(x))d|Φγ|+

∫
D

gdν (by (5.8)).

Consequently

inf(BK) ≤
∫

Ω

σ(x,
Φγ

|Φγ|
(x))d|Φγ|+

∫
D

gdν ≤
∫

Ω×Ω

dσ(x, y)dγ(x, y)+

∫
D

gdν = min(MK).

Proof of Theorem 5.3. By Kantorovich duality, one has max(MN) = min(MK).
Combining this with Propositions 5.7 and 5.9, we conclude that the Beckmann-
type problem (BK) admits an optimal solution and max(MD) = min(BK) =
max(MN) = min(MK).

Proof of Theorem 5.1. The proof of the duality between max(MD) and inf(BK) is fol-
lowed from Proposition 5.7 while the existence of optimal solution to the Beckmann-
type problem (BK) is a consequence of Proposition 5.9 (see also Theorem 5.3). Let
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5 Beckmann problem and HJ equations

us now show the optimality conditions. Indeed, u and (φ, ν) are optimal solutions for
(MD) and (BK), respectively, if and only if∫

Ω

σ(x,
φ

|φ|
(x))d|φ|+

∫
D

gdν =

∫
Ω

udρ,

or ∫
Ω

σ(x,
φ

|φ|
(x))d|φ| =

∫
Ω̄

ud(ρ− ν) =

∫
Ω

φ(x) · ∇|φ|u(x)d|φ|.

This is equivalent to

σ(x,
φ

|φ|
(x)) = φ(x) · ∇|φ|u(x) for |φ|-a.e. x,

as desired.

5.4 Numerical results
As we pointed out in the previous sections, the maximization problem (MD) is linked
to the Monge-Kantorovich type problem (MK). The measure ρ needs not to satisfy the
standard mass balance condition. However, transporting a part of the mass from/to the
Dirichlet region D is allowed. In addition, taking ρ = LN|Ω, (MD) allows recovering
the solution of HJ equation. This was the content of Chapter 3. Here, we will focus
essentially on the solution of (BK).

5.4.1 Formulation of the problem
We set X = W 1,∞(Ω) and Y = L∞(Ω)N × C(D),with

F(u) = −
∫

Ω̄

u dρ, Λu = (∇u, u|D), for any u ∈X

and

G(η, h) =


0 if σ∗(x, η) ≤ 1 and h = g onD

+∞ otherwise,
for any (η, h) ∈ Y .

Thus, we can rewrite the problem (MD) in the form

− inf
u∈X
F(u) + G(Λu).
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Thanks to Theorem (5.3) and Proposition (5.7), we have

−min
{
F(u)+G(Λu) : u ∈X

}
= − sup

{
−F∗(−Λ∗(φ, ν))−G∗(φ, ν)φ ∈ L1(Ω)N , ν ∈Mb(D)

}
= min

φ∈L1(Ω)N ,ν∈Mb(D)

{∫
Ω

σ(x, φ(x))dx+

∫
D

gdν : −div (φ) = ρ− ν in D′(RN)

}
.

Introducing a new primal variable (p, q) ∈ Y , (MD) reads

− inf
(u,(p,q))∈X ×Y

Λu=(p,q)

F(u) + G(p, q).

This allows us to rewrite (MD) and (BK) in a saddle point form

(S ) : min
(u,(p,q))∈X ×Y

sup
φ∈L1(Ω)N ,ν∈Mb(D)

L(u, (p, q);φ, ν)

where

L(u, (p, q);φ, ν) = F(u) + G(p, q) +

∫
Ω

φ · (∇u− p) dx+

∫
D

ν · (u− q)dx.

As usual, it is convenient to consider the following augmented Lagrangian

Lr(u, (p, q);φ, ν) = L(u, (p, q);φ, ν) +
r

2
|∇u− p|2 +

r

2
|u|D − q|2, r > 0,

which has the same saddle points as L. Thus, the problem we will focus on is

(Sr) : min
(u,q)∈X ×Y

sup
φ∈L1(Ω)N ,ν∈Mb(D)

Lr(u, (p, q);φ, ν).

The main di�erence with the above formulation and the one in Section 3.3 is the pres-
ence of an additional Lagrange multiplier ν corresponding to the boundary condition
u = g on D. The resolution of (MD) was used via ALG2 algorithm and was imple-
mented using �nite element method. Up to our knowledge, it is not straightforward to
de�ne �nite element functions ν on a closed subset D (typically D = ∂Ω). In the next
section we explain how to tackle this di�culty.

5.4.2 Practical implementation
As we pointed out in the previous subsection, it is not clear how to solve the saddle point
problem (Sr) via ALG2 algorithm due to the presence of the measure ν on the Dirichlet
region. However, thanks to Corollary 5.4 and Remark 5.8 which shows that ν is some-
how linked to the trace of the optimal �ow φ onD, we can restrict ourselves to a formu-

83



5 Beckmann problem and HJ equations

lation involving only the potential u and the �ow φ. More precisely, for any u ∈X and
η ∈ Z = L∞(Ω),we take

F(u) =


−
∫

Ω
u dρ if u = g onD

+∞ otherwise
, G(η) =


0 if σ∗(x, η) ≤ 1

+∞ otherwise
, and Λu = ∇u.

Thus, following our approach in [56], we can focus on the following saddle point problem

inf
(u,q)∈X ×Z

sup
φ∈DMp(Ω\D)

L(u, q;φ)

where

L(u, q;φ) = F(u)+G(q)+

∫
Ω

φ·(Λ(u)−q)dx, for any (u, q, φ) ∈X ×Z×DMp(Ω\D).

Hence, the augmented Lagrangian reads

Lr(u, q;φ) = F(u)+G(q)+〈φ,Λu−q〉+r

2
|Λu−q|2, for any (u, q, φ) ∈X ×Z×DMp(Ω\D).

5.4.3 Some examples

We take Ω = [0, 1] × [0, 1] and g = 0 on ∂Ω. The �rst three examples are performed
with a Finsler distance dσ of Riemannian type

dσ(x, y) = inf
ζ∈Lip([0,1];Ω)
ζ(0)=x,ζ(1)=y

∫ 1

0

k(ζ(t))|ζ̇(t)|dt.

For the �rst test we take k(x, y) = 1 and ρ+ = 2, ρ− = δ(0.5,0.5).

IsoValue
-0.201262
-0.167517
-0.145021
-0.122524
-0.100028
-0.0775314
-0.055035
-0.0325386
-0.0100422
0.0124543
0.0349507
0.0574471
0.0799435
0.10244
0.124936
0.147433
0.169929
0.192426
0.214922
0.271163

(a)

IsoValue
-0.408451
2.77465
5.95775
9.14085
12.3239
15.507
18.6901
21.8732
25.0563
28.2394
31.4225
34.6056
37.7887
40.9718
44.1549
47.338
50.5211
53.7042
56.8873
60.0704

Vec Value
0
0.0888171
0.177634
0.266451
0.355268
0.444086
0.532903
0.62172
0.710537
0.799354
0.888171
0.976988
1.06581
1.15462
1.24344
1.33226
1.42107
1.50989
1.59871
1.68753

(b)

Figure 5.1: (A): the potential u, (B): the �ow φ.
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In the second test we take ρ+ = 4χ[(x−0.3)2+(y−0.2)2<0.03] and ρ− =

4χ[(x−0.7)2+(y−0.8)2<0.03] and k(x, y) = 5− 3e−2∗((x−0.5)2+(y−0.5)2).

IsoValue
-0.799859
-0.684195
-0.607086
-0.529977
-0.452868
-0.375759
-0.29865
-0.221541
-0.144432
-0.0673228
0.00978628
0.0868954
0.164004
0.241113
0.318223
0.395332
0.472441
0.54955
0.626659
0.819432

(a)

IsoValue
-0.95
-0.85
-0.75
-0.65
-0.55
-0.45
-0.35
-0.25
-0.15
-0.05
0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85
0.95

Vec Value
0
0.0208592
0.0417184
0.0625776
0.0834368
0.104296
0.125155
0.146014
0.166874
0.187733
0.208592
0.229451
0.25031
0.27117
0.292029
0.312888
0.333747
0.354606
0.375466
0.396325

(b)

Figure 5.2: (A): the potential u, (B): the �ow φ.

In the third test we take two Gaussian densities ρ+ = e−40∗((x−0.75)2+(y−0.3)2) and
ρ− = e−40∗((x−0.3)2+(y−0.65)2). We change the distance dσ by taking a degenerate k. In
particular, we choose

k(x, y) =
√

(1− 2x)2(y − y2)2 + (1− 2y)2(x− x2)2χB

whereB = {(x, y) ∈ [0, 1]2 :
√

(x− 0.5)2 + (y − 0.5)2 > 0.25}. We clearly see that
the �ux is concentrated essentially on the region where k vanishes, i.e, on Bc, which in
terms of optimal transport with respect to dσ represents a free transport region.

IsoValue
-0.0331756
-0.0281316
-0.024769
-0.0214064
-0.0180438
-0.0146811
-0.0113185
-0.00795591
-0.00459329
-0.00123067
0.00213195
0.00549457
0.00885719
0.0122198
0.0155824
0.0189451
0.0223077
0.0256703
0.0290329
0.0374395

(a)

IsoValue
-0.95
-0.85
-0.75
-0.65
-0.55
-0.45
-0.35
-0.25
-0.15
-0.05
0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85
0.95

Vec Value
0
0.00953611
0.0190722
0.0286083
0.0381444
0.0476805
0.0572166
0.0667527
0.0762888
0.085825
0.0953611
0.104897
0.114433
0.123969
0.133505
0.143042
0.152578
0.162114
0.17165
0.181186

(b)

Figure 5.3: (A): the potential u, (B): the �ow φ privileging the zero set of k .

