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Professeur, École polytechnique (CMAP) Directeur de thèse
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Pierre KESTENER
Ingénieur de recherche, CEA (DRF/IRFU/DEDIP/LILAS) Invité
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Sommario

Negli ultimi anni stiamo assistendo a una “seconda corsa allo spazio”: aziende private come Spa-

ceX stanno aprendo la strada a una nuova generazione di sistemi di lanciatori spaziali ottimizzati

per essere efficienti nei costi e con prestazioni estreme che ragionevolmente porteranno l'uma-

nità su Marte per la prima volta nella sua esistenza nel prossimo futuro. Un aspetto chiave di

questi sistemi è quello di fornire un alto livello di riutilizzabilità associato ad un drastico calo dei

costi di lancio. Questo si traduce in sistemi di propulsione che devono operare su inviluppi di

volo più ampi, con coppie di propellenti più vantaggiose come il metano e l'ossigeno criogenici,

richiedendo quindi progetti più vincolati e complessi per i sistemi di iniezione. Gli iniettori sono

responsabili della corretta nebulizzazione di carburante e ossidante e hanno un impatto diretto

sulle prestazioni dei motori.

L'attuale stato dell'arte delle strategie di modellazione non riesce a prevedere le corrette di-

stribuzioni per gli spray nella camera di combustione, quindi, l'obiettivo di questa tesi è quello di

offrire un quadro di modellazione unificato che affronti la derivazione del sistema di equazioni che

governano i sistemi di flusso bifase caratterizzata da una solida struttura matematica attraverso

un'impostazione variazionale chiamata “Principo dell'Azione Stazionaria” (SAP). Questo sforzo è

sostenuto da un set di strumenti di calcolo su misura che permette la scelta razionale delle ipotesi

di modellazione e la simulazione efficace dei modelli sviluppati, possibilmente su architetture di

calcolo moderne.

In questo lavoro si indentificano tre punti principali di miglioramento: lo sviluppo di modelli di

ordine ridotto attraverso il SAP, con un insieme di equazioni che includono proprietà geometriche

come la densità della superficie d'interfaccia e le curvature medie e di Gauss; l'implementazione

di uno strumento di post-processing geometrica delle simulazioni che viene utilizzato per rac-

cogliere informazioni utili da simulazioni ad alta fedeltà al fine di creare un accurato modello di

ordine ridotto; lo sviluppo di una libreria Python che funge da banco di test per valutare rapi-

damente le nuove idee nell'ambito di schemi numerici, condizioni al contorno, configurazioni di

dominio, con la potenziale capacità di sfruttare architetture di calcolo moderne come le GPU.

Keywords: flussi bifase, modellazione di sottoscala, densità di superficie, curvature, DNS, geometria computazionale, calcolo scien-

tifico
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Résumé

Nous assistons actuellement à une “deuxième course à l'espace” : des entreprises privées comme

SpaceX ouvrent la voie à une nouvelle génération de systèmes de lanceurs spatiaux optimisés

pour leur rentabilité et leurs performances extrêmes, qui permettront à l'humanité d'atteindre

Mars pour la première fois dans son existence. L'un des aspects essentiels de ces systèmes est

d'offrir un niveau élevé de réutilisation, ce qui entraîne une baisse drastique des coûts de lan-

cement. Cela se traduit par des systèmes de propulsion qui doivent fonctionner dans des en-

veloppes de vol plus larges, avec des paires d'ergols plus avantageuses comme le méthane et

l'oxygène liquides, ce qui exige une conception plus rigoureuse des systèmes d'injection. Les in-

jecteurs sont responsables de la nébulisation correcte des ergols et ils ont un impact direct sur

les performances des moteurs.

Les stratégies demodélisation actuelles ne parviennent pas à prédire les distributions correctes

de gouttelettes dans la chambre de combustion. L'objectif de cette thèse est donc d'offrir un cadre

de modélisation unifié permettant la dérivation de systèmes d'équations pour les écoulements di-

phasique, caractérisé par une structure mathématique solide obtenue avec un principe variation-

nel appelé “Principe d'Action stationnaire” (SAP). Cet effort est soutenu par un ensemble d'outils

informatiques adaptés qui permettent le choix rationnel des hypothèses de modélisation et la

simulation efficace des modèles développés, éventuellement sur des architectures modernes.

Ce travail identifie trois points principaux d'amélioration : le développement demodèles d'ordre

réduit avec le SAP, comportant un ensemble d'équations qui incluent des propriétés géomé-

triques telles que la densité de la surface interfaciale et les courbures moyenne et de Gauss ; la

mise en œuvre d'un outil de post-traitement géométrique pour les simulations à haute-fidelité

utilisé pour recueillir des informations utiles afin d'élaborer un modèle d'ordre réduit précis, et

le développement d'une bibliothèque Python qui agit comme un outil de prototypage rapide vi-

sant à tester rapidement des idées dans le contexte des schémas numériques, des conditions

limites, des configurations de domaine, avec la possibilité d'exploiter des architectures de calcul

modernes comme les GPU.

Mots-clés : écoulements diphasiques, modélisation de sous-échelle, densité surfacique d'interface, courbures, DNS, géométrie com-

putationnelle, calcul scientifique
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Abstract

In current times we are witnessing a “second space race”: private companies like SpaceX are

paving the way to a new generation of space launcher systems optimized for cost effectiveness

and extreme performances that will bring humankind to Mars for the first time in its existence.

A key aspect of those systems is to provide a high level of reusability leading to a drastic drop

in launch costs. This translates into propulsion systems that need to operate on wider flight

envelopes, with more advantageous propellant pairs like cryogenic methane and liquid oxygen,

therefore requiring tighter designs for the injection systems. The injectors are responsible for

the correct nebulization of fuel and oxidizer and they have a direct impact on the performance

of the engines. This kind of problems are shared across different applications and are somehow

generic.

The current state of the art modeling strategies fail at predicting the correct distributions of

droplets in the combustion chamber. Therefore, the target of this thesis is to contribute to the

design of a unified modeling framework addressing the derivation of system of equations gov-

erning two-phase flow systems characterized by a sound mathematical structure via a variational

approach named Stationary Action Principle (SAP) coupled to the second principle of thermody-

namics. This effort is backed by a tailored computational toolset that allows the rational choice

of modeling assumptions and the effective simulations of the developed models, possibly on

modern computing architectures.

This work identifies three main points of improvement: the development of reduced-order

models via a variational procedure named the Stationary Action Principle (SAP) featuring a set

of equations that include geometrical properties such as the interfacial surface density and the

mean and Gauss curvatures; the implementation of a geometric DNS post-processing tool that is

used to collect useful insight from high-fidelity simulations in order to craft an accurate reduced-

order model, and the development of a Python library that acts as a prototyping playbook aimed

at quickly testing ideas in the context of numerical schemes, boundary conditions, domain con-

figurations, with the potential ability of leveraging modern computational architectures such as

GPUs.

Keywords: two-phase, subscale modeling, interface area density, curvatures, DNS, computational geometry, scientific computing
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Notes on notation

The notation employed in this thesis for mathematics typesetting is tailored towards lightness
and immediateness. In some contexts, we perform a choice of trading some unambiguousness
for better clarity with the final objective of delivering a smooth and pleasant reading. For this
reason, we summarize here below the mathematics typesetting definitions we decided to use
in the following of this thesis.

• Generic placeholders •,⊙ are used to express the action of operators in a generic fashion.
e.g. the averaging operator ⟨•⟩

• The greek letter 𝜑 is used to specify a generic field.

• Functionals are expressed with a script formatting like 𝒜 or ℒ

• Vectors are typeset with lowercase bold letters 𝒙, 𝒒

• Tensors are typeset with uppercase bold letters 𝑩,𝑲

• Borrowing the idea from Luigi Quartapelle and Auteri (2013), the differential is omitted
in integrals where the domain of integration is unambiguously clear from the integral
subscript ∫Ω •
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1 Introduction

1.1 Contexte industriel

1.1.1 Systèmes d'injection pour la propulsion spatiale

Le 16 juin 1969, Neil Armstrong, Buzz Aldrin et Michael Collins quittent la planète mère pour
la Mare Tranquillitatis au sommet du plus grand, du plus lourd et du plus puissant lanceur
spatial que l’espèce humaine ait jamais construit à cette date : la Saturn V. La Saturn V illus-
trée dans Fig. 2.1a était une fusée gargantuesque de 110.6m de haut et de 10.1m de diamètre,
propulsée par 5 moteurs à propergol liquide F-1, chacun capable de fournir 7770 kN de pous-
sée dans le vide grâce au cycle générateur de gaz avec oxygène et hydrogène liquides qu’ils
emploient. Le 20 juin 1969, les trois astronautes se posent sur la Lune à bord du Apollo Lu-
nar Excursion Module (LEM), après s’être détachés du Apollo command and service module
(CSM), le module chargé de la manœuvre en orbite lunaire, propulsé par un moteur à propergol
liquide hypergolique acide nitrique et methilhydrazine. Un pas de géant qui élargit les horizons
d’exploration de l’humanité, en plaçant les nouvelles “Colonnes d’Hercule” hors de l’atmo-
sphère terrestre et au-delà. En effet, “la Terre est le berceau de l’humanité, mais on ne peut
pas y vivre éternellement”. (K. E. Tsiolkovsky).

La “Première course à l’espace” a ouvert la voie à une innovation incroyablement rapide
dans le domaine de la propulsion dont le rayonnement et l’intérêt de la recherche sont encore
tangibles aujourd’hui, dans la “Seconde course à l’espace”, avec l’avènement de la privatisation
du secteur spatial, la révolution de la réutilisabilité de SpaceX, et les plans d’exploration et
de colonisation de Mars. L’extrême motivation à l’époque des missions Apollo conduit au
développement de différentes technologies de propulsion spatiale :

• Moteurs à propergol liquide : moteurs spatiaux qui présentent à la fois l’oxydant et le
combustible à l’état liquide. Les propergols sont stockés dans des réservoirs à partir des-
quels ils sont pompés jusqu’à la tête de l’injecteur par un système pressurisé (technologie
de soufflage), ou par une sorte de machinerie de pompage avec des degrés de complexité

1



1 Introduction

très différents : pompes électriques (fusée Electron de Rocket Lab), turbopompes à cycle
expanseur (Ariane 5, Atlas V, Delta IV, New Glenn, Longue Marche 5, KVTK, H-I, H-
II), turbopompes à cycle générateur de gaz (moteurs F1, Falcon 9), turbopompes à cycle
de combustion étagée (Space Shuttle, Energia, New Glenn, Starship, N1, Proton, H-II,
Angara). La conception minutieuse de la plaque de l’injecteur est d’un grand intérêt pour
éviter l’instabilité de la combustion et les accidents catastrophiques associés (e.g.Apollo
13 (Irvine 2008)). Cette technologie est la plus efficace dans le cadre de la propulsion
thermique et elle est la plus utilisée dans les systèmes classiques (Fig. 2.1) et de nouvelle
génération (Fig. 2.2). Une subdivision supplémentaire peut être effectuée en fonction de
la nature des propergols qui alimentent les moteurs :

– Propergols hypergoliques : Propergols qui n’ont pas besoin d’une source d’énergie
initiale pour s’enflammer, le simple mélange des composants crée les conditions de
l’inflammation. Les exemples notables d’oxydants hypergoliques sont : tétroxide
de diazote, acide nitrique, peroxide d’hydrogène. Comme carburant, les dérivés de
l’hydrazine sont le plus souvent utilisés.

– Propergols cryogéniques : propergols à impulsion spécifique élevée dont le point
d’ébullition est généralement bas et qui doivent être refroidis pour augmenter la
densité et réduire le volume des réservoirs. Ces propergols alimentent les moteurs
les plus puissants (l’impulsion spécifique la plus élevée a été atteinte avec la na-
vette “Space Shuttle”, Fig. 2.1b) et sont le plus souvent : l’hydrogène et plus récem-
ment le méthane comme combustibles, l’oxygène liquide comme oxydant. Parfois,
le kérosène (RP1) est utilisé comme carburant en combinaison avec de l’oxygène
cryogénique. Les systèmes modernes, comme le moteur Raptor de SpaceX, le Blue
Origin BE-4, le moteur AvioM10, conduisent à l’emploi de l’oxygène cryogénique
et du méthane comme propergols pour les moteurs.

• Moteurs à propergol solide : moteurs spatiaux dont l’oxydant et le combustible sont
à l’état d’agrégats solide. Les propergols sont généralement coulés dans des chemises
composites et ont une longue durée de stockage. Ils sont généralement utilisés comme
moteurs de soutien à forte poussée/poids (i.e.“boosters”) dans les premiers étages d’un
lancement spatial. Par rapport aux moteur à propergol liquide, les moteurs à poudre
ont moins de pièces mobiles et sont en général “simple”, ils peuvent être produits en
masse et facilement stockés même s’ils sont moins efficaces thermochimiquement par-
lant. Les moteurs à propergol solide les plus célèbres sont les boosters du Space Shuttle
(Fig. 2.1b), mais ils sont encore largement utilisés aujourd’hui : la fusée européenne
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Ariane 5, la nouvelle génération d’Ariane 6, l’italienne Vega sont équipées de moteurs
à poudre. Les propergols solides sont également utilisés dans l’industrie de la défense
comme systèmes de létalité à bord des avions de chasse. Pour se limiter aux applications
de propulsion spatiale, ils sont généralement constitués d’une matrice plastique liante,
très souvent du HTPB, dans laquelle des métaux de taille micro ou nanométrique (sou-
vent de l’aluminium) jouent le rôle de combustible, et du nitrate ou du perchlorate d’am-
monium celui d’oxydant. Nous renvoyons le lecteur aux travaux de Doisneau, Dupays
et al. (2011) ; Doisneau, Sibra et al. (2014) ; Dupif (2018) ; François et al. (2020) ;
François et al. (2020) sur la modélisation et la simulation des phénomènes dans les
moteurs à propergol solide.

• Moteurs hybrides : technologie moins développée pour les moteurs spatiaux pour la-
quelle un des deux ergols est à l’état liquide, souvent le comburant, et l’autre à l’état so-
lide. Les moteurs hybrides présentent des avantages théoriques par rapport aux moteurs
à propergol liquide et solide pour les activités spatiales commerciales car ils peuvent
atteindre des performances similaires à celles du RP1-oxygène liquide avec un seul sys-
tème de turbopompe au lieu de deux lorsqu’on utilise de la paraffine comme combus-
tible, avec des avantages évidents en termes de coûts. L’une des raisons pour lesquelles
ils n’ont pas trouvé d’usage industriel est que la combustion des moteurs hybrides est
régulée par la diffusion (alors que pour un moteur à propergol liquide ou un moteur à
propergol solide, la combustion est généralement régie par la cinétique chimique), ce
qui entraîne des problèmes majeurs de flexibilité, de performance, de mise à l’échelle
et de précision de la simulation. Des tentatives d’utilisation comme solution viable ont
été réalisées par l’AMROC dans le passé, puis par Virgin Galactic qui a acquis la pro-
prieté intellectuelle avec son avion spatial SpaceShipTwo Fig. 2.3. Un regain d’intérêt
s’est manifesté récemment à la suite de résultats intéressants obtenus en utilisant de la
cire et de la paraffine comme combustibles (Karabeyoglu et al. 2004) : des tentatives
de construction de nano-lanceurs alimentés en HRE ont été lancées par Leaf Space en
Italie (Primo | A Small Lightweight Nanolauncher for Your Small Sat 2018), Hybrid
Propulsion for Space en France (Hybrid Propulsion for Space 2021), entre autres. Outre
la paraffine, d’autres combustibles potentiels utilisés dans la nature sont le HTPB ou
le polycarbonate. L’oxydant est généralement l’oxygène, mais le protoxyde d’azote est
également utilisé, notamment pour les systèmes de faible niveau, comme par exemple
les fusées fabriquées par des étudiants (voir Skyward Experimental Rocketry en Italie,
DARE aux Pays-Bas, HyImpulse en Allemagne, entre autres).
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En limitant la discussion aux configurations d’écoulement diphasique dans lesquelles les
phases n’apparaissent pas à l’état solide, comme c’est le cas pour le les moteurs à propergol
solide, la modélisation et la simulation de l’écoulement diphasique jouent un rôle majeur pour
la conception rentable et sûre d’un moteur. Comme nous l’avons déjà évoqué, la conception
soignée des chicanes du réservoir, de la plaque d’injection et de la chambre de combustion est
vitale pour éviter l’apparition d’oscillations et d’instabilités de pression soutenues qui peuvent
facilement provoquer un “déssasemblage rapide non prévu”. De plus, l’optimisation d’un mo-
teur hybride nécessite des prédictions précises du champ d’écoulement et des produits de com-
bustion, notamment lors de l’utilisation de paraffine comme carburant, qui fond en créant un
jet de gouttelettes de carburant dont l’effet est très similaire à celui d’un moteur diesel.

1.1.2 Système d'injection pour la propulsion aérobie

La modélisation, la simulation et l’optimisation de l’injection ne sont pas des thèmes limités au
contexte de la propulsion spatiale. Ces dernières années, on a assisté à un changement substan-
tiel de la stratégie politique concernant le changement climatique. En particulier, plus souvent
qu’auparavant, des politiques plus strictes sont appliquées aux émissions produites par la pro-
duction d’énergie des industries et des utilisateurs, ainsi que par les déplacements en voiture
et en avion. À titre d’exemple, le gouvernement français prévoit d’interdire les vols intérieurs
afin de réduire les émissions polluantes (“France Moves to Ban Short-Haul Domestic Flights”
2021). La revue fait dans Lee et al. (2001), même si elle n’est pas complètement à jour, fournit
une analyse historique de l’évolution des émissions des avions. Elle fait état d’une multipli-
cation possible par trois à sept des émissions de CO2 d’ici 2050. Afin de se conformer aux
réglementations toujours plus strictes, la technologie de propulsion doit évoluer pour offrir un
meilleur rendement. Pour les applications aéronautiques, des taux de dilution plus élevés et
des températures de combustion basses sont parmi les aspects clés qui permettent d’améliorer
l’efficacité de la combustion et de réduire les polluants et les gaz à effet de serre, et l’injection
de carburant dans la chambre de combustion a un impact majeur sur ces paramètres. Alors
que pour les moteurs à propergol liquide de simples atomiseurs à orifice unique sont utilisés,
parfois configurés comme des jets d’impact où le jet de carburant heurte l’oxydant à un cer-
tain angle comme illustré dans la Fig. 2.4, pour la propulsion aérospatiale à air comprimé, des
configurations plus complexes sont nécessaires. À titre d’exemple, la Fig. 2.5 montre les détails
techniques d’un injecteur coaxial multipoint décrit dans le brevet de David et al. (2004), et il
décrit une configuration où non seulement une alimentation primaire en carburant est présente,
mais aussi plusieurs alimentations secondaires (notées 62 et 72 dans Fig. 2.5) réparties le long
de l’axe central (noté axe X—Xdans Fig. 2.5). Des moteurs comme le LEAP de Safran Aircraft
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Engines, illustré dans le Fig. 2.6, sont le résultat de cette optimisation. Dans ces conditions ex-
trêmes et ces enveloppes de vol serrées, la maîtrise du processus d’injection est cruciale et de
nombreuses recherches sont consacrées à cette tâche (e.g. Remigi (2021) tout récemment). Les
différents points d’injection présents dans un moteur ont pour objectifs combinés de contrôler
les flux thermiques sur les parois pour éviter les situations critiques, d’améliorer la durée de vie
de ces composants coûteux en augmentant le Mean time between failures (MTBF) mais aussi
de contrôler la température de la flamme pour éviter une production excessive de 𝑁𝑂𝑥 et autres
polluants. La nébulisation correcte du carburant dans les chambres de combustion est donc vi-
tale, et en raison des difficultés d’accès et d’observation inhérentes aux moteurs aéronautiques,
la modélisation et la simulation sont des outils importants dans la phase initiale du cycle de
conception, mais aussi plus tard lors de la mise en service, du contrôle et de la mise hors ser-
vice de ces systèmes. Les simulations actuelles à l’état de l’art traitent le gaz porteur avec une
approche eulérienne où les gouttelettes de carburant sont ensuite injectées individuellement
ou comme des particules virtuelles composées d’un groupe d’objets physiques individuels et
suivies avec une approche lagrangienne : (Lebas et al. 2005 ; Sanjosé et al. 2011 ; Vignat
et al. 2021). Cette approche peut s’avérer non prédictive lorsque la configuration devient très
complexe (comme les systèmes d’injection multipoints de la Fig. 2.5) et lorsque les conditions
de fonctionnement sont éloignées des conditions expérimentales, de sorte que la calibration
des paramètres du modèle lagrangien ne parvient pas à représenter la physique sous-jacente de
l’atomisation primaire. Cette situation est également rencontrée pour les systèmes d’injection
directe automobiles. Il y a eu quelques tentatives pour développer un formalisme général pour
la déstabilisation et la rupture de l’interface lqiuid en utilisant la représentation de la densité de
surface interfaciale en commençant par le travail de Vallet et Borghi (1999) poursuivi avec
une dérivation empirique pour les flux de phases séparées basée sur l’analyse de l’instabilité de
Kelvin-Helmholt dans Jay et al. (2006) et plus récemment une représentation avec deux den-
sités de surface interfaciale pour les phases séparées et dispersées Devassy (2014) ; Devassy
et al. (2015). Jusqu’à présent aucune de ces approches n’est vraiment capable de représenter
les liens entre la physique à l’intérieur de l’injecteur et la région du spray développé à toutes
les échelles et avec des dimensions réelles et des caractéristiques géométriques complexes. Par
conséquent, la résolution correcte du film liquide à proximité de l’injecteur est primordiale
pour améliorer les résultats de la simulation. Pour cette raison, un modèle d’ordre réduit ap-
proprié qui inclut le traitement des petites échelles significatives est nécessaire, en particulier
pour la représentation de la densité de la surface interfaciale.
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1.1.3 Système d'injection pour les moteurs injection directe

Le thème de l’environnement est aussi important dans le développement de la nouvelle gé-
nération de moteurs à pistons pour le transport terrestre, comme les voitures et les camions.
Dans la plupart des pays occidentaux, les gouvernements ont prévu une élimination progressive
des moteurs diesel afin de réduire la pollution. En Norvège, cette élimination progressive est
prévue dès 2025 (Phase-out of Fossil Fuel Vehicles 2021). Par conséquent, dans un avenir pré-
visible, la majeure partie du financement de la R&D sera destinée à améliorer l’efficacité de la
combustion des moteurs à injection directe d’essence. Dans cette technologie, le mélange d’air
et de carburant doit être soigneusement régulé pour éviter l’auto-allumage et la détonation, et
également pour maintenir la température à un niveau raisonnable afin d’éviter la production
de 𝑁𝑂𝑥 (qui sont de toute façon également capturés en aval du système de moteur thermique
avec un catalyseur pour se conformer aux lois anti-pollution locales strictes). Les conditions
extrêmes qui sont caractéristiques de ces systèmes et aussi le fait que les chambres de combus-
tion changent de volume dans le temps en raison du mouvement du piston, rendent l’étude du
phénomène d’injection pour les moteurs alternatifs à injection directe très difficile du point de
vue de la modélisation, mais aussi des aspects numériques et géométriques.

1.2 Contexte scientifique

L’injection est un phénomène multiéchelle par nature. La Fig. 2.7 montre le schéma d’un scé-
nario typique où un système d’injection injecte du carburant dans une chambre de combustion
dans laquelle se trouve un gaz, généralement de l’air. Dans la partie gauche de l’image, nous
avons le carburant qui sort de la tête de l’injecteur. Cette partie du domaine est caractérisée par
une phase liquide clairement séparée par une interface de l’atmosphère gazeuse environnante et
elle est appelée zone ou régime à phase séparée. A l’extrémité de la chambre, l’interface s’est
déformée à un niveau tel qu’un grand nombre de gouttelettes se détachent en formant un spray,
c’est le régime à phase dispersée. Bien que les deux différent régimes soient clairement identi-
fiés et modélisés, ils doivent encore être liés d’une manière ou d’une autre, c’est-à-dire qu’une
zone supplémentaire dans laquelle les grandes et petites échelles coexistent et où une distinc-
tion claire n’est pas possible peut également être identifiée, c’est la région mixte. Les échelles
de longueur de référence associées au diamètre de l’orifice des atomiseurs sont de l’ordre de
1e−3m. L’interface subit ensuite une déstabilisation associée aux gradients de vitesse (insta-
bilités de Kelvin-Helmoltz), aux effets de tension de surface (instabilité de Plateau-Rayleigh),
à l’interaction avec la turbulence et à un mélange complexe de tous ces facteurs. L’interface
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se déforme jusqu’à créer des ligaments. Plus en aval, ces ligaments se détachent du cœur du
jet, conduisant à la rupture (breakup) primaire. Dans la partie la plus en aval du domaine
représenté, les ligaments originaux détachés se décomposent en plus petites gouttelettes, jus-
qu’à la création de gouttes presque sphériques de l’ordre de 1e−4 à 1e−6m; c’est la rupture
(breakup) secondaire, conduisant à la création du régime à phase dispersée. Les nombres non
dimensionnels les plus importants qui régissent le phénomène sont les nombres de Reynolds
(Re), de Weber (We) et d’Ohnesorge (Oh) :

Re𝑘 =
𝜌𝑘𝑢𝑘𝐿𝑘

𝜇𝑘
(1.1)

We =
𝜌𝑔(𝑢𝑔 − 𝑢𝑙)

2𝐿𝑙

𝜎𝑙
(1.2)

Oh𝑘 =
√We
Re𝑘

(1.3)

où l’indice 𝑘 = 𝑙, 𝑔 indique une phase générique, 𝑙 indique la phase liquide et 𝑔 la phase gazeuse.
𝐿𝑘 est une longueur de référence spécifique à la phase, 𝜌𝑘 est la densité d’une phase et 𝒖𝑘 sa
vitesse. 𝜎𝑘 est le coefficient de tension de surface. La Fig. 2.9 montre la plage des quantités
non dimensionnelles pour quelques cas de jets ronds coaxiaux. Une discussion détaillée des
différents types d’atomiseurs pour les systèmes d’injection peut être trouvée dans Lefebvre
et McDonell (2017).

1.2.1 Différents modèles pour différents régimes

Le problème de l’injection étant par nature multi-échelle, différentes approches ont été déve-
loppées pour faire face à la complexité et être capable de simuler de manière prédictive même
les systèmes les plus élaborés. Dans certaines situations simplifiées, des approches haute fidé-
lité peuvent être employées pour traiter l’ensemble du spectre des échelles et des régimes, alors
que dans la plupart des situations, des simplifications sont nécessaires car certaines échelles
du problème ne peuvent être résolues. Des modèles d’ordre réduit sont donc nécessaires : le
plus souvent, deux modèles différents sont utilisés, l’un pour le régime de phases séparées,
dans lequel les champs sont généralement régis par des équations de conservation sous forme
eulérienne, et l’autre où les objets dispersés individuels sont suivis de manière lagrangienne
ou via leur fonction de densité en nombre, reconstruite à partir d’une sélection de ses mo-
ments. D’autres approches sont plutôt conçues pour fournir un contexte de modélisation unifié
permettant de traiter les deux régimes d’écoulement en même temps.

7



1 Introduction

1.2.2 Modèles pour résoudre toutes les échelles

Si l’on souhaite être en mesure de simuler les échelles les plus fines du problème, deux grandes
approches sont possibles. La première est basée sur les travaux de Cahn et Hilliard (1958) et
de ses dérivés successifs (e.g. C. Liu et Shen 2003), appelés “phase field” models. Le travail
de Cahn et Hilliard considère l’interface entre les deux fluides avec une épaisseur finie. Bien
que cette approche soit parfaitement raisonnable dans les situations où l’épaisseur de l’inter-
face n’est pas trop fine, dans un scénario plus général, l’épaisseur de l’interface peut être de
l’ordre de quelques angströms, ce qui nécessite un maillage très fin pour être résolu avec sa-
tisfaction. En alternative, la résolution des équations Navier-Stokes (NS) pour chaque phase
ainsi que des équations de saut à l’interface, qui est donc considérée comme une surface de
discontinuité, avec un maillage très fin est également possible. Le fait que l’interface ne soit
pas résolue comme dans le Cahn et Hilliard (1958) est déjà une hypothèse de modélisa-
tion. Dans le scénario à phase unique, les Direct Numerical Simulations (DNSs) sont définis
comme les simulations qui résolvent les équations NS jusqu’à la plus petite échelle connue qui
est l’échelle de Kolmogorov, sans modélisation réduite supplémentaire d’aucune sorte. Cette
approche n’est pas directement transposable aux écoulements diphasiques car ceux-ci ont une
interface qui est souvent considérée comme infiniment mince, et il est difficile d’identifier une
échelle de longueur “Kolmogorov” ; par conséquent, les résultats de ces simulations dépendent
souvent fortement de la résolution du maillage et des schémas numériques employés (Ling,
Fuster et al. 2017), ainsi que des stratégies de suivi de l’interface. Cependant, pour simpli-
fier le vocabulaire, nous utiliserons le terme DNS pour définir les modèles qui ne supposent
pas de modélisation supplémentaire pour les phénomènes à petite échelle, liés à la dynamique
de l’interface (en dehors des différentes techniques de suivi de l’interface employées) et à la
modélisation de la turbulence, même dans le contexte d’un écoulement diphasique. L’inter-
face peut être suivie explicitement avec un suivi lagrangien sur une grille qui se déplace avec
le fluide, comme dans Tryggvason et al. (2001) ; James Glimm et al. (2006). Une approche
complètement eulérienne peut également être utilisée, où l’interface est capturée à l’aide d’une
fonction de couleur advectée (méthode Volume Of Fluid (VOF) Hirt et B. Nichols 1981), ou
une fonction de distance (Sethian 1996 ; Russo et Smereka 2000 ; Zhao 2004), ou même
les deux de manière couplée (Fedkiw et al. 1999 ; C. Liu et Shen 2003 ; Vaudor et al. 2017).
Des techniques compressibles sont également possibles (B. Duret et al. 2018).Mirjalili et al.
(2019) compare les approches VOF et Level-Set. Un exemple de simulation haute-fidélité d’un
écoulement diphasique compressible pour une injection supercritique est présenté dans Petit
et al. (2013), tandis que dans Zou et al. (2019), une méthode level-set pour les écoulements
compressibles Low-Mach est discutée.
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1.2.3 Modèles d'ordre réduit

Lorsque l’on traite des modèles d’ordre réduit, on souhaite pouvoir approcher à la fois les ré-
gimes à phase séparée et à phase dispersée dans un système d’injection typique. Deux stratégies
principales sont disponibles : employer différents sous-modèles pour chaque régime différent,
puis les coupler souvent avec des corrélations empiriques ou semi-empiriques ou introduire un
cadre unifié capable de faire face aux deux situations.

Le régime à phase séparée dans lequel les deux phases sont clairement séparées par une
interface. La manière classique de dériver un ensemble d’équations gouvernantes est de faire
la moyenne des équations phasiques instantanées locales à la Ishii et Mishima (1984). Ishii,
Kim et al. (2002) ; Rusche (2003) ; Drew et Passman (2006) exploitent cette méthode. Dans
ces modèles, l’interface n’est souvent pas reconstruite, c’est un champ transporté qui diffuse
autour de la position réelle qu’aurait l’interface dans la situation physique. Le degré de dif-
fusion est contrôlé par la résolution du maillage et l’ordre du schéma numérique employé et
ils n’y a généralement pas de traitement spécifique pour les petites échelles interfaciales. Le
processus de moyennage génère des termes non fermés qui nécessitent une analyse plus ap-
profondie pour être fermés. Des termes sources spécifiques (“termes de contraction”) peuvent
être utilisés pour forcer une résolution nette de l’interface (voir Shukla et al. (2010) ; Tiwari
et al. (2013) ; Remigi (2021)). Par ailleurs, la forme des équations de l’écoulement diphasique
peut être postulée a priori et ensuite des termes sources sont ajoutés pour imposer le respect du
second principe de la thermodynamique. Baer et Nunziato (1986) est un exemple classique
dans lequel les deux phases sont prises en compte sans hypothèse d’équilibre instantané.

Le régime à phase dispersée qui se caractérise par une forte densité de petites inclusions
par unité de volume, peut être pris en compte en suivant chaque particule individuelle (ou
“parcel”) de manière lagrangienne (Zamansky et al. 2014), ou en s’appuyant sur une vision
mesoscopique ou cinétique, inspirée de la théorie cinétique des gaz, dans laquelle la population
d’inclusions est décrite par une fonction de densité en nombre, les équations de transport pour
sesmoments sont résolues sur tout le domaine, puis la fonction de densité en nombre est recons-
truite à partir des valeurs de ses moments (Méthode des Moments). Le lecteur intéressé est ren-
voyé à Laurent, Massot et Villedieu (2004) ; S. de Chaisemartin et al. (2009) ; Massot,
Laurent et al. (2010) ; Kah et al. (2015) ; Dupif (2018). Essadki et al. (2019) introduisent le
concept de moments fractionnaires représentant le transport de quantités géométriques.

Si nous utilisons deux stratégies de modélisation différentes pour deux régimes de l’écou-
lement, alors elles doivent être couplées. Une approche que nous voulons citer est l’approche
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ELSA introduite pour la première fois dans Vallet et Borghi (1999), dans laquelle une équa-
tion sur la partie fluctuante du champ de densité de la zone interfaciale est dérivée. En fonction
d’une valeur seuil de cette quantité fluctuante, des particules lagrangiennes peuvent être injec-
tées dans certaines parties du domaine. Des développements plus poussés de cette approche
peuvent être trouvés dans Lebas et al. (2005) ; Puggelli (2018) ; Remigi (2021) entre autres.
Cordesse, Murrone et al. (2018) proposent un couplage de modèles dans l’esprit de Baer et
Nunziato (1986) pour le régime à phase séparée avec uneMéthode desMoments pour la zone
à phase dispersée. Le problème avec l’approche de couplage est laméthodologie employée pour
appliquer réellement le couplage, très souvent basée sur des corrélations empiriques avec une
enveloppe d’applicabilité limitée. Une autre approche peut être proposée, s’appuyant sur un
cadre mathématique unifié basé sur une approche variationnelle peut être utilisé pour fournir
des équations englobant les deux régimes dans un système à deux phases.

1.2.4 Un cadre complet pour la dérivation et la simulation de modèles

unifiés d'ordre réduit d'écoulement diphasique

Dans les situations où les DNS ne peuvent pas être utilisées en raison de la complexité du sys-
tème à étudier ou des contraintes de temps sur l’exécution d’une simulation, lesmodèles d’ordre
réduit sont nécessaires. Afin de tenir compte simultanément des petites échelles dans les ré-
gimes de phase séparée et dans la phase dispersée, une nouvelle approche basée sur le Principe
d’Action Stationnaire est possible. Le Principe d’Action Stationnaire est une approche varia-
tionnelle dans laquelle une action hamiltonienne est postulée, cette action contient une certaine
forme de fonction lagrangienne constituée par un ensemble d’énergies décrivant les phéno-
mènes sous-jacents dont le modélisateur veut s’occuper. En particulier, des énergies de petites
échelles représentant un comportement spécifique dans des échelles qui ne sont pas résolues
par le maillage peuvent être injectées dans le Lagrangien, ou assurer l’existence d’une structure
de dissipation pour les équations obtenues en appliquant l’inégalité d’entropie. Les principes
fondamentaux de la méthodologie ont été présentés dans S. Gavrilyuk et Gouin (1999) ;
S. Gavrilyuk et Saurel (2002) ; Berdichevsky (2009) ; Dell’Isola et S. L. Gavrilyuk
(2012), tandis que Drui, Larat et al. (2019) présente les spécificités du traitement des objets
sphériques pulsants à petite échelle. Cordesse (2020) présente les efforts déployés pour sur-
monter la limitation consistant à supposer que seules les inclusions sphériques pulsantes ont
des propriétés géométriques supplémentaires à la simple fraction de volume, mais des travaux
supplémentaires sont indubitablement nécessaires pour étendre la gamme des phénomènes à
petite échelle pris en compte. Lors de la modélisation des contributions à petite échelle, la
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forme fonctionnelle des énergies à inclure dans la dérivation peut bénéficier des connaissances
fournies par le post-traitement des simulations haute-fidélité comme la DNS, grâce à des outils
d’analyse spécifiques. D’autres hypothèses de modélisation peuvent également être prises en
compte par l’application d’une structure dissipative cohérente, en appliquant le signe d’une
fonction d’entropie comme le veut le deuxième principe de la thermodynamique. Cela permet
d’introduire des termes sources qui, dans d’autres études, sont introduits par d’autres méthodes
telles que le calcul de la moyenne des équations instantanées locales pour la dynamique de l’in-
terface.

Post-traitement des DNS Les DNS fournissent un outil très utile pour étudier en détail
des configurations d’écoulement simplifiées. Les résultats sont très utiles pour comprendre les
phénomènes qui se produisent aux échelles les plus basses et qui sont ensuite utilisés pour
fournir des fermetures solides pour les termes créés lors du développement de modèles d’ordre
réduit, suivant une approche de moyennage (voir section 3.2) ou une approche variationnelle
(voir section 3.4). Pour référence, Essadki (2018) ; Essadki et al. (2019) présente les principes
fondamentaux des calculs géométriques sur des surfaces triangulées pour estimer les courbures
de l’interface. Une autre analyse qui utilise la corrélation à deux points est décrite dans le tra-
vail de Thiesset, Dumouchel et al. (2019) ; Thiesset, Ménard et al. (2019) ; F. Thiesset,
B. Duret et al. (2020) ; F. Thiesset, T. Ménard et al. (2021). L’importance du calcul cor-
rect de la courbure de l’interface est également discutée dans Bermejo-Moreno et Pullin
(2008) ; Bermejo-Moreno, Pullin et Horiuti (2009) dans le contexte des champs turbu-
lents comme l’enstrophie ou dans Evrard (2017) ; Evrard et al. (2020) pour les écoulements
multiphasiques.

1.3 Contexte de calcul scientifique

Dans les paragraphes d’introduction précédents, nous avons déjà évoqué le coût potentielle-
ment élevé des simulations d’écoulement diphasique. La réalisation de DNS significatives, par
exemple, peut nécessiter quelques centaines de millions de cellules au moins. La simulation
de beaucoup de secondes de temps physique nécessite un haut niveau de parallélisme des don-
nées et des algorithmes pour être réalisable, ce qui se traduit souvent par une conception de
la programmation dictée par ces structures de données sous-jacentes, avec des Application
Programming Interfaces (APIs) parfois difficilement accessibles, avec un langage compilé et
des systèmes de compilation complexes. En outre, les codes industriels de simulation multi-
physique fournissent une pléthore de fonctionnalités (par exemple le code CEDRE (Le Touze
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2015 ; Cordesse 2020), ou le code OpenFOAM Greenshields (2015). Ces grandes bases de
code avec un historique important sont souvent difficiles à modifier et à tester. Une nouvelle gé-
nération de codes est en cours de développement pour répondre à la nécessité d’une adaptation
locale du maillage, comme le code canoP Drui, Fikl et al. (2016), basé sur la bibliothèque
p4est qui offre la manipulation d’octrees, ou le code SAMURAI (Bellotti et al. 2021) qui offre
une structure de données sans arbre optimisée pour l’adaptation du maillage multirésolution.

