Thèse soutenue

Synthèse de matériaux composites métal-zéolite pour des réactions catalytiques bifonctionnelles

FR  |  
EN
Auteur / Autrice : Débora Regina Strossi Pedrolo
Direction : Vitaly OrdomskyNilson Romeu Marcilio
Type : Thèse de doctorat
Discipline(s) : Chimie organique, minérale, industrielle
Date : Soutenance le 14/12/2021
Etablissement(s) : Université de Lille (2018-2021) en cotutelle avec Universidade Federal do Rio Grande do Sul (Porto Alegre, Brésil)
Ecole(s) doctorale(s) : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Lille ; 1992-....)
Partenaire(s) de recherche : Laboratoire : UCCS - Unité de Catalyse et Chimie du Solide
Jury : Président / Présidente : Juliana da Silveira Espindola
Examinateurs / Examinatrices : Andrei Khodakov, Marcio Schwaab, Ovidiu Ersen
Rapporteurs / Rapporteuses : Juliana da Silveira Espindola, Svetlana Mintova

Mots clés

FR  |  
EN

Mots clés libres

Résumé

FR  |  
EN

Les catalyseurs à base de zéolite ont été largement utilisés dans la conversion de la biomasse. Les rendements catalytiques des produits recherchés sont fortement limités en raison de la taille relativement petite des pores dans les zéolithes et la préparation du catalyseur par imprégnation conduit généralement à des nanoparticules métalliques relativement grosses et à un faible contact entre les sites métalliques et acides. Le but de ce travail est la conception de catalyseurs nanocomposites métal-zéolithe contenant des nanoparticules de ruthénium uniformément réparties dans les zéolithes hiérarchiques BEA et ZSM-5. L'utilisation de ruthénium évite la formation de silicates et d'aluminates métalliques inertes difficilement réductibles, tandis que les nanotubes de carbone avec des nanoparticules d'oxyde métallique supportées jouent un rôle de gabarit sacrificiel, ce qui permet de créer une mésoporosité et d'apporter une fonctionnalité métallique à l'intérieur de la matrice zéolithique. Par rapport aux catalyseurs métalliques supportés par des zéolites classiques, les zéolites ruthénium hiérarchiques synthétisées présentaient une activité beaucoup plus élevée et une sélectivité en méthane plus faible dans la synthèse Fischer-Tropsch. La caractérisation des catalyseurs préparés a indiqué l'initiation de la cristallisation des zéolites sur des nanoparticules métalliques. Cet effet a en outre été utilisé pour augmenter la dispersion de nanoparticules métalliques par cristallisation secondaire de Ru supporté sur ZSM-5. Nos résultats montrent une redispersion significative des nanoparticules d'oxyde métallique incorporées et une augmentation de l'activité des réactions modèles. De plus, une stratégie de synthèse a été développée pour la préparation de catalyseurs nanocomposites métalliques et zéolithiques hiérarchiques pour la synthèse directe d'iso-paraffines à partir de gaz de synthèse. Les nanocomposites sont synthétisés en trois étapes. Dans la première étape, la zéolite mère (noyau) est gravée avec une solution de fluorure d'ammonium. La gravure crée de petits mésopores à l'intérieur des cristaux de zéolite. Dans la deuxième étape, les nanoparticules de Ru préparées à l'aide de microémulsion eau-dans-huile sont déposées dans les mésopores de la zéolithe. Dans la troisième étape, une enveloppe de zéolite de zéolites de type MFI (silicalite-1 ou ZSM-5) est cultivée sur les cristaux de zéolite parent recouvrant à la fois la surface gravée et les nanoparticules métalliques. Ainsi, les nanoparticules métalliques deviennent entièrement encapsulées à l'intérieur de la matrice zéolithique. Les paramètres les plus importants tels que la teneur en ruthénium, la mésoporosité de la zéolite, et plus particulièrement, l'acidité de l'enveloppe du catalyseur, qui affectent les performances catalytiques des matériaux nanocomposites synthétisés dans la synthèse Fischer-Tropsch à basse température ont été identifiés dans ce travail. La quantité relative plus élevée d'iso-paraffines a été observée sur les catalyseurs contenant une enveloppe de ZSM-5. La proximité entre les sites métalliques et acides dans l'enveloppe zéolithique des catalyseurs nanocomposites est un paramètre crucial pour la conception de catalyseurs bifonctionnels zéolithiques métalliques efficaces pour la synthèse sélective de carburants de type essence via la synthèse Fischer-Tropsch, tandis que l'acidité du cœur du catalyseur a qu'un impact limité sur les performances catalytiques.