In the last test we consider a Finsler metric of cystalline type, namely

σ(v) = max
i=1,··· ,5

v · di

with d1 = (1,−1), d2 = (1,−0.8), d3 = (−0.8, 1), d4 = (−1, 1), d5 = (−1,−1).
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IsoValue
-0.162111
-0.138935
-0.123484
-0.108033
-0.0925827
-0.077132
-0.0616814
-0.0462308
-0.0307801
-0.0153295
0.000121148
0.0155718
0.0310224
0.0464731
0.0619237
0.0773743
0.092825
0.108276
0.123726
0.162353

(a)

IsoValue
-4.22222
-3.77778
-3.33333
-2.88889
-2.44444
-2
-1.55556
-1.11111
-0.666667
-0.222222
0.222222
0.666667
1.11111
1.55556
2
2.44444
2.88889
3.33333
3.77778
4.22222

Vec Value
0
0.101396
0.202792
0.304187
0.405583
0.506979
0.608375
0.70977
0.811166
0.912562
1.01396
1.11535
1.21675
1.31814
1.41954
1.52094
1.62233
1.72373
1.82512
1.92652

(b)

Figure 5.4: (A): the potential u, (B): the �ow φ .

5.5 Comments and extentions

A natural extension one can think of is the HJ equation with double obstacles on the
boundary. More precisely one can consider the equation

H(x,∇u) = 0 on Ω, g1 ≤ u ≤ g2 on ∂Ω

where gi : ∂Ω → R are continuous functions satisfying the compatibility condition
g1(x)− g2(y) ≤ dσ(y, x) for any x, y ∈ ∂Ω.

In order to establish the link between this problem and a Bekmann-type problem, we
consider as previously the following maximization problem

(MD)o : max

{∫
Ω

u dρ : u ∈ W 1,∞(Ω), σ∗(x,∇u) ≤ 1 and g1 ≤ u ≤ g2 on ∂Ω

}
.

Similarly, we can state the following result.

Theorem 5.10. The optimization problem (MD)o coincides with the following
Beckmann-type problem, denoted by (BK)o

min
φ∈Mb(Ω)N

ν∈Mb(∂Ω)

{∫
Ω

σ(x,
φ

|φ|
(x))d|φ|+

∫
∂Ω

g2dν+ −
∫
∂Ω

g1dν− : − div(φ) = ρ− ν inD′(RN)

}
.
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Moreover, u and (φ, ν) are optimal solutions to (MD)o and (BK)o, respectively if and
only if

− div(φ) = ρ− ν in D′(RN)

φ(x) · ∇|φ|u(x) = σ
(
x, φ|φ|(x)

)
for |φ| − a.e. x

g1 ≤ u ≤ g2 on ∂Ω and u = g1 for ν− − a.e. x and u = g2 for ν+ − a.e. x.

Sketch of proof. We de�ne on C(∂Ω) × C(∂Ω) the following functional on C(∂Ω) ×
C(∂Ω) by, for (v, w) ∈ C(∂Ω)× C(∂Ω),

E(v, w) = − sup
{∫

Ω

udρ : u ∈ Lip(Ω), σ∗(x,∇u(x)) ≤ 1, g1 ≤ u+v, u+w ≤ g2 on ∂Ω
}
.

Most of the arguments of Section 5.3 can be reproduced to show that E is convex and
lower semicontinuous, which givesE(0, 0) = E∗∗(0, 0). It follows that max(MD)o =
min(BK)o. We now turn to the optimality conditions. First observe that, for any feasible
u and (φ, ν), we get∫

Ω

udρ =

∫
Ω

∇|φ|u(x)
φ

|φ|
(x)d|φ|+

∫
Ω

udν

≤
∫

Ω

σ(x,
φ

|φ|
(x))d|φ|+

∫
D

g2dν+ −
∫
∂Ω

g1dν−,

(5.11)

where we have used∇|φ|u(x)φ(x) ≤ σ(x, φ|φ|(x)) for |φ| − a.e. x by the fact that u is
1-Lipschitz w.r.t. dσ.

On the other hand, u and (φ, ν) are optimal for (MD)o and (BK)o respectively, if
and only if ∫

Ω

udρ =

∫
Ω

σ(x,
φ

|φ|
(x))d|φ|+

∫
∂Ω

g2dν+ −
∫
∂Ω

g1dν−,

i.e. the equality holds in (5.11), which is equivalent to the system of optimality conditions
as desired.

Let us mention that problems of the form (MD)o and (BK)o can arise when studying
optimal transport problems with some import/export costs on the boundary. In the case
where the transport cost is given by the Euclidean distance c(x, y) = |x− y| (in our case
when considering the Eikonal equation |∇u| = 1) we refer the reader to [82]. In the next
chapter, we will discuss a PDE approach for (MD)o.
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6 HJ equation and Finsler
p-Laplace approximations

6.1 Introduction and remainders

6.1.1 A short survey on OHJ equation

This chapter is concerned with a p-Laplace approach à la Evans-Gangbo [44] to a general
class of the transport problems studied in Chapter 5. As we pointed out in 5.5, we shall
consider the following HJ equation with double obstacles on the boundary:

H(x,∇u) = 0 on Ω, φ ≤ u ≤ ψ on ∂Ω, (6.1)

whereH is a nondegenerate convex Hamiltonian and φ, ψ are continuous functions sat-
isfying

φ(x)− ψ(y) ≤ dH(y, x), ∀x, y ∈ ∂Ω, (6.2)

where dH is the intrinsic metric associated to the HamiltonianH . Let us recall that (6.2)
is a necessary and su�cient condition for the existence of subsolution.

Before presenting in details our problem, let us say few words about some existing
works (essentially close to our setting) dealing with HJ equation with obstacles.

Metric approaches:

In [23], Camilli et al. studied systems of �rst order HJ equation with implicit obstacles.
Amongst their main results, a representation formula for the following OHJ equation

max{H(x,∇u), u− ϕ} = 0 in Ω, (6.3)

coupled with Dirichlet boundary condition

u = g on ∂Ω, (6.4)
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6 HJ equation and Finsler p-Laplace approximations

where ϕ : Ω → R and g : ∂Ω ∪ A → R are continuous functions. More precisely,
they show that when ϕ, g satisfy (2.9), then the unique solution of (6.3)-(6.4) such that
u = min{ϕ, g} on ∂Ω ∪ A is given by

u(x) = min

{
min
∂Ω∪A
{dH(y, x) + g(y)},min

Ω
{dH(y, x) + ϕ(y)}

}
.

We observe here that the equation (6.3) can be rewritten in the form

F (x, u,∇u) = 0 in Ω,

where F (x, t, p) = max{H(x, p), t − ϕ}. The 0-sublevels of F are convex, and thus
(6.3)-(6.4) can be treated using the techniques of [78, 80]. In contrast with (6.3), N.Igbida
proposes in [64] a metric formula to handle the obstacle in the following OHJ equation{

min{H(x,∇u), u− ϕ} = 0 in Ω

u = ϕ in ∂Ω
(6.5)

where ϕ is a continuous function, not necessarily satisfying (2.9). Note that in this case,
the Hamiltonian is of the form F (x, t, p) = min{H(x, p), t − ϕ} , and its 0-sublevels
are not convex in general. So that the metric machinery in [24, 48, 78, 80] doesn’t allow
providing representation formulas of such equations. We will come back to this result in
details in Chapter 7.

Penalization techniques:

Penalization techniques remain a natural approach to deal with obstacle problems for
general PDEs. For a HJ equation of the form

max{F (x, u,∇u), u− ϕ} = 0 in Ω, and u = 0 on ∂Ω, (6.6)

it is convenient to consider the following penalized PDE

−ε∆uε + F (x, uε,∇uε) + αε(uε − ϕ) = 0 in Ω, and uε = 0 on ∂Ω, (6.7)

where αε is a smooth function approximating the monotone graph

α(s) =


0 if s < 0

[0,∞[ if s = 0

∅ if s > 0.
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Then, the standard techniques in [71, 80] allow deriving appropriate estimates on uε and
by passing to the limit as ε→ 0, to recover a viscosity solution of (6.6). In this framework,
we can mention for example the work of Gagnetti et al.[21] where the authors considered
the following obstacle problem

max{u+H(x,∇u), u− ϕ} = 0 in Ω, (6.8)

coupled with homogeneous Dirichlet boundary condition, where ϕ : Ω → R is a
smooth function satisfying ϕ ≥ 0 on ∂Ω and H : Rn × Ω → R is a smooth coer-
cive Hamiltonian. Moreover, they assume the existence of a strict subsolution of (6.8),
i.e, a function w ∈ C1(Ω)× C2(Ω) such that w = 0 on ∂Ω, w ≤ ϕ and

w +H(x,∇w) < 0 in Ω.