De l’autre côté, l’intérêt toujours croissant pour l’apprentissage automatique, l’intelligence
artificielle et l’extraction de crypto-monnaies a conduit à l’avancement technologique de com-
posants matériels spécialisés tels que les GPU et les FPGA, permettant l’utilisation de langages
interprétés dynamiques comme Python, pour effectuer des tâches de calcul lourdes grâce à leur
interface qui permet l’intégration de code haute performance à partir de bibliothèques compi-
lées dans des zones très spécifiques et localisées de la base de code. Des bibliothèques comme
Tensorflow, pyTorch sont des standards dans leur contexte, elles sont optimisées pour exé-
cuter des opérations sur des graphes sur les GPU et permettent l’entraînement sur de grands
ensembles de données. L’écosystème Python est riche et propose des structures de données
optimisées comme NumPy (Harris et al. 2020) qui constitue la base sur laquelle reposent
les tableaux en colonnes spécialisés. On peut citer Cupy (Preferred Infrastructure, Inc.
2021), une mise en œuvre de NumPy au-dessus des GPU, Dask, une mise en œuvre distribuée
conforme aux tableaux NumPy ou Legate NumPy (Bauer et Garland 2019), une mise en
œuvre distribuée de NumPy qui permet de calculer sur des configurations hybrides sur plu-
sieurs GPU et CPU. Une autre approche pour bénéficier à la fois des bibliothèques compilées
ultra-optimisées et des écosystèmes interprétés flexibles, résolvant ainsi le problème des deux
langages (Perkel 2019), est le développement d’un langage numérique de nouvelle génération
comme Julia.

Les langages modernes offrent la possibilité interessante de prototyper facilement et de re-
factorer le code sans perdre les performances des bibliothèques spécifiques compilées, étroi-
tement intégrées dans le runtime du langage. Les chaînes d’outils associées à ces langages
modernes appliquent les meilleures pratiques comme Continuous Integration (CI) et Conti-
nuous Development (CD), l’auto-génération de documentation, les tests unitaires, et ces outils
font souvent partie de la bibliothèque standard et sont donc facilement accessibles et enseignés
(comme exemple de pratiques modernes voir Klabnik et C. Nichols (2018)). Ces caractéris-
tiques sont également souhaitables dans les logiciels High Performance Computing (HPC) de
nouvelle génération.
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1.4 Contributions de cette thèse

L’objectif principal de cette thèse est d’offrir un cadre de modélisation unifié permettant la dé-
rivation de systèmes d’équations régissant des systèmes d’écoulement diphasique caractérisés
par une structure mathématique solide via un cadre variationnel nommé Pricinpe d’Action Sta-
tionnaire. Cet effort est soutenu par un ensemble d’outils informatiques adaptés qui permettent
le choix rationnel des hypothèses de modélisation et les simulations efficaces des modèles dé-
veloppés, éventuellement sur des architectures informatiques modernes. Ce travail vise à traiter
les trois aspects principaux concernant la modélisation de l’écoulement diphasique que nous
avons identifiés dans les sections d’introduction précédentes, à savoir : le développement de
modèles d’ordre réduit via le Principe d’Action Stationnaire, la mise en œuvre d’un outil de
post-traitement géométrique DNS appelé Mercur(v)e qui est utilisé pour clarifier les bonnes
hypothèses à faire lors de l’élaboration d’un modèle d’ordre réduit, et le développement d’une
bibliothèque Python appelée josiepy qui agit comme un playbook pour tester rapidement les
modèles de lois de conservation, les schémas numériques, les conditions limites, les configu-
rations de domaine et une stratégie moderne du calcul scientifique. Le manuscrit est organisé
comme suit :

• Le Chapitre 3 est consacré à la discussion sur les stratégies de dérivation des modèles
d’ordre réduit. Nous introduisons deux méthodes différentes pour la dérivation du sys-
tème d’équations concernant les écoulements diphasiques, la première basée sur lamoyenne
des équations Navier-Stokes (NS) locales instantanées pour chaque phase, la seconde qui
exploite une méthodologie variationnelle appelée Principe d’Action Stationnaire. En-
suite, nous exploitons le Principe d’Action Stationnaire pour dériver un ensemble de
modèles présentant différentes hypothèses à petite échelle dans le but final d’injecter des
équations pilotant les paramètres géométriques qui pourraient améliorer la précision des
modèles lorsqu’ils traitent des inclusions non sphériques.

• Le Chapitre 4 présente les efforts de développement engagés dans la création de Mer-
cur(v)e, une bibliothèque dédiée au post-traitement des DNS d’écoulement diphasique.
La bibliothèque est basée sur une triangulation de l’interface, sur laquelle sont calculées
des approximations discrètes de paramètres géométriques tels que la courbure moyenne
et la courbure de Gauss. L’algorithme choisi pour effectuer ces calculs préserve les in-
variants topologiques comme le théorème de Gauss-Bonnet, permettant de compter les
objets dans un domaine qui sont homeomorphes à des sphères. De plus, la bibliothèque
offre également un noyau de moyennage qui permet de lisser les calculs bruités sur des
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triangulations imparfaites sans perdre la préservation des invariants topologiques. La bi-
bliothèque est utilisée pour soutenir les hypothèses de modélisation pour l’élaboration
d’un modèle d’ordre réduit supposant l’oscillation isochore de gouttelettes ellipsoïdales
comme modèle à petite échelle.

• Dans le chapitre 5 nous discutons du cadre numérique sur lequel la bibliothèque josiepy
est construite. Nous fournissons un aperçu général de la théorie de la génération de
maillage et des schémas numériques dans le contexte Volumes Finis de la bibliothèque,
nous reformulons la littérature classique sur le sujet sous une forme différente qui contex-
tualise l’énonciation numérique des schémas aux spécificités de l’implémentation du
code josiepy. Nous discutons de manière assez détaillée de tous les modèles, algo-
rithmes et schémas qui sont déjà implémentés à ce jour dans josiepy. Nousmontrons un
ensemble de tests de vérification sur différents modèles, qui sont reproductibles avec le
code actuel disponible en ligne sous une licence Free and Open Source Software (FOSS)
et facilement disponibles sous forme de notebooks Jupyter ou de tests d’intégration dans
le dépôt contenant le code source, y compris les modèles innovants dérivés et présentés
dans chapitre 3.

• Le Chapitre 6 décrit tous les aspects liés au génie logiciel des bibliothèques que nous
avons développées au cours de la thèse : une bibliothèque Python nommée josiepy
visant à simuler des systèmes d’EDP potentiellement génériques et la bibliothèque Mer-
cur(v)e dont le but est d’exposer une procédure de post-traitement géométrique pour
collecter des informations intéressantes à partir de simulations haute définition comme
les DNS. Dans ce chapitre, nous discutons de la philosophie qui sous-tend le choix de
créer de tels logiciels, des défis actuels et des perspectives possibles dans un avenir
proche.

Les sujets que nous avons explorés dans l’accomplissement de cette thèse conduisent aux
contributions suivantes :

• Articles de revues :

– RubenDiBattista, ThibaultMénard, StephaneDeChaisemartin etMarcMassot
(2021). “A Computational Framework Based on the Discrete Estimation of Geo-
metrical Properties over Triangulated Interfaces Preserving Topological Invariants
to Design and Validate Two-Phase Flow Models”. In : Fluids. In preparation

– Pierre Cordesse, RubenDi Battista, Quentin Chevalier, LionelMatuszewski,
Thibault Ménard, Samuel Kokh et Marc Massot (2020). “A Diffuse Interface

14



1.4 Contributions de cette thèse

Approach For Disperse Two-Phase Flows Involving Dual-Scale Kinematics Of
Droplet Deformation Based OnGeometrical Variables”. In : ESAIM : Proceedings,
p. 22. url : https://hal.archives-ouvertes.fr/hal-02879950v1

• Actes de conférence :

– Alberto Remigi, RubenDiBattista, François-Xavier Demoulin, BenjaminDuret,
Marc Massot, Thibaut Ménard et Hugo Deneuville (19-24 mai 2019). “Explo-
ring Different Approaches for the Simulation ofMulti-Scale Atomization Process”.
In : International Conference on Multiphase Flow. Rio de Janeiro. url : https:
//hal.archives-ouvertes.fr/hal-02379257

– Pierre Cordesse, Ruben Di Battista, Samuel Kokh et Marc Massot (19-24 mai
2019). “Derivation of a Two-Phase Flow Model with Two-Scale Kinematics and
Surface Tension by Means of Variational Calculus”. In : 10th International Confe-
rence on Multiphase Flow. Rio de Janeiro. url : https : / / hal . archives -
ouvertes.fr/hal-02194951

– RubenDiBattista, IvánBermejo-Moreno, ThibautMénard, Stéphane deChaisemartin
et Marc Massot (19-24 mai 2019). “Post-Processing of Two-Phase DNS Simula-
tions Exploiting Geometrical Features and Topological Invariants to Extract Flow
Statistics and Droplets Number Density”. In : International Conference on Multi-
phase Flow. Rio de Janeiro. url : https://hal.archives-ouvertes.fr/hal-
02345825v1

• Chapitres d’ouvrage :

– Pierre Cordesse, RubenDiBattista, FlorenceDrui, SamuelKokh etMarcMassot
(2020). “Derivation of a Two-Phase FlowModel with Two-Scale Kinematics, Geo-
metric Variables and Surface Tension Using Variational Calculus”. In : Procee-
dings of the NASA Summer Program. Nasa Technical Memorandum. url : https:
//hal.archives-ouvertes.fr/hal-02336996

– Ruben Di Battista, Iván Bermejo-Moreno, Thibaut Ménard et Marc Massot
(2019). “Geometrical Characterization andDNSPost-Processing of the 3DObjects
in Two-Phase Flow : Collision of Two Droplets”. In : NASA Technical Memoran-
dum

• Logiciels
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– Ruben Di Battista (2018). Mercur(v)e — A Library to Exploit Geometrical and
Topological Properties to Allow Post-Processing of DNS Simulations (and Much
More). url : https://gitlab.com/rubendibattista/mercurve

– Ruben Di Battista (2019). Josiepy— A 2D PDE Solver Written in Python without
Compromising (Too Much) Performance. url : https://gitlab.com/rubendi
battista/josiepy
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2 Introduction

2.1 Industrial Context

2.1.1 Injection systems for space propulsion

The 16th June 1969 Neil Armstrong, Buzz Aldrin and Michael Collins leave the motherplanet
for the Mare Tranquillitatis on top of the biggest, largest, heaviest and most powerful space
launcher human race has ever built at this date: the Saturn V. The Saturn V shown in Fig. 2.1a
was a gargantuan 110.6m tall rocket with a diameter of 10.1m powered by 5 F-1 Liquid Rocket
Engines (LREs), each one capable of delivering 7770 kN of thrust in vacuum thanks to the
cryogenic Liquid Oxygen (LOX)-Liquid Hydrogen (LH2) gas-generator cycle they employ.
The 20th June 1969 the three astronauts land on the Moon on board of the LEM, after detach-
ment from the CSM, the module responsible for lunar orbit maneuvering, powered by a Nitric
Acid (HNO3)-Unsymmetrical dimethylhydrazine (UDMH) hypergolic LRE. A giant leap that
widens mankind horizons for exploration, placing the new “Pillars of Hercules” outside Earth
atmosphere and beyond. Indeed, “Earth is the cradle of humanity, but one cannot live in a
cradle forever ” (K. E. Tsiolkovsky).

The “First Space Race” paved the way for incredibly fast-paced innovation in the propulsion
field whose research interest outreach is still tangible today. We are witnessing the “Second
Space Race”, with the advent of privatization of the space sector, the SpaceX reusability revo-
lution, and the Mars exploration and colonization plans. The extreme motivation in the epoch
of the Apollo missions lead to the development of different space propulsion technologies:

• Liquid Rocket Engines: space engines which feature both the oxidizer and the fuel in
liquid state. The propellants are stored in tanks from which they are pumped to the in-
jector head by a pressurized system (blow-down technology), or some sort of pumping
machinery with very different degrees of complexity: electric pumps (Electron rocket
by Rocket Lab), expander cycle powered turbopumps (Ariane 5, Atlas V, Delta IV, New
Glenn, Long March 5, KVTK, H-I, H-II), gas generator cycle powered turbopumps (F1
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(a) Saturn V (b) Space Shuttle (c) Ariane 5

Figure 2.1: An opinionated and absolutely not in scale selection of cool “legacy” launch systems
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(a) New Glenn (b) Falcon Heavy (c) Ariane 6

Figure 2.2: An opinionated and absolutely not in scale selection of cool “new generation” launch sys-
tems
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engines, Falcon 9), staged combustion cycle powered turbopumps (Space Shuttle, Ener-
gia, New Glenn, Starship, N1, Proton, H-II, Angara). The careful design of the injector
plate is very much of interest to avoid combustion instability and associated catastrophic
accidents (e.g. Apollo 13 (Irvine 2008)). This technology is the most efficient in the
framework of thermal propulsion and it is the most used in legacy (Fig. 2.1) and new
generation (Fig. 2.2) systems. An additional subdivision can be done in terms of the
nature of the propellants driving the engines:

– Hypergolic Propellants: Propellants that do not need an initial source of energy
for ignition, just the mixing of the components creates the condition for ignition.
Notable examples of hypergolic oxidizers are: Dinitrogen Tetroxide N2O4 (NTO),
HNO3, Hydrogen Peroxide (H2O2). As fuel, hydrazine derivatives are mostly
used.

– Cryogenic Propellants: high specific impulse propellants with generally low boil-
ing point that need to be cooled down to increase density and reduce volume of
tanks. These propellants power the most efficient engines (the highest specific
impulse has been achieved with the space shuttle LRE, Fig. 2.1b for commercial
systems. Higher specific impulse engines are possible with fluorine as oxidizer,
but they produce emissions that are extremely toxic and corrosive, hence they are
not commercially employed) and most commonly they are: hydrogen and more
recently methane as fuels, LOX as oxidizer. Sometimes Kerosene (RP1) is used
as fuel in pair with cryogenic LOX. Modern systems, like the Raptor engine by
SpaceX, the Blue Origin BE-4, Avio M10 Engine, are leading towards the em-
ployment of cryogenic LOX and LCH4 as propellants for the engines.

• Solid RocketMotors: space engines that feature both the oxidizer and the fuel in solid ag-
gregation state. The propellants are generally casted into composite liners and have long
storability times (in the order of years). They are generally used as high thrust/weight
support engines (i.e.“boosters”) in the first stages of a space launch. Compared to LREs,
Solid Rocket Motors have less moving parts and are in general “simpler”, they can be
mass produced and easily stored even if less efficient thermochemically speaking. The
most famous solid rocket engines are the boosters of the Shuttle (Fig. 2.1b), but they are
still in large use today: the European Ariane 5, the next generation Ariane 6, the Italian
Vega feature SRMs. SRMs are also used in the defense industry as lethality systems to be
equipped on-board of fighter jets. Limiting the discussion to space propulsion applica-
tions, they are generally made of a binder plastic matrix, very often Hydroxil-terminated
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polybutadiene (HTPB), in which micro or nano-sized metals (often Aluminum) act as
fuel, and ammonium nitrate or perchlorate act as oxidizers. We refer the reader to the
work of Doisneau, Dupays, et al. (2011); Doisneau, Sibra, et al. (2014); Dupif (2018);
François et al. (2020); François et al. (2020) on the modeling and simulation of SRMs
phenomena.

• Hybrid Rocket Engines: a less developed technology for space engines that feature one
of the two propellants in liquid state, often the oxidizer, and the other one in solid state.
HREs have theoretical benefits w.r.t. LREs and SRMs for commercial space business
because they can achieve similar performances as RP1-LOX LREs with one turbopump
system instead of two when using paraffin as fuels, with evident cost benefits. One of
the reasons why they did not catch industrial usage is because the combustion of HREs
is regulated by diffusion (while for a LRE or SRM the combustion is generally driven
by chemical kinetics), leading to major problems in flexibility, performance, scaling and
simulation accuracy. Attempts to use them as a viable solution have been performed by
AMROC in the past, nowVirginGalactic that acquired the Intellectual Property (IP) with
its SpaceShipTwo spaceplane Fig. 2.3. A renewed interest spanned in recent times fol-
lowing interesting results when usingwax and paraffin as fuels (Karabeyoglu et al. 2004):
attempts to build HRE-powered nano-launchers have been started by Leaf Space in Italy
(Primo | A Small Lightweight Nanolauncher for Your Small Sat 2018), Hybrid Propul-
sion for Space in France (Hybrid Propulsion for Space 2021), among others. Apart from
paraffin, other potential fuels used in the wild are HTPB or polycarbonate. Oxidizer is
generally oxygen, but nitrous oxide is also used especially for low tier systems, like for
example rockets made by students (see Skyward Experimental Rocketry in Italy, DARE
in Netherlands, HyImpulse in Germany, among others).

Limiting the discussion to two-phase flow configurations in which phases do not appear in
solid state, as is the case for SRMs, two-phase flow modeling and simulation play a major role
for the cost effective and safe design of an engine. As we already touched on, the careful design
of the tank baffles, injector plate and combustion chamber is vital to avoid the insurgence of
sustained pressure oscillations and instabilities that can easily cause Rapid Unscheduled Dis-
assembling (RUD). Moreover, the optimization of a HRE requires accurate predictions of the
flow field and combustion products, especially when using paraffin as fuel, that melts creating
a spray of fuel droplets, which bears some similarity with what is going on in Diesel engines.
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Figure 2.3: Virgin Galactic SpaceShipTwo HRE

Figure 2.4: LRE injector configuration, courtesy of Lefebvre and McDonell (2017)
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Figure 2.5: The multipoint injection feed system from David et al. (2004)
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2.1.2 Injection systems for air-breathing propulsion

Injection modeling, simulation and optimization are themes not limited to the space propul-
sive context. In recent years a substantial switch in the political strategy regarding climate
change has been witnessed. In particular, more often than before, stricter policies are enforced
for emissions produced by industrial and user power generation, car and flight traveling. As a
note, France government plans to ban domestic flights as a move to reduce pollutants (“France
Moves to Ban Short-Haul Domestic Flights” 2021). Lee et al. (2001), even if not extremely
up to date, provides an historical analysis on the evolution of emissions for aircrafts. They
report a possible three-to sevenfold increase by 2050 of 𝐶𝑂2 emissions. In order to comply
to the always stricter regulations, the propulsion technology must evolve to provide better ef-
ficiency. For aeronautical applications, higher bypass ratios and low combustion temperatures
are among the key aspects that allow improvement of combustion efficiency and reduction of
pollutants and greenhouse gases and the fuel injection in the combustor has a major impact
on those metrics. While for LREs simple single orifice atomizers are used, sometimes con-
figured as impinging jets where the fuel jet impinges against the oxidizer at a certain angle
as shown in Fig. 2.4, for the aerospace air-breathing propulsion, more complex configurations
are required. As an example, Fig. 2.5 shows the technical details of a multi-point coaxial in-
jector described in the patent from David et al. (2004), and it describes a configuration where
not only one primary fuel feed is present, but also several secondary feeds (noted 62 and 72 in
Fig. 2.5) distributed along the central axis (noted X—X axis in Fig. 2.5). Motors like the LEAP
from Safran Aircraft Engines shown in Fig. 2.6, are the result of this optimization. In those
extreme conditions and tight flight envelopes, mastering the injection process is crucial and
lots of research is addressed to this endeavor (e.g. Remigi (2021) most recently). The different
points of injection present in an engine have the combined aim of controlling thermal fluxes on
the walls to avoid RUD, improving the life expectations of these costly components increasing
the MTBF but also to control the flame temperature to avoid excess production of 𝑁𝑂𝑥 and
other pollutants. The correct nebulization of fuel into the combustion chambers is therefore
vital, and due to the access and observation difficulties that are inherent to aeronautical en-
gines, modeling and simulation are important tools in the early phase of the design cycle, but
also later on during the commissioning, control and decommissioning of those systems. The
current state of the art simulations treat the surrounding gaseous carrier with an Eulerian ap-
proach where the fuel droplets are then injected individually or as virtual particles composed
by a group of individual physical objects and tracked with a Lagrangian approach (Lebas et al.
2005; Sanjosé et al. 2011; Vignat et al. 2021). This approach can be non-predictive when the
configuration becomes very complex (as the multipoint injection systems of Fig. 2.5) and when
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Figure 2.6: LEAP aeronautical engine. Courtesy of Safran Aircraft Engines

operating conditions are far from experimental ones so that the calibration of the Lagrangian
model parameters fails to represent the underlying physics of primary atomization. This situa-
tion is also encountered for automotive direct injection systems. There has been some attempts
to develop a general formalism for the liquid interface destabilization and break-up using the
interfacial surface density representation starting from the work of Vallet and Borghi (1999)
continued with empirical derivation for separate phase flows based on Kelvin-Helmholtz in-
stability analysis in Jay et al. (2006) and more recently a representation with two interfacial
surface density for separate and disperse phase Devassy (2014); Devassy et al. (2015). To
now none of these approach is really able to represent the links between the physics inside the
injector and the developed spray region at all scales and with real dimensions and complex
geometrical features. Therefore the correct resolution of the liquid film close to the injector is
paramount to improve the simulation outcomes. For that reason, an appropriate reduced-order
model that includes sound small-scales treatment is required, in particular for the interfacial
surface density representation.

2.1.3 Direct injection in reciprocating engines

The environmental theme is as important also in the development of new generation recipro-
cating engines for land transport, like cars and trucks. In most Western countries, governments
have planned a phase out of Diesel engines in order to arguably reduce pollution. The phase out
is planned as early as by 2025 in Norway (Phase-out of Fossil Fuel Vehicles 2021). Therefore,
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in the foreseable future, most of the R&D funding will be destined to improve combustion effi-
ciency of gasoline direct injection engines. In this technology, the mixture of air and fuel needs
to be carefully regulated to avoid auto-ignition and detonation, and also to keep temperature at a
reasonable level in order to avoid 𝑁𝑂𝑥 production (that are anyway also captured downstream
to the thermal engine system with a catalyzer to comply with the stringent anti-pollution local
laws). The extreme conditions that are characteristic of these systems and also the fact that the
combustion chambers changes its volume in time due to the piston movement, make the study
of the injection phenomenon for direct injection reciprocating engines very challenging on the
modeling side, but also on the numerical and geometrical aspects.

2.2 Scientific Context

Injection is an inherently multiscale phenomenon. Fig. 2.7 shows a schematic of a typical sce-
nario where an injector system injects some fuel into a combustion chamber in which a gas,
typically air, is present. On the left part of the image, we have the fuel coming out of the in-
jector head. This part of the domain is characterized by a liquid phase clearly separated by an
interface from the surrounding gaseous atmosphere and it is named separated phase zone or
regime. At the end of the chamber the interface deformed at such a level that a lot of droplets
detach forming a spray, this is the disperse phase regime. While the two opposite regimes
are clearly identified and modeled, they still need to be linked somehow, that is an additional
zone in which big and small scales co-exist and a clear distinction is not possible named the
mixed region. Reference length scales associated to atomizers orifice diameter are of the or-
der of 1e−3m. The interface then undergoes destabilization associated to velocity gradients
(Kelvin-Helmoltz instabilities), surface tension effects (Plateau-Rayleigh instability), turbu-
lence interaction and a complex mix of all of them. The interface deforms until it creates
ligaments. Further downstream those ligaments detach from the core of the jet leading to pri-
mary breakup. In the most downstream part of the represented domain, the original detached
ligaments additionally break up into smaller droplets, until almost spherical droplets of the
order of 1e−4m to 1e−6m are created (Lefebvre and McDonell 2017); that is the secondary
breakup, leading to the creation of the disperse phase regime. A practical scenario is shown
in Fig. 2.8 in which the two regimes are clearly shown from right to left. The most important
non-dimensional numbers that govern the phenomenon are the Reynolds (Re), Weber (We)
and Ohnesorge (Oh) numbers:

Re𝑘 =
𝜌𝑘𝑢𝑘𝐿𝑘

𝜇𝑘
(2.1)

26



2.2 Scientific Context

10−3 m 10−2 m

10−1 m

10−3 m
10−4 ∼ 10−6 m

10−5 m

Figure 2.7: Two-phase flows are inherently multiscale
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(a) Initial destabilization of the paraffin interface

(b) Secondary breakup and creation of satellite droplets downstream

Figure 2.8: A cold gas visualization of a paraffin HRE, gas flows from right to left. Courtesy of
Rekakavas et al. (2015)

We =
𝜌𝑔(𝑢𝑔 − 𝑢𝑙)

2𝐿𝑙

𝜎𝑙
(2.2)

Oh𝑘 =
√We
Re𝑘

(2.3)

where the index 𝑘 = 𝑙, 𝑔 indicates a generic phase, 𝑙 indicates the liquid phase and 𝑔 the gaseous
phase. 𝐿𝑘 is a phase-specific reference length. Fig. 2.9 shows range for the non-dimensional
quantities for few coaxial round jet cases. A detailed discussion of different type of atomizers
for injection systems can be found in Lefebvre and McDonell (2017).
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Figure 2.9: Typical range of Weber and Reynolds number in coaxial jet stream from Lasheras and
Hopfinger (2000)

2.2.1 Different models for different regimes

Since the injection problem is inherently multiscale, different approaches have been developed
to cope with the complexity and be able to simulate with predictable accuracy even the most
elaborate systems. In some simplified situations, high fidelity approaches can be employed
to treat the entire spectrum of scales and regimes, while in most situations, simplifications
are required since some scales of the problem cannot be resolved. Reduced order models
are therefore required: most often two different models are used, one for the separated phase
regime, in which typically the fields are governed by conservation equations in Eulerian form,
and the other where individual disperse objects are tracked in a Lagrangian way or their NDF is
reconstructed from a selection of its moments. Other approaches are instead tailored to provide
a unified modeling context that can tackle both flow regimes at the same time.

2.2.1.1 Models that aim at resolving all the scales

If one wants to be able to simulate even the finest scales of the problem, two major approaches
are possible. The first one is based on the work of Cahn and Hilliard (1958) and successive
derivatives (e.g. C. Liu and Shen 2003), called “phase field” models. The Cahn and Hilliard
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work considers the interface between the two fluids with finite thickness. While this approach is
perfectly reasonable in situation where the thickness of the interface is not too thin, in a more
general scenario the thickness of the interface can be of the order of few angstroms, hence
requiring a very fine mesh to be resolved with satisfaction. In alternative, solving the NS equa-
tions for each phase together with jump equations at the interface, that is therefore considered
as a discontinuity surface, with a very fine mesh is also possible. The fact that the interface
is not resolved as it is done in the Cahn and Hilliard (1958) is already a modeling hypothesis.
In the single phase scenario, Direct Numerical Simulations (DNSs) are defined as the simula-
tions that solve NS equations down to the smallest known scale that is the Kolmogorov scale,
without additional reduced modeling of any sort. This approach is not directly translatable to
two-phase flows because those have an interface that is often thought as infinitely thin, i.e. it
is difficult to identify a “Kolmogorov” length scale; hence the results of such simulations are
often strongly dependent on mesh resolution and numerical schemes employed (Ling, Fuster,
et al. 2017), together with interface tracking strategies. However, for vocabulary simplicity, we
will use the term DNS to define the models that do not assume additional modeling for small-
scales phenomena, both related to interface dynamics (apart from the different techniques of
interface tracking employed) and turbulence modeling, even in the two-phase flow context.
The interface can be tracked explicitly with Lagrangian tracking on a grid that moves with the
fluid, as in Tryggvason et al. (2001); James Glimm et al. (2006). Alternatively, a fully Eulerian
approach can also be used, where the interface is captured using an advected color function
(VOF method (Hirt and B. Nichols 1981)), or a distance function (Sethian 1996; Russo and
Smereka 2000; Zhao 2004), or even both of them in a coupled way (Fedkiw et al. 1999; C. Liu
and Shen 2003; Vaudor et al. 2017). Compressible VOF techniques are also possible (B. Duret
et al. 2018). Mirjalili et al. (2019) compare the VOF and Level-Set approaches. An example of
a compressible two-phase flow high-fidelity simulation for supercritical injection can be found
in Petit et al. (2013), while in Zou et al. (2019) a level-set method for low-Mach compressible
flows is discussed.

2.2.1.2 Reduced order Models

When dealing with reduced order models, we want to be able to approach both the separated
phase and disperse phase regimes in a typical injection system. Two main strategies are avail-
able: employing different submodels for each different regime, and then coupling them often
with empirical or semi-empirical correlations or introducing a unified framework that is capa-
ble of facing both situations.
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The separated phase regime in which the two phases are clearly separated by an interface.
The classical way of deriving a set of governing equations is via the averaging of local in-
stantaneous phasic equations à la Ishii and Mishima (1984). Ishii, Kim, et al. (2002); Rusche
(2003); Drew and Passman (2006) leverage this method. In those models, the interface is often
not reconstructed, it is a transported field that diffuses around the actual position the interface
would have in the physical situation. The degree of diffusion is controlled by the mesh res-
olution and the order of the employed numerical scheme and they generally do not include
any specific treatment for the interfacial small scales. The averaging process exerts unclosed
terms that need further analysis to be closed. Specific source terms (“contraction terms”) can
be used to force sharp resolution of the interface (see Shukla et al. (2010); Tiwari et al. (2013);
Remigi (2021)). In alternative, the form of the equations for the two-phase flow can be postu-
lated a priori and then source terms are added enforcing the respect of the second principle of
thermodynamics. Baer and Nunziato (1986) is a classical example in which both phases are
accounted for without any instantaneous equilibrium assumption.

The disperse phase regime which features high density of small inclusions per unit vol-
ume, can be accounted for tracking each individual particle (or parcels) in a Lagrangian way
(Zamansky et al. 2014), or leveraging a mesoscopic or kinetic vision, inspired by the Kinetic
Theory of gases, in which the population of inclusions is described by a NDF, transport equa-
tions for its moments are solved all over the domain, and then the NDF is reconstructed from
the values of its moments (Method of Moments (MoM)). The interested reader is referred to
Laurent, Massot, and Villedieu (2004); S. de Chaisemartin et al. (2009); Massot, Laurent, et
al. (2010); Kah et al. (2015); Dupif (2018). Essadki et al. (2019) introduce the concept of
fractional moments representing the transport of geometrical quantities.

If we use two different modeling strategies for two regimes of the flow, then they need to
be coupled. One approach we want to cite is the ELSA approach first introduced in Vallet and
Borghi (1999), in which an equation on the fluctuating part of the interfacial area density field
is derived. Based on a threshold value of this fluctuating quantity, Lagrangian particles can be
injected in certain part of the domain. Further development of this approach can be found in
Lebas et al. (2005); Puggelli (2018); Remigi (2021) among others. Cordesse, Murrone, et al.
(2018) propose a coupling of models in the spirit of Baer and Nunziato (1986) for the separated
phase regime with a MoM for the disperse phase zone. The problem with coupling approach
is the methodology employed to actually enforce the coupling, very often based on empiri-
cal correlations with limited envelope of applicability. Alternatively, a unified mathematical
framework would be desirable in order to provide equations encompassing both regimes in a
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two-phase system with small scale modeling; one path is to use a variational approach coupled
to a second principle of thermodynamics.

2.2.2 A comprehensive framework for the derivation and simulation of

unified two-phase flow reduced order models

In the situations where DNS cannot be used because of the complexity of the system to study or
time constraints on the execution of a simulation, reduced order models are required. In order
to account for small scales in the separated phase and in the disperse phase regimes simultane-
ously, a novel approach based on the Stationary Action Principle (SAP) is possible. The SAP
is a variational approach in which a Hamiltonian action is postulated, this action contains a cer-
tain form of a Lagrangian functional constituted by a set of energies describing the underlying
phenomena the modeler is willing to take care of. In particular, small scales energies repre-
senting a specific behavior in scales that are not resolved by the mesh can be injected in the
Lagrangian, or ensuring the existence of a dissipation structure for the equations obtained en-
forcing the entropy inequality. The fundamentals of the methodology have been presented in S.
Gavrilyuk and Gouin (1999); S. Gavrilyuk and Saurel (2002); Berdichevsky (2009); Dell’Isola
and S. L. Gavrilyuk (2012), while Drui, Larat, et al. (2019) presents the specificities of address-
ing small scale pulsating spherical objects. Cordesse (2020) introduces efforts to overcome the
limitation of assuming just spherical pulsating inclusions with additional geometrical proper-
ties to the mere volume fraction, but further work is undoubtely needed to extend the range
of small scale phenomena accounted for. When modeling small scale contributions, the func-
tional form of the energies to be included in the derivation can benefit from insights provided
by the post-processing of high-fidelity simulations like the DNS. Additional modeling assump-
tion can also be taken into account via the enforcement of a coherent dissipative structure, i.e.
enforcing the sign of an entropy function as the second principle of thermodynamics mandates.
This permits to introduce source terms that in other studies are introduced via other methods
such as averaging local instantaneous equations for the interface dynamics.

Post-processing of DNS provide a very useful tool to investigate in details simplified flow
configurations. The results are very useful in order to provide insight on phenomena happening
at lowest scales that are then used to provide sound closures for terms that are created during
the development of reduced order models, following an averaging approach (see section 3.2) or
a variational one (see section 3.4). For reference, Essadki (2018); Essadki et al. (2019) intro-
duces the fundamentals of the geometrical computations on triangulated surfaces to estimate
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curvatures of the interface. Another analysis that uses two-point correlation is described in
the work of Thiesset, Dumouchel, et al. (2019); Thiesset, Ménard, et al. (2019); F. Thiesset,
B. Duret, et al. (2020); F. Thiesset, T. Ménard, et al. (2021). The importance of the correct
computation of the surface curvature is also discussed in Bermejo-Moreno and Pullin (2008);
Bermejo-Moreno, Pullin, and Horiuti (2009) in the context of turbulent fields like the enstro-
phy iso-surfaces or in Evrard (2017); Evrard et al. (2020) for multiphase flows interfaces. It
usually leads to some difficulties related to the triangulation of the interface given by a dis-
cretized level-set function and so far no numerical framework has been devised in order to
cope with such geometrical quantities evaluation in a robust and efficient manner.

2.3 Scientific computing context

In the previous introductory paragraphs we already touched the potential high cost of perform-
ing two-phase flow simulations. Performing meaningful DNS, for example, might require few
hundreds of millions of cells, to say the least. Simulating seconds of physical time requires a
high level of data and algorithm parallelism to be feasible, it often translates into programming
design driven by these underlying data structures, with APIs that are hardly accessible, with
compiled language with complex build systems. In addition, industrial multiphysics simula-
tion codes provide a large plethora of flexible functionalities (for example the CEDRE code (Le
Touze 2015; Cordesse 2020), or the OpenFOAM code (Greenshields 2015)) inherited from a
long legacy of different implementations. These codes are often organized in very big code
bases that are difficult to modify and test. A new generation of codes is currently under heavy
development addressing the necessity of local mesh adaptation such as canoP code (Drui,
Fikl, et al. 2016), based on the p4est library that offers octrees manipulation, or the SAMURAI
code (Bellotti et al. 2021) offering a tree-less datastructure optimized for multiresolution mesh
adaptation.

On the other side of the coin, the ever-increasing interest for Machine Learning, Artificial
Intelligence, and cryptocurrencies mining, drove the technological advancement of specialized
hardware components like GPUs and FPGAs, allowing the usage of dynamical interpreted lan-
guages like Python, to perform heavy duty number crunching tasks thanks to their bindingAPIs
that allow the integration of high performance code from compiled libraries in very specific
and localized zones of the code base. Libraries like Tensorflow, pyTorch ares de facto stan-
dards in their context, they are optimized to run graph operations on GPUs and allow training
on big datasets. The Python ecosystem is rich and offers optimized data structures like NumPy
(Harris et al. 2020) that constitutes the baseline on top of which specialized columnar arrays
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are based. Examples are Cupy (Preferred Infrastructure, Inc. 2021), a NumPy implementation
on top of GPUs, Dask, a distributed implementation complying with NumPy arrays or Legate
NumPy (Bauer and Garland 2019), a distributed NumPy implementation that allows comput-
ing on hybrid configurations on multiple GPUs and CPUs. Another approach to benefit of both
the compiled ultra-optimized libraries and the flexible interpreted ecosystems, hence solving
the two Language problem (Perkel 2019), is the development of a new generation numerical
language like Julia.

Modern languages offer the tempting possibility of easy prototyping and code refactoring
without losing the performance of compiled, specific libraries, tightly integrated within the
language runtime. The toolchains associated to those modern languages enforce best practices
like CI and CD, documentation auto-generation, unit testing, and these tools are often part of
the standard library and hence easily accessible and taught (as an example of modern practices
see Klabnik and C. Nichols (2018)). These features are desirable also in new generation HPC
software.

2.4 Contributions of this thesis

The principal target of this thesis is to offer a unified modeling framework addressing the
derivation of system of equations governing two-phase flow systems characterized by a sound
mathematical structure via a variational setting named Stationary Action Principle (SAP). This
effort is backed by a tailored computational toolset that allows the rational choice of model-
ing assumptions and the effective simulations of the developed models, possibly on modern
computing architectures. This work aims at dealing with the three main aspects regarding two-
phase flow modeling we identified in the previous introductory sections, i.e. the development
of sounding reduced-order models via the Stationary Action Principle (SAP), the implemen-
tation of a geometric DNS post-processing tool called Mercur(v)e that is used to clarify the
right assumptions to be made while crafting a reduced-order model, and the development of a
Python library named josiepy that acts as a playbook to quickly test conservative systemmod-
els, numerical schemes, boundary conditions, domain configurations and modern approach to
scientific computing. The manuscript is organized as follows:

• Chapter 3 is dedicated to the discussion about the reduced-ordermodels derivation strate-
gies. We introduce two different methods for the derivation of system of equations re-
garding two-phase flows, the first one based on the averaging of instantaneous local
Navier-Stokes (NS) equations for each phase, the second one that leverages a variational
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methodology called the Stationary Action Principle (SAP). Then, we exploit the SAP to
derive a set of models featuring different small scale assumptions with the final aim of
injecting governing equations for geometric parameters that could improve the accuracy
of the models when dealing with non-spherical inclusions.

• Chapter 4 presents the development efforts infused into the creation of Mercur(v)e, a
library dedicated to the post-processing of two-phase flow DNS. The library is based on
a triangulation of the interface, on which discrete approximation of geometrical parame-
ters like the mean and Gauss curvature are computed. The algorithm chosen to perform
those computations preserves topological invariants like the Gauss-Bonnet theorem, al-
lowing to count objects in a domain that are homeomorphic to spheres. Moreover, the
library also offers an averaging kernel that allows to smooth noisy computations on dirty
triangulations without losing the preservation of the topological invariants. The library
is used to back the modeling assumptions for the crafting of a reduced-order model as-
suming isochoric oscillation of ellipsoidal droplets as small scale model.

• In chapter 5 we discuss the numerical framework on which the library josiepy is built.
We provide a general overview on the theory for mesh generation and numerical schemes
in the context of the Finite Volume Method (FVM), we recast the classical literature on
the subject into a different form that contextualize the numerical enounciation of the
schemes to the specificities of the code implementation of josiepy. We discuss in
reasonable details all the models, algorithms and schemes that are already implemented
at the current date in josiepy. We show a set of verification tests on different models,
that are reproducible with the current code available online under a FOSS license and
readily available as Jupyter notebooks or integration tests in the repository holding the
source code, including the innovative models derived and presented in chapter 3.

• Chapter 6 outlines all the aspects related to the Software Engineering of the libraries we
developed during the progress of the thesis: a Python library named josiepy aimed at
simulating potentially generic Partial Differential Equation (PDE) systems and the Mer-
cur(v)e library the aim ofwhich is to expose a geometrical post-processing procedure to
collect insightful information from high-definition simulations like DNS. In the chapter
we discuss the philosophy behind the choice of creating such pieces of software, the
current challenges and the possible perspectives in the near future.

The subjects we explored in the accomplishment of this thesis lead to the following contri-
butions:
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• Journal Articles:

– Ruben Di Battista, Thibault Ménard, Stephane De Chaisemartin, and Marc Massot
(2021). “A Computational Framework Based on the Discrete Estimation of Geo-
metrical Properties over Triangulated Interfaces Preserving Topological Invariants
to Design and Validate Two-Phase Flow Models.” In: Fluids. In preparation

– Pierre Cordesse, RubenDi Battista, Quentin Chevalier, LionelMatuszewski, Thibault
Ménard, Samuel Kokh, and Marc Massot (2020). “A Diffuse Interface Approach
For Disperse Two-Phase Flows Involving Dual-Scale Kinematics Of Droplet De-
formation Based OnGeometrical Variables.” In: ESAIM: Proceedings, p. 22. url:
https://hal.archives-ouvertes.fr/hal-02879950v1

• Conference Proceedings:

– Alberto Remigi, Ruben Di Battista, François-Xavier Demoulin, Benjamin Duret,
Marc Massot, Thibaut Ménard, and Hugo Deneuville (May 19–24, 2019). “Ex-
ploring Different Approaches for the Simulation of Multi-Scale Atomization Pro-
cess.” In: International Conference on Multiphase Flow. Rio de Janeiro. url:
https://hal.archives-ouvertes.fr/hal-02379257

– Pierre Cordesse, Ruben Di Battista, Samuel Kokh, and Marc Massot (May 19–
24, 2019). “Derivation of a Two-Phase Flow Model with Two-Scale Kinematics
and Surface Tension by Means of Variational Calculus.” In: 10th International
Conference on Multiphase Flow. Rio de Janeiro. url: https://hal.archives-
ouvertes.fr/hal-02194951

– Ruben Di Battista, Iván Bermejo-Moreno, Thibaut Ménard, Stéphane de Chaise-
martin, and Marc Massot (May 19–24, 2019). “Post-Processing of Two-Phase
DNS Simulations Exploiting Geometrical Features and Topological Invariants to
Extract Flow Statistics and Droplets Number Density.” In: International Confer-
ence on Multiphase Flow. Rio de Janeiro. url: https : / / hal . archives -
ouvertes.fr/hal-02345825v1

• Book Chapters:

– Pierre Cordesse, Ruben Di Battista, Florence Drui, Samuel Kokh, and Marc Mas-
sot (2020). “Derivation of a Two-Phase Flow Model with Two-Scale Kinemat-
ics, Geometric Variables and Surface Tension Using Variational Calculus.” In:
Proceedings of the NASA Summer Program. Nasa Technical Memorandum. url:
https://hal.archives-ouvertes.fr/hal-02336996
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– RubenDi Battista, IvánBermejo-Moreno, ThibautMénard, andMarcMassot (2019).
“Geometrical Characterization andDNSPost-Processing of the 3DObjects in Two-
Phase Flow: Collision of Two Droplets.” In: NASA Technical Memorandum

• Software

– Ruben Di Battista (2018). Mercur(v)e — A Library to Exploit Geometrical and
Topological Properties to Allow Post-Processing of DNS Simulations (and Much
More). url: https://gitlab.com/rubendibattista/mercurve

– Ruben Di Battista (2019). Josiepy — A 2D PDE Solver Written in Python without
Compromising (Too Much) Performance. url: https://gitlab.com/rubendi
battista/josiepy
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3 Two-phase flowmodels and

where to find them

The world of mathematical modeling for two-phase flow phenomena is variegated. Different

models, of wide range of complexity, are available in the literature. In the context of the sep-

arated phase regime, i.e. the regime of the flow in which the two phases are clearly identified

by an interface, models spanning from locally averaged Navier-Stokes (NS) equations which

often, explicitly or implicitly, assume some sort of equilibrium of the flow phases (related to

energy, momentum or pressure equilibrium) to models that relax all the equilibrium assump-

tions allowing difference in velocity, pressure and temperature between the flow phases such

as the Baer-Nunziato (B-N) model are possible. In the case of the disperse phase regime, i.e.

the regime of the flow in which a cloud of bubbles or droplets of one phase is immersed in

a carrier, Lagrangian or Eulerian kinetic models are used to track the objects and then they

are coupled with the previously presented models for the separate phase zone. The Eulerian

models, moreover, can be derived exploiting different approaches: averaging, in time, space or

across realizations, local instantaneous conservation equations; pre-assuming a conservative

form of the averaged equations that is complemented by tailored source terms to enforce the

coupling between the phases or also a variational approach that leverages the power of the

Stationary Action Principle (SAP).

This chapter is devoted to the presentation of a modeling approach based on the Stationary

Action Principle (SAP) for the derivation of a hierarchy of system of equations describing the

behavior of two-phase flows. Initially we provide an overview on the different possible ap-

proaches for the derivation of two-phase models; we discuss the state of the art regarding the

equation for the interfacial area density; then we introduce the general notions constituting

the variational framework in which we operate and at the end we present a set of mathemat-

ical systems we derived in order to enrich the geometrical description of two-phase flows. In

particular, geometrical terms such as curvature and surface density are obtained, widening the

allowed solution space of models initially aimed at the separated phase regime to regimes also

featuring droplets or bubbles. With the generalized SAP framework we also provide a different

point of view on the derivation of models featuring the interfacial area density.

A list of preliminary contributions on this subject:

• Pierre Cordesse, Ruben Di Battista, Samuel Kokh, and Marc Massot (May 19–24, 2019).

“Derivation of a Two-Phase FlowModel with Two-Scale Kinematics and Surface Tension

by Means of Variational Calculus.” In: 10th International Conference on Multiphase

Flow. Rio de Janeiro. URL: https://hal.archives-ouvertes.fr/hal-02194951

• Pierre Cordesse, Ruben Di Battista, Florence Drui, Samuel Kokh, and Marc Massot

(2020). “Derivation of a Two-Phase FlowModel with Two-Scale Kinematics, Geometric

Variables and Surface Tension Using Variational Calculus.” In: Proceedings of the NASA

Summer Program. Nasa Technical Memorandum. URL: https : / / hal . archives -
ouvertes.fr/hal-02336996

• Pierre Cordesse, Ruben Di Battista, Quentin Chevalier, Lionel Matuszewski, Thibault

Ménard, Samuel Kokh, and Marc Massot (2020). “A Diffuse Interface Approach For
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Disperse Two-Phase Flows Involving Dual-Scale Kinematics Of Droplet Deformation

Based On Geometrical Variables.” In: ESAIM: Proceedings, p. 22. URL: https://hal.
archives-ouvertes.fr/hal-02879950v1

40

https://hal.archives-ouvertes.fr/hal-02879950v1
https://hal.archives-ouvertes.fr/hal-02879950v1


3.1 Introduction

3.1 Introduction

The literature about reduced order two-phase flow modeling does not offer at the current date
a satisfactory modeling framework that allows to take into account the intrinsic multiscale na-
ture of this kind of phenomena in a unified fashion. Apart from models inspired by the work
of Cahn and Hilliard (1958); C. Liu and Shen (2003), in which the interface is sharply recon-
structed, and specific models that address more specifically the dispersed phase regime, i.e. the
situations in which the domain is occupated by a population of inclusions, like the lagrangian
methods (Tryggvason et al. 2001; James Glimm et al. 2006) or the mesoscopic MoM (Lau-
rent and Massot 2001; Laurent, Massot, and Villedieu 2004; Kah et al. 2015; Essadki 2018),
reduced order models can be effectively derived exploiting an averaging approach of local NS
equations. Those “averagedmodels” can be casted in a generic way for an average operator that
can be time, volume or ensemble based. The averaging approach acting on the local equations
creates additional terms related to the smallest scales, the closure of which might be challeng-
ing and needs to be somehow extrapolated from external inputs like experimental data (Ishii
and Mishima 1984; Ishii, Kim, et al. 2002; Rusche 2003; Drew and Passman 2006). This av-
eraged two-phase models can be related to the averaging strategy that is done in the turbulence
framework (Céasar Dopazo 1977). On the other side, an alternative approach is provided by
a variational method called Stationary Action Principle (SAP), in which the small scale hy-
potheses are assumed via a specific form of a Lagrangian functional, that integrated over the
phase space configures a Hamiltonian action. This Hamiltonian action is made stationary, and
the process generates the convective subsystem that encapsulates the modeling assumptions.
The dissipative nature can be retrieved at will imposing a sign to an entropy function, as the
second thermodynamics principle mandates.

In this section we provide a comparison between the two approaches, firstly introducing the
fundamentals of the strategy based on the averaging of local instantaneous equations. Then
we introduce the SAP tool in details, listing a series of derivation that are then used as build-
ing blocks towards a unified framework for modeling two-phase flows. It allows to take into
account arbitrary small scale phenomena for two-phase flows. At the end of the chapter we
present a hierarchy of systems that are obtained with the SAP, and we also discuss a way of
drawing an analogy between the interface area density equations discussed in Drew (1990);
Morel et al. (1999); Daniel Lhuillier (2004); Morel (2007) and the variational approach de-
signed with the SAP.
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3.2

Deriving two-phase flow models with an averaging

procedure

The idea of deriving a two-phase flow model as the result of averaging, independently from
the chosen averaging strategy, can be referred to the work of Ishii and Mishima (1984). The
presentation of this section aims at providing an adapted context to introduce the averaging
approach and it is not by any means exhaustive. The interested reader is referred, in addition
to the previously mentioned sources, also to Candel and Poinsot (1990); Morel et al. (1999);
Rusche (2003); Delhaye (2013); Cesar Dopazo et al. (2018) among others.

Everything starts from the assumption that both phases occupy a domain Ω, each phase
𝑘 = 1, 2, in its own domain Ω𝑘, separated by a weightless interface that has no thickness:

∪𝑘Ω𝑘 = Ω; Ω1 ∩ Ω2 = ∅

We define with 𝜌𝑘, 𝒖𝑘,𝐸𝑘 respectively the density, velocity and total energy of the phase 𝑘.
The instantaneous conservation equations (mass, momentum, energy) for a phase 𝑘 are:

𝜕
𝜕𝑡(𝜌𝑘𝜑) + ∇ ⋅ (𝜌𝑘𝜑𝒖𝑘) − ∇ ⋅ (𝑮𝑘) − 𝒔𝑘 = 𝟎, 𝒙 ∈ Ω𝑘 (3.1)

where the generic terms (𝜑,𝑮𝑘, 𝒔𝑘) are respectively for the mass, momentum and energy con-
servation: (1, 0, 0), (𝒖𝑘,𝑫𝑘 ≜ −𝑝𝑘𝑰 + 𝑻𝑘,𝓶𝑘), (𝐸𝑘,𝑫𝑘 ⋅ 𝒖𝑘 − 𝝊𝑘,ℯ𝑘), in which we neglect
mass transfer governed by stiff source terms or mass diffusion. 𝑝𝑘 is the pressure for the phase
𝑘, 𝑻𝑘 the viscous tensor, 𝝊𝑘 the conductive heat flux. Equivalently, we can write this set of
equations in a compact, tensorial form, more akin to numerical implementation:

𝜕
𝜕𝑡(𝜌𝑘𝒒𝑘) + ∇ ⋅ (𝜌𝑘𝜫𝑘) − 𝓼𝑘 = 𝟎,𝒙 ∈ Ω𝑘 (3.2)

where 𝜌𝑘𝜫𝑘 = 𝜌𝑘𝒖𝑘𝜑𝑘−𝑮𝑘 groups the convective and diffusive tensors, 𝜌𝑘𝒒𝑘 = (𝜌𝑘, 𝜌𝑘𝒖𝑘, 𝜌𝑘𝐸𝑘)
is the full state of the system and 𝓼𝑘 = (0,𝓶𝑘,ℯ𝑘) is the the group of all source terms for all
the equations in which we assume no mass transfer between phases.

3.2.1 Interface between phases and jump conditions

As shown by Drew (1990), we describe the interface that separates the two phases as a weight-
less, zero-thickness discontinuity surface that is defined by 𝒮 = Ω1 ∩ Ω2. The surface 𝒮 is
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supposed to be smooth enough so that geometric characteristics of 𝒮 such as mean and Gaus-
sian curvatures are unambiguously defined. We then introduce the characteristic function: 1Ω1

1Ω1
(𝒙, 𝑡) =

{
1, 𝒙 ∈ Ω1,

0, otherwise.
(3.3)

The function 1Ω1
satisfies the following eq. (3.4) in the sense of distributions:

𝜕1Ω1

𝜕𝑡
+ 𝒖𝒮 ⋅ ∇1Ω1

= 0 (3.4)

where 𝒖𝒮 is the velocity at which the interface moves in the domain Ω1. The terms ∇1Ω1
and

𝜕1Ω1
𝜕𝑡 are Dirac measures whose support is the set of (𝒙, 𝑡) such that 𝒙 belongs to 𝒮 at instant

𝑡. In order to derive jump conditions at the interface, we now write the equations eqs. (3.1)
and (3.2) in integral form over the domain Ω and we apply some manipulations of the integrals
exploiting the divergence theorem, as shown in eq. (3.5):

∑
𝑘

∫Ω𝑘

𝜕
𝜕𝑡(𝜌𝑘𝒒𝑘) + ∇ ⋅ (𝜌𝑘𝜫𝑘) − 𝓼𝑘 = 𝟎

∑
𝑘

∫Ω𝑘

𝜕
𝜕𝑡(𝜌𝑘𝒒𝑘) − 𝓼𝑘 + ∮𝜕Ω𝑘⧵𝒮

𝜌𝑘𝜫𝑘 ⋅ 𝒏̂𝑘+

+ ∮𝒮
𝜌𝑘𝜫𝑘 ⋅ 𝒏̂𝒮

𝑘 − ∮𝒮
𝜌𝒮

𝑘 𝜫𝒮
𝑘 ⋅ 𝒏̂𝒮

𝑘 − 𝓼𝒮 = 𝟎

∑
𝑘

∫Ω𝑘

𝜕
𝜕𝑡(𝜌𝑘𝒒𝑘) + ∇ ⋅ (𝜌𝑘𝜫𝑘) − 𝓼𝑘 + ∮𝒮

(𝜌𝑘𝜫𝑘 − 𝜌𝒮
𝑘 𝜫𝒮

𝑘 ) ⋅ 𝒏̂𝒮
𝑘 − 𝓼𝒮= 𝟎

(3.5)

The terms 𝜌𝑘𝜫𝒮
𝑘 ,𝓼𝒮, are respectively the flux at the interface advected by the interface velocity

𝒖𝒮
𝑘 and the interfacial forces like the surface tension; 𝒏̂𝑘 is the outward normal to the part of the

domain Ω𝑘 not at the interface (𝜕Ω𝑘 ⧵ 𝒮), 𝒏̂𝒮
𝑘 is the normal at the interface pointing outward

of Ω𝑘. We note that the first term of eq. (3.5) 𝜕𝜌𝑘𝒒𝑘/𝜕𝑡 + ∇ ⋅ (𝜌𝑘𝜫𝑘) − 𝓼𝑘 = 𝟎 from eq. (3.2)
leads to the jump conditions across the interface 𝒮,

[(𝜌𝑘𝜫𝑘 − 𝜌𝒮
𝑘 𝜫𝒮

𝑘 )]𝒮 ⋅ 𝒏̂ = 𝓼𝒮 (3.6)

where [•]𝒮 defines a jump for the field • across the interface 𝒮. The normal is chosen 𝒏̂ ≜ 𝒏̂𝒮
1 .

If we unpack the terms 𝜫𝑘,𝜫𝒮
𝑘 ,𝓼𝒮 = (0,𝓶𝒮,ℯ𝒮) for all the equations eq. (3.1), we obtain a
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set of jump equations:

[𝜌𝑘(𝒖𝑘 − 𝒖𝒮)]𝒮 ⋅ 𝒏̂ = 0

[𝜌𝑘𝒖𝑘 ⊗ (𝒖𝑘 − 𝒖𝒮) + 𝑫𝑘]𝒮 ⋅ 𝒏̂ = 𝓶𝒮

[𝜌𝑘𝐸𝑘(𝒖𝑘 − 𝒖𝒮) + 𝑫𝑘 ⋅ 𝒖𝑘 − 𝝊𝑘]𝒮 ⋅ 𝒏̂ = ℯ𝒮

(3.7)

being 𝓶𝒮 the interface surface forces and ℯ𝒮 the surface energy contributions. We will not
detail further those terms, the interested reader can certainly refer to Drew (1990); Drew and
Passman (2006). We just highlight that if we neglect the viscous effects, and we consider the
surface tension as interface surface force 𝓶𝒮 = 𝜎𝖧𝒏̂, being 𝖧 the local mean curvature of the
interface, and the two phases are at velocity equilibrium (𝒖𝑘 − 𝒖𝒮) = 𝟎, the jump condition
for the momentum equations provides the Young-Laplace relation for the surface tension:

[𝑝]𝒮 = 𝜎𝖧

3.2.2 Averaged governing equations

Taking into account the definition of the characteristic function eq. (3.3), we can multiply the
governing equations eq. (3.2) by 1Ω𝑘

in order to extend their validity on the entire domain Ω:

𝜕
𝜕𝑡(1Ω𝑘

𝜌𝑘𝒒𝑘) + ∇ ⋅ (1Ω𝑘
𝜌𝑘𝜫𝑘) − 1Ω𝑘

𝓼𝑘 = (𝜌𝑘𝜫𝑘 − 𝒖𝒮 ⊗ 𝜌𝑘𝒒𝑘) ⋅ ∇1Ω𝑘
(3.8)

We now introduce an averaging operator ⟨•⟩. It can be thought as a time, space or ensemble
average, and it satisfies the following properties (usual for classical choices of the average
operator):

• Linearity

⟨𝜆 • +⊙⟩ = 𝜆 ⟨•⟩ + ⟨⊙⟩ (3.9)

• Idempotency

⟨⟨•⟩⟩ = ⟨•⟩ (3.10)

• Gauss and Leibniz rules

𝜕 ⟨•⟩
𝜕𝒕

= ⟨
𝜕•
𝜕𝒕 ⟩ ,

𝜕 ⟨•⟩
𝜕𝒙

= ⟨
𝜕•
𝜕𝒙⟩ (3.11)
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3.2 Deriving two-phase flow models with an averaging procedure

We introduce the fluctuation (•)′ defined by

• = ⟨•⟩ + (•)′ (3.12)

Then we define

• Volume Fraction
𝛼𝑘 = ⟨1Ω𝑘⟩ (3.13)

• Phase average

• =
⟨•1Ω𝑘⟩

𝛼𝑘
(3.14)

• Favre average

•̃ =
⟨1Ω𝑘

𝜌𝑘•⟩
𝛼𝑘𝜌𝑘

(3.15)

we obtain the averaged equations,

𝜕
𝜕𝑡(𝛼𝑘𝜌𝑘 ̃𝒒𝑘) + ∇ ⋅ (𝛼𝑘𝜌𝑘𝜫̃𝑘) − 𝛼𝑘𝓼𝑘 = ⟨(𝜫𝑘 − 𝒖𝒮 ⊗ 𝒒𝑘) ⋅ ∇1𝑘⟩ (3.16)

The compact notation of eq. (3.16) hides a lot of complexity associated to the terms 𝜫̃, whose
average decomposition produces unclosed terms, and ⟨(𝜫𝑘 − 𝒖𝒮 ⊗ 𝒒𝑘) ⋅ ∇1𝑘⟩ that also is
unclosed. For clarity, unpacking eq. (3.16) in the set of equations corresponding to the mass,
momentum, and energy conservation we retrieve:

𝜕
𝜕𝑡(𝛼𝑘𝜌𝑘) + ∇ ⋅ (𝛼𝑘𝜌𝑘𝒖̃𝑘) = Γ𝑘

𝜕
𝜕𝑡(𝛼𝑘𝜌𝑘𝒖̃𝑘) + ∇ ⋅ [𝛼𝑘(𝜌𝑘𝒖̃𝑘 ⊗ 𝒖̃𝑘 − 𝑫̃𝑘)] − 𝛼𝑘𝓶𝑘 = 𝒎𝑘

𝜕
𝜕𝑡(𝛼𝑘𝜌𝑘𝐸𝑘) + ∇ ⋅ [𝛼𝑘(𝜌𝑘𝐸𝑘𝑰 − 𝑫̃𝑘) ⋅ 𝒖̃𝑘 − 𝝊̃𝑘] − 𝛼𝑘ℯ𝑘 = ⅁𝑘

(3.17a)

(3.17b)

(3.17c)
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Let us note again 𝑫̃𝑘 = − ̃𝑝𝑘𝑰 + 𝑻𝑘. The source terms Γ,𝒎,⅁ contain all the additional terms
that are created by the averaging process,

Γ𝑘 = ⟨𝜌𝑘(𝒖𝑘 − 𝒖𝒮) ⋅ ∇(1Ω𝑘)⟩

𝒎𝑘 = ⟨[𝜌𝑘(𝒖𝑘 − 𝒖𝒮) ⊗ 𝒖𝑘] ⋅ ∇(1Ω𝑘)⟩ + ⟨𝑝𝑘∇(1Ω𝑘)⟩ − ⟨𝑻𝑘 ⋅ ∇(1Ω𝑘)⟩

⅁𝑘 = ⟨𝜌𝑘𝐸𝑘(𝒖𝑘 − 𝒖𝒮) ⋅ ∇(1Ω𝑘)⟩ + ⟨(𝑝𝑘𝒖𝑘) ⋅ ∇(1Ω𝑘)⟩

− ⟨(𝑻𝑘 ⋅ 𝒖𝑘) ⋅ ∇(1Ω𝑘)⟩ − ⟨𝝊𝑘 ⋅ ∇(1Ω𝑘)⟩

(3.18a)

(3.18b)

(3.18c)

Following the definitions and the decomposition presented inDrew and Passman (2006); Cordesse
(2020), the averaged momentum flux due to mass transport at the interface can be written as:

Γ𝑘 ⟨𝒖𝒮⟩ ≜ ⟨[𝜌𝑘(𝒖𝑘 − 𝒖𝒮) ⊗ 𝒖𝑘] ⋅ ∇(1Ω𝑘)⟩ (3.19)

and in turn the averaged momentum source term due to the interface pressure,

⟨𝑝𝑘∇(1Ω𝑘)⟩ = ⟨𝑝𝒮
𝑘 ⟩∇𝛼𝑘 + ⟨(𝑝𝑘)

′∇1Ω𝑘⟩ (3.20)

The interfacial pressure 𝑝𝒮
𝑘 is decomposed in a constant and a fluctuating contribution,

𝑝𝒮
𝑘 = ⟨𝑝𝒮

𝑘 ⟩ + (𝑝𝒮
𝑘 )

′

such that we can provide a definition for the averaged interface pressure,

⟨𝑝𝒮
𝑘 ⟩∇𝛼𝑘 ≜ ⟨𝑝𝑘∇1Ω𝑘⟩ − ⟨(𝑝𝑘)

′∇1Ω𝑘⟩ (3.21)

with the definition eq. (3.20), we can also define an average interfacial force density,

𝒎𝒮
𝑘 ≜ ⟨((𝑝𝑘)

′𝑰 − 𝑻) ⋅ ∇1Ω𝑘⟩ (3.22)

that is often modeled as a drag term (Rusche 2003). The average energy flux at the interface
due to mass transport at the interface is defined as:

Γ𝑘 ⟨𝐸𝒮
𝑘 ⟩ ≜ ⟨𝜌𝑘𝐸𝑘(𝒖𝑘 − 𝒖𝒮) ⋅ ∇(1Ω𝑘)⟩ (3.23)
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3.2 Deriving two-phase flow models with an averaging procedure

The averaged energy source term due to the interface pressure, with the additional assumption
of neglecting velocity fluctuations, is:

⟨(𝑝𝑘𝒖𝑘) ⋅ ∇(1Ω𝑘)⟩ = (⟨𝑝𝒮
𝑘 ⟩ ⟨𝒖𝒮⟩) ⋅ ∇𝛼𝑘 + ⟨(𝑝)′

𝑘∇1Ω𝑘⟩ ⋅ ⟨𝒖𝒮⟩ (3.24)

that allows the definition of averaged interfacial energy source,

⅁𝒮
𝑘 ≜ ⟨((𝑝𝑘)

′𝑰 − 𝑻) ⋅ ∇1Ω𝑘⟩ ⋅ ⟨𝒖𝒮⟩ = 𝒎𝒮
𝑘 ⋅ ⟨𝒖𝒮⟩ (3.25)

The final form of the set of averaged equations, hence is:

𝜕
𝜕𝑡(𝛼𝑘𝜌𝑘) + ∇ ⋅ (𝛼𝑘𝜌𝑘𝒖̃𝑘) = Γ𝑘

𝜕
𝜕𝑡(𝛼𝑘𝜌𝑘𝒖̃𝑘) + ∇ ⋅ [𝛼𝑘(𝜌𝑘𝒖̃𝑘 ⊗ 𝒖̃𝑘 − 𝑫̃𝑘)] = Γ𝑘 ⟨𝒖𝒮⟩ + ⟨𝑝𝒮

𝑘 ⟩∇𝛼𝑘

+ 𝒎𝒮
𝑘 + 𝛼𝑘𝓶𝑘

𝜕
𝜕𝑡(𝛼𝑘𝜌𝑘𝐸𝑘) + ∇ ⋅ [𝛼𝑘(𝜌𝑘𝐸𝑘𝑰 − 𝑫̃𝑘) ⋅ 𝒖̃𝑘 − 𝝊̃𝑘] = Γ𝑘 ⟨𝐸𝒮

𝑘 ⟩

+ (⟨𝑝𝒮
𝑘 ⟩ ⟨𝒖𝒮⟩) ⋅ ∇𝛼𝑘

+ ⅁𝒮
𝑘 + 𝛼𝑘ℯ𝑘

(3.26a)

(3.26b)

(3.26c)

3.2.2.1 Closure for the interfacial quantities

If we careful inspect eq. (3.26), we note that many interfacial quantities are still unclosed. Sev-
eral authors have proposed different possible definitions for these terms as Coquel, Gallouët,
et al. (2002); Guillemaud (2007); D. Lhuillier et al. (2013); Furfaro and Saurel (2015). Let us
underline that the choice of the closure may have an important impact on the structure of the
model like enabling a positive entropy production term in the (mathematical) entropy evolution
equation, see for example Coquel, Gallouët, et al. (2002); Guillemaud (2007); Cordesse and
Massot (2020). We will cite an example inspired by Baer and Nunziato (1986) in which:

• The interfacial velocity is taken as the velocity of the phase 𝑘 = 1

⟨𝒖𝒮⟩ ≜ 𝒖1 (3.27)

• The interfacial pressures are modeled as a single interface pressure:

⟨𝑝𝒮
1 ⟩ = ⟨𝑝𝒮

2 ⟩ ≜ 𝑝𝒮 (3.28)
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whose value is taken as the pressure of the phase 𝑘 = 2

𝑝𝒮 = 𝑝2 (3.29)

other modeling choices are possible, we refer the interested reader to the previously mentioned
references. In particular Cordesse (2020); Cordesse and Massot (2020) presents the impact of
the closure choice for the interfacial pressure and velocity w.r.t. the hyperbolicity of the sys-
tem, its mathematical structure and numerical performances. They also introduce an advanced
thermodynamics for the mixture with velocity non-equilibrium.

3.2.2.2 The volume fraction transport equation

Let us now work on the transport equation for the characteristic function 1Ω𝑘
eq. (3.4) that we

recall below for the sake of readability,

𝜕1Ω1

𝜕𝑡
+ 𝒖𝒮 ⋅ ∇1Ω1

= 0.

We can follow the same averaging approach we followed to obtain eq. (3.26),

𝜕
𝜕𝑡(⟨1Ω1⟩) + ⟨𝒖𝒮 ⋅ ∇1Ω1⟩ = 0 (3.30)

taking into consideration the definition of the volume fraction 𝛼𝑘 = ⟨1Ω𝑘⟩ at eq. (3.13), we
can define a source term for the volume fraction equation that needs modeling effort:

𝐴 ≜ ⟨𝒖𝒮 ⋅ ∇1Ω1⟩ − ⟨𝒖𝒮⟩ ⋅ ⟨∇1Ω1⟩ (3.31)

Since the average operator respects eq. (3.11), we can move the gradient operator out of the
average and therefore we obtain a transport equation for the volume fraction 𝛼 ≜ 𝛼1,

𝜕𝛼
𝜕𝑡

+ 𝒖𝒮 ⋅ ∇𝛼 = 𝐴 (3.32)

The value of the volume fraction field for the other phase can then be retrieved algebraically,

𝛼2 = 1 − 𝛼 (3.33)
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Equation (3.32) provides a description of the interface evolution in terms of how much of the
total local volume at (𝒙, 𝑡) in the domain Ω is occupied by a phase if we interpret the averaging
operator ⟨•⟩ as a volume average; or, in terms of how often a phase 𝑘 occupies a certain zone
(𝒙, 𝑡) of the domain Ω if instead ⟨•⟩ is interpreted as an ensemble averaging. This volume ratio
of occupation or presence probability is then the volume fraction 𝛼(𝒙, 𝑡). Another alternative
strategy to recast eq. (3.30) can be found in Drew (1990), where the interfacial velocity is
assumed to be normal to the interface,

𝒖𝒮 = 𝑢𝒮𝒏̂ (3.34)

If we now define, complementing the definitions eqs. (3.13) to (3.15), the interface average

•̂ =
⟨•∇1Ω ⋅ 𝒏̂⟩

Σ
=

⟨•𝜕1Ω
𝜕𝒏̂ ⟩
Σ

(3.35)

then the averaged advection velocity of the interface is written as,

⟨𝒖𝒮 ⋅ ∇1Ω1⟩ = ⟨𝑢𝒮
𝜕1Ω1

𝜕𝒏̂ ⟩ = ̂𝑢𝒮Σ (3.36)

where
Σ = ⟨𝒏̂𝒮 ⋅ ∇1Ω1⟩ (3.37)

is the interfacial area density, i.e. the amount of area per unit volume of the interface. These
assumption provide the following equation for the transport of the volume fraction,

𝜕𝛼
𝜕𝑡

+ ̂𝑢𝒮Σ = 0 (3.38)

This version of the equation for the volume fraction is not often used. It is more common to
derive a direct equation for the transport of the interfacial area density that is then associated
to an equation for the volume fraction of the form given by eq. (3.32). The governing equation
for the interfacial area density can also be retrieved using an averaging procedure of the local
instantaneous equations of the characteristic function. We will study this derivation in the next
section.
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3.2.2.3 The interfacial area density equation

Two-phase flow systems are intimately related to the evolution of the interface that separates
the two phases, irrespective of the flow regime, separate or disperse. The interface is assumed,
as we already did all along the entirety of this section dedicated to the derivation of the aver-
aged equations, as a weightless surface 𝒮 that moves with velocity 𝒖𝒮.
More specifically, the geometric evolution of the interface and its perturbation causes the cre-
ation of satellite objects, ligaments and droplets and its correct modeling is of major importance
for the correct prediction of an injection system. The spray is often described in terms of diam-
eter distribution of the droplets composing it (Lefebvre and McDonell 2017). In eq. (3.37) we
introduced a definition for the interfacial area density as given by Drew (1990). It is also pos-
sible to derive a governing equation for Σ based on the same averaging strategy we discussed
in section 3.2.2, applied to the conservation equation of the quantity 𝒏̂ ⋅∇1Ω1

(eq. (3.39)). We
have indeed:

𝜕
𝜕𝑡(𝒏̂ ⋅ ∇1Ω1) + ∇ ⋅ [(𝒖𝒮 ⊗ 𝒏̂) ⋅ ∇1Ω1] = [

𝜕𝒏̂
𝜕𝑡

+ ∇ ⋅ (𝒖𝒮 ⊗ 𝒏̂)] ⋅ ∇1Ω1

+ 𝒏̂ ⋅ [
𝜕
𝜕𝑡(∇1Ω1) + 𝒖𝒮 ⋅ ∇(∇1Ω1)]

(3.39)

After some manipulations and the averaging (explained in Drew (1990)), eq. (3.39) yields

𝜕Σ
𝜕𝑡

+ ∇ ⋅ (𝒖𝒮Σ) = 𝑢𝒮𝖧̂Σ (3.40)

We mention that eq. (3.40) is not sufficient to model the evolution for “anisotropic” interfaces;
equations for the Gauss 𝖦 and Mean 𝖧 curvatures are also needed (and they are provided again
in Drew (1990)). A more general equation for the “anisotropy interface tensor” that takes into
account the interface anisotropy can be also be obtained, see Daniel Lhuillier (2004); Morel
(2015). Other valuable works that explain the derivation of the interfacial area density equation
are available in literature—without the ambition of being exhaustive— in Candel and Poinsot
(1990); Morel et al. (1999); Vallet and Borghi (1999); Delhaye (2001b); Delhaye (2001a); Jay
et al. (2006) or also more recently Cesar Dopazo et al. (2018), with thorough reviews available
in Devassy (2014); Morel (2015). Many different evolution equations for Σ have been proposed
in the literature. We will see in the section section 3.6 that it is possible to encompass a large
range of possible governing equations for Σ that are compatible with the dissipative structure
of a two-phase models through an entropy evolution equation.
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3.3

Deriving two-phase flow models with a variational

approach

In section 3.2 we discussed a method to derive system as a sort of “bottom-up” approach: we
start from the local instantaneous equations that describe the behavior of a single phase in its
domain of presence, then, through averaging, a set of equations describing the behavior of the
two interacting phases is obtained in an average sense. Several terms come out of the averaging
process that need to be modeled, often on a case-by-case approach.
In this section we describe instead an alternative approach, conceptually opposed to the previ-
ous one, based in some sort on a “top-bottom” approach that leverages the Stationary Action
Principle (SAP): the first step is to set up the assumptions that govern the phenomenon we aim
at representing, in particular the type and form of the kinetic and potential energies. Those
energies are casted in to the form of a functional named Lagrangian ℒ whose integral over the
space-time constitutes the “Hamiltonian Action” of the system. The system, then, evolves from
a reference configuration to the actual configuration at (𝒙, 𝑡) along infinite possible trajectories
(see Fig. 3.1a). The SAP postulates that the physical one (Fig. 3.1b) optimizes the Hamilto-
nian Action. Hence, enforcing the Action to be stationary, provides a set of equations that
express the conservation of some physical quantities like momentum or energy. Those con-
servative equations, though, still lack dissipative behavior that can be retrieved applying the
second principle of thermodynamics and ensuring that (mathematical) entropy decreases glob-
ally. Important references on this kind of approach are Bedford (1985); S. Gavrilyuk and Gouin
(1999); S. Gavrilyuk and Saurel (2002); Berdichevsky (2009); Gouin and Ruggeri (2009).

3.3.1 Variational principles for continua

Let us consider a body that occupies a portion of space 𝐵 ⊂ ℝ3 at the instant 𝑡 = 0. The system
of coordinates of the points 𝑿 = (𝑋1,𝑋2,𝑋3) that belong to 𝐵 at the instant 𝑡 = 0 can also
be considered as a labeling system for the particles that compose 𝐵. At each instant 𝑡 > 0, we
note 𝝌(𝑿, 𝑡) ∈ ℝ3 the position of the particle 𝑿 ∈ 𝐵. This allows to define a mapping

𝝌 ∶ (𝑿, 𝑡) ∈ 𝐵 × [0,∞) ⟼ 𝝌(𝑿, 𝑡) ∈ ℝ3 (3.41)
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(a) A family of trajectories mapping a reference con-
figuration to the system configuration at (𝒙, 𝑡)

χ(X; t)

χ
−1(X; t)

(b) A generic mapping from the reference configura-
tion to the system configuration at (𝒙, 𝑡)

Figure 3.1: Evolution of the configuration of a system from a reference configuration

that we suppose to be a diffeomorphism so that we can consider the smooth inverse mapping

(𝒙, 𝑡) ∈ ℝ3 × [0,∞) ⟼ 𝝌−1(𝒙, 𝑡) ∈ 𝐵 (3.42)

A point 𝑿 ∈ 𝐵, is called a Lagrangian coordinate of a point of 𝐵 and if 𝒙 ∈ ℝ3 is a position
of space that is occupied by a point of the body at the instant 𝑡 it will be called the Eulerian
coordinate. Let us consider a fluid parameter that is associated with a field, for example a scalar
field 𝜑. This field can be associated with a mapping noted

𝜑𝐿 ∶ (𝑿, 𝑡) ∈ 𝐵 × [0,∞) ↦ 𝜑𝐿(𝑿, 𝑡) (3.43)

so that 𝜑𝐿(𝑿, 𝑡) is the value of the parameter 𝜑 at point whose initial coordinates are 𝑿 and at
instant 𝑡 > 0. The mapping 𝜑𝐿 is called the Lagrangian mapping associated with 𝜑. If 𝒙 ∈ ℝ3

is a position occupied by the body at an instant 𝑡 > 0, we will note 𝜑(𝒙, 𝑡) the value of the fluid
parameter at 𝒙 and at the instant 𝑡 > 0. This allows to define the so-called Eulerian mapping:

𝜑 ∶ (𝒙, 𝑡) ∈ ℝ3 × [0,∞) ↦ 𝜑(𝒙, 𝑡) (3.44)

Thanks to the definition of 𝝌, both representations are linked by the following relations:

𝜑𝐿(𝑿, 𝑡) = 𝜑(𝝌(𝑿, 𝑡), 𝑡)

𝜑𝐿(𝝌−1(𝒙, 𝑡), 𝑡) = 𝜑(𝒙, 𝑡)
(3.45)
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We define the Lagrangian velocity as the time rate of the mapping 𝝌:

𝒖𝐿(𝑿, 𝑡) ≜ (
𝜕𝝌
𝜕𝑡 )(𝑿, 𝑡) (3.46)

This yields the definition of the Eulerian velocity

𝒖(𝒙, 𝑡) = 𝒖𝐿(𝝌−1(𝒙, 𝑡), 𝑡) = (
𝜕𝝌
𝜕𝑡 )(𝝌−1(𝒙, 𝑡), 𝑡) (3.47)

We can now express the variation in time of any scalar 𝜑. We have indeed that:

𝜕𝜑𝐿

𝜕𝑡
(𝑿, 𝑡) = 𝜕

𝜕𝑡
(𝜑(𝝌(𝑿, 𝑡), 𝑡))|𝑿

=
𝜕𝜑
𝜕𝑡

+
𝜕𝜑
𝜕𝒙

⋅
𝜕𝝌
𝜕𝑡

=
𝜕𝜑
𝜕𝑡

+ 𝒖 ⋅ ∇𝜑 (3.48)

This suggests the definition of the material derivative

D𝜑
D𝑡

(𝒙, 𝑡) =
𝜕𝜑
𝜕𝑡

(𝒙, 𝑡) + 𝒖(𝒙, 𝑡) ⋅ 𝛁𝜑(𝒙, 𝑡) (3.49)

so that we have
𝜕𝜑𝐿

𝜕𝑡
(𝑿, 𝑡) =

D𝜑
D𝑡

(𝒙, 𝑡), 𝒙 = 𝝌(𝑿, 𝑡) (3.50)

Let us now turn to the evaluation of quantities that evaluate the deformation of the body. The
deformation tensor is defined as the rate of change of the configuration motion at time 𝑡 w.r.t.
the reference configuration 𝑿:

𝑭 (𝑿, 𝑡) =
𝜕𝝌
𝜕𝑿

(𝑿, 𝑡) (3.51)

We note 𝐽 the determinant of 𝑭

𝐽(𝑿, 𝑡) = det (𝑭 (𝑿, 𝑡)) (3.52)

If we consider two points with coordinates 𝑿,𝑿 + d𝑿 in the configuration at time 𝑡 = 0, they
have a relative position at instant 𝑡 that is:

d𝒙 (𝑿, 𝑡) = 𝝌(𝑿 + d𝑿, 𝑡) − 𝝌(𝑿, 𝑡) =
𝜕𝝌
𝜕𝑿

(𝑿, 𝑡)d𝑿 = 𝑭 (𝑿, 𝑡) d𝑿 (3.53)

Using eq. (3.53), we can compute the length of the relative position vector:

|d𝒙|2 (𝑿, 𝑡) = d𝒙𝑇 d𝒙 = d𝑿𝑇𝑭 (𝑿, 𝑡)𝑇𝑭 (𝑿, 𝑡) d𝑿 (3.54)
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and the local deformation factor is computed as:

|d𝒙|2 (𝑿, 𝑡) − |d𝑿|2 = d𝑿𝑇 (𝑭 (𝑿, 𝑡)𝑇𝑭 (𝑿, 𝑡) − 𝑰) d𝑿 (3.55)

We can also define the displacement

𝒅(𝑿, 𝑡) = 𝝌(𝑿, 𝑡) − 𝑿 (3.56)

and its gradient w.r.t. the reference configuration:

𝛁𝑿(𝒅)(𝑿, 𝑡) = 𝜕𝒅
𝜕𝑿

(𝑿, 𝑡) =
𝜕𝝌
𝜕𝑿

− 𝜕𝑿
𝜕𝑿

= 𝑭 (𝑿, 𝑡) − 𝑰 (3.57)

In the next section, we will see how the above elements can be used to evaluation the volume
and surface measures in both Lagrangian and Eulerian coordinates.