They studied a version of (6.7) with F (x, u,∇u) = u + H(x,∇u) and a convex pe-
nalization function αε. They make use of the adjoint method 2 (see [45]) to derive some
useful estimates, with a particular attention to the term ∂εαε(s). This allows them to
show that uε converges uniformly towards a solution u of (6.8) and

‖uε − u‖L∞ ≤ Cε
1
2 ,

where C is a positive constant not depending on ε. They also extend their approach to
the case of coupled systems. We were able to prove similar results for

min{u+H(x,∇u), u− ϕ} = 0 in Ω, (6.9)

by considering the following penalized PDE

−ε∆uε + uε +H(x,∇uε) + fαε(uε − ϕ) = f in Ω, and uε = 0 on ∂Ω,

where f is a positive Lipschitz function and αε(s) = α(s/ε) with α a smooth function
verifying

α
′ ≥ 0, α(s) = 0 for s ≤ 0 and α→ 1 as t→∞.

However, it is not clear to us how to obtain similar results both for (6.8)-(6.9) without a
zero order term, i.e, when the Hamiltonians is of the form F (x, u,∇u) = H(x,∇u).

To end this section, let us mention that in addition to optimal stopping problems,
obstacle HJ equations arise typically in the vanishing viscosity limit of HJ equation with
incompatible boundary conditions (see e.g [80, Chapter 6]).

2The method consists essentially in considering a linearization of (6.7) and then study the adjoint of the
linearization operator.
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6 HJ equation and Finsler p-Laplace approximations

In this chapter, we are more concerned with HJ equation with double obstacles on
the boundary (6.1). We will come back to obstacle problems of the form (6.5) in the next
chapter.

Recall that our starting point is a problem of the form

H(x,∇u) = 0 on Ω, φ ≤ u ≤ ψ on ∂Ω.

Thanks to Theorem 3.2, the maximal viscosity subsolution of (6.1) can be recovered via
the following maximization problem

max
{∫

Ω

udx : σ∗(x,∇u) ≤ 1 a.e., φ ≤ u ≤ ψ on ∂Ω
}
, (6.10)

where σ∗ is the dual of the support function of the 0-sublevel sets of the Hamiltonian
H . Considering

∫
Ω
udρ in (6.10) instead of

∫
Ω
udx for some ρ ∈ L2(Ω), this problem

can easily be linked to a mass transport problem with boundary costs. Our aim is to
construct a solution of this (6.10) as well as the optimal �ow of the associated Beckmann
problem using the Evans-Gagbo machinery. Before presenting the problem and the main
ingredients, let us give a broad overview on this p-Laplace approach.

6.1.2 Reminders on the Evans-Gangbo approach

Given a Borel measure ρwith
∫

Ω
dρ = 0, and consider the Kantorovich problem

min
γ∈M+(Ω×Ω)

{∫
Ω×Ω

|x− y|dγ(x, y) : (πx)]γ = ρ+, (πy)]γ = ρ−
}
, (6.11)

as well as the associated Kantorovich–Rubinstein problem

max
{∫

Ω

udρ : u ∈ Lip1(Ω)
}
. (6.12)

In the case where ρ ∈ L1(Ω), the optimal solution of (6.12), usually called Kantorovich
potential, can be obtained via PDE method in the celebrated paper of Evans-Gangbo [44].
More precisely, they prove that when supp(ρ+)∩ supp(ρ−) = ∅, the solutionu of (6.12)
is the uniform limit of up, where up is the solution of{

−∆pup = ρ inB(0, R)
up = 0 on ∂B(0, R),
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for some large R > 0. Moreover, there exists a function σ ∈ L1(Ω) such that (σ, u)
solves the following Monge–Kantorovich system

−div(σ∇u) = ρ in Ω
|∇u| ≤ 1 in Ω
|∇u| = 1 σ − a.e.

and the vector measure Φ = σ∇u solves Beckmann problem

inf
Φ∈M(Ω)N

{∫
Ω

d|Φ| : −div(Φ) = ρ inD′(Ω)
}
. (6.13)

Moreover, all the optimal values coincide

min (6.11) = inf (6.13) = max (6.12).

Variants of (6.11) with boundary costs were addressed in [82] where the boundary costs
can be seen as some import/export taxes. Similar results were obtained in [40] with some
weighted Euclidean distance as a cost. The use of PDE techniques à la Evans–Gangbo in
the Finsler framework was addressed recently in [65]. It is well known that Finsler metrics
generalise the Riemannian ones and are of main interest in the study of optimal transport
and minimal �ow problems since they allow considering anisotropy, obstacles...

In this chapter we consider a Finsler variants of (6.12)-(6.13) with the presence of
boundary costs. We consider some suitable variational p-Laplace problems to provide
a solutions to these problems.

6.1.3 Reminder on Finsler metrics

Let Ω be a bounded open subset of RN , a Finsler metric is a continuous function H :
Ω × RN → [0,∞) such that H(x, .) is convex, and positively 1−homogeneous in the
second variable, that is,H(x, tp) = tH(x, p) for every t ≥ 0.
We de�ne the dual of a Finsler metricH (which is also a Finsler metric) by

H∗(x, q) = sup
H(x,p)≤1

〈p, q〉 = sup
p 6=0

〈p, q〉
H(x, p)

.

Throughout this chapter, we assume that H is a non-degenerate Finsler metric, that
is, there exist a, b > 0 such that

a|p| ≤ H(x, p) ≤ b|p| (6.14)
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6 HJ equation and Finsler p-Laplace approximations

for all (x, p) ∈ Ω× RN . Similarly, we have

ã|q| ≤ H∗(x, q) ≤ b̃|q| (6.15)

for some ã, b̃ > 0.

Note that a Finsler metric is not symmetric in general. Moreover, we have the Cauchy–
Schwarz like inequality

〈p, q〉 ≤ H(x, p)H∗(x, q). (6.16)

Every Finsler metric induces a Finsler distance via the so called length (or action) func-
tional. The action of a Lipchitz curve ξ ∈ Lip([0, 1]; Ω) is de�ned through

AH(ξ) =

∫ 1

0

H(ξ(s), ξ̇(s))ds. (6.17)

The induced distance dH by the action functional (6.17) reads as

dH(x, y) = inf
ξ∈Γ(x,y)

AH(ξ)

where Γ(x, y) = {ξ ∈ Lip([0, 1]; Ω) : ξ(0) = x, ξ(1) = y} and Lip([0, 1]; Ω) is the
set of Lipschitz continuous functions u : [0, 1]→ Ω.

Assuming that H∗(x, .) is di�erentiable on Rn \ {0}, we have thanks to Euler’s ho-
mogeneous function theorem (see e.g [85])

∂ξH
∗(x, p) · p = H∗(x, p) for any p ∈ RN , (6.18)

and by convexity ofH∗, we have

∂ξH
∗(x, p) · q ≤ H∗(x, q) for any p, q ∈ RN ,

so that, by (6.15)

|∂ξH∗(x, p) · q| ≤ b̃|ζ| for any p, q ∈ RN . (6.19)

Finally, we have
H(x, ∂ξH

∗(x, p)) = 1 for any p ∈ RN .

For details and additional properties we refer to [97].
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6.1.4 Presentation of the problem

Given φ, ψ ∈ C(∂Ω) satisfying

φ(x)− ψ(y) ≤ dH(y, x) for all x, y ∈ ∂Ω, (6.20)

we consider the following variant of Kantorovich-Rubinstein problem

(KR)H : max
{∫

Ω

udρ : H∗(x,∇u) ≤ 1 a.e., φ ≤ u ≤ ψ on ∂Ω
}
.

Using perturbation techniques as in Chapter 3 (see also [43, Theorem 5.12]), we can derive
the following variant of Beckmann’s problem

(B)H : min
Φ∈MN (Ω),ν∈M(∂Ω)

{∫
Ω

H(x,
Φ

|Φ|
)d|Φ|+

∫
∂Ω

ψdν−−
∫
∂Ω

φdν+ : −div(Φ) = ρ+ν inD′(RN)
}
,

as well as the associated Kantorovich problem

(K)H : min
γ∈Π(ρ+,ρ−)

{∫
Ω×Ω

dH(x, y)dγ(x, y)+

∫
∂Ω

ψ(y)d(πy)]γ−
∫
∂Ω

φ(x)d(πx)]γ
}
,

where Π(ρ+, ρ−) = {γ ∈ M+(Ω × Ω) : (πx)]γ Ω = ρ+, (πy)]γ Ω = ρ−}.
The existence of optimal solution to (K)H can be obtained using the direct method of
calculus of variations. Moreover, all the extremal values coincide:

min(B)H = min(K)H = max(KR)H .

Our aim is to show, using the Evans-Gangbo approach, that the solution of the HJ equa-
tion (6.1) can be obtained as the limit as p→∞, of the solution of the following Finsler
(also called anisotropic) p−Laplace problem

−div(H∗(x,∇u)p−1∂ξH
∗(x,∇u)) = ρ in Ω

H∗(x,∇u)p−1∂ξH
∗(x,∇u) · n ≥ 0 on {u = φ}

H∗(x,∇u)p−1∂ξH
∗(x,∇u) · n ≤ 0 on {u = ψ}

H∗(x,∇u)p−1∂ξH
∗(x,∇u) · n = 0 in {φ < u < ψ}

φ ≤ u ≤ ψ on ∂Ω,

(6.21)

with ρ ≡ 1, where n is the exterior normal to the boundary ∂Ω and ∂ξH∗ stands for the
derivative ofH∗ with respect to the second variable. The chapter is organised as follows.
In Section 2 we provide a solution to (6.21) by studying a family of variational Finsler
p-Laplace problems, and by passing to the limit as p → ∞, we construct a solution u
of (KR)H , and hence, the one of (6.1). In Section 3 we construct a �ow Φ to (B)H and
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we provide, under suitable assumptions, a solution to the following Monge-Kantorovich
system 

−div(ω∂ξH
∗(x,∇u)) = ρ in Ω

∂ξH
∗(x,∇u) · n ≥ 0 on {u = φ}

∂ξH
∗(x,∇u) · n ≤ 0 on {u = ψ}

∂ξH
∗(x,∇u) · n = 0 in {φ < u < ψ}

φ ≤ u ≤ ψ on ∂Ω
H∗(x,∇u) ≤ 1 in Ω
H∗(x,∇u) = 1 ω − a.e.