3.3.1.1 Variations for a family of trajectories

We will now take into consideration different trajectories induced by a family of mappings
𝜖
𝝌

that are parameterized by 𝜖 ∈ (−1, 1) as depicted in Fig. 3.1a

𝜖
𝝌(𝑿, 𝑡) = 𝝌(𝑿, 𝑡) + 𝜖𝜼𝐿(𝑿, 𝑡) (3.58)

so that we have
𝜖=0
𝝌 (𝑿, 𝑡) = 𝝌(𝑿, 𝑡) (3.59)

Let us now note
𝜂𝐿(𝑿, 𝑡) = 𝜂(𝒙, 𝑡), 𝒙 = 𝝌(𝑿, 𝑡) (3.60)

If 𝜑 is a fluid parameter we also consider a perturbed Lagrangian field
𝜖
𝜑

𝐿
and a perturbed

Eulerian field
𝜖
𝜑 such that

𝜖=0
(𝜑𝐿)(𝑿, 𝑡) = 𝜑𝐿(𝑿, 𝑡),

𝜖=0
𝜑 (𝒙, 𝑡) = 𝜑(𝒙, 𝑡) (3.61)

These mappings are related by

𝜖
𝜑

𝐿
(𝑿, 𝑡) =

𝜖
𝜑(

𝜖
𝝌(𝑿, 𝑡), 𝑡) (3.62)
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Let us introduce the following variational derivatives

𝛿𝜑𝐿 (𝑿, 𝑡) = lim
𝜖→0

𝜕
𝜖
𝜑

𝐿

𝜕𝜖
(𝑿, 𝑡) and 𝛿𝜑 (𝒙, 𝑡) = lim

𝜖→0

𝜕
𝜖
𝜑

𝜕𝜖
(𝒙, 𝑡) (3.63)

By definition eq. (3.58) we immediately have

𝛿𝝌 (𝑿, 𝑡) = 𝜂𝐿(𝑿, 𝑡) (3.64)

Using eq. (3.63) taking the derivative w.r.t. 𝜖, we obtain

𝜕
𝜖
𝜑

𝐿

𝜕𝜖
(𝑿, 𝑡) =

𝜕
𝜖
𝜑

𝜕𝜖
(

𝜖
𝝌(𝑿, 𝑡)) +

𝜕
𝜖
𝜑

𝜕𝒙
(

𝜖
𝝌(𝑿, 𝑡), 𝑡) ⋅

𝜕
𝜖
𝝌

𝜕𝜖
(𝑿, 𝑡) (3.65)

so that we can connect both variational derivatives by

𝛿𝜑𝐿 (𝑿, 𝑡) = 𝛿𝜑 (𝒙, 𝑡) + ∇𝜑(𝒙, 𝑡) ⋅ 𝜂(𝒙, 𝑡), 𝒙 = 𝝌(𝑿, 𝑡) (3.66)

Finally, we postulate that the perturbation of all quantities vanish at the boundary of the domain
and at both the initial and final instants, more specifically we suppose that:

• 𝜼𝐿(𝑿, 𝑡1) = 𝜼𝐿(𝑿, 𝑡2) = 𝟎, for all 𝑿 ∈ 𝐵,

• 𝜼𝐿(𝑿, 𝑡) = 𝟎 for 𝑿 ∈ 𝜕𝐵(𝑡) and all 𝑡 ∈ [𝑡1, 𝑡2],

• 𝛿𝜑𝐿 (𝑿, 𝑡1) = 𝛿𝜑𝐿 (𝑿, 𝑡2) = 𝟎, for all 𝑿 ∈ 𝐵,

• 𝛿𝜑𝐿 (𝑿, 𝑡) = 𝟎 for 𝑿 ∈ 𝜕𝐵(𝑡) and all 𝑡 ∈ [𝑡1, 𝑡2].

In the next section, we will see how these variations come into play in the SAP for deriving
flow models.

3.4

Applying the Stationary Action Principle to a fluid

problem

Let us briefly sketch here the main steps of the SAP in the context of our two-phase flow study.
This modeling process can be divided in three steps that are inspired by Bedford (1985); S.
Gavrilyuk and Gouin (1999); S. Gavrilyuk and Saurel (2002); Berdichevsky (2009); Gouin and
Ruggeri (2009); Drui, Larat, et al. (2019). First, in order to the derive a system of equations
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describing the behavior of a fluid using the SAP, we have first to equip our system with a
Lagrangian energy that is defined as:

ℒ = 𝒦 − 𝒰 (3.67)

where 𝒦 is the kinetic energy of the fluid, 𝒰 is its potential energy that are associated with the
system. We shall assume the following functional dependency of the Lagrangian ℒ w.r.t.the
variables of a system:

ℒ = ℒ(𝝇), 𝝇 = (𝜌, 𝒖, 𝛼, D𝑡𝛼,𝜑1,… ,𝜑𝒩param
) (3.68)

where 𝜌, 𝒖, 𝛼 are respectively the density, the velocity of the mixture, the volume fraction and
where 𝜑1,… ,𝜑𝒩param

is a set of 𝒩param additional scalar fields that characterize the flow. These
fields will then be specified in a case by case fashion and may feature flow parameters such
as the interfacial area density Σ. Let us mention that such choice of variables is just meant
to synthetically study all the two-phase models that we shall consider in this work but it is by
no means exhaustive. The second step consists in postulating additional constraints that are
fulfilled by the system like the conservation of mass or other quantities. Finally in the third
step, we define the Hamiltonian action for the configuration of the body 𝐵 at time 𝑡, 𝐵(𝑡),

𝝇 ↦ 𝒜(𝝇) = ∫
𝑡2

𝑡1
∫𝐵(𝑡)

ℒ(𝝇). (3.69)

One then considers a set of perturbed transformation
𝜖
𝝇. as defined in section 3.3. The SAP

boils down to seeking for the transformation 𝝇 that provide an extremum for the perturbed
Action

𝜖 ↦ 𝒜(
𝜖
𝝇).

Before going any further, let us underline that in this work we restrict our study to two-phase
fluid systems that involve a single velocity kinematics. The derivation of fluid systems with
several material velocities has been considered in the literature, see for example S. Gavrilyuk
and Saurel (2002); Gouin and Ruggeri (2009); Cordesse (2020).
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3.4.1 Extremalizing the Hamiltonian Action

Seeking for the extrema of 𝜖 ↦ 𝒜(
𝜖
𝝇) boils down to looking for transformations that account

for the constraints imposed on the flow variables which verify:

𝛿𝒜 = 𝛿 ∫
𝑡2

𝑡1
∫𝐵(𝑡)

ℒ = ∫
𝑡2

𝑡1
∫𝐵(𝑡) ∑

𝑏∈𝝇

𝜕ℒ
𝜕𝑏

𝛿𝑏 = 0. (3.70)

In the following we define 𝑲, 𝑀 and 𝑀 by

𝑲𝑇 = 𝜕ℒ
𝜕𝒖

, 𝑀 = 𝜕ℒ
𝜕D𝑡𝛼

ℒ + ℒ ∗ = 𝜌𝜕ℒ
𝜕𝜌

. (3.71)

Let us underline that ℒ ∗ is defined as a partial Legendre transform of ℒ w.r.t. the density to
simplify calculations. In order to express all the term of the internal summation in eq. (3.70),
first we need to provide expressions for all the field variations 𝛿𝑏, 𝑏 ∈ 𝝇.

3.4.1.1 Variation of the velocity

We consider here the evaluation of 𝛿𝒖. By definition of the velocity and the variational deriva-
tive we have

𝛿𝒖𝐿 = lim
𝜖→0

𝜕
𝜕𝜖(

𝜕
𝜖
𝝌

𝐿

𝜕𝑡 )
= lim

𝜖→0
𝜕
𝜕𝑡(

𝜕
𝜖
𝝌

𝜕𝜖 )
=

𝜕𝜼𝐿

𝜕𝑡
=

D𝜼
D𝑡

Using eq. (3.66) for each velocity component we get

𝛿𝒖𝐿 = 𝛿𝒖 + (𝜼 ⋅ 𝛁)𝒖 (3.72)

We finally obtain

𝛿𝒖 =
D𝜼
D𝑡

− (𝜼 ⋅ 𝛁)𝒖 (3.73)

3.4.1.2 Variation of the jacobian

The perturbation of
𝜖
𝝌 yields a perturbation of the Jacobian

𝜖
𝐽 = det(𝜕

𝜖
𝝌

𝐿
/𝜕𝑿). The details

of the calculations are given in section 3.A and we only report below the final result: the
infinitesimal variation of the Jacobian 𝐽 reads

𝛿𝐽 = 𝐽 ∇ ⋅ 𝜼. (3.74)
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3.4.1.3 Variation of the density

In order to compute the variation of the density we choose to inject the constraint for the con-
servation of mass directly into the derivation of the variation for the density. Alternatively an
approach exploiting Lagrangemultipliers is reported in Bedford (1985). From the conservation
of mass in Lagrangian form

𝜌𝐿
0 = 𝐽𝜌𝐿 (3.75)

we apply the variation operator and thanks to eq. (3.74) we get:

𝛿𝜌𝐿
0 = 𝛿𝐽 𝜌𝐿 + 𝐽 𝛿𝜌𝐿

⇛ 0 = 𝜌𝐿𝐽∇ ⋅ 𝜼 + 𝐽 𝛿𝜌𝐿

where the variation 𝛿𝜌𝐿
0 of the density at the reference configuration vanishes because by hy-

pothesis, we have supposed that
𝜖
𝜑

𝐿
(𝑿, 𝑡 = 0) = 𝜑𝐿(𝑿, 𝑡 = 0) for all 𝜖 ∈ (−1, 1). Hence,

𝛿𝜌𝐿 = −𝜌𝐿∇ ⋅ (𝛿𝒙) (3.76)

and using expressing 𝛿𝜌𝐿 thanks to eq. (3.66) yields

𝛿𝜌 = − (∇𝜌 ⋅ 𝜼 + 𝜌∇ ⋅ 𝜼) = −∇ ⋅ (𝜌𝜼)

We finally obtain:

𝛿𝜌 = −∇ ⋅ (𝜌𝜼) (3.77)

3.4.1.4 Variation of a field governed by a transport equation

Let us now derive the expression of the variation for a generic field that is constrained to fulfill
a transport equation:

𝜕𝜑
𝜕𝑡

+ 𝒖 ⋅ ∇𝜑 = 0 (3.78)

As for the case of the density in the section section 3.4.1.3, we incorporate directly this con-
straint into the calculation of 𝛿𝜑. Using the Lagrangian coordinates the transport reads equiv-
alently:

𝜑𝐿(𝑿, 𝑡 = 0) = 𝜑𝐿(𝑿, 𝑡)

By hypothesis we suppose that
𝜖
𝜑

𝐿
(𝑿, 𝑡 = 0) = 𝜑𝐿(𝑿, 𝑡 = 0) for all 𝜖 ∈ (−1, 1) so that the

transport constraint eq. (3.78) reads
𝜖
𝜑

𝐿
(𝑿, 𝑡) = 𝜑𝐿(𝑿, 𝑡 = 0), for all 𝜖 ∈ (−1, 1) and all
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𝑡 ∈ (𝑡1, 𝑡2). Then we immediately have that 𝛿𝜑𝐿 = 0 and using eq. (3.66) we obtain

𝛿𝜑 = −𝜼 ⋅ 𝛁𝜑 (3.79)

3.4.1.5 Variation of the volume fraction

The variation of the volume fraction 𝛼 is not subjected to any specific constraining hypothesis.
Therefore the the variation 𝛿𝛼 involved with the 𝜖-parameterized family of transformations of
the medium is arbitrary. We then simply have

𝜖
𝛼(𝒙, 𝑡) = 𝛼(𝒙, 𝑡) + 𝛿𝛼 (𝒙, 𝑡) (3.80)

We will see in what follows that the fact that the volume fraction variation 𝛿𝛼 evolves indepen-
dently will yield a separate equation for the volume fraction field.

3.4.1.6 Generic form of the system

We have derived the expressions of all the required variations 𝛿𝑏 involved in eq. (3.70), that
we recall below for convenience

𝛿𝒜 = ∫
𝑡2

𝑡1
∫𝐵(𝑡) ∑

𝑏∈𝝇

𝜕ℒ
𝜕𝑏

𝛿𝑏 = 0.

Then we can now fully express the variation of the Hamiltonian action. Let us break 𝛿𝒜 into
several contributions, as follows

𝛿𝒜 = 𝛿𝒜𝜌 + 𝛿𝒜𝒖 + 𝛿𝒜𝛼 + 𝛿𝒜D𝑡(𝛼) + 𝛿𝒜𝑏 ,

where:
𝛿𝒜𝜌 = ∫

𝑡2

𝑡1
∫𝐵(𝑡)

𝜕ℒ
𝜕𝜌

𝛿𝜌 = ∫
𝑡2

𝑡1
∫𝐵(𝑡)

ℒ + ℒ ∗

𝜌
𝛿𝜌

= ∫
𝑡2

𝑡1
∫𝐵(𝑡) (

∇ℒ ∗ + ∑
𝑏∈𝝇;𝑏≠𝜌

𝜕ℒ
𝜕𝑏

∇𝑏
)

(3.81)

𝛿𝒜𝒖 = ∫
𝑡2

𝑡1
∫𝐵(𝑡)

𝑲 ⋅ 𝛿𝒖 = ∫
𝑡2

𝑡1
∫𝐵(𝑡)

𝑲 ⋅ [D𝑡(𝜼) − ∇𝒖 ⋅ 𝜼]

= − ∫
𝑡2

𝑡1
∫𝐵(𝑡)

[
𝜕𝑲
𝜕𝑡

+ ∇ ⋅ (𝑲 ⊗ 𝒖) + 𝑲 ⋅ ∇𝒖] ⋅ 𝜼
(3.82)
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𝛿𝒜𝛼 = ∫
𝑡2

𝑡1
∫𝐵(𝑡)

𝜕ℒ
𝜕𝛼

𝛿𝛼 (3.83)

𝛿𝒜D𝑡(𝛼) = ∫
𝑡2

𝑡1
∫𝐵(𝑡)

𝑀 𝛿D𝑡(𝛼) = ∫
𝑡2

𝑡1
∫𝐵(𝑡)

𝑀(D𝑡 𝛿𝛼 + 𝛿𝒖 ⋅ ∇𝛼 + 𝒖 ⋅ ∇ 𝛿𝛼)

= ∫
𝑡2

𝑡1
∫𝐵(𝑡)

−[
𝜕𝑀
𝜕𝑡

+ ∇ ⋅ (𝑀𝒖)] 𝛿𝛼 − [∇𝛼(
𝜕𝑀
𝜕𝑡

+ ∇ ⋅ (𝑀𝒖))

+ 𝑀∇(D𝑡𝛼)] ⋅ 𝜼.

(3.84)

𝛿𝒜𝑏 = ∫
𝑡2

𝑡1
∫𝐵(𝑡)

𝜕ℒ
𝜕𝑏

𝛿𝑏 = − ∫
𝑡2

𝑡1
∫𝐵(𝑡)

𝜕ℒ
𝜕𝑏

∇𝑏 ⋅ 𝜼 (3.85)

Summing up all the contributions from eqs. (3.81) to (3.85), we obtain the final expression for
the variation of the Hamiltonian action,

𝛿𝒜 = [∇ℒ ∗ − 𝜕𝑲
𝜕𝑡

+ ∇ ⋅ (𝑲 ⊗ 𝒖) − 𝜕𝑀
𝜕𝑡

+ ∇ ⋅ (𝑀𝒖)∇𝛼 + 𝜕ℒ
𝜕𝛼

∇𝛼] ⋅ 𝜼

+ [−𝜕𝑀
𝜕𝑡

+ ∇ ⋅ (𝑀𝒖) + 𝜕ℒ
𝜕𝛼 ] 𝛿𝛼 = 0

(3.86)

As the variations 𝜼, 𝛿𝛼 are arbitrary, we obtain the system,

⎧⎪
⎨
⎪⎩

𝜕𝑲
𝜕𝑡

+ ∇ ⋅ (𝑲 ⊗ 𝒖) − ∇ℒ ∗= 𝟎

𝜕𝑀
𝜕𝑡

+ ∇ ⋅ (𝑀𝒖) − 𝜕ℒ
𝜕𝛼

= 0
(3.87)

The first equation is the conservation of the momentum for the fluid under examination and
the second one returns a relation that governs the evolution of the volume fraction material
derivative D𝑡𝛼. It can be interpreted as a governing equations for the evolution of the smallest
scales of the problem. Let us note that eq. (3.87) needs to be complemented by the mass con-
servation equation and the transport equations of the fields 𝜑𝑙, that effectively are constraints
for the optimization procedure we just performed on 𝒜. They have been imposed through the
injection of the variations expressions. The complete form of the system obtained via the SAP,
hence reads:

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0

𝜕𝑲
𝜕𝑡

+ ∇ ⋅ (𝑲 ⊗ 𝒖) − ∇ℒ ∗= 𝟎

𝜕𝑀
𝜕𝑡

+ ∇ ⋅ (𝑀𝒖) − 𝜕ℒ
𝜕𝛼

= 0

𝜕𝜑𝑙
𝜕𝑡

+ 𝒖 ⋅ ∇𝜑𝑙 = 0, 𝑙 = 1,… ,𝒩param.

(3.88)
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3.4.1.7 Barotropic Euler system

The Euler system is a set of equations of paramount importance and relevance in the fluid
dynamics context, especially for what concerns the simulation of aeronautical flows. It is one of
themost studied practical system and it is a classical test bench for numerical schemes. Specific
references are LeVeque (1990); Godlewski and Raviart (1996); LeVeque (2002); Eleuterio F.
Toro (2009). As an introductory first example of the application of the SAP we will propose
a classic example (Bedford 1985; S. Gavrilyuk and Gouin 1999): we will retrieve the single
component Euler system using the SAP framework we just presented. First of all, we will detail
the form of the Lagrangian for the system,

ℒ(𝜌, 𝒖) = 1
2

𝜌𝒖 ⋅ 𝒖 − 𝜌𝑒(𝜌) (3.89)

where 𝑒 is the barotropic potential energy. The thermodynamic pressure 𝑝 is defined thanks to
𝑒 by the relation

𝑝 = 𝜌2 d𝑒
d𝜌

. (3.90)

The terms 𝑲, 𝑀 and ℒ ∗ take here the form

𝑲 = 𝜌𝒖

𝑀 = 0

ℒ ∗ = 𝜌𝜕ℒ
𝜕𝜌

− ℒ = 𝜌(
1
2

𝒖 ⋅ 𝒖 − 𝜌d𝑒
d𝜌

− 𝑒) − 1
2

𝜌𝒖 ⋅ 𝒖 + 𝜌𝑒(𝜌) = −𝑝

(3.91)

Equation (3.88) becomes then

⎧⎪
⎨
⎪⎩

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0

𝜕𝜌𝒖
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖 ⊗ 𝒖) + ∇𝑝 = 𝟎.
(3.92)

We thus indeed retrieve the classic form of the barotropic Euler equations.

3.4.2 Introducing the dissipation

The procedure described in section 3.4 that leverages the SAP to derive a governing set of
equations for a (two-)fluid system, is only able to provide the conservative contribution to the
equations. In order to put dissipation at play in the flow we propose to equip the system with
an entropy inequality. We start from eq. (3.88), reported here below for convenience using
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material derivatives,
⎧⎪
⎪
⎨
⎪
⎪⎩

𝜌D𝑡(
𝑲
𝜌 ) − ∇ℒ ∗ = 𝟎

𝜌D𝑡(
𝑀
𝜌 ) − 𝜕ℒ

𝜕𝛼
= 𝑅

(3.93a)

(3.93b)

where we arbitrarily decided to add a source term 𝑅 in the equation that governs the volume
fraction time rate in order to account for dissipation effects. This choice is coherent with a dis-
sipation that is driven by internal processes between both phases. We shall see that these can
be related to the evolution of small scales phenomena in the system. If we multiply eq. (3.93a)
by 𝒖𝑇 and eq. (3.93b) by D𝑡𝛼, and then sum the two equations, we obtain after some manipu-
lations,

𝜌D𝑡[
𝑲 ⋅ 𝒖 + D𝑡𝛼𝑀

𝜌 ] − 𝑲 ⋅ D𝑡𝒖 − 𝒖 ⋅ ∇ℒ ∗ − 𝑀D𝑡(D𝑡𝛼) − 𝜕ℒ
𝜕𝛼

𝛼 = 𝑅D𝑡𝛼

In the context of a system equipped with a barotropic EoS, we can define the Hamiltonian
energy 𝐻 by setting

𝐻 + ℒ = 𝑲 ⋅ 𝒖 + D𝑡𝛼𝑀 (3.94)

After some more manipulations, we see that 𝐻 verifies the evolution equation

𝜌D𝑡(
𝐻
𝜌 ) − ∇ ⋅ (ℒ ∗𝒖) = 𝑅D𝑡𝛼 − ∑

𝑏′

𝜕ℒ
𝜕𝑏′ D𝑡𝑏′ (3.95)

where 𝑏′ ∶ {𝑏 ∉ (𝜌, 𝒖, 𝛼, D𝑡𝛼)}. Let us briefly consider the following specific case 𝑅 = 0
when no dissipation occurs and when the auxiliari fields 𝑏 ∉ (𝜌, 𝒖, 𝛼, D𝑡𝛼) verifies a transport
equation D𝑡𝑏 = 0. Then we can see that eq. (3.95) yields an additional conservation law in the
form

𝜕𝐻
𝜕𝑡

+ ∇ ⋅ (𝐻𝒖 − ℒ ∗𝒖) = 0 (3.96)

Moreover, in the simple case of the barotropic flow, one can see that this additional conser-
vation law is indeed the conservation of the mathematical entropy of the system for smooth
solutions. This suggests that in this case, the Hamiltonian 𝐻 and its evolution equation are
relevant candidate to equip the system with an entropy and an entropy evolution equation. Let
us now turn back to the dissipative case of equation eq. (3.95). The second principle of ther-
modynamics requires the entropy production to be positive, so that we must ensure that

𝑄 = 𝑅D𝑡𝛼 − ∑
𝑏′

𝜕ℒ
𝜕𝑏′ D𝑡𝑏′ ≤ 0 (3.97)
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The requirement eq. (3.97) must be studied on a case-by-case basis by accounting for the mod-
eling hypotheses related to the dissipative processes in the system. We will see different ex-
amples in the next sections and we also refer the reader to Cordesse (2020) for non-barotropic
flows and Guillemaud (2007); Cordesse and Massot (2020) for two-phase flows involving two-
velocities.

3.5

Two-phase flow models with a rich geometrical de-

scription

In section 3.4 we presented the generic SAP framework that allows the derivation of two-phase
flowmodels using a variational approach. The generic final system takes the form of eq. (3.87),
that we report here below for convenience

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0

𝜕𝑲
𝜕𝑡

+ ∇ ⋅ (𝑲 ⊗ 𝒖) − ∇ℒ ∗= 𝟎

𝜕𝑀
𝜕𝑡

+ ∇ ⋅ (𝑀𝒖) − 𝜕ℒ
𝜕𝛼

= 0

𝜕𝜑𝑙
𝜕𝑡

+ 𝒖 ⋅ ∇𝜑𝑙 = 0

(3.98)

where 𝑙 = 1 … 𝑁aux. and 𝑁aux. is the number of auxiliary scalar fields governed by a transport
equation. In order to obtain a fully determined system for a specific problem, the actual form
of the Lagrangian must be specified. This boils down to expressing the kinetic and potential
energies for the problem at hand as functions of the variable set 𝝇 = (𝜌, 𝒖, 𝛼, D𝑡𝛼,𝜑𝑙). In the
following subsections we will express different choices to introduce equations on geometric
quantities that are related to the interface between both fluids in a two-phase systems. We will
build a set of models that feature different aspects of the subscale modeling for interface flows,
starting from the simplest case of a single-phase barotropic fluid.

Before going any further, let us introduce a few hypotheses. We shall suppose that the
medium is composed of two barotropic materials 𝑘 = 1, 2. Each fluid is equipped with an
EOS in the form of a barotropic potential 𝜌𝑘 ↦ 𝑒(𝜌𝑘), so that the pressure law associated with
the fluid 𝑘 is given by 𝜌𝑘 ↦ 𝑝𝑘(𝜌𝑘) = 𝜌2

𝑘(d𝑒𝑘/d𝜌𝑘 )(𝜌𝑘) and the sound velocity 𝑐𝑘 of the fluid
𝑘 verifies 𝑐2

𝑘 = (d𝑝𝑘/d𝜌𝑘 )(𝜌𝑘). We will make the classic assumption that the density of the
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medium is defined by

𝜌 = 𝛼𝜌1 + (1 − 𝛼)𝜌2 (3.99)

and that the mass fraction 𝑌 of the fluid 1 verifies

𝜌𝑌 = 𝛼𝜌1 (3.100)

3.5.1 What do we mean by two-scale modeling

Modeling the presence of an interface between both fluids in a two-phase flow problem is in-
deed quite challenging. The interface can be resolved as a discontinuity surface or as a field
with finite thickness, depending on the modeling approach that is chosen. In the common ap-
proach that was reviewed in section 3.2.2.3, the interface is thought as a sharp, infinitely thin,
surface that separates one zone of the domain occupied by one fluid Ω1 from the other zone
occupied by the other fluid Ω2. While this modeling choice is clear, it can lead in practice
to severe limitations regarding the cases that can be simulated. If we take as an example the
flow produced by an injector and we analyze the evolution of the interface between the in-
jected liquid and the surrounding carrier gas, we encounter different regimes characterized by
different time and space scales in the domain. As shown in Fig. 2.7, near the injector head a
clear surface separating both phases is identifiable: the interface undergoes small perturbations
and the acting scales are relatively large. Further downstream, the initial perturbation creates
stronger deformations characterized by smaller space scales and faster oscillations, that lead
to the creation of ligaments and droplets at the very end of the domain. In a context where
computational resources are limited, we are only able to resolve the interface up to a certain
level and discard fine features of the interface. This suggests to consider models that do not aim
at describing the complete geometrical features of the two-phase interface but rather involve a
choice of so-called large scale features that can be fully resolved and other small scale features
that need to be modeled thanks to reasonable assumptions. We shall say that this approach
involves a two-scale modeling where we intend to re-inject into the model informations per-
taining to small scales that are deliberately discarded from the model by the scale separation.
The artistic representation of Fig. 3.2 shows the effect of this scale separation on the resolution
of the interface. When we are incapable of resolving the interface, the information we retrieve,
for example from the volume fraction field, resembles the continuous line shown in Fig. 3.2
on the bottom. That outcome is totally non-representative of the real scenario, as displayed on
the top of the figure, in the (right) zone of the domain containing the smallest scales in time
and space, i.e. the disperse-phase zone. Enriching the large scale model thanks to additional
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geometrical information related to the small scale interface features can be achieved by con-
sidering the evolution of the interfacial area density like in many models of the literature (Ishii
and Mishima 1984; Rusche 2003). In our case, we intend to use properties like the Gauss
curvature and the mean curvature, which could be used in the disperse-phase zone to discern
between a situation in which the interface can be described at the large scale and the situation
in which instead a spray arises (Essadki 2018; Loison 2023).

We tackle this two-scale nature of the problem within the framework of the SAP postulat-
ing “subscale” energies representing a particular flow structure: spherical pulsating droplets
as in Drui, Larat, et al. (2019), non-spherical droplets pulsating in the normal direction (sec-
tion 3.5.2), ellipsoidal droplets oscillating with constant volume (section 3.5.3). Please note
that the “subscale” term we are employing in this context has no connection to turbulence
modeling which, willingly, we do not consider in this work. An interesting analysis about
second-order turbulence metrics in two-phase flow simulations featuring an equation for the
interfacial area density is carried on in Remigi (2021). A last note on the description of the
interface we just introduced: other approaches are possible that do not refer to the interface as
a sharp surface; in Cordesse, Di Battista, Drui, et al. (2020) the interface is described thanks to
a probabilistic approach that relies on of a Probability Density Function (PDF) supplemented
by filtering kernel that allows to separate the large scale and the small scale of the interface in
the flow.
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Figure 3.2: At lower scales, the interface cannot be resolved and it needs modeling
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3.5.2 Two-scale modeling of small inclusions assuming normal

deformation of the interface

In the first two-scalemodel we present, the large scale contribution to the Lagrangian is inspired
by classical interface capturingmethods (e.g.Chanteperdrix et al. 2002). The interface position
is supposed to lie in a region of fast change of the volume fraction 𝛼, from the value 𝛼 = 0, in
which only the phase 1 is present, to 𝛼 = 1, in which only the phase 2 is present. Therefore the
normal unit vector to the interface in the large scale regime is accurately approximated by the
quantity

𝒏̂ = ∇𝛼
‖∇𝛼‖

(3.101)

in the transition region 0 < 𝛼 < 1. When dealing with the small scales regime instead, we
assume that the interface dynamics can be approximately retrieved thanks to additional fields
Σ(𝒙, 𝑡),𝖧(𝒙, 𝑡) that respectively account for the small scales of the interfacial area density and
the average mean curvature of the interface in the vicinity of the position and time (𝒙, 𝑡). In
order to use Σ,𝖧 to reconstruct the small scales interfacial dynamics, amodel must be specified.

In Drui, Larat, et al. (2019) the authors take as small scale model a set of pulsating spherical
inclusions. In this work, we aim at generalizing that take, assuming the population of objects
that are present at small scale is a set of pulsating inclusion that are homeomorphic to a sphere,
instead of being just spherical. For this to be used in the SAP context, a set of governing
equations relating Σ to 𝖧 needs to be expressed. We leverage the Weyl’s tube formula (Weyl
1939) to achieve this task.

3.5.2.1 Basic elements of the Weyl’s tube formula

Consider a surface 𝒮 ⊂ ℝ3 along with a choice of unit normal vectors defined over 𝒮. We
suppose the 𝒮 (ℎ) is a family of surfaces parametrized by a small parameter ℎ ∈ ℝ obtained
by moving each point of 𝒮 away from the surface along the normal to 𝒮 by a distance ℎ. We
note S(ℎ) = |𝒮 (ℎ)| the area of 𝒮 (ℎ) and 𝖧∗(𝝃) the local value of the mean curvature at point
𝝃 ∈ 𝒮. The tube formula (Weyl 1939) relate S(ℎ), S(0) and 𝖧∗ as follows:

S(ℎ) = S(0) − 2ℎ ∮𝒮 (0)
𝖧∗(𝝃) + 𝑂(ℎ2). (3.102)

We can thus define the average value of the mean curvature, i.e. the average mean curvature,
as

⟨𝖧∗⟩𝒮 ≜
∮𝒮 (0) 𝖧∗(𝝃)

S
(3.103)
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ℎ

S(ℎ)

S0

Figure 3.3: Deformation of a droplet normal to the surface

Equation (3.103) allows then to write the following expression relating the average mean cur-
vature and the derivative of the surface area,

dS
dℎ

= −2 ⟨𝖧∗⟩𝒮 S (3.104)

Injecting the definition of the average mean curvature (eq. (3.103)) into eq. (3.102), and inte-
grating over the normal distance ℎ, allows to retrieve a relation that links the volume of the
inclusion and its surface area:

d𝖵
dℎ

= S (3.105)

Equation (3.105) is a geometrical relation that is derived using the Weyl’s tube formula and
is strictly related to a single object. But if we consider a constant number of objects 𝑁obj of
volume 𝖵𝑘 per unit volume, hence no coalescence or breakup is occuring, we can calculate the
volume fraction in the reference unit volume 𝖵ref as:

1
𝖵ref

𝑁obj

∑
𝑘

𝖵𝑘 ≜ 𝛼 (3.106)
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if we now derive eq. (3.106) by the normal distance, and using eq. (3.105) per each object, we
obtain the following relation for the entire population of inclusions:

d𝛼
dℎ

=
𝑁obj

∑
𝑘

S𝑘
𝖵ref

≜ Σ (3.107)

Similarly, summing up all the surface contributions in eq. (3.104) per each object per unit
volume, we obtain the relation for the entire population:

dΣ
dℎ

= 1
𝖵ref

𝑁obj

∑
𝑘

dS𝑘
dℎ

= − 2
𝖵ref

𝑁obj

∑
𝑘

⟨𝖧∗
𝑘⟩𝒮 S𝑘 = −2𝖧Σ (3.108)

where we have defined an averagemean curvature over the ensemble of inclusions 𝖧 as follows:

𝖧Σ ≜ 1
𝖵ref

𝑁obj

∑
𝑘

⟨𝖧∗
𝑘⟩𝒮 S𝑘

3.5.2.2 Application of the SAP

In order to account for the two-scale nature of the model we aim at deriving, we consider
several energies that come into play in the system: a classical bulk kinetic energy 𝒦bulk and
potential energy bulk 𝒰bulk, a potential energy 𝒰large pertaining to large scale capillary effects
and two additional energies 𝒦small and 𝒰small related to small scale phenomena. By classical
choice we set:

𝒦bulk = 1
2

𝜌𝒖 ⋅ 𝒖, 𝒰bulk = 𝜌𝑒(𝜌, 𝑌, 𝛼) (3.109)

where 𝑒(𝜌, 𝑌, 𝛼) is a barotropic potential energy for the two-phase mixture and 𝑌 is the mass
fraction of the fluid 1. The large scale capillary potential that accounts for surface tension when
the geometry of the interface can be captured by the variation of 𝛼 is set to

𝒰large = 1
2

𝜎|∇𝛼|2 (3.110)

where 𝜎 > 0 is coefficient that characterizes the surface tension. In order to account for small
scale kinetic energy, we make the assumption that the small scale kinematic is governed by
perturbation of the interface along its normal direction following the lines of section 3.5.2.1
and we suppose that a field ℎ(𝒙, 𝑡) accounts for the amplitude of these deformations in the
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vicinity of 𝒙. This suggests to define the small scale kinetic energy by

𝒦small = 1
2

𝑚(𝛼,Σ)(D𝑡ℎ)
2, (3.111)

with 𝑚 > 0. Finally, we suppose that the small scale surface tension is associated with a
potential energy that is proportional to the interfacial area density Σ with

𝒰small = 1
2

𝛽Σ, (3.112)

with 𝛽 > 0 a coefficient that characterize the small scale surface tension. Following Cordesse,
Di Battista, Drui, et al. (2020) we make the very strong assumption that the field (𝒙, 𝑡) ↦ 𝖧
is given a priori and that it is not altered by the flow. This assumption can be lifted using a
slightly more complex modelling of the subscale behavior (see Cordesse (2020)).

Therefore we postulate that the Lagrangian of the system is composed as follows:

ℒ(𝜌, 𝒖, 𝑌, 𝛼, D𝑡𝛼,∇𝛼,Σ,𝖧) = 𝒦bulk − 𝒰bulk + 𝒦small − 𝒰small − 𝒰large

= 1
2

𝜌𝒖 ⋅ 𝒖 − 𝜌𝑒(𝜌, 𝑌, 𝛼)

+ 1
2

𝑚(𝛼,Σ)(D𝑡ℎ)
2 − 1

2
𝛽Σ

− 1
2

𝜎|∇𝛼|2.

(3.113)

The parameters 𝜎 > 0 and 𝛽 > 0 are assumed constant for the sake of simplicity in the present
work.

Let us now turn to the constraints that shall be associated with the system. First, we postulate
the classical constraints of conservation of mass and partial mass also apply:

⎧
⎪
⎨
⎪
⎩

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0

𝜕𝜌𝑌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑌 𝒖) = 0.

(3.114)

(3.115)

Then we also consider additional constraints that pertain to the kinematics of the small scale.
Using the geometrical constraints that were discussed in section 3.5.2.1 we enforce the varia-
tions ofℎ, Σ and 𝛼 to verify the following relations that are derived after eqs. (3.105) and (3.108):

{

D𝑡Σ + 2𝖧ΣD𝑡ℎ = 0

D𝑡𝛼 − ΣD𝑡ℎ = 0

(3.116a)

(3.116b)
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In order to exhibit the equations that ensure the Hamiltonian action to reach an extremum, we
need to evaluate the infinitesimal variations of the fluid parameters. As in section 3.4 we shall
account for the constraints of the system in the expression of 𝛿ℎ, 𝛿𝜌, 𝛿𝑌, 𝛿Σ. The relation of
eqs. (3.116a) and (3.116b) imposes that

𝛿D𝑡ℎ = 1
Σ

𝛿D𝑡𝛼 −
D𝑡ℎ
Σ

𝛿Σ (3.117)

and using eq. (3.77) for 𝛿𝜌, eq. (3.79) for 𝛿𝑌 and eq. (3.73) for 𝛿𝒖 we obtain the following final
set of variations:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝛿𝜌 = −∇ ⋅ 𝜌𝜼

𝛿𝒖 = D𝑡(𝜼) − 𝜼 ⋅ ∇𝒖

𝛿𝑌 = −∇𝑌 ⋅ 𝜼

𝛿D𝑡ℎ = 1
Σ

𝛿D𝑡𝛼 −
D𝑡ℎ
Σ

𝛿Σ .

(3.118a)

(3.118b)

(3.118c)

(3.118d)

The present Lagrangian energy and set of constraints does not exactly match the context of
presented in section 3.4.1 as the set of variables features different types of constraints like
eq. (3.117). Nevertheless, it is possible to carry out the calculation of 𝛿𝒜. These lines can be
found in Cordesse, Di Battista, Drui, et al. (2020) but will not be detailed here. If we suppose
that the barotropic potential 𝑒 of the two-phase medium is defined by

𝑒(𝜌, 𝑌, 𝛼) = 𝑌 𝑒1(𝜌1) + (1 − 𝑌 )𝑒2(𝜌2), (3.119)

then the resulting system reads:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0

𝜕𝜌𝑌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑌 𝒖) = 0

𝜕𝜌𝒖
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖 ⊗ 𝒖) + ∇𝑃 + 𝜎∇ ⋅ (∇𝛼 ⊗ ∇𝛼) = 𝟎

D𝑡𝛼 − 𝜌𝑌 𝜔Σ2 = 0

D𝑡𝜔 + 1
𝜌𝑌 𝑚(𝑝2 − 𝑝1 + ∇ ⋅ (𝜎∇𝛼)) = 0

D𝑡(𝜌Σ) +
2𝜌𝑌 𝜔Σ

𝛽 (𝑝2 − 𝑝1 + ∇ ⋅ (𝜎∇𝛼)) = 0

(3.120a)

(3.120b)

(3.120c)

(3.120d)

(3.120e)

(3.120f)
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with:
𝜔 =

D𝑡𝛼

(𝜌𝑌 Σ2)

𝑃 = 𝛼𝑝1(𝜌1) + (1 − 𝛼)𝑝2(𝜌2) + 1
2

𝑚(𝜌𝑌 Σ𝜔)2 − 𝜎
2

|∇𝛼|2.

(3.121)

(3.122)

Equation (3.120e) is a small scale momentum equation on the variable 𝜔 which can be in-
terpreted as the pulsation of small scale interface structures. In the large scale momentum
equation eq. (3.120c) we obtain terms involving ∇𝛼 that are also found in literature, as for
example in Chanteperdrix et al. (2002); Blanchard et al. (2016) that pertain to capillary effects.

Characteristic velocities In the absence of capillary effects, one can see that the Jacobian
matrix associated with eq. (3.120a) is diagonalizable in ℝ1. Its eigenvalues are:

𝜆1,2,3,4 = 𝑢, 𝜆5,6 = 𝑢 ± 𝑐ℎ (3.123)

where
𝑐2

ℎ = 𝜕𝑃
𝜕𝜌

+ Σ
𝜌

𝜕𝑃
𝜕Σ

(3.124)

Therefore one can conclude that the convective part of eq. (3.120a) is hyperbolic when capil-
larity is neglected.

3.5.3 Two-scale modeling of small inclusions assuming incompressible

constant volume oscillations

In this section we set different hypotheses on the small scale behavior of the flow. In sec-
tion 3.5.2 we described a small scale model in which inclusions that are homeomorphic to a
sphere pulsate normally to their equilibrium surface. We assume here instead to have ellip-
soidal inclusions that deviate from the spherical equilibrium condition with a periodic defor-
mation that conserves the initial volume when almost no viscous dissipation is present (see
Fig. 4.14 for a visualization of the DNS we performed to validate this assumption, described
in details in chapter 4).

Before diving in the mathematical aspects of the development, we report that the study of
oscillations of liquid inclusion in high speed gaseous flow field has been proposed in O’Rourke
and Amsden (1987) base on an analogy with the original work of Taylor (Taylor 1963) pub-
lished in 1949. The purpose was to propose a model (the TAB model) in order to describe
secondary breakup of droplets under the condition of high slip velocity between the phases,
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which causes the droplet to oscillate and potentially break into smaller droplets when suffi-
cient deformation is reached, while viscous dissipation is damping the process. However, the
study of the small amplitude oscillations of a quasi-spherical incompressible liquid droplet
through surface tension can be traced back to the work of Lord Rayleigh in 1883 (John W.
Strutt (3rd Baron Rayleigh) 1883; S. H. Lamb 1895; Chandrasekhar 1961) and we refer to the
literature review on the subject we propose in section 4.6.1. The modeling choices reported
in this section are also inspired by this original corpus of work in which the author presents
a simplified modeling approach installed in the framework of small perturbations of a sphere
and incompressible liquid inclusions involving potential flow.

Under this set of assumptions, it can be shown that any smooth initial surface deformation
with zero flow velocity can be decomposed into spherical harmonics and each mode corre-
sponds to an independent harmonic oscillator with prescribed frequency. The flow field inside
the droplet can be evaluated analytically as well as the periodic evolution of its shape. Thus,
the corresponding evolution of kinetic 𝒦small and potential 𝒰small energies per unit volume
along the oscillation of the droplet can be evaluated analytically.

3.5.3.1 Energy models for the small scale inclusions

The starting point of this study consists in analyzing the kinetic energy 𝒦single and potential
energy 𝒰single of a single inclusion assuming its deformation can be described by an ellipsoid
of revolution with axes 𝑝, 𝑞 and approximated by a single spherical harmonics with the proper
symmetries. We do not present these calculations that are detailed in section 3.B. The resulting
expression for these energies are:

𝒦single = 8
45

𝜂2𝜎S0 sin2
(

𝑡
√

8𝜎
𝜌𝖱3

0 )

𝒰single = 8
45

𝜂2𝜎S0 cos2
(

𝑡
√

8𝜎
𝜌𝖱3

0 )

(3.125a)

(3.125b)

where 𝜂 = 𝑝/𝑞 − 1, 𝜂 ≪ 1 is the small stretch ratio of the ellipsoid, 𝜎 the surface tension,
S0 the area of the surface at equilibrium, 𝖱0 the reference radius at equilibrium. In particular
eq. (3.125b) is computed assuming a form of the potential energy such that

𝒰single = 𝜎(S − S0) (3.126)

73



3 Two-phase flow models and where to find them

However, in the small perturbation regime, several variables behave harmonically, for example
the averaged mean curvature of the droplet does also have an harmonic form (see section 3.B).
In particular, let us mention that Herrmann (2013) proposes an alternate relation with

𝒰single = 𝜎
S0
𝖧0

(𝖧 − 𝖧0) (3.127)

where 𝖧 the average mean curvature and 𝖧0 = 1/𝖱0 . Eventually, O’Rourke and Amsden
(1987) also proposes another set of variables in order to describe this harmonic oscillator and
it is not clear from the beginning what should be the proper variable and potential energy, as
well as the proper set of describing variables. The reasons is that everything is equivalent
as far as we are in the small perturbation regime, whereas the choice is of major importance
when we reach large deviations from sphericity. The study in chapter 4 allows to conclude
that the proper choice for a single droplet is given by eq. (3.126) relying on accurate DNS
post-processing framework.

This analysis suggests to consider a generalization of the single inclusion relation eq. (3.126)
to a population of objects in order to derive energies and constraints for the small scale phe-
nomena.

We consider a portion of space whose volume is 𝖵ref that contains a population of 𝑁obj

inclusions with a surface S𝑘 and equilibrium surface S0𝑘. We set

Σ̃ ≜ 1
𝖵ref

𝑁obj

∑
𝑘=1

(S𝑘 − S0𝑘)

so that Σ̃ can be viewed as a density of potential energy associated with the population of
inclusions. In order to extend eq. (3.126) to our population, we choose to define the potential
energy 𝒰small associated with the small scale by

𝒰small = 𝜎Σ̃. (3.128)

Regarding the kinetic energy 𝒦small of the small scale, we set

𝒦small = 1
2

𝑚Σ̃(D𝑡Σ̃)
2
, (3.129)

where 𝑚Σ̃ > 0 is a parameter that we assume it depends on the interfacial area defect Σ̃.
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3.5.3.2 Application of the SAP

As in section 3.5.2.2 we define the bulk kinetic energy 𝒦bulk and the bulk potential energy
𝒰bulk

𝒦bulk = 1
2

𝜌𝒖 ⋅ 𝒖, 𝒰bulk = 𝜌𝑒(𝜌, 𝑌, 𝛼) = 𝑌 𝑒1(𝜌1) + (1 − 𝑌 )𝑒2(𝜌2) (3.130)

We then postulate a Lagrangian of the form:

ℒ(𝜌, 𝒖, 𝑌, 𝛼, Σ̃, D𝑡Σ̃) = 𝒦bulk − 𝒰bulk + 𝒦small − 𝒰small

= 1
2

𝜌𝒖 ⋅ 𝒖 − 𝜌𝑒(𝜌, 𝑌, 𝛼) + 1
2

𝑚Σ̃(D𝑡Σ̃)
2

− 𝜎Σ̃
(3.131)

where the first two contributions pertain to the carrier (bulk) fluid, the last two terms showcase
the subscale behavior we described in section 3.5.3.1.

Let us now turn to the constraints to be applied to parameters of the flow. Since in this
configuration the deformations are not normal to the surface anymore, as we assumed instead
in section 3.5.2, we need a different constraining relation w.r.t. eqs. (3.105) and (3.108). Since
we are assuming constant volume, we impose

D𝑡𝛼 = 0 (3.132)

We also propose the relation

D𝑡(Σ̃ + 3𝖧𝛼) = 0 (3.133)

that is exact for a single spherical droplet. As the volume of the inclusions is kept constant, the
number density of oscillating objects does not change if no breakup or coalescence phenom-
ena occur, thus we can extend the relation eq. (3.133) to the entire population. The relation
eq. (3.133) is assumed to remain valid in the small perturbations regime that we consider here
and it is currently subject of complementary studies by Loison (2023). In chapter 4 we provide
numerical insights to support this hypothesis. We complement these above assumption with
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the conservation of total mass and partial masses so that the constraints for our system read

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0

𝜕𝜌𝑌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑌 𝒖) = 0

D𝑡(Σ̃ + 3𝛼𝖧) = 0

D𝑡𝛼 = 0

(3.134a)

(3.134b)

(3.134c)

(3.134d)

We can now express the infinitesimal variations that are obtained by accounting for the con-
straints eq. (3.134). In particular Equation (3.133) introduces an additional expression that
relates the infinitesimal variation 𝛿𝖧 , 𝛿Σ̃ , 𝜼, as follows:

𝛿𝖧 = −𝛿Σ̃
3𝛼

− (
∇Σ̃
3𝛼

+ ∇𝖧) ⋅ 𝜼 (3.135)

We complement this relation by the expression of 𝛿𝜌, 𝛿𝒖, 𝛿𝑌 and 𝛿𝛼 obtained thanks to the
calculations of section 3.4 and the set of infinitesimal variations reads:

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝛿𝜌 = −∇ ⋅ 𝜌𝜼

𝛿𝒖 = D𝑡(𝜼) − 𝜼 ⋅ ∇𝒖

𝛿𝑌 = −∇𝑌 ⋅ 𝜼

𝛿𝛼 = −∇𝛼 ⋅ 𝜼

𝛿𝖧 = −𝛿Σ̃
3𝛼

− (
∇Σ̃
3𝛼

+ ∇𝖧) ⋅ 𝜼

(3.136a)

(3.136b)

(3.136c)

(3.136d)

(3.136e)

All the ingredients ready: the Lagrangian expression at eq. (3.131), the density, velocity, mass
and volume fraction, mean curvature variations eq. (3.136), after some calculations in the same
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spirit of the ones we presented in section 3.4, we obtain the conservative part of the system:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0

𝜕𝜌𝒖
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖 ⊗ 𝒖) + ∇𝑃 = 𝟎

𝜕𝜌𝑌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑌 𝒖) = 0

D𝑡Σ̃ − 𝜌𝑌 𝜔 = 0

D𝑡𝜔 + 1
𝑌 𝜌𝑚Σ̃

𝜎 + 1
2

𝜕Σ̃𝑚Σ̃
𝑚Σ̃

𝜌𝑌 𝜔2 + 1
𝜌𝑌 𝑚Σ̃

= 0

D𝑡𝛼 = 0

D𝑡𝖧 + 1
3𝛼

𝜌𝑌 𝜔 = 0

(3.137a)

(3.137b)

(3.137c)

(3.137d)

(3.137e)

(3.137f)

(3.137g)

where
𝑃 = 𝛼𝑝1(𝜌1) + (1 − 𝛼)𝑝2(𝜌2) + 1

2
𝑚Σ̃(𝜌𝑌 𝜔)2 − 𝜎Σ̃ (3.138)

Characteristicvelocities Weconsider the Jacobianmatrix associatedwith the system eq. (3.137).
It is diagonalizable in ℝ1 and its eigenvalues are:

𝜆1,2,3,4,5 = 𝑢, 𝜆6,7 = 𝑢 ± 𝑐Σ̃ (3.139)

where the speed of sound of the system 𝑐2
Σ̃
is defined by:

𝑐2
Σ̃

= 𝑌 𝑐2
1 + (1 − 𝑌 )𝑐2

2 + 𝑚Σ̃𝜌𝑌 2𝜔2 (3.140)

We can conclude that this system is hyperbolic.

3.5.3.3 Dissipation

In order to introduce a dissipative contribution to eq. (3.137), we follow the lines of sec-
tion 3.4.2 and supplement the evolution equation eq. (3.137e) of 𝜔 with an unspecified source
term 𝑅/(𝜌𝑌 𝑚Σ̃). We define the Hamiltonian energy of the system with

𝐻 + ℒ = 𝑲 ⋅ 𝒖 + (D𝑡Σ̃)
(

𝜕ℒ
𝜕D𝑡Σ̃)

(3.141)
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so that
𝐻 = 1

2
𝜌𝒖 ⋅ 𝒖 + 𝜌𝑌 𝜔(−𝜎 + 1

2
𝜕𝑚Σ̃

𝜕Σ̃
(𝜌𝑌 𝜔)2

) (3.142)

We choose here again to consider this 𝐻 as an entropy for the system and after a manipulation
of eqs. (3.137b) and (3.137e), we obtain the evolution equation

𝜌D𝑡(
𝐻
𝜌 ) + ∇ ⋅ (𝑃 𝒖) = 𝑅D𝑡Σ̃ − 𝜌 𝜕𝑒

𝜕𝛼
D𝑡𝛼 (3.143)

The Right-Hand Side (RHS) of eq. (3.143) needs to be non-positive to ensure a dissipative
solution. We choose to enforce the decrease of the mathematical entropy by setting:

𝑅 = −𝜖𝜌𝑌 𝜔

D𝑡𝛼 = −𝜇𝜌 𝜕𝑒
𝜕𝛼

= 𝜇(𝑝1 − 𝑝2)

(3.144)

(3.145)

Therefore we obtain a modified system that accounts for dissipation:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0

𝜕𝜌𝒖
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖 ⊗ 𝒖) + ∇𝑃 = 𝟎

𝜕𝜌𝑌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑌 𝒖) = 0

D𝑡Σ̃ − 𝜌𝑌 𝜔 = 0

D𝑡𝜔 + 1
𝑌 𝜌𝑚Σ̃

𝜎 + 1
2

𝜕Σ̃𝑚Σ̃
𝑚Σ̃

𝜌𝑌 𝜔2 + 1
𝜌𝑌 𝑚Σ̃

= − 𝜖
𝑚Σ̃

𝜔

D𝑡𝛼 = 𝜇(𝑝1 − 𝑝2)

D𝑡𝖧 + 1
3𝛼

𝜌𝑌 𝜔 = 0

(3.146a)

(3.146b)

(3.146c)

(3.146d)

(3.146e)

(3.146f)

(3.146g)

In the next section we will see that the model of eq. (3.146) can be modified to retrieve a well-
known phenomenological model of the literature, the TAB Model proposed by O’Rourke and
Amsden.

3.5.3.4 Analogy with O’Rourke and Amsden TAB model and limitations

In O’Rourke and Amsden (1987) a breakup criterion is presented for droplets based on a har-
monic oscillator model. If one considers a linear perturbation of an equilibrium of 3.146, one
can expect to retrieve a similar harmonic oscillator equation for the interfacial area density
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equation replacing eq. (3.146d) into eq. (3.146e). Unfortunately, this analysis fails. A possible
interpretation of this drawback is that the system 3.146 does not exhibit a harmonic behavior in
the linear regime that is similar to the model of O’Rourke and Amsden (1987). Nevertheless,
in order to satisfy this requirement, a modified model can be derived. Indeed, it is possible to
define the small scales potential in the form of a harmonic potential. This strategy boils down
to carefully choosing an alternate variable to drive the small scale potential. We propose to use
the average surface defect Θ = √Σ̃. We adopt the same definition for the potential energy, it
is expressed as a quadratic function of Θ

𝒰small = 𝜎Σ̃ = 𝜎Θ2 (3.147)

However, we consider an alternate definition of the small scale kinetic energy by setting

𝒦small = 1
2

𝑚Θ(D𝑡Θ)2 (3.148)

with 𝑚Θ > 0 a fluid parameter. This suggests then to consider the following Lagrangian energy
for the system.

ℒ(𝜌, 𝒖, 𝑌, 𝛼, Σ̃, D𝑡Σ̃) = 𝒦bulk − 𝒰bulk + 𝒦small − 𝒰small

= 1
2

𝜌𝒖 ⋅ 𝒖 − 𝜌𝑒(𝜌, 𝑌, 𝛼) + 1
2

𝑚Θ(D𝑡Θ)2 − 𝜎Θ2
(3.149)

We shall not detail the calculations here but one can see that the choice eq. (3.149) allows to
retrieve an harmonic oscillator w.r.t. the variable Θ.

3.6

Interfacial area density models via the Stationary Ac-

tion Principle

In section 3.2.2.3 we discussed the derivation of a governing equation for the interfacial area
densityΣ issued from the averaging approach. In this sectionwe consider an alternatemodeling
fundamentals based on the SAP.

The starting point of this process is to postulate a form for the evolution equation of the
variable Σ. We choose to set

𝜕Σ
𝜕𝑡

+ ∇ ⋅ (Σ𝒖) = 2
3

Σ∇ ⋅ 𝒖 + 𝑠Σ(𝒙, 𝑡; Σ) (3.150)
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where 𝑠Σ is a yet unspecified source term. This form is general enough so that it can encompass
models of the literature such as Daniel Lhuillier (2004). Wewill now perform a variable change
in order to exhibit a companion transport equation that is equivalent to eq. (3.150). We set

𝑧 ≜ Σ
3
2

√𝜌
(3.151)

so that eq. (3.150) now reads

D𝑡𝑧 = 𝜕𝑧
𝜕𝑡

+ 𝒖 ⋅ ∇𝑧 = 𝑠𝑧(𝛼, 𝑧) (3.152)

where 𝑠𝑧(𝛼, 𝑧) is an unspecified source term.

The new unknown 𝑧 will be used in our modeling process to account for the evolution of the
interface area density. Possible definitions for 𝑠𝑧 will be studied in order to equip the system
with a dissipative structure.

3.6.1 Application of the SAP

As in the previous section, we study here the conservative structure of the model. We start by
exhibiting constraints upon the variables of the system. Wemake the assumption that 𝑠𝑧(𝛼, 𝑧) =
0 when no dissipation occurs. This implies that 𝑧 verifies the pure transport equation

D𝑡𝑧 = 𝜕𝑧
𝜕𝑡

+ 𝒖 ⋅ ∇𝑧 = 0 (3.153)

The equation eq. (3.153) is supplemented by the constraints that the total mass and partial
mass conservation are verified as in section 3.5.2.2 and section 3.5.3.2. Let us now turn to the
definition of the energies associated with the system. As in sections 3.5.2 and 3.5.3 we define
the kinetic energy 𝒦bulk and the bulk potential energy 𝒰bulk with

𝒦bulk = 1
2

𝜌𝒖 ⋅ 𝒖, 𝒰bulk = 𝜌𝑒(𝜌, 𝑌, 𝛼) = 𝑌 𝑒1(𝜌1) + (1 − 𝑌 )𝑒2(𝜌2) (3.154)

Concerning the small scale kinetic energy of the system, as in section 3.5.2 we set

𝒦small = 1
2

𝑚(D𝑡𝛼)
2, (3.155)
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while the small scale potential energy is chosen as follows

𝒰small = 𝜎Σ(𝜌, 𝑧), (3.156)

Then, we postulate the Lagrangian for the system:

ℒ(𝜌, 𝒖, 𝑌, 𝛼, D𝑡𝛼, 𝑧) = 1
2

𝜌𝒖 ⋅ 𝒖 − 𝜌𝑒(𝜌, 𝑌, 𝛼) + 1
2

𝑚(D𝑡𝛼)
2 − 𝜎Σ(𝜌, 𝑧) (3.157)

We now exhibit the infinitesimal variations involved with the extremalization of ℒ. The
constraints enforced for the optimization of the Hamiltonian Action are: the conservation of
mass and mass fraction, as usual for contribution that address the carrier fluid behavior, and
the conservation of the variable 𝑧 (eq. (3.153)). The corresponding infinitesimal variation
expressions for the density variation (eq. (3.77)), the velocity variation (eq. (3.73)), and the
variation eq. (3.79)) both for 𝑌 and 𝑧 variables are

𝛿𝜌 = −∇ ⋅ (𝜌𝜼)

𝛿𝒖 = D𝑡(𝜼) − 𝜼 ⋅ ∇𝒖

𝛿𝑧 = −∇𝑧 ⋅ 𝜼

𝛿𝑌 = −∇𝑌 ⋅ 𝜼

(3.158a)

(3.158b)

(3.158c)

(3.158d)

With the expression of the Lagrangian in eq. (3.157) and the set of variations produced by the
imposed constraints (eq. (3.158)), we can exploit the SAP as shown in section 3.4, to compute
the variation of the Hamiltonian Action. This leads to the following system:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0

𝜕𝜌𝑌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑌 𝒖) = 0

𝜕𝜌𝒖
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖 ⊗ 𝒖) + ∇𝑃 = 𝟎

𝜕𝜌𝛼
𝜕𝑡

+ ∇ ⋅ (𝜌𝛼𝒖) −
𝜌𝑌 𝜔

√𝑚
= 0

𝜕𝜌𝑌 𝜔
𝜕𝑡

+ ∇ ⋅ (𝜌𝑌 𝜔𝒖) +
𝑝2 − 𝑝1

√𝑚
= 0

𝜕𝜌𝑧
𝜕𝑡

+ ∇ ⋅ (𝜌𝑧𝒖) = 0

(3.159a)

(3.159b)

(3.159c)

(3.159d)

(3.159e)

(3.159f)
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with 𝑃 = ∑𝑘 𝛼𝑘𝑝𝑘 + 1
2𝜌(𝑌 𝜔)2 − 2

3𝜎Σ(𝜌, 𝑧) and the change of variables D𝑡𝛼 = 𝜌𝑌 𝜔
√𝑚

, that is
represented by eq. (3.159e), following the lines of Drui, Larat, et al. (2019).

Characteristic velocities The Jacobian matrix associated with eq. (3.159) possesses the fol-
lowing set of eigenvalues:

𝜆1,2,3,4 = 𝑢, 𝜆5,6 = 𝑢 ± 𝑐𝑧 (3.160)

where 𝑐2
𝑧 = 𝜕𝑃/𝜕𝜌 , more specifically

𝑐2
𝑧 = 𝑌 𝑐2

1 + (1 − 𝑌 )𝑐2
2 + 𝜌𝑌 2𝜔2 − 2

9
𝜎(

𝑧
𝜌)

2
3

(3.161)

The corresponding eigenvectors are respectively, for the eigenvalues 𝜆1−4:

𝒓1−4 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝜕𝑃
𝜕𝑌
0
𝑐2

𝑧

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 𝜕𝑃
𝜕𝜔
0
0
𝑐2

𝑧

0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝜕𝑃
𝜕𝑧
0
0
0
𝑐2

𝑧

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝜕𝑃
𝜕𝛼
0
0
0
0
𝑐2

𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.162)

It is possible to show that the nature of the characteristic fields associated to the eigenvalues
𝜆1−4 are linearly degenerate,

∇𝜆𝑖 ⋅ 𝒓𝑖 = 0, 𝑖 = 1 − 4 (L.D) (3.163)

For what concerns the fields associated to the eigenvalues 𝜆5 − 6, we have:

𝒓5−6 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜌
𝑐𝑧

0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜌
−𝑐𝑧

0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.164)

In this case, there is no easy way to state the nature of the characteristic fields, because, even
assuming a simple, even constant, EoS for both phases, there is the possibility, for 𝜎Σ ≫ 0,
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3.6 Interfacial area density models via the Stationary Action Principle

that the sign of the dot product of eq. (3.165) can change sign.

∇𝜆𝑖 ⋅ 𝒓𝑖 = ?, 𝑖 = 5 − 6 (3.165)

Therefore, this system is diagonlizable in ℝ and therefore hyperbolic if 𝑐2
𝑧 > 0. Consequently,

the case of potentially very large value of 𝜎(
𝑧
𝜌)

2
3 may lead to an ill-posed system. The system

of eq. (3.159) still misses the source terms on the 𝑧 equations, as for example the one presented
in Daniel Lhuillier (2004). In order to recover them and to provide them in a way that correctly
satisfies the second principle of thermodynamics, we shall use the method explained in general
terms in section 3.4.2 that allows to provide the correct sign to the entropy inequality.

3.6.2 Including source terms through dissipation, analogy with

Daniel Lhuillier (2004)

We will now study how to equip the system eq. (3.159) with an inequality entropy. This will
enable connections with models of the literature for the evolution equation of the interfacial
area density and more specifically with Daniel Lhuillier (2004).

We now suppose that dissipation can be induced in the system by 𝑠𝑧(𝛼, 𝑧) ≠ 0 and by an ad-
ditional unspecified source term 𝑅 in the evolution equation of 𝜔. We consider the Hamiltonian
energy 𝐻 defined by

𝐻 = 𝑲 ⋅ 𝒖 + D𝑡𝛼𝑀, 𝑲 = 𝜕ℒ/𝜕𝒖 , 𝑀 = 𝜕ℒ/𝜕D𝑡𝛼 , (3.166)

As in eq. (3.95) we have the following evolution equation:

𝜌D𝑡(
𝐻
𝜌 ) − ∇ ⋅ (ℒ ∗𝒖) = 𝑅D𝑡𝛼 − ∑

𝑏′∉(𝜌,𝒖,𝛼,D𝑡𝛼)

𝜕ℒ
𝜕𝑏′ D𝑡𝑏′ (3.167)

In the present case eq. (3.167) reads

𝜌D𝑡(
𝐻
𝜌 ) − ∇ ⋅ (ℒ ∗𝒖) = 𝑅D𝑡𝛼 − 𝜕ℒ

𝜕𝑧
D𝑡𝑧 (3.168)

Following section 3.4.2, choosing 𝐻 as an entropy for the system requires to ensure that

𝑄 = 𝑅D𝑡𝛼 − 𝜕ℒ
𝜕𝑧

D𝑡𝑧 = D𝑡𝛼(𝑅 − 𝜕ℒ
𝜕𝑧

D𝑡𝑧
D𝑡𝛼) ≤ 0 (3.169)

83



3 Two-phase flow models and where to find them

Ad D𝑡𝑧 = 𝑠𝑧 and 𝑠𝑧 is provided by eq. (3.174), in order to enforce the dissipation, we can for
example set:

𝑅 − 𝜕ℒ
𝜕𝑧

𝑠𝑧
D𝑡𝛼

≜ −𝜖D𝑡𝛼

i.e.
𝑅 ≜ −𝜖D𝑡𝛼 + 𝜕ℒ

𝜕𝑧
𝑠𝑧
D𝑡𝛼

(3.170)

Reminding again the change of variables D𝑡𝛼 = 𝜌𝑌 𝜔/√𝑚 , the non-dissipative system of
eq. (3.159) is modified by the introduction of dissipation and it now reads:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0

𝜕𝜌𝑌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑌 𝒖) = 0

𝜕𝜌𝒖
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖 ⊗ 𝒖) + ∇𝑃 = 𝟎

𝜕𝜌𝛼
𝜕𝑡

+ ∇ ⋅ (𝜌𝛼𝒖) −
𝜌𝑌 𝜔

√𝑚
= 0

𝜕𝜌𝑌 𝜔
𝜕𝑡

+ ∇ ⋅ (𝜌𝑌 𝜔𝒖) +
𝑝2 − 𝑝1

√𝑚
= −𝜖

𝜌𝑌 𝜔
𝑚

+ 2𝜎
2𝑌 𝜔

𝑠𝑧(𝛼, 𝑧)

𝜌
2
3 𝑧

1
3

𝜕𝜌𝑧
𝜕𝑡

+ ∇ ⋅ (𝜌𝑧𝒖) = 𝜌𝑠𝑧(𝛼, 𝑧)

(3.171a)

(3.171b)

(3.171c)

(3.171d)

(3.171e)

(3.171f)

Please note that the first term of the RHS of eq. (3.171e) is the same dissipative term introduced
in Drui (2017) and it is associated to the dissipation of pulsating inclusions. We can see that for
any source term 𝑠𝑧 acting in the evolution equation of the interfacial area density, it is possible
to incorporate its effect as a dissipation into the system.

Let us now see how the system eq. (3.171) can be connected to the system proposed by in
Daniel Lhuillier (2004) for the variable Σ. The original equation proposed in Daniel Lhuillier
(2004) for Σ reads

𝜕Σ
𝜕𝑡

+ ∇ ⋅ [(𝛼𝒖2 + (1 − 𝛼)𝒖1)Σ] = 2
3

Σ∇ ⋅ 𝒖 + 2
3

Σ(
1

1 − 𝛼
− 1

𝛼)(𝐴 + Γ
𝜌

𝜌1𝜌2 )⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

1

+ Σ
𝑡BR

− 𝑢COAΣ2
⎵⎵⎵⎵⎵⎵

2

(3.172)
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3.6 Interfacial area density models via the Stationary Action Principle

where the term 1 is a term related to compressibility effects and term 2 is associated to
the generation and destruction of interfacial area density due to breakup and coalescence. In
Daniel Lhuillier (2004), the model presented features two velocities 𝒖1, 𝒖2 for the two phases,
that are linked to the bulk velocity 𝒖 with 𝒖 = 𝛼𝒖2 + (1 − 𝛼)𝒖1. Since our modeling assump-
tions are based on a single velocity, we replace 𝒖 accordingly in the Left-Hand Side (LHS)
of eq. (3.172). The parameter 𝑡BR is a breakup time, while 𝑢COA is the coalescence velocity.
These two parameters need to be provided a priori, and Daniel Lhuillier (2004) provides an
expression for 𝑢COA = 𝛼(1 − 𝛼)𝜎/𝜇eff where 𝜎 is the surface tension and 𝜇eff some effective
viscosity of the mixture. For the sake of simplicity we will neglect the compressibility effects
1 , and the source term in eq. (3.150) then reads:

𝑠Σ(𝛼,Σ) = Σ(
1

𝑡BR
− 𝛼(1 − 𝛼)𝜎

𝜇eff
Σ) (3.173)

if we then apply the change of variable of eq. (3.151), i.e. 𝑧 = Σ2/3/𝜌1/2 , to eq. (3.173), the
source term eq. (3.172) can be recasted in terms of 𝑧 as a relaxation:

𝑠𝑧(𝛼, 𝑧) = −3
2

𝑧𝛼(1 − 𝛼)𝜎
𝜇eff

(Σ − Σeq) (3.174)

where:
Σeq ≜=

𝜇eff
𝛼(1 − 𝛼)𝜎𝑡BR

(3.175)

We can nowuse the expressions eq. (3.174) and eq. (3.175) in the dissipative system eq. (3.171).
We then get

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0

𝜕𝜌𝑌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑌 𝒖) = 0

𝜕𝜌𝒖
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖 ⊗ 𝒖) + ∇𝑃 = 𝟎

𝜕𝜌𝛼
𝜕𝑡

+ ∇ ⋅ (𝜌𝛼𝒖) −
𝜌𝑌 𝜔

√𝑚
= 0

𝜕𝜌𝑌 𝜔
𝜕𝑡

+ ∇ ⋅ (𝜌𝑌 𝜔𝒖) +
𝑝2 − 𝑝1

√𝑚
= −𝜖

𝜌𝑌 𝜔
𝑚

+ 𝜎 Σ
Σeq

(Σ − Σeq)
𝑡BR𝜌𝑌 𝜔

𝜕𝜌𝑧
𝜕𝑡

+ ∇ ⋅ (𝜌𝑧𝒖) = −3
2

𝜌𝑧𝛼(1 − 𝛼)𝜎
𝜇eff

(Σ − Σeq)

(3.176a)

(3.176b)

(3.176c)

(3.176d)

(3.176e)

(3.176f)
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3.7 Conclusions and Perspectives

Modeling two-phase flows satisfactorily is a challenging problem. In this chapter we made an
attempt to provide a fundamental picture on the different possibilities one has to build model
for interfacial flows that might account for the transition from the separated phase regime to the
dispersed phase regime. Notably, we present an excursus on the state of the art of the models
that are obtained using an averaging approach. These models involve terms exerting from the
averaging process that can be difficult to close in a physical way. We present as an alternative,
a unified approach that employs a variational method called Stationary Action Principle (SAP)
in which the modeling assumptions are taken a priori at the beginning of the formal model-
ing procedure, when the energies included in a Lagrangian are postulated. This Lagrangian is
then integrated over the phase space— this integral functional is called Hamiltonian Action—
and its stationarization allows to retrieve a mathematical model that represents the convective
contribution of the system. In addition, it is possible to account for additional effects, intro-
ducing source terms that comply with the second principle of thermodynamics, i.e. they are
constructed so that the entropy production of the system has the correct sign.

We have shown that the method based on the Stationary Action Principle (SAP) that was
exploited in (Drui 2017; Cordesse 2020) is not restricted to theoretical models and that it can
be used to also encompass more phenomenological models like (O’Rourke and Amsden 1987)
and the model of Daniel Lhuillier (2004). In particular with this approach we show that we
are able to create a model that includes an equation for the interfacial area density Σ that is
compatible with a large range of models, including the model presented in Daniel Lhuillier
(2004). Closure relations motivated by both post-processing of DNS studies and analytical
analysis of single deformed were also proposed and used to build a complete model thanks to
the Stationary Action Principle (SAP). This work contributes to the long term efforts paved by
(Drui 2017; Essadki 2018; Cordesse 2020) to design a unified framework for modeling two-
phase at different scales and several improvement can be envisioned. A first possible sequel to
this work would be to perform a more thorough analysis of the connections between the model
studied in section 3.5.3.4 including shear terms.

Another possible perspective is specific to the study of the equation of the interfacial area
density: it would consists in trying to encompass additional geometrical terms that can occurs
in the interfacial area density equation (Morel 2015).

In a general sense, the set of small scale models we assumed in the mathematical devel-
opments we discussed in this chapter are a small contribution towards a general treatment of
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non-spherical inclusions. Relaxing hypothesis on the nature of the deformation they undergo
at lower scales, but also enlarging the spectrum of sizes that are accounted for, shall help in
drawing the line towards the correct handling of polydispersed populations of non-spherical
objects. A general path forward on this subject is to account for polydispersion and arbitrary
deformations via the use of families of spherical harmonics and a functional dependency on
the surface defect as per section 3.5.3.4. This work is already in progress through the thesis of
Loison (2023) within the research team that hosted the present work.
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Appendices

3.A Variation of the jacobian

det(
𝜖
𝑭)

1can be intended as an indirect dependency on 𝜖, i.e.

det(
𝜖
𝑭) = det(𝑭 (𝜖))

In addition to that, let’s interpret the determinant as a function of the tensor components:

det(
𝜖
𝑭) = 𝑓(𝐹𝑖𝑗(𝜖))

So when we try to do the derivative of the determinant, we need to use the chain rule:

𝜕
𝜕𝜖 (det(

𝜖
𝑭)) = ∑

𝑖
∑

𝑗

𝜕 det(
𝜖
𝑭)

𝜕
𝜖
𝐹𝑖𝑗

𝜕
𝜖
𝐹𝑖𝑗

𝜕𝜖
(3.177)

The second term in the multiplication by definition is:

𝜕
𝜖
𝐹𝑖𝑗

𝜕𝜖
= 𝜕

𝜕𝜖 (
𝜕

𝜖
𝜒𝑖

𝜕𝑋𝑗 )
= 𝜕

𝜕𝑋𝑗 (
𝜕

𝜖
𝜒𝑖

𝜕𝜖 )
=

𝜕𝜂𝐿
𝑖

𝜕𝑋𝑗

But if we want to use the variables in the Eulerian frame 𝑡, i.e. using 𝜼(𝒙, 𝑡) (and not 𝜂𝐿(𝑿, 𝑡)),
again with the chain rule:

𝜕𝜂𝐿
𝑖

𝜕𝑋𝑗
= ∑

𝑘

𝜕𝜂𝑖
𝜕𝑥𝑘

𝜕𝑥𝑘
𝜕𝑋𝑖

= ∑
𝑘

𝜕𝜂𝑖
𝜕𝑥𝑘

𝜕𝜒𝑘
𝜕𝑋𝑖

= ∑
𝑘

𝜕𝜂𝑖
𝜕𝑥𝑘

𝐹𝑘𝑖 (3.178)

1All the derivation is made in Lagrangian coordinates, so the 𝐿 is omitted. At the end of the derivation where
we need to transform to Eulerian coordinates, we use it again for the sake of clarity
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Let’s now focus on the derivative of the determinant. Using the Laplace formula (ℓ can be
chosen arbitrarily from 1 … 𝑛, 𝑛 number of rows):

det(𝑭) = ∑
𝑚

𝐹ℓ𝑚cof (𝑭)ℓ𝑚 (3.179)

and the derivative is hence (derivative of a product):

𝜕 det(
𝜖
𝑭)

𝜕
𝜖
𝐹𝑖𝑗

= ∑
𝑚

𝜕
𝜖
𝐹ℓ𝑚

𝜕
𝜖
𝐹𝑖𝑗

cof (𝑭 ∗)ℓ𝑚 +
𝜖
𝐹ℓ𝑚

𝜕cof (𝑭 ∗)ℓ𝑚

𝜕
𝜖
𝐹𝑖𝑗

Since ℓ can be chosen arbitrarily, we set ℓ = 𝑖. In this case the term:

𝜕cof(
𝜖
𝑭)𝑖𝑚

𝜕
𝜖
𝐹𝑖𝑗

= 0

because the cofactors do not depend on the elements of the same row (𝑖). The term

𝜕
𝜖
𝐹𝑖𝑚

𝜕
𝜖
𝐹𝑖𝑗

= 𝛿𝑗𝑚

leading to:

𝜕 det(
𝜖
𝑭)

𝜕
𝜖
𝐹𝑖𝑗

= ∑
𝑚

𝜕
𝜖
𝐹𝑖𝑚

𝜕
𝜖
𝐹𝑖𝑗

cof(
𝝐
𝑭)𝑖𝑚

= ∑
𝑚

𝛿𝑗𝑚cof (𝑭 ∗)𝑖𝑚 = cof(
𝝐
𝑭)𝑖𝑗

And if we use the Laplace formula eq. (3.179), we can also extract that:

det(
𝜖
𝑭) (

𝜖
𝐹𝑖𝑗)

−1
= cof(

𝝐
𝑭)𝑖𝑗

(3.180)
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Finally injecting eqs. (3.178) and (3.180), in our target equation eq. (3.177), and noting that
for 𝜖 → 0;

𝜖
𝑭 → 𝑭:

lim
𝜖→0

d
d𝜖 (det(

𝜖
𝑭)) = ∑

𝑖
∑

𝑗
∑

𝑘
det(𝐹)𝐹 −1

𝑖𝑗
𝜕𝜂𝑖
𝜕𝑥𝑘

𝐹𝑘𝑗

= det(𝐹) ∑
𝑖

∑
𝑗

∑
𝑘

𝐹 −1
𝑖𝑗 𝐹𝑘𝑗

𝜕𝜂𝑖
𝜕𝑥𝑘

(3.181)

checking:

∑
𝑘

𝐹 −1
𝑖𝑗 𝐹𝑘𝑗 = 𝛿𝑘𝑖

lim
𝜖→0

d
d𝜖 (det(

𝜖
𝑭)) = det(𝐹) ∑

𝑖
∑

𝑗
𝛿𝑘𝑖

𝜕𝜂𝑖
𝜕𝑥𝑘

= det(𝐹) ∑
𝑖

𝜕𝜂𝑖
𝜕𝑥𝑖

= det(𝐹)𝛁 ⋅ 𝜂 = 𝐽 ∇ ⋅ 𝜂

We obtain what we were looking for:

𝛿𝐽 = 𝐽𝛁 ⋅ 𝜂 = 𝐽∇ ⋅ 𝛿𝒙 (3.182)

We can exploit the expression for the derivative of the jacobian to express the constraint of the
conservation of the mass in Eulerian form. Let us take for ease of notation:

d•𝐿

d𝑡
= 𝜕•

𝜕𝑡 |𝑿

then,

D𝐽
𝐷𝐷𝑡

= d𝐽 𝐿

d𝑡
= ∑

𝑖
∑

𝑗

𝜕𝐽
𝜕𝐹𝑖𝑗

d𝐹𝑖𝑗

d𝑡
= ∑

𝑖
∑

𝑗
𝐽𝐹 −1

𝑖𝑗
d𝐹𝑖𝑗

d𝑡
= ∑

𝑖
∑

𝑗
𝐽𝐹 −1

𝑖𝑗
d
d𝑡(

𝜕𝜒𝐿
𝑖

𝜕𝑋𝑗 )

= ∑
𝑖

∑
𝑗

𝐽𝐹 −1
𝑖𝑗

𝜕
𝜕𝑋𝑗 (

d𝜒𝐿
𝑖

d𝑡 )
= ∑

𝑖
∑

𝑗
𝐽𝐹 −1

𝑖𝑗
𝜕𝑢𝐿

𝑖
𝜕𝑋𝑗

= ∑
𝑖

∑
𝑗

𝐽𝐹 −1
𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑖

𝜕𝑥𝑖
𝜕𝑋𝑗

= ∑
𝑖

∑
𝑗

𝐽𝐹 −1
𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑖

𝜕𝜒𝑖
𝜕𝑋𝑗

= ∑
𝑖

∑
𝑗

𝐽𝐹 −1
𝑖𝑗 𝐹𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑖

= 𝐽𝛁 ⋅ 𝒖

D𝐽
D𝑡

= 𝐽𝛁 ⋅ 𝒖 (3.183)
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And we can also retrieve the Eulerian form of the conservation of mass, doing:

d𝜌𝐿
0

d𝑡
=

d𝐽𝜌𝐿

d𝑡
= 0

0 =
d𝐽𝜌𝐿

d𝑡
= D𝐽

D𝑡
𝜌 + 𝐽

D𝜌
D𝑡

= 𝐽𝜌𝛁 ⋅ 𝒖 + 𝐽 (
𝜕𝜌
𝜕𝑡

+ 𝒖 ⋅ ∇𝜌)

⇒ 𝐽 [
𝜕𝜌
𝜕𝑡

+ 𝜌𝛁 ⋅ 𝒖 + 𝒖 ⋅ ∇𝜌] = 0

⇒
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ 𝜌𝒖 = 0

(3.184)

3.B Energy analytical calculation of a deformed droplet

These calculations were initiated whithin the context of the intership of Chevalier (Chevalier
2019). We detail here the analytical calculation of the deformed droplet dynamics. We first
show that the ellipsoidal deformation of the droplet may be approximated by a single spher-
ical harmonic. The analytical study of Subrahmanyan Chandrasekhar (1981) then allows the
determination of the evolution of the kinetic energy of the droplet during its oscillations. The
integration of the droplet oscillating surface and mean curvature lead to a surface energy ex-
pression displaying expected energy conservation properties.