(6.22)

In Section 4 we make the link between u and (K)H .

Remark 6.1. • Note that given a positive continuous function k : Ω→ R, de�ning
a Finsler metricH(x, p) = k(x)|p| for every (x, p) ∈ Ω× RN , we easily see that

H∗(x, q) =
|q|
k(x)

and the systems (6.22)-(6.21) becomes the ones studied in [40].

• Let us recall that we can de�ne Finsler metrics via the so called Minkowski func-
tional. Indeed, given a convex, closed and bounded set K ⊂ RN containing the
origin in its interior, we de�ne the Minkowski functional of K (also called gauge
function) by

gK(p) = inf{t > 0 : t−1p ∈ K},

we can easily check that gK is a Finsler metric. Moreover, consideringH∗(x, p) =
gK(p) and φ = ψ, we recover the Monge-Kantorovich system studied in [33].

6.2 Finsler p-Laplace problem
We consider, for p > N , the following minimization problem

min
u∈Wφ,ψ

Fp(u) :=

∫
Ω

H∗(x,∇u)p

p
dx−

∫
Ω

uρdx (6.23)

where ρ ∈ L2(Ω) andWφ,ψ = {u ∈ W 1,p(Ω) : φ ≤ u ≤ ψ on ∂Ω}. Observe
thatWφ,ψ is a closed, convex subset of W 1,p(Ω). The functional Fp is coercive, strictly
convex and lower semicontinuous onWφ,ψ. ThereforeFp admits a unique minimizerup
onWφ,ψ. Observe that whenH∗(x, .) ∈ C1(RN \ {0}), up is a weak solution of (6.21).

The following result shows that we can obtain a Kantorovich potential to (KR)H
from the minimizers ofFp.
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Proposition 6.2. Let up be a minimizer ofFp. Then, up to a subsequence, up ⇒ u on Ω.
Moreover, u solves (KR)H .

Proof. We divide the proof into two steps. First, we show the convergence ofup. To do so,
we need to derive some estimate onup independent ofp. De�nev(x) = miny∈∂Ω ψ(y)+
dH(y, x). Regarding the compatibility condition (6.20), we have φ ≤ v ≤ ψ on ∂Ω. It
is not di�cult to see that v is 1−Lipschitz with respect to dH and equivalently (see e.g.
[56, Proposition 2.1]), we have that H∗(x,∇v(x)) ≤ 1 a.e.. Using the fact that up is a
minimizer ofFp, we have∫

Ω

H∗(x,∇up)p

p
dx−

∫
Ω

upρdx ≤
∫

Ω

H∗(x,∇v)p

p
dx−

∫
Ω

vρdx ≤ |Ω|
p
−
∫

Ω

vρdx.

(6.24)
Thanks to Theorem 2.E in [101], there is a Morrey-type inequality independent of p

‖u‖L∞(Ω) ≤ CΩ‖∇u‖Lp(Ω) for any u ∈ W 1,p
0 (Ω), p > N,

where the constant CΩ does not depend on p and u. Observing that we can apply the
above inequality to (up − max∂Ω ψ)+ and (up − min∂Ω φ)− which are in W 1,p

0 (Ω) to
obtain

‖u+
p ‖L∞(Ω) ≤ CΩ‖∇up‖Lp(Ω) + |max

∂Ω
ψ|,

and
‖u−p ‖L∞(Ω) ≤ CΩ‖∇up‖Lp(Ω) + |min

∂Ω
φ|.

So
‖up‖L∞(Ω) ≤ C1‖∇up‖Lp(Ω) + C2.

From (6.24) and the preceding inequality we deduce that∫
Ω

H∗(x,∇up)p

p
dx ≤ |Ω|

p
−
∫

Ω

vρdx+

∫
Ω

upρdx ≤ C3(1 + ‖∇up‖Lp(Ω)),

whereC3 is a positive constant not depending on p. Combining this with (6.14), we get

‖H∗(x,∇up)‖pLp(Ω) ≤ C4p(1 + ‖H∗(x,∇up)‖Lp(Ω)) (6.25)

which implies that
‖H∗(x,∇up)‖Lp(Ω) ≤ (C5p)

1
p−1 (6.26)

for some constantC5 independent from p. Again, by (6.14), we get

‖∇up‖Lp(Ω) ≤ C6. (6.27)

97



6 HJ equation and Finsler p-Laplace approximations

Now take someN < m ≤ p. Then by Hölder’s inequality

‖∇up‖Lm(Ω) ≤ |Ω|
p−m
pm ‖∇up‖Lp(Ω). (6.28)

Thanks to (6.27), (6.28) and the Morrey-Sobolev embedding fromW 1,m(Ω) to Hölder
spaces,

|up(x)− up(y)| ≤ C7|x− y|1−α

with α = N
m

. By Ascoli-Arzelà’s theorem, up to a subsequence, up ⇒ u on Ω for some
continuous function u satisfying φ ≤ u ≤ ψ on ∂Ω. Observe that u ∈ W 1,∞(Ω)
thanks to (6.27) and (6.28).

Second, we are now in a position to show that u solves (KR)H . To do so, we take any
v ∈ Wφ,ψ such thatH∗(x,∇v(x)) ≤ 1 a.e.. Using the optimality of up we see that

−
∫

Ω

upρdx ≤ Fp(up) ≤ Fp(v) ≤ |Ω|
p
−
∫

Ω

vρdx.

Taking the limit up to a subsequence, we get

sup
{∫

Ω

vρdx : H∗(x,∇v) ≤ 1, a.e., φ ≤ v ≤ ψ on ∂Ω
}
≤
∫

Ω

uρdx.

It remains to show that u is 1−Lipschitz with respect to dH , that is,H∗(x,∇u(x)) ≤ 1
a.e.. Recall that φ ≤ u ≤ ψ on ∂Ω. Again, using (6.26), we consider N < m ≤ p and
we use Hölder’s inequality to get

‖H∗(x,∇up)‖Lm(Ω) ≤ (C5p)
1
p−1 |Ω|

p−m
pm .

Since up ⇒ u uniformly on Ω, we can assume that up to a subsequence up ⇀ u weakly
in W 1,m(Ω), and particularly, ∇up ⇀ ∇u in Lm(Ω,RN). Mazur’s lemma (see [42]
for example) ensures the existence of a convex combination of∇upk converging in norm
toward∇u. More precisely, there exists {Ui} such that

Ui =

ni∑
k=i

αik∇upk
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where
∑ni

k=i α
k
i = 1, andαik ≥ 0, i ≤ k ≤ ni and ‖Ui−∇u‖Lm(Ω) → 0 as i→ +∞.

SinceH∗ is continuous, we have

‖H∗(x,∇u)‖Lm(Ω) ≤ lim inf
i→∞

‖H∗(x,
ni∑
k=i

αik∇upk)‖Lm(Ω)

≤ lim inf
i→∞

ni∑
k=i

αik‖H∗(x,∇upk)‖Lm(Ω)

≤ lim inf
i→∞

ni∑
k=i

αik(C5pk)
1

pk−1 |Ω|
pk−m
mpk = |Ω|

1
m ,

which completes the proof by takingm→∞.

6.3 Construction of the optimal flow for (B)H
In the sequel, we assume that (6.20) is strict, that is,

φ(x)− ψ(y) < dH(y, x) for all x, y ∈ ∂Ω.

The next lemma is important to construct a solution of (B)H , we follow the main ideas
of [82, Thereom 3.4].

Lemma 6.3. Assume thatH∗(x, .) ∈ C1(RN \ {0}), and define, for p > N

Θp = H∗(x,∇up)p−1∂ξH
∗(x,∇up).

Then, the distribution defined through

〈Θp · n, η〉 =

∫
Ω

Θp∇ηdx−
∫

Ω

ηρdx, η ∈ D(RN) (6.29)

is a Radon measure concentrated on ∂Ω. Moreover, we have∫
∂Ω

ηd(Θp · n) =

∫
Ω

Θp · ∇ηdx−
∫

Ω

ηρdx for all η ∈ W 1,p(Ω). (6.30)

Proof. We follow the main argumants of Mazón et al. in [82]. If up is a minimizer ofFp,
then we clearly have−div(Θp) = ρ inD′(Ω). It follows that the Θp ·n de�ned by (6.29)
is a distribution supported on ∂Ω. Let us show moreover that

supp(Θp · n) ⊂ {x ∈ ∂Ω : up(x) = φ(x)} ∪ {x ∈ ∂Ω : up(x) = ψ(x)}.
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Take a test function η ∈ C∞(Ω) whose support is disjoint from
{x ∈ ∂Ω : up(x) = φ(x)} ∪ {x ∈ ∂Ω : up(x) = ψ(x)}. There exists some ε > 0
so that up + tη remains admissible for (6.23) for |t| < ε, i.e., φ ≤ up + tη ≤ ψ. By
optimality of up, we get the variational inequality∫

Ω

Θp · ∇(v − up)dx ≥
∫

Ω

(v − up)ρdx for all v ∈ Wφ,ψ.