3.B.1 Approximation of the droplet deformation

In the following, we consider that the initial droplet deformation is described by an ellipsoid
of 𝒆𝑧 symmetry axis as shown on Figure 3.B.1a. The deformed surface is then entirely given
by its semi-major axis 𝑝 and its semi-minor axis 𝑞 and may be described in cylindrical (𝑧, 𝑟,𝜙)
(see Figure 3.B.1b) through the equations

∀(𝜃′,𝜙) ∈ [0,𝜋] × [0, 2𝜋] ,
⎧
⎪
⎨
⎪⎩

𝑧 = 𝑝 sin 𝜃′,

𝑟 = 𝑞 cos 𝜃′,

𝜙 = 𝜙,

where the 𝜃′ parameter does not necessarily reduce to the 𝜃 spherical coordinate. In the fol-
lowing, colatitude will be written 𝜗 = 𝜋/2 − 𝜃 and the ellipsoid aspect ratio 𝜖 = 𝑝/𝑞.

We can describe the ellipsoid as a deformed sphere of equivalent volume and radius 𝖱.
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3.B Energy analytical calculation of a deformed droplet

(a) Spherical coordinates
]

(b) Polar coordinates.

Figure 3.B.1: Spherical and polar coordinate system for the upper half deformed droplet.

Considering the following relationship between the 𝜃′ parameter and the 𝜃 coordinate,

tan 𝜃 = 𝑧
𝑟

= 𝜖 tan 𝜃′,

and reducing the range of parameter 𝜃′ to 𝜃′ ∈ [0,𝜋/2] thanks to system’s symmetry, the
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deformation 𝒅(𝜃) may be expressed as

𝒅(𝜃) = 𝑴𝑴 ′(𝜃),

= (𝑞 cos 𝜃′ − 𝖱 cos 𝜃)𝒆𝑟 + (𝑝 sin 𝜃′ − 𝖱 sin 𝜃)𝒆𝑧,

= 𝖱
[(

𝑞
𝖱

𝜖
√𝜖2 + tan2 𝜃

− cos 𝜃
)

𝒆𝑟 +
(

𝑝
𝖱

tan 𝜃
√𝜖2 + tan2 𝜃

− sin 𝜃
)

𝒆𝑧]
.

Denoting 𝑋̄ = 𝑋/𝖱 the scaling by droplet radius 𝖱, the deformation reduces to

̄𝒅(𝜃) = 1

cos 𝜃√𝜖2 + tan2 𝜃
( ̄𝑞𝜖 − cos 𝜃√𝜖2 + tan2 𝜃)𝒆𝜚 ,

where 𝜚 is the radial coordinate in the spherical coordinate system and 𝒆𝜚 is defined as 𝒆𝜚 =
𝒆𝑟 + tan 𝜃𝒆𝑧. For small deformations, the ellipsoid remains close to a sphere and the aspect
ratio may be expanded as

𝜖 = 1 + ̄𝜂.

For now we suppose ̄𝜂 of small maximal amplitude 𝜂 with no hypothesis concerning its time
dependence. The Taylor expansion of the 𝜃 dependance of ̄𝒅 writes

cos(𝜃)√𝜖2 + tan2 𝜃 = cos 𝜃√2 ̄𝜂 + ̄𝜂2 + 1/ cos 𝜃2 =
𝜂→0

1 + ̄𝜂 cos2 𝜃 +
̄𝜂2

2
cos2 𝜃 sin2 𝜃 + 𝑜(𝜂2) .

Under the hypothesis of incompressible liquid, the volume of the deformed sphere must re-
mains equal to the volume of the sphere, inducing

4
3

𝜋𝖱3 = 4
3

𝜋𝑝𝑞2 ⇔ ̄𝑞𝜖 =
𝜂→0

1 + 2
3

̄𝜂 −
̄𝜂2

9
+ 𝑜(𝜂2) .

As a consequence, the expression of deformation 𝒅 (𝜃) may be expanded with respect to the
droplet perturbation 𝜂 as

̄𝒅(𝜃) =
𝜂→0

1 + 2
3 ̄𝜂 − ̄𝜂2

9 − (1 + ̄𝜂 cos2 𝜃 + ̄𝜂2

2 cos2 𝜃 sin2 𝜃) + 𝑜(𝜂2)

1 + ̄𝜂 cos2 𝜃 + ̄𝜂2

2 cos2 𝜃 sin2 𝜃 + 𝑜(𝜂2)
𝒆𝜚 ,

=
𝜂→0

̄𝜂 (
3 sin2 𝜃 − 1

3
+ ̄𝜂 27 sin4 𝜃 − 33 sin2 𝜃 + 4

18 ) 𝒆𝜚 + 𝒐(𝜂2) .
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3.B Energy analytical calculation of a deformed droplet

Expressing the deformation with respect to the colatitude 𝜗 yields

̄𝒅(𝜗) =
𝜂→0

̄𝜂 (
3 cos2 𝜗 − 1

3
+ ̄𝜂 27 cos4 𝜗 − 33 cos2 𝜗 + 4

18 ) 𝒆𝜚 + 𝒐(𝜂2),

=
𝜂→0

2 ̄𝜂
3

3 cos2 𝜗 − 1
2

𝒆𝜚 + 𝒐(𝜂),

=
𝜂→0

2 ̄𝜂
3

𝑌2 (𝜗) 𝒆𝜚 + 𝒐(𝜂) ,

where 𝑌2 represents the spherical harmonic 𝑌 0
2 . The initial condition of the weakly deformed

ellipsoid droplet is thus similar to the analytical framework developped in SubrahmanyanChan-
drasekhar (1981) such as similar dynamics can be expected asymptotically.

Approximating the ̄𝜂 volume-preserving ellipsoidal perturbation by the 2 ̄𝜂𝑌2/3 spherical har-
monic rises the question of volume conservation. Indeed, performing the exact integration on
a 2 ̄𝜂𝑌2/3 perturbed droplet lead to the following result

∫
2𝜋

0 ∫
𝜋

0 ∫
𝖱+2 ̄𝜂𝑌2(𝜗)/3

0
𝜚2 sin 𝜗d𝜚d𝜗d𝜙 = 2𝜋𝖱3

∫
𝜋

0

(1 + ̄𝜂(3 cos2 𝜗 − 1)/3)
3

3
sin 𝜗d𝜗,

= 4
3

𝜋𝖱3
(1 + 4

15
̄𝜂2 + 16

945
̄𝜂3
) .

Volume conservation is only valid at first order in the perturbation 𝜂 - this comes as no surprise
given the linearisation - and thus must be, if necessary, enforced a posteriori. This will be done
by imposing a spherical radius of the deformed sphere 𝖱𝑑 slightly smaller than the reference
𝖱,

𝖱3 = 𝖱3
𝑑 (1 + 4

15
̄𝜂2 + 16

945
̄𝜂3
) ⇒ 𝖱𝑑 =

𝜂→0
𝖱 (1 − 4

45
̄𝜂2
) + 𝑜( ̄𝜂2)

This leads to the volume preserving 2 ̄𝜂𝑌2/3 expression for the deformed surface

𝑟(𝜗, 𝑡) = 𝖱 (1 + 4
15

̄𝜂2 + 16
945

̄𝜂3
)

−1/3

(1 + 2
3

𝑌2(𝜗) ̄𝜂) ,

which remains equivalent to the ellipsoidal perturbation at first 𝜂 order

𝑟(𝜗, 𝑡) =
𝜂→0

𝖱 (1 +
2 ̄𝜂
3

𝑌2(𝜗)) + 𝑜(𝜂).

This approximation is compared to the reference sphere and the exact ellipsoid on Figure 3.B.2.
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(a) 𝜖 = 0.1 (b) 𝜖 = 0.6 (c) 𝜖 = 2

Figure 3.B.2: Numerical approximation of the ellipsoid in the (𝑂, 𝒆𝑟, 𝒆𝑧) plane for different aspect ratios.

3.B.2 Kinetic energy

Approximating the initial ellipsoidal droplet by a sphere perturbed by an 𝑌2 spherical harmonic
allows the use of the analytical expressions developped by SubrahmanyanChandrasekhar (1981)
which are briefly recalled hereafter.

In the case of weakly spherical harmonic deformed bubble of non-viscous fluid of density
𝜌 in a vacuum force-free surroundings only subject to capillarity effects with capillarity co-
efficient 𝜎, the linearized equation of fluid dynamics can be explicitely solved and yields the
following surface tension induced oscillations

𝑢𝜚,𝑙 = −√
𝜎
𝜌

𝑙(𝑙 − 1)(𝑙 + 2)𝖱3/2−𝑙−2𝐴𝜚𝑙−1𝑌𝑙 sin(𝜔𝑙𝑡),

𝑢𝜗,𝑙 = −√
𝜎
𝑙𝜌

(𝑙 − 1)(𝑙 + 2)𝖱3/2−𝑙−2𝐴
𝜕𝑌𝑙
𝜕𝜗

sin(𝜔𝑙𝑡),

𝑢𝜙,𝑙 = 0,

compatible with the given radial deformation 𝑟(𝜗, 𝑡) = 𝖱 + 𝐴𝑌𝑙(𝜗) cos(𝜔𝑙𝑡). Each chosen
spherical harmonic 𝑌𝑙 then selects a precise pulsation given by the relation

𝜔2
𝑙 = 𝑙(𝑙 − 1)(𝑙 + 2) 𝜎

𝜌𝖱3 .

In the case of the ellipsoid surface approximation, the spherical harmonic 𝑌2 is of special
interest and yields

𝜔2 = 𝜔 = √
8𝜎
𝜌𝖱3 ,

and we will suppose ̄𝜂 = 𝜂 cos(𝜔𝑡) to comply with Chandrasekar’s hypothesis set so that the
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surface deformation will satisfy

𝑟(𝜗, 𝑡) =
𝜂→0

𝖱 (1 +
2𝜂
3

𝑌2(𝜗) cos(𝜔𝑡)) + 𝑜(𝜂).

The corresponding droplet dynamics is then given by the relation

𝑢(𝜚, 𝜗, 𝑡) = 𝜂√
2𝜎
𝜌𝖱3 𝜚 (21 − 3 cos2 𝜗

3
𝒆𝜚 + sin(2𝜗)𝒆𝜗) sin(𝜔𝑡) .

Writing ̃𝜂 = 𝜂 sin(𝜔𝑡) and S0 = 4𝜋𝖱2, we can integrate the velocity field to obtain the kinetic
energy

𝐸𝑘(𝑡) = 1
2 ∫

2𝜋

0 ∫
𝜋

0 ∫
𝑟(𝜗,𝑡)

0
𝜌𝑢2d𝜚d𝜗d𝜙 =

𝜂→0
8

45
𝜎S0 ̃𝜂2 + 𝑜(𝜂2) ,

or, with the time dependency made explicit

𝐸𝑘(𝑡) =
𝜂→0

8
45

𝜂2𝜎S0 sin2
(𝑡√

8𝜎
𝜌𝖱3 ) + 𝑜(𝜂2) .

3.B.3 Potential energy

The dynamics of the oscillating droplet is obtained byChandrasekhar by considering the Laplace
pressure given by the deformation as a boundary condition for the pressure field. Our purpose
is here to underline the energy balance between the kinetic energy 𝐸𝑘 and the surface energy
𝐸𝑝 of the oscillating droplet. In order to do so, the 2𝜂𝑌2/3 perturbed droplet surface is evalu-
ated as a function of time. Care must be taken that the expression of the perturbation has to
be expanded to second 𝜂 order to yield consistant results. Let us consider the second order
corrected deformation

𝑟(𝜗, 𝑡) = 𝖱 (1 − 4
45

̄𝜂2
) (1 + 3 cos2 𝜗 − 1

3
̄𝜂) ,

with ̄𝜂 = 𝜂 cos(𝜔𝑡). The corresponding mathematical surface is then given by the function

𝒇(𝜗,𝜙, 𝑡) = 𝑟(𝜗, 𝑡)𝒆𝜚 = 𝑟(𝜗, 𝑡)
⎛
⎜
⎜
⎜
⎝

sin 𝜗 cos𝜙
sin 𝜗 sin𝜙

cos 𝜗

⎞
⎟
⎟
⎟
⎠

,
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and leads to the following expression for a small surface element

‖𝜕𝜗𝒇 × 𝜕𝜙𝒇‖ = 𝑟 sin 𝜗√(𝜕𝜗𝑟 cos 𝜗 − 𝑟 sin 𝜗)2 + (𝜕𝜗𝑟 sin 𝜗 + 𝑟 cos 𝜗)2 = 𝑟2 sin 𝜗√1 + (
𝜕𝜗𝑟
𝑟 )

2
.

Using the second order compatible deformation expression of 𝑟, the second order of the surface
element writes

𝑟2 sin 𝜗√1 + (
𝜕𝜗𝑟
𝑟 )

2
= 𝖱2

(1 + 2
3

̄𝜂 (3 cos2 𝜗 − 1) + ̄𝜂2
(− 1

15
+ 4

3
cos2 𝜗 − cos4 𝜗)) + 𝑜(𝜂2)

The complete surface area of the oscillating droplet is obtained thanks to an analytic integration
of surface elements which yields

S(𝑡) = ∫
2𝜋

0 ∫
𝜋

0
‖𝜕𝜗𝒇 × 𝜕𝜙𝒇‖d𝜗d𝜙 =

𝜂→0
S0 (1 + 8

45
𝜂2 cos2(𝜔𝑡)) + 𝑜(𝜂2) .

The potential energy 𝐸𝑝 = 𝜎(S − S0) corresponding to the excess surface with respect to the
minimal surface S0 then writes

𝐸𝑝(𝑡) =
𝜂→0

8
45

𝜂2𝜎S0 cos2
(𝑡√

8𝜎
𝜌𝖱3 ) + 𝑜(𝜂2) ,

which balances exactly the kinetic energy.

3.B.4 Mean curvature

In the case of droplet oscillation due to the surface tension effect, a natural parameter is the
local mean curvature which gives birth to the Laplace pressure driving the fluid motion. In the
derivation of Chandrasekhar, this Laplace pressure is imposed as a compatible boundary con-
dition for the pressure field. In some studies, see Herrmann (2013), the local mean curvature is
used as a parameter describing the interface non-equilibrium and giving birth to a spring-like
force putting the interface into motion.

In the following, we detail the expression of local mean curvature in the case of a volume-
preserving 2 ̄𝜂𝑌2/3 perturbation. In the case of a surface of revolution, the local curvature is
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given by the general formula

𝖧 = 1

2𝖱 (1 − 4
45 ̄𝜂2

)

⎛
⎜
⎜
⎝

𝑟″𝑧′ − 𝑧″𝑟′

((𝑟′)2 + (𝑧′)2)
3
2

− 𝑧′

𝑟 ((𝑟′)2 + (𝑧′)2)
1
2

⎞
⎟
⎟
⎠
,

where the volume preserving correction is factorized to ease the computation, so that the sur-
face coordinate in cylindrical coordinate may be directly used in the expressions. They and
their derivatives write

𝑧 = (1 + 2
3

̄𝜂𝑌2) cos 𝜗 , 𝑟 = (1 + 2
3

̄𝜂𝑌2) sin 𝜗 ,

𝑧′ = − (1 + 2
3

̄𝜂𝑌2) sin 𝜗 + 2
3

̄𝜂𝑌 ′
2 cos 𝜗 , 𝑟′ = (1 + 2

3
̄𝜂𝑌2) cos 𝜗 + 2

3
̄𝜂𝑌 ′

2 sin 𝜗 ,

𝑧″ = − (1 + 2
3

̄𝜂 (𝑌2 − 𝑌 ″
2 )) cos 𝜗 − 4

3
̄𝜂𝑌 ′

2 sin 𝜗 , 𝑟″ = − (1 + 2
3

̄𝜂 (𝑌2 − 𝑌 ″
2 )) sin 𝜗 + 4

3
̄𝜂𝑌 ′

2 cos 𝜗 .

The different terms needed in the local mean curvature expression may be detailed as follows

(𝑧′)
2 + (𝑟′)

2 = 1 + 4
3

̄𝜂𝑌2 + 4
9

̄𝜂2
((𝑌2)

2 + (𝑌 ′
2 )

2
) ,

and
𝑟″𝑧′ − 𝑧″𝑟′ = 1 + 2

3
̄𝜂 (2𝑌2 − 𝑌 ″

2 ) + 4
9

̄𝜂2
((𝑌2)

2 + 2 (𝑌 ′
2 )

2 − 𝑌2𝑌 ″
2 ) ,

so that the local mean curvature of the volume-preserved 2 ̄𝜂𝑌2/3 perturbation is given by

𝖧 = 1

2𝖱 (1 − 4
45 ̄𝜂2

)

⎛
⎜
⎜
⎜
⎝

2 + 2
3 ̄𝜂 (4𝑌2 − 𝑌 ″

2 ) + 4
9 ̄𝜂2

(2 (𝑌2)
2 + 3 (𝑌 ′

2 )
2 − 𝑌2𝑌 ″

2 )

(1 + 4
3 ̄𝜂𝑌2 + 4

9 ̄𝜂2
((𝑌2)

2 + (𝑌 ′
2 )

2
))

3
2

−
2
3 ̄𝜂𝑌 ′

2 cos 𝜗

(1 + 2
3 ̄𝜂𝑌2) sin 𝜗 (1 + 4

3 ̄𝜂𝑌2 + 4
9 ̄𝜂2

((𝑌2)
2 + (𝑌 ′

2 )
2
))

1
2

⎞
⎟
⎟
⎟
⎠

.

The 𝜂 second order expansion of the local curvature thus takes the form

𝖧 =
𝜂→0

1
𝖱 (1 −

̄𝜂
3 (2𝑌2 + 𝑌 ′

2
cos 𝜗
sin 𝜗

+ 𝑌 ″
2 ) +

4 ̄𝜂2

9 (
1
5

+ 𝑌 2
2 + 𝑌2𝑌 ′

2
cos 𝜗
sin 𝜗

+ 𝑌2𝑌 ″
2 )) + 𝑜(𝜂2) ,

=
𝜂→0

1
𝖱 (1 + 2

3
̄𝜂 (3 cos2 𝜗 − 1) + ̄𝜂2

(− 7
15

+ 10
3

cos2 𝜗 − 5 cos4 𝜗)) + 𝑜(𝜂2) ,
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so that, mutliplying with the perturbed surface element, leads to the integrand

‖𝜕𝜗𝒇 × 𝜕𝜙𝒇‖𝖧(𝜗) =
𝜂→0

𝖱 (1 + 4
3

̄𝜂 (3 cos2 𝜗 − 1) + ̄𝜂2
(−2 cos4 𝜗 + 2 cos2 𝜗 − 4

45)) + 𝑜(𝜂2) .

The integral of local mean curvature on the perturbed surface writes

∫
2𝜋

0 ∫
𝜋

0
‖𝜕𝜗𝒇 × 𝜕𝜙𝒇‖𝖧(𝜗)d𝜗d𝜙 = 4𝜋𝖱 (1 + 8

45
𝜂2 cos2 (𝜔𝑡)) + 𝑜(𝜂2) ,

so that the global mean curvature 𝖧 may be splitted into a reference curvature 𝖧0 = 1/𝖱 and
an oscillating term

𝖧 = 𝖧0 + 8
45𝖱

𝜂2 cos2
(𝑡√

8𝜎
𝜌𝖱3 ) + 𝑜(𝜂2) .

Considering the potential energy derived in terms of the surface, an expression of potential en-
ergy in terms of the Mean curvature both complying to the analytical results of Chandrasekhar
and the 𝖧-based approach of Herrmann (2013) would thus write,

𝐸𝑝 (𝑡) = 𝜎S0𝖱 (𝖧 − 𝖧0) .
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A computational framework

based on the discrete

estimation of geometrical

properties over triangulated

interfaces to perform

validation of two-phase flow

models

Interfacial two-phase flows analysis, modeling and simulation usually requires the evaluation

of geometrical local quantities related to the interface, such as local curvatures, but also some

surface-averaged values leading to topological and geometrical invariants and the connection

with disperse flow modeling based on the number density functions. In most of the existing

approaches in the literature, these geometrical properties are obtained from direct evaluation

from the level-set defined at the discrete level but fail to preserve the topological invariants of

the existing objects. In this chapter we present a numerical strategy to evaluate geometrical

properties of two-phase flows where an interface is represented through a level-set function

at a discrete level, for example coming for a DNS simulation, designed in order to preserve

the topological invariants. The strategy is implemented in the open-source library Mercur(v)e
(Di Battista 2018). In the first part of the chapter, after recalling fundamentals of differential

geometry of surfaces in 3D, we introduce the numerical strategy based on a triangulation of the

interface and perform several verifications based on ideal test-cases. We assess the preserva-

tion at a discrete level of the Gauss-Bonnet theorem, that can be exploited to provide number

density statistics on sprays of droplets homeomorphic to spheres. The drawbacks of the ap-

proach are highlighted: the discrete nature of the information on the level set yields noise in

the evaluation of the geometrical properties, the semi-positivity of the localWillmore Energy is

not guaranteed leading to outliers and too small / deformed triangles can produce difficulties

with finite precision arithmetics. Solutions are proposed in order to fix these issues and will

prove very useful for the applied part of the chapter. The proposed strategy is then applied for

two purposes; first a DNS of the collision of two droplet is investigated with various levels of

discretization and we show that the proposed approach is able to provide a precise evaluation

of local quantities as well as to preserve topological invariants and statistics on geometrical

properties of the interface. Then, the tool is used in order to design a newmodel for oscillating
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droplets in an incompressible framework beyond the usual small perturbation context of the

Taylor analogy. The proposed strategy clearly outperforms the more classical way of retrieving

geometrical information of surfaces based on the differentiation of a level-set field.

The content of this chapter constitutes the material for a future publication: Ruben Di Bat-

tista, Thibault Ménard, Stephane De Chaisemartin, and Marc Massot (2021). “A Computational

Framework Based on the Discrete Estimation of Geometrical Properties over Triangulated In-

terfaces Preserving Topological Invariants to Design and Validate Two-Phase Flow Models.” In:

Fluids. In preparation.

4.1 Introduction

Many industrial processes and systems feature two-phase flowwith a dynamic interface asmain
underlying phenomenon (fuel injection in aeronautical engines or automotive engines, design
of spray nebulizers, nuclear safety aspersion system, irrigation sprinklers...). These flows are
characterized by a wide range of time and space scales and their simulation is hence quite
complex. For example, in the case of jet atomization in sub-critical conditions, the interface
between the liquid and the gas experiences a dramatic change of topology from a separate-
phase flow regime to a disperse flow regime, where the size spectrum of the produced droplets
have a key impact on combustion regimes and pollutant formation.

Although Direct Numerical Simulations (DNS) have provided impressive results in this field
(Shinjo and Umemura 2010; Desjardins et al. 2013; Ling, Zaleski, et al. 2015; Zandian et al.
2018; Vincent et al. 2019), they remain too costly in terms of computing resources to be ap-
plied in an industrial context or conduct parametric studies. Therefore, the only way to proceed
is the design of predictive reduced-order models; it is still an important question since it has
to cope with the predictive modeling of small scales of interfacial flows leading to the proper
prediction of the polydisperse sprays, which are known not be easily resolved in the community
and usually depend on the level of resolution.

Several authors have proposed various means to enrich these reduced-order models by in-
troducing additional flow parameters that are reminiscent of small scale features that cannot be
described by the bulk variables such as volume fraction or interfacial area density (Vallet and
Borghi 1999; Devassy et al. 2015). Even the local mean curvature of the interface can be in-
troduced to account for small scale dynamics connected to capillary effects (Herrmann 2013).
A first step and methodology towards a unified Eulerian model describing both separated and
disperse phases was introduced in Drui (2017); Drui, Larat, et al. (2019), where sub-scale
modeling accounting for micro-inertia and micro-viscosity associated to bubble pulsation is
proposed. The path was taken over in (Cordesse, Di Battista, Chevalier, et al. 2020) with an
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attempt of introducing mean and Gauss curvatures in the sub-scale modeling. However, the
development of these reduced-order models requires very often the knowledge of the evolu-
tion of quantities only available at the finest scales that are achievable only relying on DNS
simulations. At this level, we have to use reliable tools in order to analyze such simulations
either for model design or validation. It can even allow to improve the evaluation of interfacial
forces in DNS! Based on Essadki et al. (2019), it can be shown that such tools have to preserve
topological invariants.

In fact, the categorization of topological objects in the framework of turbulence and en-
strophy iso-surfaces has been investigated in Bermejo-Moreno and Pullin (2008); Bermejo-
Moreno, Pullin, and Horiuti (2009), where other geometrical parameters than mean and Gauss
curvatures have been proposed as sound parameters for the correct categorization of these ob-
jects. Once a satisfying set of geometrical parameters is chosen, those parameters need to be
computed on a discretized mesh (or triangulated surface). Once again, whatever the choice
of relevant parameters, the accurate and computational-efficient estimation of curvatures is of
high interest in the two-phase community, for example to correctly account surface tension
effects (Brackbill et al. 1992; Evrard et al. 2020). The Willmore energy, i.e. an integral func-
tional of the local curvatures over the surface of an object (see eq. (4.18)) that describes the
distance from sphericity, plays an important role in geometric modeling and processing and
also in physical modeling (Bobenko and Schröder 2005). Thus, the evaluation of the geo-
metrical properties from detailed simulations has to have some specific features in order to be
reliable and the classical way of obtaining such quantities from the derivatives of a level-set
function can be insufficient for modeling and analysis purposes. An in-depth review on dif-
ferent methodology for the estimation of geometrical interface properties is offered in Bi et al.
(2021).

In this chapter we propose a methodology to evaluate such quantities from a discretized
level-set function on a grid, thus allowing to perform post-processing of DNS simulations, and
to extract geometrical properties of the interface between the two phases with specific proper-
ties, such as preservation of topological invariants. In particular, a library called Mercur(v)e
has been developed and allows the characterization of two-phase interface geometrical fea-
tures thanks to a triangulation of the interface and the calculation of geometrical properties
from the discretized surface, while preserving topological and geometrical invariants of the
considered objects. After introducing the key features of the numerical approach in a first
part, we benchmark our approach on canonical objects. The purpose is two-fold: first, we
assess the properties of the proposed approach and second, we identify the pitfalls of such
an approach: noise related to the triangulation of a discretized level-set, presence of outliers
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in the evaluation of the local Willmore energy and potential difficulty of convergence, when
too deformed/small triangles are to be found and finite precision arithmetics errors come into
play. We then introduce solutions in order to cope with each of these pitfalls. Starting from
here, we tackle two representative cases in terms of applications. First we investigate a DNS
simulation of the coalescence of two droplets and make use of the Mercur(v)e tool in order
to analyze the dynamics of the interface. We, in particular, describe how the library allows
to evaluate the statistics of the curvatures of the interface, while preserving the topological
invariants. The proposed strategy should be able to discriminate singularities in the evalua-
tion of the curvatures originating in the discrete level-set differentiation, from the ones coming
from topological changes, each of them being clipped in most of the existing simulations tools.
Eventually, we show how the library provides us with a reliable tool in designing a sub-scale
model for incompressible droplet oscillations introduced in Cordesse, Di Battista, Chevalier,
et al. (2020) and discussed also in section 3.5.3 by post-processing DNS simulations. The two
DNS simulations are conducted in this chapter with the help of ARCHER code from CORIA
and in collaboration with T. Ménard (Thibault Ménard et al. 2007; Benjamin Duret et al. 2012;
Vaudor et al. 2017; Canu, Puggelli, et al. 2018)

4.2

Estimation of differential geometry properties on sur-

faces

In this section we provide a general presentation of important parameters and properties of
surfaces and the different strategies to represent them in a continuous description. We introduce
geometrical properties that can be used to describe the topological evolution of objects and we
recall some topological invariants, which will be useful in the sequel. This section does not
aim at providing a complete overview of all the differential geometry results for surfaces, the
interested reader is then referred to important works in the field for more details (Drew 1990;
Deserno 2004; Morel 2015; Carmo 2016).

Let us consider a 2D surface S embedded in a 3D spatial domain in ℝ3; generally two dif-
ferent approaches are employed to describe a surface:

• An implicit definition: the surface is described as the 0-isosurface of a scalar function,
often a distance function (a level-set) or a color function.

S = {𝒙 ∈ ℝ3 ∣ 𝜓(𝒙) = 0} (4.1)
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• An explicit definition: the surface is parameterized with two parameters 𝑢1, 𝑢2 ∈ 𝕌 ⊂
ℝ2, 𝕌 ∈ ℝ2 ↣ S, (𝑢1, 𝑢2) → 𝑿(𝑢1, 𝑢2)

S = {𝑿(𝑢1, 𝑢2) ∈ ℝ3, (𝑢1, 𝑢2) ∈ 𝕌} (4.2)

4.2.1 Geometrical properties for surfaces parametrized explicitly

In this section we will focus our attention on the explicit version of the description to provide
the definitions we are seeking. Considering the explicit parametrization of a surface (eq. (4.2)),
the tangent vectors are defined as:

𝒆𝑖 = 𝜕𝑿
𝜕𝑢𝑖

, 𝑖 = 1, 2 (4.3)

the normal vector is then defined in terms of the tangent vectors:

𝒏̂ =
𝒆1 × 𝒆2

‖𝒆1 × 𝒆2‖
(4.4)

We can then define the second fundamental form Γ𝑖𝑗 of a surface:

Γ𝑖𝑗 =
𝜕𝒆𝑖
𝜕𝑢𝑗

⋅ 𝒏̂ (4.5)

whose eigenvalues are the principal curvatures 𝗄1, 𝗄2:

eigs(Γ𝑖𝑗) = (𝗄1, 𝗄2) (4.6)

The principal curvatures (eq. (4.6)) allow to define intrinsic metrics of the curvature of the
surface, the Gauss 𝖦 and mean curvatures 𝖧,

𝖧 =
𝗄1 + 𝗄2

2
, 𝖦 = 𝗄1 ⋅ 𝗄2 (4.7)

4.2.2 Geometrical properties for surfaces parametrized implicitly with

a level set function

Given a level-set 𝜓(𝒙), we consider that the value of the Level Set field is positive inside the
object, negative outside. Hence, we define the normal unit vector:
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𝒏̂ = −
∇𝜓

‖∇𝜓‖
(4.8)

The curvature information is contained in the 3 × 3 matrix ∇𝒏̂𝑇. Considering the Hessian
matrix:

𝑯 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕2𝜓
𝜕𝑥2

𝜕2𝜓
𝜕𝑥𝜕𝑦

𝜕2𝜓
𝜕𝑥𝜕𝑧

𝜕2𝜓
𝜕𝑥𝜕𝑦

𝜕2𝜓
𝜕𝑦2

𝜕2𝜓
𝜕𝑦𝜕𝑧

𝜕2𝜓
𝜕𝑥𝜕𝑧

𝜕2𝜓
𝜕𝑦𝜕𝑧

𝜕2𝜓
𝜕𝑧2

⎤
⎥
⎥
⎥
⎥
⎦

(4.9)

the projection defined as 𝑷 = 𝑰 − 𝒏̂𝒏̂𝑇 projects the matrix on the tangent plane to the surface
described by the function 𝜓(𝒙) = 0 and then, as described in Kindlmann et al. (2003) and in
Mitchell and Hanrahan (1992), it is possible to write the relationship:

∇𝒏̂𝑇 = − 1
‖∇𝜓(𝒙)‖

(𝑷 𝑯) (4.10)

The Hessian matrix describes how the gradient changes around the neighborhood of the points
placed on an iso-surface of the function 𝜓(𝒙). In order to describe the curvature we are inter-
ested only in changes in the direction of the gradient. Hence we project 𝑯 on the tangent plane
as in eq. (4.10). The restriction of the Hessian to the tangent plane is a symmetric matrix and
it is possible to find an orthonormal basis { ̂𝒑1, ̂𝒑2, 𝒏̂} able to diagonalize the matrix. In this
basis we will obtain:

∇𝒏̂𝑇 =

⎡
⎢
⎢
⎢
⎢
⎣

𝗄1 0 𝜎1

0 𝗄2 𝜎2

0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

(4.11)

̂𝒑1 and ̂𝒑2 are the eigenvectors associated to the principal curvatures, with eigenvalues 𝗄1 and
𝗄2. The other two values 𝜎1 and 𝜎2 describes how the normal tilts. This aspect is called flowline
curvature, further details can be found in Kindlmann et al. (2003); Carmo (2016). In our case
the goal is to isolate 𝗄1 and 𝗄2, and as proposed by Rumpf and Preußer (2002), we multiply
∇𝒏̂𝑇 by 𝑷 in order to accomplish this task, obtaining the Geometric Tensor:

𝑮 = ∇𝒏̂𝑇𝑷 (4.12)
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The algorithm to compute the two principal curvatures can be summarized in the following
steps:

1. Compute the normal 𝒏̂ and the projection matrix 𝑷;

2. Compute the Hessian 𝑯 and the Geometric Tensor 𝑮.

3. Analytically compute 𝗄1 and 𝗄2.

𝗄1 =
tr(𝑮) + √2‖𝑮‖2 − tr(𝑮)2

2
(4.13)

𝗄2 =
tr(𝑮) − √2‖𝑮‖2 − tr(𝑮)2

2
(4.14)

from this it is possible to define the Mean and Gaussian curvatures as follows:

𝖧 =
𝗄1 + 𝗄2

2
(4.15)

𝖦 = 𝗄1 ⋅ 𝗄2 (4.16)

4.2.3 The Gauss-Bonnet theorem

The Gauss-Bonnet theorem yields an equality linking the integral value of the Gauss curvature
of the surface of an object and the Euler characteristic, that is

∫S

𝖦 = 2𝜋𝜒 (4.17)

For example, for objects homeomorphic to spheres, the value of the characteristic is 𝜒 = 2.
Therefore, calculating the Gauss curvature over a discretized surface and dividing by 2𝜋, allows
to estimate the number of objects that are homeomorphic to a sphere.

4.2.4 Semipositivity of the Willmore Energy

The Willmore energy is a surface energy functional defined as follows:

𝑊 = ∫S

𝖧2 − 𝖦 (4.18)
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It is an energetic description of the distance from the sphericity, where 𝑊 = 0. It plays an
important role in several different industrial and scientific contexts (Bobenko and Schröder
2005). Its local value on the surface at position 𝒙 for a continuous description is constrained
by the following relation:

𝑊loc(𝒙) = 𝖧2(𝒙) − 𝖦(𝒙) ≥ 0 (4.19)

4.3

Curvature estimation from a discrete level-set volu-

metric field

In section 4.2 we introduced the fundamentals of the differential geometry of surfaces in the
context of a continuous description. In this section, we present the framework that allows the
computation of the discrete approximation of the geometrical properties introduced in sec-
tion 4.2 and the associated algorithms that are then implemented into the Mercur(v)e library.

4.3.1 General overview of the post-processing procedure

The post-processing procedure employed when using Mercur(v)e software can be briefly de-
scribed by the following steps (and the associated sections in which they are described in more
details):

1. We start from the volumetric field of a level-set discretized with a given underlying
mesh (section 4.3.2). It can for exemple be generated through a possibly high-fidelity
simulation. As an example, in this work, we use the ARCHER code (Thibault Ménard et
al. 2007; Benjamin Duret et al. 2012; Canu, Christophe Dumouchel, et al. 2017; Vaudor
et al. 2017) as the source of simulation data.

2. We triangulate the interface from the level-set field, using a triangulation algorithm such
as the Flying Edges (FE) from William Schroeder et al. (2015) (section 4.3.3), which is
conducted on the original mesh.

3. On the triangulated surface we compute the geometrical properties such as the mean
and Gauss curvature (section 4.3.4) and we preserve topological invariant such as the
one coming from the Gauss-Bonnet theorem (eq. (4.17))
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4.3.2 One traditional way of estimating curvatures

One traditional way of estimating the curvatures of the interface is used in the ARCHER code
and is representative of what is done in general: a level-set function is used for evaluating
the normal and the curvature of the interface while the Volume of Fluid approach ensures the
mass conservation of each component1. The computation of curvature is performed using the
algorithm presented in Kindlmann et al. (2003) and shortly presented in section 4.2.2. Most
of the time, in regions where the solution of the level-set geometry is well resolved or during
the topological changes, very large values are produced and they are usually clipped since they
impact the evaluation of capillarity forces in the dynamics of the interface. .

4.3.3 Discrete iso-contouring algorithms

In the previous section we described the data our method will rely on, that is a level-set func-
tion defined on a given mesh. The final artifact coming from a DNS simulation is indeed a
volumetric scalar field of the level-set 𝜓(𝒙) on the provided mesh. In order to compute the
geometrical properties as discussed in section 4.3.4, the surface needs to be reconstructed via
a triangulation routine. In this section we briefly present how Mercur(v)e performs the trian-
gulation.

The triangulated surface is obtained applying a contouring procedure (William Schroeder et
al. 2015) to the initial level-set given on the entire volume. This choice is mandated by the fact
that the underlying data structure library VTK exposes an easy API for the iso-contouring and
the performance of the routine is optimized for speed of execution. The volumetric level-set
field is given on a regular uniform rectangular grid as the one shown in Fig. 4.1. We must note
that the quality of the estimations are influenced not only by the quality of the strategy chosen
to approximate the topological parameters, but also on the quality of the triangulation. Even
though the Marching Cubes (MC) algorithm (with its variants as the FE algorithm used here)
is a well-established method to obtain iso-surfaces of a field in a volume, there exist also more
advanced implementations (Lewiner et al. 2003) of the MC algorithm that ensure additional
1In the ARCHER code, the two-phase medium considered is composed by two incompressible fluids separated by

a sharp interface. The position of the interface and the description of its geometrical characteristics are com-
puted by a Coupled Level Set/Volume of Fluid (CLSVOF) method. A key element of the numerical strategy
implemented in ARCHER relies on solving a Poisson equation for the dynamic pressure that is performed using
aMultiGrid preconditioned Conjugate Gradient algorithm (MGCG) (Zhang 1996) coupled with a Ghost-Fluid
method (Fedkiw et al. 1999) to take into account the pressure jump due to the presence of surface tension.
The time-integration is performed with a second-order Runge-Kutta scheme. For more information about the
ARCHER solver, we refer the reader to Thibault Ménard et al. (2007); Benjamin Duret et al. (2012); Canu,
Puggelli, et al. (2018); Vaudor et al. (2017). However, the only ingredient that is needed at this level is the
data of a mesh and a level-set function on that mesh.
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topological guarantees via an enriched lookup tables of possible triangle configuration within
the tracking cubes that could improve the initial estimates for the needed quantities. Nonethe-
less, the level of improvement compared to the computational and implementation effort of
these more advanced MC strategies needs to be assessed.

4.3.4 Geometrical properties as 1-ring averaged values

In this section we describe the numerical strategies used to estimate the geometrical properties
on a triangulated surface. The algorithm presented in this section is based on Meyer et al.
(2003). The idea is to approximate the value of the mean curvature 𝖧 and the Gauss curvature
𝖦 on a vertex of the triangulated surface with the average value computed around the 1-ring
neighborhood of said vertex. The 1-ring neighborhood of a point 𝒙𝑖 is the set of points 𝒙𝑗 that
are directly connected to 𝒙𝑖, Fig. 4.2 shows a graphical representation. The other quantities
are derived from 𝖧 and 𝖦. This strategy of computing geometrical properties has been im-
plemented in a GPL-licensed library called Mercur(v)e Di Battista (2018), the details on the
algorithm used to handle multi-block DNS are explained in section 4.A. In order to compute the
mean curvature value, the algorithm leverages a local to the 1-ring neighborhood discretization
of the Laplace-Beltrami (LB) operator whose continuous expression is reported in eq. (4.20).