In particular, for v = up + tη, we get

t

∫
Ω

Θp · ∇ηdx ≥ t

∫
Ω

ηρdx.

This holds for positive and negative t, such that |t| ≤ ε. Consequently∫
Ω

Θp · ∇ηdx =

∫
Ω

ηρdx.

In other words, 〈Θp · n, η〉 = 0 and supp(Θp · n) ⊂ {up = φ} ∪ {up = ψ}.
We are now in a position to show that Θp · n is actually a Radon measure. Indeed,
since the inequality (6.20) is strict, the two compact sets {x ∈ ∂Ω : up(x) = φ(x)} and
{x ∈ ∂Ω : up(x) = ψ(x)} are disjoint. There exist η1, η2 ∈ D(RN) such that

η1(x) =

{
1 on {up = φ},
0 on {up = ψ},

and η2(x) =

{
1 on {up = ψ},
0 on {up = φ}.

Then we can write Θp · n = D1 +D2, whereD1, D2 are distributions given by

〈D1, η〉 = 〈Θp · n, ηη1〉 and 〈D2, η〉 = 〈Θp · n, ηη2〉.

This being said, for any positive test functionη, we have that supp(ηη1)∩{up = ψ} = ∅,
and for 0 ≤ t < εwe have up + t(ηη1) ∈ Wφ,ψ. Consequently

t

∫
Ω

Θp · ∇(ηη1)dx ≥ t

∫
Ω

(ηη1)ρdx,

i.e,
〈D1, η〉 ≥ 0. (6.31)

On the other hand, for any positive test function η, we have that supp(ηη2) ∩ {up =
φ} = ∅ and for−ε < t ≤ 0, we have that up + t(ηη2) ∈ Wφ,ψ. Consequently

t

∫
Ω

Θp · ∇(ηη2)dx ≥ t

∫
Ω

(ηη2)ρdx.
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In other words,
〈D2, η〉 ≤ 0. (6.32)

In conclusion, D1 and −D2 are positive distributions. Hence, they are positive Radon
measures. It follows that the distribution Θp · n is a Radon measure on ∂Ω. Moreover,
(6.31) and (6.32) give

supp((Θp · n)+) ⊂ {up = φ} and supp((Θp · n)−) ⊂ {up = ψ}.

Proposition 6.4. Under the previous assumptions, there exist two Radon measures Θ and
θ in Ω and ∂Ω respectively such that up to a subsequence Θp ⇀ Θ and Θp · n ⇀ θ in the
sense of measures.

Proof. First, we consider as before v(x) = miny∈∂Ω ψ(y) + dH(y, x). We plug up and
v in (6.30) to get∫

∂Ω

(up − v)d(Θp · n) =

∫
Ω

Θp · ∇(up − v)dx−
∫

Ω

(up − v)ρdx.

In other words∫
Ω

(up−v)ρdx =

∫
Ω

Θp·∇(up−v)dx+

∫
{up=ψ}

(ψ−v)d(Θp·n)−−
∫
{up=φ}

(φ−v)d(Θp·n)+.

We see that φ < v ≤ ψ on ∂Ω so that ψ − v ≥ 0 and φ − v < 0, thus φ − v < −C1

for some positive constantC1. So we obtain

∫
Ω

Θp · ∇updx+ C1

∫
∂Ω

d(Θp · n)+ ≤
∫

Ω

(up − v)ρdx+

∫
Ω

Θp · ∇vdx. (6.33)

SinceH∗ is a Finsler metric, we have by Euler’s homogeneous function theorem (see e.g.
[85]) that ∂ξH∗(x, ξ) · ξ = H∗(x, ξ) for any ξ ∈ RN . Thus∫

Ω

Θp · ∇updx =

∫
Ω

H∗(x,∇up)p−1∂ξH
∗(x,∇up) · ∇updx =

∫
Ω

H∗(x,∇up)pdx.

Using this fact in (6.33), we get∫
Ω

H∗(x,∇up)pdx+ C1

∫
∂Ω

d(Θp · n)+ ≤ C2 +

∫
Ω

Θp · ∇vdx,
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whereC2 > 0 is independent from p. On the other hand, thanks to (6.16) we have∫
Ω

Θp · ∇vdx ≤
∫

Ω

H(x,Θp)H
∗(x,∇v)dx

=

∫
Ω

H(x,H∗(x,∇up)p−1∂ξH
∗(x,∇up))H∗(x,∇v)dx

=

∫
Ω

H∗(x,∇up)p−1H(x, ∂ξH
∗(x,∇up))H∗(x,∇v)dx

=

∫
Ω

H∗(x,∇up)p−1H∗(x,∇v)dx,

where we have used the homogeneity of H and the fact that H(x, ∂ξH
∗(x, ξ)) = 1 for

any ξ ∈ RN\{0}. Using Hölder and Young’s inequalities and the fact thatH∗(x,∇v) ≤
1 a.e, we get∫

Ω

H∗(x,∇up)p−1H∗(x,∇v)dx ≤
(∫

Ω

H∗(x,∇up)(p−1)p
′

dx
) 1

p
′
|Ω|

1
p

=
p− 1

p

∫
Ω

H∗(x,∇up)pdx+
1

p
|Ω|.

We deduce that

1

p

∫
Ω

H∗(x,∇up)pdx+ C1

∫
∂Ω

d(Θp · n)+ ≤ C2 +
1

p
|Ω|.

Since p > N , it follows from (6.25) and (6.27) that the �rst term of the preceding is
bounded and therefore ∫

∂Ω

d(Θp · n)+ ≤ C3, (6.34)

for some positive constantC3. De�ningw(x) = maxy∈∂Ω φ(y)−dH(x, y), we see that
φ ≤ w < ψ and following the same lines we get that∫

∂Ω

d(Θp · n)− ≤ C4. (6.35)

As a consequence, we deduce that Θp · n is bounded inM(∂Ω) and thus there exists
θ ∈M(∂Ω) such that Θp · n⇀ θ weakly*.

As for Θp, we have∫
Ω

H∗(x,∇up)pdx =

∫
Ω

Θp · ∇updx =

∫
∂Ω

upd(Θp · n) +

∫
Ω

upρdx.
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6.3 Construction of the optimal flow for (B)H

Keeping in mind (6.34) and (6.35), Hölder’s inequality gives∫
Ω

H∗(x,∇up)p−1dx ≤ C5. (6.36)

Since ∂ξH∗(x, ξ) · ζ ≤ H∗(x, ζ) and taking into account (6.14), we deduce that

|∂ξH∗(x,∇up)| ≤ b̃,

and consequently in view of (6.36)∫
Ω

|Θp|dx ≤ C6.

Thus, there exists Θ ∈M(Ω)N such that up to a subsequence Θp ⇀ Θ.

Theorem 6.5. Let u and Θ as in Propositions 6.2 and 6.4 and set ω = H(x,Θ). Assume
moreover that

H∗(x,∇ωu) ≤ 1 ω a.e.. (6.37)

Then (ω∂ξH
∗(x,∇ωu),u) solves (6.22).

Proof. First, let us recall that thanks to Lemma 6.3 and Proposition 6.4 we have

−div(Θ) = ρ+ θ inD′(Ω).

Since dΘ
dω
∈ L1

ω(Ω)N we also have

−div(ω
dΘ

dω
) = ρ+ θ inD′(Ω).

So dΘ
dω

(x) ∈ Xω(x) for ω−a.e. x (see the Section 2.3 for the de�nition of Xω) . Since
Θp ⇀ Θ (cf. Proposition 6.4), we have by Reshetnyak’s lower semicontinuity theorem
(see [3, Thereom 2.38]):∫

Ω

H(x,
Θ

|Θ|
)d|Θ| ≤ lim inf

p

∫
Ω

H(x,
Θp

|Θp|
)d|Θp|.

Using Hölder’s inequality combined with (6.18)-(6.19), we get∫
Ω

H(x,
Θ

|Θ|
)d|Θ| ≤ lim inf

p

∫
Ω

H
(
x,H∗(x,∇up)p−1∂ξH

∗(x,∇up)
)

dx

= lim inf
p

∫
Ω

H∗(x,∇up)p−1H(x, ∂ξH
∗(x,∇up))dx
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6 HJ equation and Finsler p-Laplace approximations

≤ lim inf
p

(∫
Ω

H∗(x,∇up)pdx
) p−1

p

= lim inf
p

(∫
Ω

H∗(x,∇up)p−1 ∂ξH
∗(x,∇up) · ∇updx

) p−1
p

= lim inf
p

(∫
Ω

∇updΘp

) p−1
p

= lim inf
p

(∫
Ω

upρdx+

∫
∂Ω

upd(Θp · n)
) p−1

p

=

∫
Ω

uρdx+

∫
∂Ω

φdθ+ −
∫
∂Ω

ψdθ−.

Finally, using the integration by parts formula recalled in Proposition 2.13, we get∫
Ω

uρdx+

∫
∂Ω

φdθ+ −
∫
∂Ω

ψdθ− =

∫
Ω

∇ωudΘ,

so that ∫
Ω

H(x,
Θ

|Θ|
)d|Θ| ≤

∫
Ω

∇ωudΘ.

Keeping in mind (6.37), we get∫
Ω

∇ωudΘ ≤
∫

Ω

H∗(x,∇ωu)H(x,
Θ

|Θ|
)d|Θ| ≤

∫
Ω

H(x,
Θ

|Θ|
)d|Θ|.

Hence, ∫
Ω

H(x,
Θ

|Θ|
)d|Θ| =

∫
Ω

∇ωudΘ. (6.38)

From (6.38), we deduce that

∇ωu ·
dΘ

dω
= 1 ω − a.e.

Since H(x, dΘ
dω

) = 1 ω − a.e, we have that H∗(x,∇ωu) = 1 ω − a.e. This implies by
de�nition ofH∗ that

dΘ

dω
= H(x,

dΘ

dω
)∂ξH

∗(x,∇ωu) = ∂ξH
∗(x,∇ωu) ω − a.e.

Finally,
−div(ω∂ξH

∗(x,∇ωu)) = ρ in Ω,

and reproducing the arguments of Lemma 6.3, we recover the constraints on
∂ξH

∗(x,∇ωu) · n in (6.22).
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6.3 Construction of the optimal flow for (B)H

In the case where ω � LN , we have the following

Corollary 6.6. Let u and Θ as in Propositions 6.2 and 6.4 and set ω = H(x,Θ). If
ω � LN , then

ω(x) > 0⇒ H∗(x,∇u) = 1,

and ∫
Ω

ω(x)∂ξH
∗(x,∇u) · ∇ηdx =

∫
Ω

ηρdx, for all η ∈ D(Ω).

In particular,
− div(ω∂ξH

∗(x,∇u)) = ρ in Ω.

Proposition 6.7. The couple (Θ, θ) solves (B)H .

Proof. First, take any admissible potential v ∈ C1(Ω) for (KR)H and an admissible
couple of �ows (Ψ, ν) for (B)H . SinceH∗(x,∇v) ≤ 1 for a.e.x, we have∫

Ω

H(x,
Ψ

|Ψ|
)d|Ψ| ≥

∫
Ω

H(x,
Ψ

|Ψ|
)H∗(x,∇v)d|Ψ|

≥
∫

Ω

Ψ

|Ψ|
∇vd|Ψ|

=

∫
Ω

∇vdΨ

=

∫
Ω

vd(ρ+ ν)

≥
∫

Ω

vdρ+

∫
∂Ω

φdν+ −
∫
∂Ω

ψdν−

and consequently∫
Ω

H(x,
Ψ

|Ψ|
)d|Ψ|+

∫
∂Ω

ψdν− −
∫
∂Ω

φdν+ ≥
∫

Ω

vdρ

using Lemma 6.11 and taking the in�mum on (Ψ, ν) we deduce that min(B)H ≥
sup(KR)H . By Theorem 6.5 and Corollary 6.6 we have∫

Ω

H(x,
Φ

|Φ|
)d|Φ|+

∫
∂Ω

ψdθ− −
∫
∂Ω

φdθ+ =

∫
Ω

udρ.

Hence (Θ, θ) solves (B)H .

Remark 6.8. It is possible to solve (6.22) without the assumption (6.37) as in [65, Theo-
rem 3.10]. Yet, one needs to de�ne the ω-tangential gradient of u with respect to H (see
[92] for details).
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6 HJ equation and Finsler p-Laplace approximations

The link between HJ equation and Beckmann’s problem is already established in
Chapter 5. Thanks to Proposition 6.2, the maximal viscosity subsolution of (6.1) is ob-
tained by taking the limit as p→∞ in the minimizers ofFp with ρ ≡ 1. Thus, combin-
ing this fact with Proposition 6.7, we have the following

Corollary 6.9. Assume that ρ ≡ 1, and let u the maximal viscosity subsolution of (6.1)
and (Θ, θ) an optimal solution to (B)H . Then



− div(Θ) = 1 + θ in D′(RN)

Θ(x) · ∇|Θ|u(x) = H
(
x, Θ
|Θ|(x)

)
for |Θ| − a.e. x

φ ≤ u ≤ ψ on ∂Ω and u = ψ for θ− a.e. x and u = φ for θ+ a.e. x.

6.4 Back to Monge–Kantorovich problem

Proposition 6.10. Let u be the potential constructed in Proposition 6.2. Then u is a Kan-
torovich potentional for the classical optimal transport problem between ρ+ Ω + θ+ and
ρ− Ω + θ−. Moreover ∫

Ω

uρdx = min(K)H .

Proof. In the de�nition of Θp · n in (6.29), we take as a test function η = u to get∫
∂Ω

ud(Θp · n) =

∫
Ω

Θp · ∇udx−
∫

Ω

uρdx.

Thanks to Proposition 6.4, passing to the limit p→∞ (up to a subsequence) we get∫
∂Ω

udθ =

∫
Ω

Θ · ∇udx−
∫

Ω

uρdx. (6.39)

Sinceu is 1−Lipschitz with respect to dH , we may �nd thanks to Lemma 6.11, a sequence
of smooth functions wε converging uniformly to u and enjoying the property of being
1−Lipschitz with respect to dH . By de�nition of Θp · n, we get∫

∂Ω

(u− wε)d(Θp · n) =

∫
Ω

Θp · (∇u−∇wε)dx−
∫

Ω

(u− wε)ρdx.
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6.4 Back to Monge–Kantorovich problem

Taking p→∞ (again, up to a subsequence) and keeping in mind (6.39), we get∫
Ω

uρdx+

∫
∂Ω

udθ =

∫
Ω

(u−wε)ρdx+

∫
∂Ω

(u−wε)dθ+

∫
Ω

Θ ·∇wεdx = Aε+Bε,

(6.40)
with Aε =

∫
Ω

(u − wε)ρdx +
∫
∂Ω

(u − wε)dθ and Bε =
∫

Ω
Θ · ∇wεdx. Since wε

convergences uniformly to u, we have thatAε → 0 as ε→ 0. We claim that

Bε →
∫

Ω

H(x,
Θ

|Θ|
)d|Θ|

as ε→ 0. We �rst observe that∫
Ω

uρdx = lim
ε→0

∫
Ω

wερdx

= lim
ε→0

∫
Ω

∇wε
Θ

|Θ|
d|Θ|+

∫
∂Ω

ψdθ− −
∫
∂Ω

φdθ+

≤ lim
ε→0

∫
Ω

H∗(x,∇wε)H(x,
Θ

|Θ|
)d|Θ|+

∫
∂Ω

ψdθ− −
∫
∂Ω

φdθ+

≤
∫

Ω

H(x,
Θ

|Θ|
)d|Θ|+

∫
∂Ω

ψdθ− −
∫
∂Ω

φdθ+

where in the last inequality we have used Lemma 6.11.
Again we proceed as in the proof of Theorem 6.5: since Θp ⇀ Θ, we have by Reshet-

nyak’s lower semicontinuity theorem:

∫
Ω

H(x,
Θ

|Θ|
)d|Θ| ≤ lim inf

p

∫
Ω

H(x,
Θp

|Θp|
)d|Θp|

= lim inf
p

∫
Ω

H
(
x, (H∗(x,∇up)p−1∂ξH

∗(x,∇up)
)

dx

= lim inf
p

∫
Ω

H∗(x,∇up)p−1H(x, ∂ξH
∗(x,∇up))dx

≤ lim inf
p

(∫
Ω

H∗(x,∇up)pdx
) p−1

p

= lim inf
p

(∫
Ω

H∗(x,∇up)p−1 ∂ξH
∗(x,∇up) · ∇updx

) p−1
p

= lim inf
p

(∫
Ω

∇updΘp

) p−1
p

=

∫
Ω

uρdx+

∫
∂Ω

udθ
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6 HJ equation and Finsler p-Laplace approximations

= lim
ε→0

∫
Ω

wερdx+

∫
∂Ω

wεdθ

where we have used Hölder’s inequality and Euler’s theorem combined with the fact that
H∗(x, ∂ξH(x, ξ)) = 1 for any ξ ∈ RN \ {0}. Coming back to (6.40) we get∫

Ω

uρdx+

∫
∂Ω

udθ =

∫
Ω

H(x,
Θ

|Θ|
)d|Θ|.

To conclude, let us observe that taking v ∈ W 1,∞(Ω) such thatH∗(x,∇v(x)) ≤ 1, we
have ∫

Ω

uρdx+

∫
∂Ω

udθ =

∫
Ω

H(x,
Θ

|Θ|
)d|Θ|

≥
∫

Ω

Θ

|Θ|
· ∇vd|Θ|

=

∫
Ω

∇vdΘ =

∫
Ω

vρdx+

∫
∂Ω

vdθ.

We have thanks to Proposition 6.2 and the classical Kantorovich duality∫
Ω

uρdx+

∫
∂Ω

udθ =

∫
Ω×Ω

dH(x, y)dγ(x, y),

where γ is a solution of

min
{∫

Ω×Ω

dH(x, y)dγ(x, y) : (πx)]γ = ρ+ Ω + θ+, (πy)]γ = ρ− Ω + θ−
}
.

Since (πx)]γ ∂Ω = θ+ and (πy)]γ ∂Ω = θ− we deduce that∫
Ω

uρdx =

∫
Ω×Ω

dH(x, y)dγ(x, y) +

∫
∂Ω

ψdθ− −
∫
∂Ω

φdθ+ = min(K)H .