ℒℬ(𝒙) = 2𝖧(𝒙)𝒏̂(𝒙) = 𝑲(𝒙) (4.20)

The LB operator can be approximated on a triangulated surface (Meyer et al. 2003) via
eq. (4.21).

𝑲̊(𝒙𝑖) = 1
2𝖠̊

1-ring

∑
𝑗

(cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗) (𝒙𝑖 − 𝒙𝑗) (4.21)

With •̊ we denote the discrete estimation of a certain quantity on the mesh averaged around
the 1-ring. Once the discrete LB has been computed, the scalar value of the mean curvature is
simply the half of the norm of the LB vector.

𝖧̊ = 1
2‖𝑲̊‖ (4.22)

𝖠̊ is the equivalent 1-ring area: it is equal to the Voronoi region area if all the triangles that
compose the 1-ring are non-obtuse, otherwise it is the region, the perimeter of which is given by
all the circumcenters of the non-obtuse triangles and the midpoints of the edges opposed to the
obtuse angles for the triangles that are obtuse. See Fig. 4.3 for clarity. The actual algorithm
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Figure 4.1: A central slice at 𝜏 = 0 of the volumetric level-set field on a uniform grid. The black lines
are the 0-isoline of the level-set function

𝑗

𝑗

𝑖

𝑗

𝑗

𝑗

Figure 4.2: The 1-ring of a point 𝒙𝑖
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Figure 4.3: 𝖠̊ for a general case where one of the triangles is obtuse. The light gray area is the 1-ring
neighborhood and the dark gray area is actually 𝖠̊

to compute 𝖠̊ is given in Meyer et al. (2003), and it is reported in algorithm 4.1 below for
reference. What is interesting is to note that the area for a Voronoi region (i.e. the area of the
polygon given by all the circumcenters of the triangles composing the 1-ring, all of them being
non-obtuse) is given by eq. (4.23), where the (cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗) term can be reused successively
in eq. (4.21) in the computation of the mean curvature, saving up on computational cost. The
Voronoi area of a triangles is given by:

𝖠voronoi = 1
8

1-ring

∑
𝑗

(cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗)‖𝒙𝑖 − 𝒙𝑗‖
2 (4.23)

Per each point 𝒙𝑖 of the surface, we need to compute an associated one-ring area 𝖠̊. Let us
consider a set of triangles connected to a generic point of the surface 𝒙𝑖 described by the triplet
of points 𝒙𝑖ℓ,ℓ = 1, 2, 3. This triplet can be defined arbitrarily and one of the three points
will be the same point 𝒙𝑖 of the surface. For a given surface point 𝒙𝑖, we loop over all the
triplets composing the connected triangles to this point, if the triangle under examination has
an obtuse internal angle, and its current vertex is not the same point as the surface point 𝒙𝑖 we
are currently evaluating, then the area contribution associated to the triangle is computed as:

𝖠𝑖ℓ = 𝖠(𝒙𝑖ℓ) =
𝐴Δ
2
,𝒙𝑖ℓ ≠ 𝒙𝑖 (4.24)

where 𝖠Δ is the area of the triangle under examination. If the vertex of the triangle 𝒙𝑖ℓ matches
the same point as the one around which we are computing the 1-ring average area 𝖠̊, then its
area contribution reads

𝖠𝑖ℓ =
𝐴Δ
4
,𝒙𝑖ℓ = 𝒙𝑖 (4.25)
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In order to compute the value of the Gauss curvature 𝖦 we can just rely on the definition of 𝖦
for a geodesic polygon:

Algorithm 4.1 Algorithm to compute the mixed area
1: procedure MixedArea(𝒙𝑖) ▷ We compute the 𝑑𝐴 on the 1-ring of 𝒙𝑖

2: 𝖠̊ = 0
3: for 𝑇 in oneRing(𝒙𝑖) do ▷ For each triangle composing the 1-ring
4: 𝒙𝑖1,𝒙𝑖2,𝒙𝑖3 ← angles(𝑇) ▷ 𝒙𝑖2, 𝒙𝑖3 are the triangle vertices connected to 𝒙𝑖1 = 𝒙𝑖

5: 𝖠Δ ←Area(𝑇)
6: if cot𝒙𝑖2 > 0 or cot𝒙𝑖3 > 0 then
7: 𝖠̊ += 𝖠Δ/4
8: else if cot𝒙𝑖1 > 0 then
9: 𝖠̊ += 𝖠Δ/2

10: else
11: 𝖠̊ += 1

8 |𝒙𝑖1 − 𝒙𝑖2|
2 cot𝒙𝑖3 + |𝒙𝑖2 − 𝒙𝑖3|

2 cot𝒙𝑖2
12: end if
13: end for
14: end procedure

Definition 1

Given a geodesic polygon close to a point 𝒙𝑖 of area 𝖠, the product of the Gauss curvature times
the area of the polygon is equal to 2𝜋 minus the defect of the exterior angles 𝜖𝑘 of the polygon

𝖦 = 1
𝖠 (

2𝜋 − ∑
𝑘

𝜖𝑘)
(4.26)

Since for the triangulation of a surface the 1-ring neighborhood of a point 𝒙𝑖 is actually a
special case of a geodesic polygon for which the edges are straight lines instead of geodesics,
the same relation can be recasted for the internal angles 𝜃𝑗, as shown in eq. (4.27).

𝖦̊ = 1
𝖠̊ (

2𝜋 −
1-ring

∑
𝑗

𝜃𝑗)
(4.27)

Once the mean and Gauss curvature are calculated, the other typical differential geometry
parameters can be retrieved from the values of 𝖧 and 𝖦. For example the principal curvatures
𝑘1 and 𝑘2 are computed as follows:
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𝗄1(𝒙𝑖) = 𝖧̊(𝒙𝑖) + √𝑊̊loc(𝒙)

𝗄2(𝒙𝑖) = 𝖧̊(𝒙𝑖) − √𝑊̊loc(𝒙)

(4.28)

(4.29)

This methodology allows to compute the Gauss curvature with a precision close to the machine
resolution for floating points.

4.4 Verification and issues on canonical objects

In order to assess the correct implementation of the Mercur(v)e library, the efficacy of the al-
gorithms as well as potential pitfall of the method, we perform three verifications on canonical
objects. First, we consider two spherical objects with different radî, check that the Gauss-
Bonnet formula is properly reproduced at the numerical level with our method and identify the
presence of noise related to the datum of the level-set on a given mesh. Second, we perform
a convergence study on canonical topological object that have analytical expressions for the
mean and Gauss curvatures: a sphere and an ellipsoid. Once again the algorithm is working
well, but some convergence issues are identified when too small/deformed triangles are used at
the poles. We eventually apply the computation to a DNS and we compute an area-based PDF
to highlight interesting footprints in the 𝖧 − 𝖦 phase space of the topological objects produced
at each simulation time step; in particular, even if it provides interesting results, the positivity
of the local Willmore energy is not always satisfied.

4.4.1 A set of verification cases on canonical objects and associated

issues

Fig. 4.4 shows an example of computation for a pair of spherical objects and the associated
curvature map. The computation of the integral of Gauss curvature on the surface of the two
objects matches the Gauss-Bonnet up to machine precision. However, in a continuous case
the two objects should be represented in the (𝖦̊, 𝖧̊) phase plane by two points, and a certain
level of noise can be observed, which spreads the curvatures map around the analytical points.
In order to assess the correct implementation of the Mercur(v)e library and the efficacy of
the algorithms, we performed a convergence study on canonical topological object that have
analytical expressions for the mean and Gauss curvatures: a sphere and an ellipsoid, the expres-
sion of mean and Gauss curvature of which are given by eqs. (4.30) and (4.31) and eqs. (4.32)
and (4.33).
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Figure 4.4: Computing curvatures on a couple of spherical objects

𝖧sphere = 1
𝖱

𝖦sphere = 1
𝖱2

𝖧ellipsoid = |𝑥2 + 𝑦2 + 𝑧2 − 𝑝2 − 𝑞2 − 𝑟2|

[2(𝑝𝑞𝑟)2
(

𝑥
𝑝4

𝑦
𝑞4

𝑧
𝑟4 )]

3
2

𝖦ellipsoid = 1

[𝑝𝑞𝑟(
𝑥
𝑝4

𝑦
𝑞4

𝑧
𝑟4 )]

2

(4.30)

(4.31)

(4.32)

(4.33)

These 3D objects are generated using superquadrics primitives from VTK library (Will
Schroeder et al. 2006). The convergence study has been conducted gradually reducing the
size of the triangles composing the discretized surface of these objects and calculating the
cumulative relative area-weighted 𝐿1-error ̊𝑒 over all the points

̊𝑒 = 1
𝖠̊

𝑁

∑
𝑖

(𝖢̊𝑖 − 𝖢exact)𝖠̊𝑖 (4.34)

Please note that the gradual reduction of size of the triangles composing the objects, as shown
in Fig. 4.5, creates a dense accumulation of small triangles on the poles of the objects. Being
𝑁 the number of points of the mesh, 𝖠̊ the sum of the 1-ring cells areas

𝖠̊ =
𝑁

∑
𝑖

𝖠̊𝑖 (4.35)

and
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(a) A triangulated sphere
(b) A triangulated ellipsoid

Figure 4.5: An example of meshes used to test the convergence on canonical objects

𝖢 ∈ (𝖧,𝖦) (4.36)

An example of the mesh can be seen in Fig. 4.5.
As shown in Fig. 4.6, where we can see the absolute value of the relative error | ̊𝑒| over all the

points of the triangulated surface plotted against the number of points of the mesh, both for a
sphere (section 4.4.1) and for an ellipsoid (section 4.4.1) respectively, the algorithm is capable
of approximating with a reasonable accuracy the value of the curvatures up to a certain level
of refinement. Beyond this threshold, the errors associated to finite floating point number
representation prevail. This is highlighted in the Fig. 4.7, where we display the point number
density in function of the 1-ring area 𝖠̊ and a relative error for a sphere 𝑒sphere:

𝑛 = 𝑛(𝖠̊, 𝑒sphere) (4.37)

where the definition of the relative error leverages the fact that for a sphere 𝖧 = √𝖦 exactly.

𝑒sphere =
𝖧 − √𝖦

√𝖦
(4.38)

The error increases along a mono-dimensional manifold from big to very small cells, having
optimal values for medium-sized cells. The phenomena that are leading to the generation of
the error are different:

• For bigger cells, the error is associated to the fact that a 1-ring cell composed by big
triangles is a poor approximation of the local surface

• For very small cells, the error is associated to floating point rounding errors produced
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Figure 4.6: Convergence rate of the curvature computation
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Figure 4.7: Error map at two different resolutions for a sphere

by the calculation of very small angles. In particular if we look at Fig. 4.5a, we can note
that the triangles at the poles are smaller w.r.t. triangles on other latitudes and, indeed,
looking at the error map for the finest resolution at Fig. 4.7b, it is clear that for very
small cells the error smears out in both, positive and negative, directions, an indication
of rounding errors.

The third and final problem is the one related to non positivity of the local Willmore energy.
A problem that arises, unfortunately, because 𝖧 and 𝖦 are calculated independently one from
the other. That means 𝑊̊loc can be < 0 in the discrete case while in the continuous situation,
it is always ≥ 0. This problem is mentioned in Meyer et al. (2003) to be an “extremely rare
occurrence”, while in our computations this happens quite often (in section 4.5.3 we perform a
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thorough analysis on this subject w.r.t. the collision of two spherical objects), especially when
the topological object under investigation is close to a sphere.

Thus, even if the proposed numerical strategy comes with obvious advantages, there are
some issues that need to be fixed before tackling applications.

4.4.2 Solutions to the identified issues

4.4.2.1 An averaging kernel that preserves the Gauss Bonnet Theorem

(a) Baseline results with no averaging kernel applied (b) Averaging with 𝖱d𝑥 = 5 d𝑥

Figure 4.8: Computing curvatures with and without applying the averaging kernel

Often, when performing the MC procedure over the level-set volume field in order to gen-
erate the triangulated surface, the final surface can present some noise associated to the poor
triangulation in certain zones. This, in turn, produces noise in the computed curvature fields
when using the 1-ring algorithm presented in section 4.3.4. Another pathological situation that
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can arise during a simulation is when extreme breakups or collisions occur: they can some-
times lead to topological transformation of the objects with local curvature that can be very
high. What is classically done in literature to mitigate this problem and avoid numerical insta-
bilities is to clip artificially the local value of the curvature to a somewhat arbitrary threshold,
as for example in the case of curvature computation in the ARCHER code (Vaudor et al. 2017). In
this work we introduce instead a regularization strategy based on applying a specific averaging
kernel.
The curvature computation on triangulated interfaces we present here, as we already men-
tioned, has the property of conserving the Gauss-Bonnet theorem over the entire object at
machine precision, hence when applying this averaging kernel, we are interested in keeping
this property still valid. Mercur(v)e, then, implements the strategy proposed in Essadki et al.
(2019) that provides a way of averaging around a surface point without losing the exact evalu-
ation of the Gauss-Bonnet theorem at discrete level. The averaged value of a generic curvature

⟨𝖢̊⟩𝑖
= ⟨𝖢̊(𝒙𝑖)⟩ ,𝖢 ∈ (𝖧,𝖦) of a point 𝑖 of the surface is computed as follows:

⟨𝖢̊⟩𝑖
=

𝒩(𝒙𝑖,𝖱d𝑥)

∑
𝑘

𝖢̊𝑘
𝖠̊𝑘

̊S𝑘
(4.39)

where 𝒩(•,𝖱d𝑥) is the set of neighbor points of the point • within a radius 𝖱d𝑥. S𝑘 is defined
as:

̊S𝑘 =
𝒩(𝒙𝑘,𝖱d𝑥)

∑
𝑙

𝖠̊𝑙

Fig. 4.8 shows an example of the application of the averaging kernel. Fig. 4.8a is the condition
in which no averaging is applied. As it is possible to note, the (Gauss) curvature field mapped
on the surface object is grainy and noisy. This results in a area-weighted NDF that is more
spread out w.r.t. the second case, at Fig. 4.8b, in which an averaging kernel within a radius of
five times the grid size 𝖱d𝑥 = 5 d𝑥 is applied. The map shows that the two spherical objects
are more correctly identified as two individual points in the phase space (𝖧,𝖦) (normalized by
a reference radius 𝖱ref = 0.5(𝖱1 + 𝖱2)). Thus the averaging process represent one first cure
to the problem of noise. However, this is also due to the presence of deformed/small triangles
and we refer to the third possible cure for another and complementary way of dealing with this
issue, see section 4.4.2.3.

119



4 A computational framework based on the discrete estimation of geometrical properties
over triangulated interfaces to perform validation of two-phase flow models

4.4.2.2 A projection method

A possible mitigation we propose in order to deal with the presence of non-positive Willmore
energy is constituted of two ingredients. First, whereas the evaluation of the Gauss curvature at
the vertices is fully legitimate, the evaluation of the mean curvature normally pertains more to
the edges connecting the points of the triangulated surface than to the individual points and the
associated 1-ring area. In our approach, the evaluations of the Gauss curvature and the mean
curvature are independent, and the value 𝖧̊2 is computed squaring the value of 𝖧̊. Another way
of computing of 𝖧̊2 should be used in order to evaluate the Willmore energy, possibly with
the possibility of taking into account the correct value of 𝖦̊ that, as we have shown, can be
estimated at machine precision. However, this is not sufficient since the two curvature are not
evaluated in a fully coherent manner. Thus, another possible mitigation is to re-project all the
points that do not fulfill the constraint on 𝑊̊loc, on the curve 𝑊̊loc = 0, while preserving the
Gauss quadrature evaluated at the vertex. This projection has to be conducted on both 𝖧̊ and
𝖧̊2.

4.4.2.3 Improving the quality of the mesh

In order to take care of the noise associated to the discrete estimation of the curvature values, as
well as the convergence difficulties we have identified previously, a complementary approach
is to remesh the surface, while improving the quality of the triangulation, taking care of not
accumulating small triangles locally on the surface. Classical approaches like the Laplacian
smoothing can have pitfalls regarding the non conservation of the volume of the objects, leading
to changes into the topological configuration. A work on the subject is in progress with the
MMG team (Froehly et al. 2019) and requires quite a bit of effort in order to quantify its impact
on the global geometrical parameter evaluation proposed in the coming sections. For the time
being, we will only employ in the following the averaging kernel mitigation in order to deal
with the potentially too-deformed/small triangles produced by our triangulation algorithm.

4.5

An application of the post-processing of DNS simula-

tions: the collision of two droplets

The first application we envision is the collision of two spherical droplets with a radius re-
spectively of 130 µm and 200 µm as a test case to our numerical strategy augmented with the
proposed solutions described previously. The aim is three-fold: evaluate the statistical topolog-
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ical footprint, verify that the Gauss-Bonnet topological invariant is well-preserved and allows
to count the number of object homeomorphic to sphere, when they are present (beginning and
end of the process) and finally evaluate the the constraint given by eq. (4.19), which is not
guaranteed when using the algorithm we propose (Meyer et al. 2003) on a discretized repre-
sentation of the surface. In order to assess the impact on a test case of interest, we decided to
analyze the percentage of points for which eq. (4.19) is not respected over the totality of the
mesh points all along the course of a simulation.

4.5.1 DNS configuration

The two droplets are configured at the beginning of the simulation with a negative relative
velocity onew.r.t. the other. The two spherical objects, then, start to approach until they collide
causing surface deformation and topology changes. The simulation of the droplets collision is
a DNS performed using the ARCHER code (Thibault Ménard et al. 2007). In order to investigate
the influence of the mesh resolution on the topological configurations we used three different
mesh refinement levels: a coarse configuration with 128 × 128 × 256 cells, a medium case
with 256 × 256 × 512 cells and a fine case with 512 × 512 × 1024 cells. Fig. 4.9 shows three
snapshots of the evolution of the system.

4.5.2 Topological footprint analysis

We characterize the footprint of each topological object with an area-weighted NDF in the
phase space 𝖦̊ − 𝖧̊:

𝑛 = 𝑛(𝖦̊, 𝖧̊) (4.40)

𝖠̊(𝖦̊, 𝖧̊) is the area associated to a point in the phase space having curvatures (𝖦̊, 𝖧̊) and it
is used as a weighting function for the NDF. This NDF is computed on the data after filtering
out outliers for which 𝑊̊loc < 0 with a number of bins 𝑛 ∼ √𝑁 being 𝑁 the total number
of points in the surface. The corresponding values of 𝖧̊, 𝖦̊ are normalized with the equivalent
curvatures defined as in eq. (4.41).

𝖱eq =
𝖱1 + 𝖱2

2
𝖧eq = 1

𝖱eq

𝖦eq = 1
𝖱2
eq

(4.41)
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where 𝖱1,𝖱2 are the radiuses of the two spheres at rest. In Fig. 4.11 the NDF 𝑛(𝖦̊, 𝖧̊) is
shown for three different time steps 𝑡 = (0, 0.3, 0.85 ms). At the beginning of the simula-
tion (Fig. 4.11a), two points are visible on the phase space associated to the constant values
of 𝖧̊/𝖧̊ref and 𝖦̊/𝖦̊ref for the two spherical particles (𝖧̊/𝖧̊ref, 1.26, 0.825), (𝖦̊/𝖦̊ref, 1.61, 0.68).
At the moment of the collision (Fig. 4.11b) the smaller droplets coalesce into the bigger one,
and this can be easily tracked in the phase space at Fig. 4.11b were the NDF at the point

(𝖦̊, 𝖧̊) = (1.61, 1.26) has a lower value and around the point (0.68, 0.825) it is more spread
out w.r.t.the beginning of the simulation (Fig. 4.11a) with the two independent non-interacting
droplets. In the following time steps the topology of the coalesced object strongly changes, and
this is reflected on the phase space with a cloud of points that accumulates all along the curve
𝖧̊ = √𝖦̊, and in Fig. 4.11c we can note that the peak of the NDF is at a lower value of curva-
tures w.r.t.the initial case (Fig. 4.11a). The main mesh resolution effect is the reduction of the
noise, see Fig. 4.10, i.e. points tend to stay in the physical part of the phase space (𝖧̊ > √𝖦̊)
as shown also in Fig. 4.12a and close along the limit curve. This behavior can be related to
the effect of the refinement of the mesh which allows a more accurate estimation of the mean
curvature w.r.t. coarser cases. This also reflects on the fact that the topological configuration
changes (we have a different number of satellite objects depending on the refinement of the
mesh).
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(a) Initial configuration with two
separate droplets

(b) Beginning of the collision (c) End of the collision with the cre-
ation of a satellite object

Figure 4.9: The collision sequence of two droplets. The top row shows the computation without average.
The bottom row is with an averaging radius 𝖱d𝑥 = 5 d𝑥
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Figure 4.10: The NDF computed with three different resolutions at the final snapshot
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(a) Initial configuration with two separate droplets PDF
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(b) Beginning of the collision
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(c) End of the collision with the creation of a satellite
object

Figure 4.11: The collision sequence of two droplets in terms of the NDF
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Figure 4.12: Statistics on the geometrical properties computed on the collision of two droplets
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4.5.3 Willmore Energy analysis

We performed an outliers statistics analysis: we tracked all the points that do not respect
eq. (4.19) along the time evolution of the simulation. In Fig. 4.12a we can appreciate how
outliers are more probably produced when the topological objects resemble a sphere, in facts
at the beginning of the simulation, when we have two exact spheres in the domain, i.e. the most
critical situation since for a sphere eq. (4.19) is exactly equal to 0, the outliers are large in ab-
solute terms, up to ∼ 50% for the coarsest configuration to ∼ 45% for the finest one. Once the
objects is deformed after the collision, the outliers percentage steeply drops to < 10% and stays
under 20% for the entire simulation. It is interesting to highlight how the number of outliers is
not influenced by the triangulation refinement level but it is quite exclusively associated to the
intrinsic topological configuration of the object: the closer the object to a sphere, higher the
number of outliers.

4.5.3.1 Counting object homeomorphic to a sphere

Fig. 4.12b instead shows the evolution of the number of objects along the simulation computed
using the Gauss-Bonnet theorem (eq. (4.17)) and the Gauss curvature as for 𝑒𝑞. (4.27). The
number of objects is correctly tracked for situations in which the topological configuration of
the two colliding droplets stays homeomorphic to a sphere, i.e. at the beginning we start with
the two spherical droplets, then they collide and become a single object before producing a
torus around 𝑡 = 0.3s, i.e. a topological entity that is not homeomorphic to a sphere. The
toroidal objects deforms until 𝑡 > 0.7s, in which again the topological configuration comes
back to be homomorphic to a sphere. It is interesting to note how the averaging kernel has
absolutely no effect on the correct respect of the Gauss-Bonnet Theorem and hence on the
objects number estimation.

Please note that in Fig. 4.12b, for the time steps close to the interval 𝑡 ∈ (0.8s, 1s), the
results are omitted because the objects cross the periodic boundaries and for the points at the
intersection with the boundary surface, the curvature estimation is not correct since the object
becomes unclosed. Fixing this implementation issue is one of the future axis of improvement
for the algorithm here presented and does not impact any of the conclusion we have drawn so
far.
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4.6

Post-processing of DNS as a modeling tool: the oscil-

lation of an ellipsoidal droplet

4.6.1 Introduction

Among the various classical two-phase flow historical configurations, the oscillations of a sin-
gle droplet and/or bubble plays a significant role and has been tackled really early on in the
field. It naturally connects the spherical state at equilibrium to the large deformation leading
to break-up in the presence of shear. Indeed, once the final break-up occurs, the dynamics of
the fluid inclusion tend towards a perturbation of the spherical shape, which minimizes the sur-
face tension energy. Therefore, the study of the motion around this steady state provides a real
insight to understand this complex transition and it has already been used quite extensively, for
example in the TAB model (O’Rourke and Amsden 1987).

The first significant study of this oscillatory behavior is the linear analysis for small per-
turbation around the spherical state provided by John W. Strutt (3rd Baron Rayleigh) (1883).
Under the assumption of a potential flow, i.e. inviscid, incompressible and irrotational flow,
and surface tension, the Navier-Stokes equations are integrated into an unsteady Bernoulli law,
which can be then combined with the kinematic closure between the velocity of the flow and
the one of the droplet surface. Moreover, the Laplace equation on the flow potential enforces
the solution to be decomposed into a spherical harmonics basis. A second-order equation is
finally obtained for each spherical mode which all behave as harmonic oscillators with their
own frequency, the greater the mode is, the greater the frequency.

This problem has been successively studied by S. H. Lamb from the inviscid case in 1895
(S. H. Lamb 1895) to 1916 (H. Lamb 1916), where he started to study the viscous case. It led to
the addition of a damping term to the oscillation motion where the damping rate increases with
the mode under consideration. These results were also retrieved in the works of Chandrasekhar
(1961) and completed by Reid (1960) and Prosperetti (1980).

Following detailed experiments, where large discrepancies where found (Trinh and Wang
1982) between the frequencies obtained from linear analysis and the ones observed during
large oscillations, Tsamopoulos and Brown first investigated the non-linear expansion of the
equations in 1983 thanks to a Poincaré-Lindstedt approach. This work enabled to establish
the first correction for the coupling between amplitude and frequency for each mode. The
frequency decreases proportionally to the square of the amplitude and this phenomenon is
intensified for larger modes.
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These works on non-linear behavior of the droplet oscillation always lead to tedious com-
binatory problems, when more than two spherical modes interact and they have been subject
of numerous approaches to simplify them in the past decades. Recently, another approach was
proposed by Plümacher et al. (2020) where the problem is fully reformulated in terms of sur-
face variables. Then, a set of recursive equations describing the dynamics are obtained through
a multi-scale expansion of these surface variables and a fully explicit solution is proposed for
the first correction of the spherical harmonic shapes and frequencies.

One can then realize that, whereas all variables are harmonic in the limit of small perturba-
tion and the problem remains linear, one usually rapidly encounters nonlinear effects as soon
as the droplet deformation is sufficient. However, we need to define energies for an oscillat-
ing droplet and the key question is here the choice of the proper variables to do so, since the
range of validity of the harmonic oscillation is not the same for all variables. Relying on a
DNS configuration and on the Mercur(v)e library, we will show that there is a natural choice
for the energies and variables to be used in the SAP. An accurate evaluation of the averaged
geometrical properties will be essential here.

4.6.2 DNS configuration

The computational domain is a box of dimension 40×40×40 µm that is discretized over a reg-
ular Cartesian grid with 128 points per dimension leading to a total of 2 097 152 computational
nodes. Symmetric boundary conditions are imposed on each face of the domain. The kine-
matic viscosity of the fluid is set to 𝜈 = 1.7e−8m s−2 in order to configure a situation where the
viscosity effects on the results can be minimized. We consider as initial condition a deformed
droplet with an axisymmetric ellipsoidal shape that will evolve due to surface tension effects:
the initial shape is defined thanks to the 0-level of a level-set such that the semi-major axis 𝑝
over semi-minor axis 𝑞 ratio is 𝑝/𝑞 = (1.05, 1.15) and such that the volume of the droplet is
4/3 𝜋𝖱3 with 𝖱 = 10 µm. The computational load for a single run is 1280 hCPU which rep-
resents 20 h of computation over 64CPU. We have chosen two deformation amplitudes, one
will still be in the small perturbation limit leading to harmonic oscillations of most of the con-
sidered quantities, while the second will allow to go beyond this regime and highlight different
behaviors for the different variables. Fig. 4.13 shows the initial level-set volumetric field and
the triangulated interface obtained with Mercur(v)e. One period 𝑇 of evolution of the droplet
deformation is shown in Fig. 4.14.

At 𝑡/𝑇 = 0, Fig. 4.14a, the droplet is initially at a prolate state. Due to capillarity, the
droplet potential energy starts to be converted into kinetic energy such that the droplet reaches
a spherical shape in Fig. 4.14b, and then continues to deform such that at 𝑡/𝑇 = 1.0, Fig. 4.14c,
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(a) Level-Set volumetric field. (b) Triangulated ellipsoid surface.

Figure 4.13: The initial configuration of the ellipsoidal droplet.

(a) 𝑡/𝑇 = 0 (b) 𝑡/𝑇 = 0.5 (c) 𝑡/𝑇 = 1.0

Figure 4.14: One period 𝑇 of evolution of the deformed droplet. The color map maps values
of the Gauss curvature from low to high.

the droplet is in an oblate configuration.

4.6.3 Analysis

We now investigate the evolution of geometric quantities over the whole simulation time and
integrated over the surface of the droplet for two different initial configurations of the deformed
droplet, 𝑝/𝑞 = 1.05 and 𝑝/𝑞 = 1.15.

Figures 4.16b, 4.17b, 4.18b and 4.19b display the relative mean Gauss curvature ratio, with
S0𝖦0 the integral of the Gauss curvature over the spherical droplet multiplied by its surface,
S0𝖦0 = 4𝜋. For the computation with Mercur(v)e, the ratio is constant and close to zero up
to a tolerance of 1e−12. This result was expected since from the Gauss-Bonnet theorem, ⟨𝖦⟩ is
a topological invariant, but it attests the reliability of the post-processing library Mercur(v)e.

Let us underline from the various evaluations, that it is essential to use the Mercur(v)e
library for two reasons : 1- we can guarantee the proper evaluation of the topological invariant
through a discrete verification of the Gauss-Bonnet theorem, 2- the level of error obtained from

130
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the library compared to the evaluation conducted in ARCHER directly from the level-set function
is much lower and it is essential in this configuration of small perturbations in order to draw
some firm conclusions from the investigation.

Depending on the cases, since the references quantities used for the relative quantity ratio
are exact characteristics of the sphere, mainly functions of its radius, we can have a slight shift
in the quantities due to the level-set formulation and to its discretization on the proposed grid:
the computed volume 𝖵0 and surface S0 of the object will slightly change based on how close
the 0-surface of the level-set is to the cell nodes. Eventually, Fig. 4.15 emphasizes the volume
conservation over time of the deformed droplet by plotting the relative volume ratio where 𝖵0 is
the volume of the droplet when reaching it spherical shape, 𝖵0 = 4/3𝜋𝖱3. The slight difference
in the value of the volume ratio for the different cases is also associated with the initialization
errors produced by the variability of the alignment of the 0-surface within the cell nodes.
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Figure 4.15: Relative volume ratio conservation.

Figures 4.16a, 4.17a, 4.18a and 4.19a show the relative surface ratio evolution over the sim-
ulation time, with S0 = 4𝜋𝖱2 the theoretical surface of the droplet when reaching a spherical
shape. As we can see, once the droplet is left unconstrained in its perturbed initial configura-
tion with zero kinetic energy, its surface evolves as an harmonic oscillator, as well as the mean
curvature, even if we can detect a small departure from harmonic oscillations. This first case
is coherent with the small perturbation analytical estimation of the oscillating dynamics and
the observed frequency is the one identified by the theory presented in the introduction.

Then, to depart slightly from the small perturbation regime, we have provided a series of
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cases, with larger amplitude, where this departure is more pronounced.
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(b) Relative surface averaged Gauss curvature ratio.

0 0.5 1 1.5
⋅10−5

−1

0

1

2

⋅10−3

Time [s]

1
−

|⟨S
⟩⟨

𝖧
⟩/

(S
0𝖧

0)
|

ARCHER 1283 Mercur(v)e 1283

ARCHER 2563 Mercur(v)e 2563

(c) Relative surface averaged Mean curvature ratio.

Figure 4.16: Evolution of the geometrical properties (𝑝/𝑞 − 1 = 0.05)

Actually, as plotted in Figures 4.16c, 4.17c, 4.18c and 4.19c the relative average mean cur-
vature does not show the same behavior for a larger deformation. The surface integral of the
mean curvature of the droplet at its spherical state reads 𝖧0 = −1/𝖱. Two non-identical peri-
odic peaks are clearly visible, suggesting the surface-averaged mean curvature is not harmonic
anymore. In fact relying on recent references and a specific differential geometry investigation,
with Loison (2023), we were able to provide some higher order perturbation analysis, which

132



4.6 Post-processing of DNS as a modeling tool: the oscillation of an ellipsoidal droplet

explains this different behavior between mean curvature and surface.
In the various plots, this phenomenon is still present at various elongation of the original

ellipsoid, even if the harmonic behavior of the surface oscillation has a tendency to deteriorate
when 𝑝/𝑞 − 1 = 0.5, not in amplitude but in frequency, with non-linear effects, as predicted
by the theory. At this level however, we are very far from a perturbation of the original sphere!

Whereas in the literature several subscale energies and related variables describing the droplet
oscillations have been proposed ranging from the elongation in O’Rourke and Amsden (1987)
to the mean curvature ⟨𝖧⟩ in Herrmann (2013), our detailed study confirms that it is much
more robust to consider the surface energy 𝜎(Σ − Σ0), with related variable the square root of
surface departure from sphericity, in order to capture both the case of small perturbations w.r.t.
the equilibrium (where all choices are relevant and equivalent) as well as large deviations from
the sphericity as observed in Figures 4.17a, 4.18a and 4.19a.

This is also coherent with what has been observed numerically and experimentally for bub-
bles (Lalanne et al. 2013), where the harmonic oscillation behavior is very robust, even within
the framework of large deformations. This allows to identify a coherent energy function for
subscale oscillating droplets to be used in a variational formulation to derive a reduced model
(see Cordesse, Di Battista, Chevalier, et al. (2020) and section 3.5.3), and proves the impact of
relying on a proper and accurate evaluation of the various surface averaged geometric quanti-
ties.

133



4 A computational framework based on the discrete estimation of geometrical properties
over triangulated interfaces to perform validation of two-phase flow models

0 0.5 1 1.5
⋅10−5

0

2

4

6

8
⋅10−3

Time [s]

⟨S
⟩/

S 0
−

1

ARCHER 1283 Mercurve 1283

ARCHER 2563 Mercurve 2563

(a) Relative surface ratio.

0 0.5 1 1.5
⋅10−5

−1

−0.8

−0.6

−0.4

−0.2

0

⋅10−2

Time [s]
1

−
|⟨S

⟩⟨
𝖦 ⟩

/(
S 0

𝖦 0
) |

ARCHER 1283 Mercurve 1283

ARCHER 2563 Mercurve 2563

(b) Relative surface averaged Gauss curvature ratio.
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(c) Relative surface averaged Mean curvature ratio.

Figure 4.17: Evolution of the geometrical properties (𝑝/𝑞 − 1 = 0.15)
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(b) Relative surface averaged Gauss curvature ratio.
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(c) Relative surface averaged Mean curvature ratio.

Figure 4.18: Evolution of the geometrical properties (𝑝/𝑞 − 1 = 0.3)
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(c) Relative surface averaged Mean curvature ratio.

Figure 4.19: Evolution of the geometrical properties (𝑝/𝑞 − 1 = 0.5)
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4.7 Conclusions

In this chapter we presented a computational framework based on the estimation of curvature
properties over a triangulated two-phase flow interface. The algorithm used to compute the
curvature fields is inspired by the work of Meyer et al. (2003) and it features important prop-
erties that are useful in the frame of perspectives this work is conducted: the algorithm allows
the Gauss-Bonnet topological invariant to be preserved at machine precision and, in turn, the
Gauss-Bonnet theorem preservation allows to count objects homeomorphic to spheres, intro-
ducing the possibility of extracting NDFs from DNS simulations. The post-processing routine
has then be used to derive curvature maps that allow the identification of topological config-
urations over the duration of the DNS simulation. A practical case of ellipsoidal oscillating
droplets has been presented, in which the use of the discussed post-processing strategy allowed
the determination of the correct energies underlying the studied phenomena, energies that are
in turn needed when constructing reduced models with the SAP, as explained in chapter 3.
Despite the very interesting properties, the described post-processing procedure highlights mi-
nor limitations, some of which have been fixed and some of which are in progress. In particular,
the algorithm performs the curvatures calculations independently, failing at ensuring the local
Willmore energy constraint (eq. (4.19)), especially in situations which feature topological ob-
jects with shapes close to a sphere; even if a projection has been proposed to cure this drawback,
improving the mesh should also help in these matters. In addition, a detailed error analysis of
the procedure is assessed highlighting the crucial role of the triangulated mesh in the definition
of error rate.

All this effort translated in the development of a FOSS named Mercur(v)e, that is acces-
sible at https://gitlab.com/rubendibattista/mercurve with a permissive license.
The structure of the library in terms of code development and design choices is discussed in
chapter 6.

4.8 Perspectives

The surface discretization strategy presented in this chapter, with the associated curvature es-
timation algorithm based on 1-ring averaging, is applicable only on closed objects, since the
formulas exposed in section 4.3.4 are valid only on closed objects. This is not a great annoy-
ance when performing post-processing of reasonably-sized DNS cases, but it can become one
if the cases are very big, or, for example, if the curvature estimation has to be performed run-

137

https://gitlab.com/rubendibattista/mercurve


4 A computational framework based on the discrete estimation of geometrical properties
over triangulated interfaces to perform validation of two-phase flow models

Transport of Level-Set

Ensuring Conservation via VOF
constraint

Estimation of the curvature via
differentiation of the level-set

Next time-step

(a) The current ARCHER approach

Transport of Level-Set

Ensuring Conservation via VOF constraint

Reconstruction of the interface via
Marching Cube / Flying Edges algorithm

Curvatures estimation preserving
geometrical-topological invariants

Projection of the curvatures field onto
original mesh

Force estimation (e.g. surface tension) and
next time step

(b) An envisioned approach exploiting Mercur(v)e to
estimate the surface tension

Figure 4.20: Injecting Mercur(v)e predictions at runtime during a DNS

time, at each time-step of the running DNS simulation, in which the entire level-set field is split
in computational blocks, that are then sent to different computational units. Additionally, the
analysis of cases with particular symmetry in the Boundary Conditions could also require the
ability of computing the curvatures when the interface crosses computational boundaries. A
possible idea is to retrieve the intersection of the interface with the boundaries and recompute
the associated geometrical 1-ring averaged quantities taking into account the fact that the 1-
ring cell is intersected by the boundaries, therefore the associated area is different from what
it is generally computed on normal cells that are fully contained within the domain.

One other possible perspective of this work would be to investigate the impact of computing
the mean curvature, for the purpose of correctly estimating the surface tension force, with this
strategy, during a DNS simulation instead of just as post-processing procedure (see Fig. 4.20).
Despite expecting the process to be way more expensive, in terms of computational cost, w.r.t.
classical level-set differencing methods, it would still be very interesting, for reasonably sized
DNS cases, to understand the differences in topological developments of the interface when
the surface tension is more accurately depicted as for the results we just discussed. This topic is
work in progress in collaboration with CORIA laboratory and T. Ménard in the ARCHER code.
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This would be easy once the curvature estimation formulas are fixed to work for non-closed
interfaces crossing process boundaries.

Another interesting perspective would be to study the impact of a different choice of geo-
metrical properties to describe the evolution of the interface surface. In particular Bermejo-
Moreno and Pullin (2008); Bermejo-Moreno, Pullin, and Horiuti (2009) show other potential
possibilities that are different from the mean and Gauss curvatures we have employed in this
work. These alternative geometrical representations are non-linear functions of the curvatures
and might represent a more suitable choice to obtain insights from simulations. We envision a
collaboration with I. Bermejo-Moreno, with whomwe interacted at Stanford University during
the CTR Summer Program in 2018.
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Appendices

4.A Algorithm to handle multiblock simulations

Mercur(v)e is a library (and an executable) that takes as input a DNS simulation done with
CORIA’s ARCHER software and produces the results presented in this work. Generally a high-
fidelity DNS is computed in parallel, dividing the computational domain in blocks that are
then assigned to one of the processors of the cluster. So, generally, the output of a simulation
is a series of subdomains of the original domains that could not contain closed surfaces. The
formulas given in section 4.3.4 could be adapted for non-closed surfaces, but in the way they
are given they are strictly valid for closed surfaces. Hence in the current implementation we
use a simple algorithm to merge the multiple blocks into a single block for which the MC
algorithm returns a closed surface. The algorithms basically works as follows:

• Sort the blocks in ascending order w.r.t.the coordinates of their origin

• Allocate space for the first block

• Loop over the blocks taking care of having pointers to the current last block respectively
on the 𝑧, 𝑦, 𝑧-axes.