To end this section let us recall the following useful approximation result [65, 67, 68].

Lemma 6.11. Let w ∈ W 1,∞(Ω) such that H∗(x,∇w(x)) ≤ 1 for a.e. x ∈ Ω. Then,
there existswε ∈ C1(Ω) such thatwε ⇒ w in compact subsets of Ω and

H∗(x,∇wε(x)) ≤ 1.
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7 Perspectives and future work

We end this dissertation by presenting results from ongoing works and some possible
extensions and open question that are of interest to us.

7.1 Quasivariational Approach for obstacle HJ
equation

In this section we present brie�y some results from an ongoing work with N.Igbida con-
cerning obstacle HJ (OHJ for short) equation with application to the formation of lakes
and dunes. We suggest to use an evolutionary quasivariational inequality to solve numeri-
cally the OHJ equation by exploiting similar characterisations of the appropriate solution
as in Chapter 3.

Given a continuous function g : Ω→ R+, we consider the following OHJ equation{
u ≥ g in Ω
H(x,∇u) = 0 in [u > g]

(7.1)

This equation can be recast in the form

F (x, u,∇u) = 0 in Ω,

where F : Ω× R× RN → R is given by

F (x, t, p) = min(H(x, p), t− g(x)), for (x, t, p) ∈ Ω× R× RN .

As one can see, the 0 sublevel sets of F are not convex in general, so producing a metric
associated toF is not straightforward. To handle the obstacle in (7.1), N.Igbida proposed
in [64] an inf-sup formula as follows. For ξ ∈ Lip([0, 1]; Ω), we de�ne

Λξ(s1, s2) =

∫ s2

s1

σ(ξ(t), ξ̇(t))dt,
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7 Perspectives and future work

for 0 ≤ s1 ≤ s2 ≤ 1, where σ is the support function of the 0 sublevels ofH . Then, the
g−action functional of the curve ξ reads

Ag(ξ) = max
t∈[0,1]

g(ξ(t)) + Λξ(t, 1).

For x, y ∈ Ω, we de�ne the minimum g−action from x to y through

Sg(x, y) = inf
ξ∈Γ(x,y)

Ag(ξ). (7.2)

and
Ig(x, y) = Sg(x, y)− g(x).

Then, it is shown in [64] that Sg is the maximal viscosity subsolution of (7.1). More-
over, when the obstacle g satis�es the compatibility condition

g(x)− g(y) ≤ dσ(y, x), for any x, y ∈ Ω, (7.3)

where dσ is the associated distance to H , then Ig = dσ. Which shows that the quasi-
distanceIg is consistent with the case where the obstacle is a subsolution for HJ equation.

To describe the morphology of a sandpile or a lake on an arbitrary landscape, we con-
sider the following obstacle Eikonal equation

|∇u| = k on [u > g]

u ≥ g in Ω

u = g onD.
(7.4)

where D is a closed subset of Ω, where k is related to the so-called repose angle of the
granular material. To describe the equilibrium state we consider a Radon measureρmod-
elling the source. One could imagine ρ =

∑m
i=1 δxi where δxi are Dirac masses at points

xi ∈ Ω, to model the case of punctual distribution of sand or water. This being said, we
consider by analogy with the problem (MD) in Chapter 3, the following maximization
problem

max

{∫
udρ : u ∈ KD

g

}
, (7.5)

where

KD
g =

{
u ∈ W 1,∞(Ω) : u ≥ g, u = g onD and |∇u| ≤ k in [u > g]

}
,

is the set of the so-called admissible pro�les. Then, thanks to (7.2), N.Igbida provides a
solution to (7.5). More precisely, he proves the following
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Theorem 7.1. Assume that ρ ∈M+
b (Ω) and k ∈ C(Ω), k ≥ 0, g ∈ W 1,∞(Ω), g ≥ 0.

Define
Sg(D, x) = min

y∈D
Sg(y, x) for any x ∈ Ω.

Then

1) Sg(D, .) ∈ KD
g .

2) Sg(D, .) is a solution of (7.5).

3) u is a solution of (7.5) if and only if u ∈ KD
g and

u = Sg(D, .) ρ− a.e. in Ω.

It is not clear how to treat (7.5) as in Chapter 3 since the dynamic takes place only on
the region [u > g]. More precisely, the main di�culty arising in (7.5) compared to what
we have developed in the previous chapters, is the lack of convexity ofKD

g .
Few works investigated problems of the form (7.4). In the case of lakes, i.e., k = 0,

Doferman and Evans [38] considered the following PDE∂tuε ∈ div
(
H(uε − g)

ε
∇uε

)
+ ρ in R2 × {t > 0}

uε = g in R2 × {t = 0},

whereH is the Heaviside function. Then, the limit u = limε→0 uε satis�es (7.4). The
authors justify their results by rigorous proofs as well as asymptotics and numerical sim-
ulations.

In [10, 11], Barrett and Prigozhin use a quasivariational inequality to model growing
sandpiles, i.e., k ≥ k0 > 0 with an obstacle g satisfying (7.3). To do so, they de�ne, for
v ∈ C(Ω), the following operator

M(v) =

{
k on [v > g]

max(k, |∇g|) elsewhere,

and K(z) = {z ∈ W 1,∞(Ω) : z ≥ g and |∇z| ≤M(v)}. Then, the proposed quasi-
variational inequality consists in �nding u(x, t) such that u(x, 0) = g(x) and for a.a.
t ∈ (0, T ), u ∈ K(u) solves∫

Ω

(∂tu− ρ)(v − u)dx ≥ 0 for all v ∈ K(u). (7.6)

As one can see,M(v) is discontinuous in general, so the authors study a regularized ver-
sion of (7.6) with a continuous gradient constraintMε(v). Let us mention that they also
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study the case of lake. However, they considerd a small k0 in their formulations and nu-
merical simulations instead of k0 = 0.

Our strategy is close to the one in [10, 11] in the sense that, instead of considering (7.5),
we regard the following problem

max

{∫
zdρ, z ∈ K(u)

}
, (7.7)

where u = Sg(D, .) is the solution of (7.5) given in Theorem 7.1. First, let us observe
that (7.7) is related to the Eikonal equation{

|∇u| = M(u) in Ω \D
u = g onD.

(7.8)

Due to discontinuity of M , the appropriate notion of solutions is the so-called Monge
solutions introduced by Newcomb and Su [86]. So our starting point is to investigate the
existence of a unique Monge solution of (7.8), and show by analogy with Theorem 3.2,
that it solves (7.7). In this case, we conjecture that (7.5) and (7.7) are equivalent. This
suggests considering the following quasivariational equation

ρ ∈ ∂tu+ ∂IK(z)(u), (7.9)

where ∂IK(z) is the subdi�erential of IK(z) in L2(Ω). To approximate numerically the
solution of (7.9), we use an Euler implicit scheme. We denote by δt the time step and un
the solution at time t = nδtwith n ∈ N. We initialize by u0 and we generate a sequence
{un}n as follows:

un + δtρn := wn ∈ un+1 + ∂IK(un)(u
n+1),

or equivalently
wn ∈

(
id + ∂IK(un)

)
(un+1).

This amounts to saying that

un+1 = arg min
z∈K(un)

F(z)

withF(z) = 1
2
‖z − wn‖2.

Minimizing the functionalF overK(un) can be done e�ciently by Chambolle-Pock’s
algorithm as in Section 4.3. We therefore present some preliminary results for the case
k ≡ 0.
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(a) (b)

Figure 7.1: (A): the landscape height function g, (B): the constructed solution u .

(a) (b)

Figure 7.2: (A): the landscape height function g, (B): the constructed solution u .

In the �gure 7.1, the geometry of the obstacle given by a simple function g(x, y) =
min(0, y − x)) doesn’t allow collecting water. On the other hand, we see in �gure 7.21.
that water �lls the lake. These preliminary results are encouraging and tend to support
our conjectures.

To conclude this section, let us say that besides the equivalence between (7.5) and (7.7)
there are many interesting questions to deal with:

• To prove the convergence of the approximate solution by the Euler scheme in time
and the convergence as t→∞ of the solution of (7.9) to the solution of (7.7).

• Up to our knowledge, the regularity of the the free boundary ∂[u = g] of the OHJ
is less studied (if not non-existent !) and the techniques in the classical textbooks
(see e.g.[52, 71]) cannot be applied directly for OHJ equations. We are planing to
address this question in future work.

1This obstacle was created from an image taken from https://www.numerical-tours.com/matlab/

113

https://www.numerical-tours.com/matlab/
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7.2 Hughes model for crowd motion

Amongst our future works is to adapt the methods and techniques of this thesis to so-
called Hughes model for crowd motion (see [62, 63]). Let us say few words about this
model, the di�culties arising in its mathematical and numerical study, and how we are
planing to tackle them.

Let Ω ⊂ RN be a smooth bounded domain. We denote by µ = µ(x, t) the density of
some population where x ∈ Ω and t ≥ 0 representing the time variable. Thenµ satis�es
the continuity equation

∂tµ+ div(µv) = 0, µ(x, 0) = µ0(x) ≥ 0, (7.10)

where v(x, t) is the velocity �eld which can be related to µ via v(x, t) = (1 −
µ(x, t))∇u(x), andu is the potential modelling the common sens of the task. Assuming
that the individuals try to avoid regions with high densities while heading their destina-
tion, the potential uwill satisfy the following Eikonal equation{

|∇u| = k(µ) in Ω

u = 0 on ∂Ω,
(7.11)

with k(µ) = (1− µ). So that the model reads{
∂tµ+ div(µk(µ)∇u) = 0,

|∇u| = k(µ).
(7.12)

coupled with homogeneous boundary conditions µ(x, t)|∂Ω = 0 and u(x, t)|∂Ω = 0
and initial condition µ(x, 0) = µ0(x) ≥ 0. The �rst observation is that in (7.11), |∇u|
may blow up as µ becomes close to 1. In addition, due to the nonlinearity in (7.10), the
entropic solution of such equation is not unique in general. This makes the mathemati-
cal and numerical treatment of (7.12) di�cult. In the one dimensional case, the authors
in [37] propose a "double" regularization of (7.11), in the sense that they add a viscosity
term as in (2.4) in addition to the regularization of the right hand side in (7.11) to avoid
discontinuities of∇u. More precisely, they solve (7.11) with kδ(µ) = (δ + k(µ))2 in-
stead of k(µ) for δ > 0. It turn out that our variational approach presented in Chapter
3 seems to give good results as the main step in our algorithm to solve (7.11) will con-
sist in projecting onto the euclidean ball centred at 0 and of a "large" radius. Moreover,
discontinuous right hand side in the Eikonal equation seems not to a�ect the method.
Following [87], we intend to solve (7.12) iteratively as follows. Assuming that µ is known
at time tn, we compute the potentialun by solving (7.11) using the augmented Lagrangian
method. Then, we update the velocity �eld vn and we plug it in (7.10) to compute the
new density µn+1.
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7.3 HJ on networks
We are also interested in adapting our approach to the framework of networks or more
generally, metric random walk spaces in the spirit of [83, 84]. HJ equations on networks
are of main interest particularly in modelling vehicular tra�c �ows, social networks and
data transmission etc. Contrary to linear PDE, the theory of HJ equation on networks
is under development and we refer the reader to these recent works [1, 22, 69, 96] and
the references therein more details on the topic. Our starting point will be to consider
HJ equations on topological networks, i.e., graphs embedded in the Euclidean space. To
make this section self-contained we recall some notions and de�nitions from [96].

Let V = {vi}i∈I ⊂ RN be a collection of pairwise distinct points called vertices,
C = {γj}j∈I a collection of smooth, non-intersecting curves de�ned through

γj : [0, lj]→ RN , lj > 0, for all j ∈ J,

and E = {ej}j∈I be the collection of edges such that

• ej = γj((0, lj)) and ēj = γj([0, lj]),

• γj(0), γj(lj) ∈ V for every j ∈ J ,

• card(ej ∩ V) = 2 for every j ∈ J ,

• ēj ∩ ēk ⊂ V and card(ēj ∩ ēk) ≤ 1.

• Every two vertices p, q ∈ V can be connected by a �nite sequence of edges. In other
words, there exists {ej}Nj=1 such that p ∈ ē1, q ∈ ēN and card(ēj ∩ ēj+1) = 1.

Given xi ∈ V , Inci = {j ∈ J : xi ∈ ēj} is the set of indices of edges having xi as an
endpoint.

Then N =
⋃
j∈J ēj is called a topological network. We say that u : N → R is

continuous if its restriction uj to [0, lj] is continuous for each j ∈ J .

De�nition 7.2 (Di�erentiation). • If x ∈ ej , the di�erential along ej is de�ned
through

∂ju(x) =
∂

∂x
uj(γ

−1
j (x)).

• If x = vi, then
∂ju(x) =

∂

∂x
uj(γ

−1
j (x)), for j ∈ Inci.

On a topological network, a HamiltonianH : N ×R→ R is regarded as a collection
(Hj)j∈J of continuous functionsHj : [0, lj]×R→ R satisfying analogous assumptions
to (H1)-(H3) stated Chapter 2-Section 2.1.2. In addition, to ensure the continuity ofH
on the vertices and take into account the fact thatN is not oriented, we assume
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• Hj(γ
−1
j (vi), p) = Hk(γ

−1
k (vi), p), for any p ∈ R, i ∈ I, j, k ∈ Inci

• Hj(γ
−1
j (vi), p) = Hj(γ

−1
j (vi),−p), for any p ∈ R, i ∈ I, j ∈ Inci.

Given g : N → R be a continuous function and consider the following Dirichlet prob-
lem {

H(x, ∂u(x)) = 0 inN
u = g on ∂N .

(7.13)

Then, an appropriate notion of viscosity solution to equation of type (7.13) can be in-
troduced (again, see e.g.[22, 96]). Moreover, for x, y ∈ N , we can de�ne similarly to the
standard setting, the associated metric toH :

dσ(x, y) = inf
η∈Γ(x,y)

∫ 1

0

σ(η(t), η̇(t))dt,

where

Γ(x, y) =
{
η : [0, 1]→ N piecewise di�ernetiable curves such that: η(0) = x, η(1) = y.

}
,

and
σj(x, p) = sup

q∈Zj(γ−1
j (x))

p · q.

we have the following

Theorem 7.3 ([96]). Assume that g satisfies the following compatibility condition

g(x)− g(y) ≤ dσ(y, x), for any x, y ∈ ∂N ,

then the unique viscosity solution to (5.1) is given by

u(x) = inf
y∈∂N
{g(y) + dσ(y, x)}. (7.14)

Reproducing the same arguments as in Chapter 3, the maximal viscosity solution given
by the formula (7.14) is the unique solution of the following maximization problem

(M) : max
{∫
N
udx : σ∗(x,∇u(x)) ≤ 1 a.e and u = 0 on ∂N

}
where

∫
N udx =

∑
j∈J
∫ lj

0
uj(s)dx. Many interesting questions remain to explore,

both from a mathematical and numerical perspectives. In particular, the dual problem
of (M) and the optimal transport problems linked to it are worth exploring.
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7.4 Geodesic extraction
In geometry, the shortest paths or geodesics play a central role. Consider for example a
Riemannian manifold (M,m), then for any x, y ∈ M, the geodesic distance is de�ned
by

dM(x, y) = min
ξ∈Γ(x,y)

∫ 1

0

m
(

(ξ̇(t), ξ̇(t))
) 1

2
dt,

where Γ(x, y) is the set of smooth curves joining x and y. Then ξ ∈ Γ(x, y) is a geodesic

if dM(x, y) =
∫ 1

0

(
m(ξ̇(t), ξ̇(t))

) 1
2
dt. We know that for any D ⊂ M , dM(., D) is the

unique viscosity solution of the Eikonal equation

‖∇u‖m−1 = 1 in M \D, and u = 0 on D, (7.15)

where ‖.‖m−1 is the dual norm associated to m. Once the distance computed, a gradient
descent allows extracting the geodesic ξ between a given x ∈ M and D. More precisely,
the geodesic ξ solves

ξ̇(t) = − m(ξ(t))−1∇dM(ξ(t), D)

‖m(ξ(t))−1∇dM(ξ(t), D)‖m
, with ξ(0) = x.

This kind of questions appear in many applications such as meshing, image analysis and
shape detection of tumors from medical images, or tractography and neural �ber tracking
in neuroscience (see e.g.[77, 89] and the references therein). We are planing to apply our
method to address these questions, compare with existing results and possibly consider
general forms of (7.15) on Finsler manifolds.
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Acronyms

HJ Hamilton-Jacobi
OHJ Obstacle Hamilton-Jacobi
SfS Shape from Shading
MK Monge-Kantorovich
BK Beckmann
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Glossary

R The set of real numbers.
RN , SN TheN -dimensional Euclidean space and sphere.
X ,Y Two Banach or Hilbert spaces.
|.| or ‖.‖ The Euclidean norm.
lim, lim inf, lim sup Limit, inferior limit, superior limit.
Ω A nonempty bounded domain of Rd.
∇ Gradient operator.
div,∇· Divergence operator.
∆, ∆p Laplace and p-Laplace operators.
C(Ω),Cb(Ω),Cc(Ω) Spaces of continuous, bounded continuous and compactly sup-

ported continuous functions on Ω.
C∞(Ω),D(Ω),D′(Ω) Spaces of in�nitely di�erentiable functions, in�nitely di�eren-

tiable with compact support and distributions on Ω.
P(Ω),M(Ω),M+(Ω),Mb(Ω) Spaces of probability measures, �nite measures, positive �nite

measures and vector valued measures on Ω.
S−H , S+

H , SH The sets of viscosity subsolutions, supersolutions and solutions
of HJ equation.

Lip(Ω) The set of Lipschitz functions on Ω.
χA Characteristic function of a set A: χA(x) = 1 if x ∈ A and 0

otherwise.
IC Indicator function of a setC in the sense of convex analysis, i.e.,

equals 0 onC and∞ onCc.
Γ0(X ) The set of propoer, convex and l.s.c functions on X .
δx Dirac mass at x.
|C|,LN(C) Lebesgue measure of a setC ⊂ RN .
µ� ν The measure µ is absolutely continuous w.r.t ν.
µ C The restriction of the measure µ to a setC .
µn ⇀ µ The µn converges to µ in the sense of set measures.
|Φ| The total variation of a vector measure Φ.
Φ
|Φ| The Radon-Nikodym derivative of Φ w.r.t |Φ|.
M † The transpose of a matrixM .
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