• Check which coordinate changes w.r.t.the last block allocated starting from 𝑧, then 𝑦 and
lastly 𝑥

• Allocate space for each block on the correct axis direction

• Loop again over the blocks actually inserting the block in the right position.

The details of the implementation are reported in algorithm 4.A.1.
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Algorithm 4.A.1 Algorithm to merge a multi-block DNS simulation
1: procedure MergeBlocks(𝑏𝑙𝑜𝑐𝑘𝑠)
2: 𝑏𝑙𝑜𝑐𝑘𝑠 ←Sort(𝑏𝑙𝑜𝑐𝑘𝑠)
3: 𝑏0 ← 𝑏𝑙𝑜𝑐𝑘𝑠[0]
4: 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 ← GetDimensions(𝑏0) ▷ Get first block dimensions
5: 𝑏0 → SetStartIJK(0, 0, 0) ▷ The starting 𝑖, 𝑗, 𝑘 indices in the merged block
6: 𝑏0 → SetEndIJK(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) ▷ The ending 𝑖, 𝑗, 𝑘 indices in the merged block
7: 𝑏𝑥 = 𝑏𝑦 = 𝑏𝑧 = 𝑏0
8: for 𝑏 in 𝑏𝑙𝑜𝑐𝑘𝑠[1 ∶] do ▷ Loop from the second block on
9: if 𝑏 → 𝑥 != 𝑏0 → 𝑥 then ▷ Stack block over 𝑥-axis

10: 𝑠𝑖, 𝑠𝑗, 𝑠𝑘 ← GetStartIJK(𝑏𝑥)
11: 𝑒𝑖, 𝑒𝑗, 𝑒𝑗 ← GetEndIJK(𝑏𝑥)
12: 𝑁𝑥,𝑁𝑦,𝑁𝑧 ← GetDimensions(𝑏)
13: 𝑛𝑥 += 𝑁𝑥
14: 𝑏 → SetStartIJK(𝑒𝑖, 𝑠𝑗, 𝑠𝑘)
15: 𝑏 → SetEndIJK(𝑒𝑖 + 𝑁𝑥, 𝑠𝑗 + 𝑁𝑦, 𝑠𝑘 + 𝑁𝑧)
16: 𝑏𝑥 = 𝑏𝑦 = 𝑏𝑧 = 𝑏
17: 𝑤𝑟𝑎𝑝𝑋 = true
18: continue
19: else if 𝑏 → 𝑦 != 𝑏0 → 𝑦 then ▷ Stack block over 𝑦-axis
20: 𝑠𝑖, 𝑠𝑗, 𝑠𝑘 ← GetStartIJK(𝑏𝑦)
21: 𝑒𝑖, 𝑒𝑗, 𝑒𝑗 ← GetEndIJK(𝑏𝑦)
22: 𝑁𝑥,𝑁𝑦,𝑁𝑧 ← GetDimensions(𝑏)
23: if !𝑤𝑟𝑎𝑝𝑋 then
24: 𝑛𝑦 += 𝑁𝑦
25: end if
26: 𝑏 → SetStartIJK(𝑠𝑖, 𝑒𝑗, 𝑠𝑘)
27: 𝑏 → SetEndIJK(𝑠𝑖 + 𝑁𝑥, 𝑒𝑗 + 𝑁𝑦, 𝑠𝑘 + 𝑁𝑧)
28: 𝑏𝑦 = 𝑏𝑧 = 𝑏
29: 𝑤𝑟𝑎𝑝𝑌 = true
30: continue
31: else ▷ Stack block over 𝑧-axis
32: 𝑠𝑖, 𝑠𝑗, 𝑠𝑘 ← GetStartIJK(𝑏𝑧)
33: 𝑒𝑖, 𝑒𝑗, 𝑒𝑗 ← GetEndIJK(𝑏𝑧)
34: 𝑁𝑥,𝑁𝑦,𝑁𝑧 ← GetDimensions(𝑏)
35: if !𝑤𝑟𝑎𝑝𝑌 then
36: 𝑛𝑧 += 𝑁𝑧
37: end if
38: 𝑏 → SetStartIJK(𝑠𝑖, 𝑠𝑗, 𝑒𝑘)
39: 𝑏 → SetEndIJK(𝑠𝑖 + 𝑁𝑥, 𝑠𝑗 + 𝑁𝑦, 𝑒𝑘 + 𝑁𝑧)
40: 𝑏𝑧 = 𝑏
41: end if
42: end for
43: 𝑚𝑒𝑟𝑔𝑒𝑑𝐵𝑙𝑜𝑐𝑘 → SetDimensions(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) ▷ Allocate space
44: 𝑚𝑒𝑟𝑔𝑒𝑑𝐵𝑙𝑜𝑐𝑘 → InsertBlock(𝑏0) ▷ Insert first block
45: for 𝑏 in 𝑏𝑙𝑜𝑐𝑘𝑠[1 ∶] do
46: 𝑚𝑒𝑟𝑔𝑒𝑑𝐵𝑙𝑜𝑐𝑘 → InsertBlock(𝑏) ▷ Insert all the other blocks
47: end for
48: end procedure
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5
Numerical schemes and

simulation of two-phase

flows

In this chapter we rework the most important aspects related to the discretization of system

of PDEs using the FVM. We present the fundamentals of the method recasted in a form that

closely resembles the actual implementation in the josiepy code (the architecture of which
is described in chapter 6). We present a template vector system of equations that allows the

individual and independent discretization of convective, non-conservative, diffusive and source

terms. We present a basic structured mesh generation functionality based on the Trans-Finite

interpolation (TFI).We list in details all the alternative schemes implementations that have been

investigated in the framework of this thesis supported by a wide choice of verification tests.

A simulation case featuring the system of equations that was discussed in section 3.6 which

propose a governing equation for the interfacial area density is also discussed as a result of the

numerical framework discussed in this chapter.

5.1 Introduction

In chapter 3 we introduced a methodology to derive a system of equations from the initial
assumption of kinetic and potential energy underlying the phenomenon we want to model.
Except for specific cases, those systems of PDEs are impossible to be solved in closed analytical
form, hence the necessity of employing sound numerical methods that can be executed on a
computer machine. Different approaches are available for the discretization of system of PDEs,
classically the Finite Difference Method (FDM), the FVM and the Finite Element Method
(FEM) are featured in the literature. Those methods are generally based on the space semi-
discretization of the physical domain onwhich the system resolutionmust be enforced in a set of
nodes, vertices or control volumes (amesh) on which the fields are defined in a discretized way
and the directional derivatives are imposed following a specified stencil, interpolation scheme
or numerical flux scheme. This semi-discretized form of the system is then integrated in time
using a suitable Ordinary Differential Equation (ODE) solver. In addition to these classical
strategies, in more recent times, with the advent of Artificial Intelligence (AI) and powerful
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5 Numerical schemes and simulation of two-phase flows

computational workstations, other methods that leverage AI to solve the PDEs system without
the need of a mesh are also studied and used (Scoggins et al. 2021).

In this work, we employ the Finite Volume Method (FVM). In the following sections we in-
troduce an opinionated framework, general enough, that presents the specifities of the FVM for
our purposes with a particular interest towards hyperbolic systems and a stress on a vectorized
implementation of the numerical operations that are needed to implement such approximation.
This allowed an actual deployment of a solution packaged in an easy-to-use Python library
called josiepy and presented in details in section 6.1.

5.2

Basic concepts for the discretization of (a system of)

Partial Differential Equations (PDEs) with the Finite

Volume Method (FVM)

In this section we provide a synthetic depiction of the FVM. The interested reader can find
further information in LeVeque (1990); Godlewski and Raviart (1991); Godlewski and Raviart
(1996); Versteeg and Malalasekera (2007); LeVeque (2002); Bouchut (2004); Eleuterio F.
Toro (2009). Please note that the notation chosen to present the FVM is more implementation-
oriented, trading a slight loss of unambiguousness with a lighter abstraction mental effort and
a closer resemblance to what it is actually coded in josiepy (section 6.1).

In order to introduce the computational framework of the FVM we define a generic state
variable 𝒒 that wraps 𝑁fields individual scalar fields

𝒒 = {𝑞1, 𝑞2,… 𝑞𝑁eqs
; 𝑞𝑁eqs+1 … 𝑞𝑁fields} (5.1)

where 𝑁eqs is the number of fields that are present in the equations, {𝑞𝑁eqs+1 … 𝑞𝑁fields} is
an extended set of variables that can include auxiliary variables that can be derived from the
original primitive variables {𝑞1 … 𝑞𝑁eqs} (e.g. in the Euler system written in conservative
form, very often we need to access variables such as the pressure (𝑝) or the speed of sound
(𝑐) that are normally not part of the set of states in conservative form. Hence in josiepy,
for convenience, they are stored in an extended 𝒒, trading memory pressure for computational
cost. The 𝒒 extended vector satisfies a generic PDE vector system (eq. (5.2)) over a generic
domain Ω.

𝜕𝒒
𝜕𝑡

+ ∇ ⋅ 𝑭(𝒒) + 𝑩(𝒒) ⋅ ∇𝒒 − ∇ ⋅ (𝑲(𝒒) ⋅ ∇𝒒) + 𝒔(𝒒) = 𝟎 (5.2)
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We define∇⋅𝑭(𝒒) as the convective term, 𝑩(𝒒)⋅∇𝒒 as the non-conservative term,∇⋅(𝑲(𝒒) ⋅ ∇𝒒)
as the diffusive term and 𝒔(𝒒) as the source term of the system. Moreover, 𝑭(𝒒) is the convec-
tive flux of the system, 𝑩(𝒒) is the non-conservative pre-multiplier and 𝑲(𝒒) is the so-called
viscosity tensor. In the vectorial representation we abuse a bit the notation writing a state made
of just the 𝑎, 𝑎 = 1 … 𝑁eqs fields that are governed by the set of equations in the same way as
the full state that includes also the auxiliary fields, i.e. 𝒒. To avoid ambiguity, the same system
can be equivalently written assuming Einstein summation convention as:

𝜕𝑞𝑎
𝜕𝑡

+
𝜕𝐹𝑎𝑑(𝑞𝑏)

𝜕𝑑
+ 𝐵𝑎𝑏𝑑(𝑞𝑏)

𝜕𝑞𝑏
𝜕𝑥𝑑

− 𝜕
𝜕𝑥𝑑′ (𝐾𝑎𝑏𝑑′𝑑(𝑞𝑏)

𝜕𝑞𝑏
𝜕𝑥𝑑 ) + 𝑠𝑎(𝑞𝑏) = 0

𝑎 = 1 … 𝑁eqs; 𝑏 = 1 … 𝑁fields; 𝑑, 𝑑′ = 1 … 𝑁dim

(5.3)

being𝑁dim the dimensionality of the problem (this is more an implementation defined constant,
i.e. if the solver allows to simulate 3D domains, then 𝑁dim = 3). The indicial notation also
helps to highlight how the flux operator 𝑭(𝒒) is a 2nd order tensor, the 𝑩(𝒒) is a 3rd order tensor,
and the 𝑲(𝒒) is a 4th order tensor.

The FVM is based on the assumption of dividing the total domain Ω in a large number of
polyhedral subdomains Ω𝑖, i.e. the cells of the mesh, each one of volume |Ω𝑖|, surface |𝜕Ω𝑖|,
on which eq. (5.2) is enforced in integral form. If we define the mean value of the field 𝒒 over
the cell volume as:

|Ω𝑖| ⟨𝒒⟩𝑖 ≜ ∫Ω𝑖

𝒒 (5.4)

the integral form of eq. (5.2) over a cell Ω𝑖, considered of constant volume, can be written
(omitting from now on the ⟨•⟩ operator for the sake of readability):

|Ω𝑖|
𝜕𝒒𝑖
𝜕𝑡

+ ∫Ω𝑖

∇ ⋅ 𝑭(𝒒) + ∫Ω𝑖

𝑩(𝒒) ⋅ ∇𝒒 − ∫Ω𝑖

∇ ⋅ (𝑲(𝒒) ⋅ ∇𝒒) + ∫Ω𝑖

𝒔(𝒒) = 𝟎 (5.5)

So the FVM consists in providing sound approximations of the various volume integrals in
eq. (5.5), that depend only on 𝒒𝑖 = ⟨𝒒⟩𝑖 very often expressed as a sound reconstruction over
the cell centers. The simplest reconstruction being a constant value over the cell, typical for
1st order schemes as we will explain in section 5.2.2.4.

5.2.1 Structured mesh generation

The FVM, as presented, needs to be computed over a set of polyhedral cells. That means, a
physical domain on which the problem must be resolved, needs to be decomposed in the set

145



5 Numerical schemes and simulation of two-phase flows

of subdomains Ω𝑖 on which the PDEs are then discretized. The process of mesh generation
is a complex topic, still relying on a non-negligible amount of expertise driven by hands-on
activity, and we absolutely do not aim at providing a fulfilling and complete analysis on the
subject; the interested reader can certainly refer to Thompson et al. (1998) for amonograph. We
will limit ourselves to present the general guidelines and available macro-strategies for mesh
generation, with a particular focus on Trans-Finite interpolation (TFI), that is the method the
library josiepy provides with its integrated mesh generator at this date.

5.2.1.1 Structured boundary-fitted meshes

The easiest situation one can find when solving a PDEs system is arguably a rectangular do-
main. In this simplified case, the rectangle is identified by the coordinates of three points, for
example (𝒙𝑠𝑤,𝒙𝑠𝑒,𝒙𝑛𝑒) that are respectively the bottom-left (South-West (SW)), bottom-right
(South-East (SE)), top-right (North-East (NE)) corners. In order to build the set of rectangular
cells we can then use in the FVM, it is sufficient, in the easiest case, to create an arbitrary
number of linearly spaced points in one coordinate, for example in the ̂𝒆𝑥-direction, and per
each point 𝑥𝑖, linearly interpolate in the orthogonal direction ̂𝒆𝑦. In 3D, for each pair of points
(𝑥𝑖, 𝑦𝑖), an arbitrary set of points 𝑧𝑖 in the ̂𝒆𝑧 direction is linearly created. A rectangular Carte-
sian mesh is thus created. A Cartesian mesh, moreover, is a structured mesh.

Definition 2

A structured mesh is a grid whose entire set of points follows the same topological structure. In
other words, in a structured mesh, starting from a generic point 𝒙𝑖, it is always possible to find
the set of neighbors of that point following the same stencil. i.e.it exists a transformation (2D for
simplicity) from the computational to the physical space:

𝑿(𝜁1, 𝜁2) = (𝑥(𝜁1, 𝜁2), 𝑦(𝜁1, 𝜁2))
𝑇 (5.6)

that has a discrete subset made of 𝑁x × 𝑁y points, {𝑿} = (𝜁𝐼, 𝜂𝐽); 𝐼 = 0 … 𝑁x, 𝐽 = 0 … 𝑁y,
indexed by 𝐼, 𝐽. The relation

(𝐼, 𝐽) ↔ (𝜁𝐼, 𝜂𝐽) (5.7)

implies the same direct relationship between all neighbors.

It is easy to understand that with a rectangular mesh we only get so far: a lot of problems in
engineering and industrial contexts feature domains that are more complex than a bare rectan-
gle. The easiest method to cope with the difficulty of deformed domains is to use orthogonal
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(a) Curvilinear coordinates are still rectangular in the
logical/programming environment

(b) Cylindrical coordinates in physical space

Figure 5.1: Curvilinear coordinates comparison in logical/programming and physical space

analytical coordinates, like for example, cylindrical or spherical coordinates,

𝜻 = 𝜻(𝒙) = (𝜁(𝑥, 𝑦), 𝜂(𝑥, 𝑦)) (5.8)

These coordinates are still orthogonal. The PDEs problem then is transformed because the dif-
ferential operators change on a curvilinear system, but on the implementation side, the domain
is still rectangular in the new set of coordinates 𝜁1, 𝜁2. Fig. 5.1 shows a visualization of the
computational domain in the logical/programming space, that is still rectangular, while in the
physical space we actually have a cylindrical grid. Since the cylindrical grid “fits” exactly the
boundary of the domain (w.r.t. a Cartesian mesh that would just approximate the boundary),
these mesh can be defined boundary-fitted (Thompson et al. 1998).

5.2.1.2 Trans-Finite interpolation

Alternatively to this mapping with analytical orthogonal coordinates, an algebraic discrete
strategy for the mesh generation of a deformed domain Ω can be employed called Trans-Finite
interpolation (TFI).Without loss of generality, we restrict the discussion to 2Dmesh generation
for simplicity. Given a domain Ω delimited by the curvilinear edges 𝜕Ω𝑙, 𝑙 = 0 … 𝑁boundaries,
we provide the discrete parametrization of the curves associated to the curvilinear edges on
𝑁x × 𝑁y points:

𝑿𝑙(𝜁𝐼, 𝜂𝐽) = (𝑥(𝜁𝐼, 𝜂𝐽), 𝑦(𝜁𝐼, 𝜂𝐽))𝑇, 𝐼 = 0 … 𝑁x, 𝐽 = 0 … 𝑁y (5.9)

147



5 Numerical schemes and simulation of two-phase flows

and potentially also values of its 𝑛 derivatives. The idea of the TFI is to compute an interpola-
tion in each coordinate direction between all the provided boundary values for the parametriza-
tion (eq. (5.9)) and possibly its derivatives, i.e.

𝑼 =
3

∑
𝑙

𝑁x

∑
𝐼

∑
𝑛

𝛼𝐼𝑛(𝜁)[𝑿𝑙(𝜁𝐼, 𝜂) +
𝜕𝑛𝑿𝑙
𝜕𝜁𝑛 ]

𝑽 =
3

∑
𝑙

𝑁y

∑
𝐽

∑
𝑛

𝛽𝐽𝑛(𝜂)[𝑿𝑙(𝜁, 𝜂𝐽) +
𝜕𝑛𝑿𝑙
𝜕𝜂𝑛 ]

(5.10)

and then obtain the final interpolation as the boolean sum of the individual coordinate interpo-
lations, that is the sum of the individual interpolations in 𝑥 and 𝑦 directions 𝑼,𝑽 minus their
cross product,

𝑿(𝜁, 𝜂) = 𝑼 + 𝑽 − 𝑼𝑽 (5.11)

𝛼𝐼𝑛, 𝛽𝐽𝑛 are blending functions that need to fulfill specific conditions (Thompson et al. 1998)
at the boundaries 𝜕Ω𝑙.
The easiest choice that can be made is to use linear blending functions,

𝛼00(𝜁) = 1 − 𝜁

𝛼01(𝜁) = 𝜁

𝛽00(𝜂) = 1 − 𝜂

𝛽01(𝜂) = 𝜂

(5.12)

As an example, Fig. 5.2 shows a mesh generated by josiepy with a linear TFI.

5.2.1.3 More advanced meshing techniques

More advanced approaches are possible to generate the discretization of a domain. Always in
the context of structured meshes, we can cite PDEs based methods that provide the mapping
at eq. (5.6) as the solution of PDEs. Those PDEs can be elliptical or hyperbolic. In the first
case a quasi-linear elliptical system of PDEs (“Poisson grid generation equations”) is solved
to provide the harmonic mapping between the physical, deformed, domain and a nonuniform
unit square logical domain. An additional mapping also maps the nonuniform unit square to a
uniform one that is easier to handle programming-wise. In the case of hyperbolic methods, a
front propagates normally to a starting surface. The equations are generally derived (Thomp-
son et al. 1998) from grid angles and cell size considerations. In order to treat even more
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Figure 5.2: A mesh generated by josiepy integrated mesh generator

complex domains and configurations, multiblock methods have been introduced: the domain
is subdivided in subdomains, each one being an independent structuredmesh. Each block com-
municates with the next one via a set of ghost cells. As a final comment, structured mesh are
not the only option: unstructured mesh can also be used. In unstructured meshes, in order to
retrieve neighboring information for a given point, an indirection table is needed, because each
point can have a different connectivity with its neighbors. Despite the need of more complex
data structures, unstructured meshes are very common in industrial applications because they
are tailored for automated mesh generation. We will not detail further these technical aspects,
we refer the reader to the specialized literature such as Thompson et al. (1998).

5.2.2 Discretization of the convective term

In order to discuss the discretization strategy for the convective term we reduce the generic
system described by eq. (5.2) to:

𝜕𝒒
𝜕𝑡

+ ∇ ⋅ 𝑭(𝒒) = 𝟎 (5.13)
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Figure 5.3: Schematic of a mesh cell with its neighbor

this will allow to briefly discuss about the properties of the solutions of such kind of systems
more easily. The FVM integral formulation of eq. (5.13) is:

|Ω𝑖|
𝜕𝒒𝑖
𝜕𝑡

+ ∫Ω𝑖

∇ ⋅ 𝑭(𝒒) = 𝟎 (5.14)

using the divergence theorem, the second term can be expressed as:

|Ω𝑖|
𝜕𝒒𝑖
𝜕𝑡

+ ∮𝜕Ω𝑖

𝑭(𝒒) ⋅ 𝒏̂ = 𝟎 (5.15)

In the FVM framework, discretizing the convective term means providing a sound approxima-
tion of:

∮𝜕Ω𝑖

𝑭(𝒒) ⋅ 𝒏̂ (5.16)

that is, for polyhedral mesh cells,

∫Ω𝑖

∇ ⋅ 𝑭(𝒒) = ∮𝜕Ω𝑖

𝑭(𝒒) ⋅ 𝒏̂ ≈
𝑁faces

∑
𝑓

⌊𝑭(𝒒) ⋅ 𝒏̂⌋𝑓 𝑆𝑓 (5.17)

where ⌊•⌋𝑓 is a sound approximation of • on the face 𝑓, very often expressed as a linear
combination of the value • on the neighboring cells; 𝑆𝑓 is the surface of the face between the
cell Ω𝑖 and its neighbor, as shown in Fig. 5.3.

5.2.2.1 Eigenstructure

The discussion of the eigenstructure of a full 3D system may prove to be very complex, hence
we shall restrict further the discussion here to a system where 𝑁dim = 1. This assumption
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is not too constraining since, we will see, when we discretize the surface integral shown in
eq. (5.14), we shall deal with normal projection of the multi-dimensional convective flux

𝑭𝒏̂(𝒒) ≜ 𝑭(𝒒) ⋅ 𝒏̂

and also because invariance by rotation also holds for the set of equations we are examining.
Equation (5.13) is called conservative form. In case of smooth solutions, the conservative form
is equivalent to the quasi-linear form

𝜕𝒒
𝜕𝑡

+ 𝑨(𝒒)
𝜕𝒒
𝜕𝑥

= 𝟎 (5.18)

𝑨(𝒒) = 𝜕𝑭𝒏̂/𝜕𝒒 is the jacobian of the system. The properties of the 𝑨(𝒒) (and hence of
the derivatives of 𝑭(𝒒) are important in order to ensure the well-posedness of the problem
described by eq. (5.13).

Definition 3

With hyperbolic systemwe define a system such that it can bewritten as in eq. (5.18) and its jacobian
𝑨(𝒒) has 𝑁eqs real eigenvalues 𝜆1(𝒒) ≤ … ≤ 𝜆𝑎 ≤ … ≤ 𝜆𝑁eqs

(𝒒) with 𝑁eqs corresponding distinct
right eigenvectors 𝒓𝑁eqs

(𝒒). i.e. 𝑨(𝒒) is diagonalizable with real eigenvalues.

Definition 4

If the eigenvalues 𝜆𝑎(𝒒) are also distinct, then the system 5.13 is strictly hyperbolic.

For a strictly hyperbolic system, we can associate to each 𝜆𝑎 a corresponding right eigenvector
𝒓𝑎, such that

𝑨(𝒒)𝒓𝑎 = 𝜆𝑎𝒓𝑎 (5.19)

and a left eigenvector,

𝒍𝑇
𝑎𝑨(𝒒) = 𝜆𝑎𝒍𝑇

𝑎 (5.20)

such that we can rewrite the system eq. (5.18) as

𝒍𝑎(𝒒)(
𝜕𝒒
𝜕𝑡

+ 𝜆𝑎(𝒒)
𝜕𝒒
𝜕𝑥) = 0 (5.21)
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Figure 5.4: Example of characteristics curves for a “small hat” problem for the Burgers equation, cour-
tesy of Massot, Series, et al. (2020)

We also introduce a Riemann invariant 𝜄(𝒒) as a smooth function that satisfies eq. (5.22).

∇𝜄(𝒒) ⋅ 𝒓𝑎 = 0,∀𝒒 (5.22)

Definition 5

A 𝑎-simple-wave associated to the eigenvalue 𝜆𝑎 is a smooth solution 𝒒(𝒙, 𝑡) of eq. (5.13) for which
𝜄(𝒒) is constant on the domain for any 𝑎-Riemann invariant 𝜄.

It can be shown (Godlewski and Raviart 1996) that a 𝑎-simple wave is constant along the curves
described by:

d𝑥
d𝑡

= 𝜆𝑎(𝒒(𝑥, 𝑡)) (5.23)

called characteristics curves, and that these characteristic curves are straight lines. Hence
eq. (5.21) are also called characteristic equations.

152



5.2 Basic concepts for the discretization of (a system of) Partial Differential Equations
(PDEs) with the Finite Volume Method (FVM)

5.2.2.2 Weak solutions and Rankine-Hugoniot relations

For the scalar problem (𝑁eqs = 1), when the solution is smooth, the solution of the problem can
be calculated along the characteristic curves as shown in eqs. (5.21) and (5.23). Sometimes,
in the plane (𝑥, 𝑡), as shown in Fig. 5.4, two characteristic curves will intersect at some point
(𝑥̄, ̄𝑡), this is typical of non-linear hyperbolic systems. From that point in time on, there is
not anymore a bijectivity relation that allows to compute the solution at that point knowing
the initial solution and proceeding along a characteristic curve: we have the insurgence of
a discontinuity called shock. If we have a discontinuity we are not allowed anymore to use
the quasi-linear form of the equations (eq. (5.18)); we need to find our solutions in another
way: we will leverage the conservative nature of the equations (eq. (5.13)) to find the so-called
weak solutions in order to allow piecewise 𝒞 1 continuous solutions (i.e. solutions with jump
discontinuities).

Let us start from our system written in conservative form:

𝜕𝒒
𝜕𝑡

+ ∇ ⋅ 𝑭(𝒒) = 𝟎 (5.24)

𝒒 ∶ ℝ𝑁dim × [0,+∞[→ Ω ⊂ ℝ𝑁eqs is a smooth solution of the problem if it satisfies eq. (5.24)
with the initial conditions

𝒒(𝒙, 0) = 𝒒0(𝒙) (5.25)

if we take𝒘 ∈ 𝒞 1
0 (Ω × [0,+∞[)𝑝 the continuous functionswith compact support over (Ω × [0,+∞[),

we can write the conservative equation in integral form, and we can also rearrange it exploiting
the integral reduction theorems:

∫Ω ∫
+∞

0 (
𝜕𝒒
𝜕𝑡

+ ∇ ⋅ 𝑭(𝒒)) ⋅ 𝒘 d𝑡 d𝒙 =

∫Ω ∫
+∞

0
[

𝜕𝒘
𝜕𝑡

⋅ 𝒒 + 𝑭(𝒒) ⋅ (∇ ⋅ 𝒘)] d𝑡 d𝒙 + ∫Ω
𝒒(𝒙, 0) ⋅ 𝒘(𝒙, 0)

(5.26)

Since eqs. (5.24) and (5.25) are naturally satisfied for smooth solutions, eq. (5.26) is also equal
to 0 if 𝒒 is a smooth solution, i.e. it satisfies eq. (5.27) naturally.

∫Ω ∫
+∞

0
[

𝜕𝒘
𝜕𝑡

⋅ 𝒒 + 𝑭(𝒒) ⋅ (∇ ⋅ 𝒘)] d𝑡 d𝒙 + ∫Ω
𝒒(𝒙, 0) ⋅ 𝒘(𝒙, 0) = 0 (5.27)

We can then define aweak solution as a solution 𝒒(𝒙, 𝑡) ∈ Ω that satisfies eq. (5.27) for arbitrary
𝒘 ∈ 𝒞 1

0 (Ω × [0,+∞[)𝑝. Also, a weak solution that is regular is a strong solution.
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Let us retrieve now what kind of relations need to be imposed if 𝒒 is piecewise continuous
in our solution space. Let us assume without loss of generality that 𝒒 ∈ 𝒞 1 everywhere
except in a neighborhood of 𝒮, a discontinuity surface oriented with a normal unit vector 𝒏̂ =

( ̂𝑛𝑡, 𝒏̂𝒙) across which 𝒒 undergoes a jump. Let 𝑷(𝒮) be a point of 𝒮 and ℬ𝑷 a ball centered
in 𝑷. Proceeding as suggested in Godlewski and Raviart (1996), considering 𝒮 ∩ ℬ𝑷 the only
discontinuity surface for 𝒒, we can write eq. (5.27) in this situation as:

∫ℬ𝑷
∫

+∞

0
[

𝜕𝒘
𝜕𝑡

⋅ 𝒒 + 𝑭(𝒒) ⋅ (∇ ⋅ 𝒘)] d𝑡 d𝒙 =

∫ℬ+
𝑷

∫
+∞

0
… + ∫ℬ−

𝑷
∫

+∞

0
… = 0

(5.28)

Splitting the integral in two contributions for the two components, before •− and after •+ the
wave, of ℬ𝑷 = ℬ+

𝑷 ∪ ℬ−
𝑷 and applying the integral reduction theorems, we get:

0 = − ∫ℬ+
𝑷

∫
+∞

0 (
𝜕𝒒
𝜕𝑡

+ ∇ ⋅ 𝑭(𝒒)) ⋅ 𝒘 d𝑥 d𝑡

− ∫ℬ−
𝑷

∫
+∞

0 (
𝜕𝒒
𝜕𝑡

+ ∇ ⋅ 𝑭(𝒒)) ⋅ 𝒘 d𝑥 d𝑡

− ∮𝒮 ∩ℬ𝑷
( ̂𝑛𝑡𝒒+ + 𝒏̂𝒙 ⋅ 𝑭(𝒒)) ⋅ 𝒘 d𝐴

+ ∮𝒮 ∩ℬ𝑷
( ̂𝑛𝑡𝒒− + 𝒏̂𝒙 ⋅ 𝑭(𝒒)) ⋅ 𝒘 d𝐴

(5.29)

The first two terms of eq. (5.29) are null because 𝒒 is smooth on each side of ℬ𝑷, i.e. it satisfies
eq. (5.24). The other two terms lead to:

∮𝒮 ∩ℬ𝑷
( ̂𝑛𝑡𝒒+ + 𝒏̂𝒙 ⋅ 𝑭(𝒒)) − ( ̂𝑛𝑡𝒒− + 𝒏̂𝒙 ⋅ 𝑭(𝒒)) ⋅ 𝒘 d𝐴 (5.30)

Defining the jump operator [•] across the discontinuity as

[•] = •+ − •−

and assuming 𝒮 to be a 1D curve with a parametrization 𝒮 ∶ 𝑡 → 𝜉(𝑡) for which 𝒏̂ = (−𝗌, 1)𝑇,
we obtain from eq. (5.30), for arbitrary 𝒘, the so-called Rankine-Hugoniot jump conditions:

𝗌[𝒒] = [𝑭(𝒒)] (5.31)
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Equation (5.31), for 𝑁eqs > 1, is a set of relations that ensure 𝒒 is a weak solution of the system
eq. (5.24) and 𝗌 is the speed of the discontinuity.

Weak solutions are in generally not unique. In order to select the physical (i.e. entropic)
solutions among the multitude of possibilities, entropy conditionsmust be imposed. There are
various ways of imposing the entropy conditions, for simple cases one solution is to use the Lax
entropy conditions) that translate into specific relations between a discontinuity speed and the
eigenvalues of the system computed with the states 𝒒+, 𝒒− across the discontinuity, based on
the nature of the characteristic fields associated to each eigenvalue — i.e. if they are genuinely
non linear or linearly degenerate. Other approaches are also possible, i.e. vanishing viscosity
method, such that admissible shocks are chosen as the limit of viscous profiles. We will not
further detail these aspects, in practical cases of our interest these conditions are enforced with
simple comparison of the pressure values (or equivalent comparisons on other fields across
each discontinuity), the interested reader can refer to Godlewski and Raviart (1996, Chap. I,
Section 5) for additional details.

5.2.2.3 The Riemann Problem

The Riemann Problem (RP) is a special case of a 1D Initial Value Problem (IVP) for the system
of eq. (5.24) defined as finding the self-similar solution 𝒒RP(𝑥/𝑡; 𝒒𝐿, 𝒒𝑅) on a given domain
𝑥 ∈ ℝ , 𝑡 > 0, where the solution has a special initial conditions in which two different dis-
continuous values (𝒒𝐿, 𝒒𝑅) at the boundaries of the domain undergo a discontinuous jump at
𝑥 = 𝑥0 that is for convenience taken as 𝑥0 = 0. It is a generalization of the Sod’s shock tube
(Sod 1978) for the Euler system with arbitrary left and right conditions and an arbitrary system
of equations.

⎧⎪
⎪
⎨
⎪
⎪⎩

𝜕𝒒
𝜕𝑡

+ 𝑭(𝒒) = 𝟎

𝒒(𝑥, 0) = 𝒒𝐿, 𝑥 ∈ [𝑥𝑅, 0]
𝒒(𝑥, 0) = 𝒒𝑅, 𝑥 ∈ (0, 𝑥𝐿]

(5.32)

If the system has 𝑁eig eigenvalues, hence 𝑁eig characteristic fields, we have elementary waves
associated to each 𝑘 field. These elementary waves, under certain conditions, can be defined
as self-similar solutions that connect two states across the wave, i.e. rarefaction waves, or
discontinuities, when weak solutions are required. Among the discontinuities, we can sort
out contact discontinuities, in the case the 𝑘 characteristic field is linearly degenerate, or
shock waves, for genuinely non linear characteristic fields. Under the assumption of |𝒒𝐿 − 𝒒𝑅|
“small” (Godlewski and Raviart 1996), we can retrieve the solution to eq. (5.32) as a succession
of piecewise constant fields across a series of elementary waves (rarefaction waves, contact dis-
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Figure 5.5: A general Riemann problem wave pattern

continuities or shocks). Fig. 5.5 shows a graphical representation of the previous explanation.
Most of the times, it does not exist a closed analytical solution for the “star-states” 𝒒∗

𝑘 across
the elementary waves, and in practical situations as for example the RP for the Euler system, the
problem must be solved numerically and it often involves solving multiple non-linear systems
and ODEs (section 5.3.2). An in-depth discussion is provided by Godlewski and Raviart (1996,
Chap. I, Section 6).

5.2.2.4 The Godunov method

The Godunov method (Godunov 1959) is a clever numerical strategy to find the solution to
eq. (5.24) leveraging the knowledge of the solution 𝒒RP(𝑥/𝑡; 𝒒𝐿, 𝒒𝑅) of a 1D RP across two
discontinuous states. The original paper exploits the complete solution of the RP and it also
allows to provide an expression for the term ∑𝑁faces

𝑓 ⌊𝑭(𝒒) ⋅ 𝒏̂⌋𝑓 𝑆𝑓 of the semi-discretized form
of the convective term of eq. (5.2):

∫Ω𝑖

∇ ⋅ 𝑭(𝒒) = ∮𝜕Ω𝑖

𝑭(𝒒) ⋅ 𝒏̂ ≈
𝑁faces

∑
𝑓

⌊𝑭(𝒒) ⋅ 𝒏̂⌋𝑓 𝑆𝑓

The key concept is understanding that the discretized domain is composed by a number of cells
on which, in the case of first-order FVM schemes, the solution field 𝒒 is piecewise constant,
then for each pair (𝑖, 𝑖 + 1) of cell–neighbor, we basically have a RP to solve, where 𝒒𝐿 =
𝒒𝑖, 𝒒𝑅 = 𝒒𝑖+1 along the normal direction 𝒏̂ to the face shared by the two cells. Once we have
the solution 𝒒RP(𝑥/𝑡; 𝒒𝑖, 𝒒𝑖+1) of the problem we can evaluate the intercell flux ⌊𝑭(𝒒) ⋅ 𝒏̂⌋𝑓 𝑆𝑓
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Figure 5.6: The Godunov method applied to a mesh

as:
⌊𝑭(𝒒) ⋅ 𝒏̂⌋𝑓 𝑆𝑓 = 𝑭(𝒒RP(0, 𝒒𝑖, 𝒒𝑖+1)) ⋅ 𝒏̂𝑓 𝑆𝑓 (5.33)

that is, the intercell flux is computed with the solved Riemann problem state computed at the
interface 𝑥/𝑡 = 0. This is equivalent to compute the real flux across the cell face.

5.2.2.5 Approximate Riemann Solvers

In section 5.2.2.3 we presented the general aspects of the solution of the Riemann Problem
(RP), and in section 5.2.2.4 we also explain how the solution of the RP can be employed for
the numerical simulation of a PDE system using the Godunov method. We also mentioned that
in fact, for general EoS, the solution of the RP features multiple ODE solutions and non-linear
root finding and it is, hence, very costly to implement on large meshes. For this reason, it
is common to look for Approximate Riemann solvers that are faster computational-wise, still
retaining the important properties that ensure the consistent convergence of the solution.

The strategies are variegated. One strategy is based on the quasi-linear form of the system
eq. (5.18)

𝜕𝒒
𝜕𝑡

+ 𝑨(𝒒) ⋅ ∇𝒒 = 𝟎

in which the jacobian matrix 𝑨(𝒒), that varies with the state, is replaced by a sound approxi-
mation that is instead constant.

𝑨(𝒒) ∼ 𝑨̄(𝒒𝐿, 𝒒𝑅)

In this way the non-linear hyperbolic system eq. (5.18) becomes a linear hyperbolic system
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Figure 5.7: Slopes reconstruction in structured meshes

that is easier to handle and faster when used as numerical scheme in a simulation. An exam-
ple of this strategy is the Roe’s solver (Roe 1981). For further details we refer to LeVeque
(1990); LeVeque (2002); Eleuterio F. Toro (2009). Another possible strategy leverages the
interpretation of the RP as the interaction of simple waves. The idea is to postulate a wave
structure, that is not required to provide the same number of waves as provided by the physical
system eigenstructure, and the wave speeds are then estimated from the available state values

(𝒒𝐿, 𝒒𝑅). Once the wave speeds are known, the Rankine-Hugoniot (eq. (5.31)) conditions can
be enforced across each discontinuity wave, relaying the states on the left with the ones on
the right of the discontinuity, leading to an approximation of the “star-state” 𝒒∗ and, hence,
of the inter-cell flux 𝑭(𝒒∗). The Rusanov scheme (Rusanov 1962), the HLL (Amiram Harten
et al. 1983) and the HLLC (Eleuterio F. Toro 2019) can be formulated under this framework.
Other approaches are also possible, the interested reader is referred to LeVeque (1990); LeV-
eque (2002); Eleuterio F. Toro (2009) for a complete description of numerical methods for
hyperbolic systems.

5.2.2.6 Higher order methods

Until now, all the method we introduced present a problem of high numerical viscosity and
they behave poorly in situations where high gradients of the state are present (e.g. in the case
of contact discontinuities and shocks), the profiles that are computed by those schemes appear
smeared out or they require very fine meshes to counteract the numerical diffusion. In order
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to alleviate the problem, the Godunov method (section 5.2.2.4) can be extended considering
piecewise linear functions locally on each cell Ω𝑖,

𝒒(𝒙) = 𝒒𝑖 + ∇𝒒𝑖 ⋅ (𝒙 − 𝒙𝑖) (5.34)

the gradient ∇𝒒 might be approximated by the methods we discuss in section 5.2.4. Unfor-
tunately, these slopes cannot be estimated without additional constraints, because otherwise
they may produce instabilities. Ami Harten (1997) in facts explains the framework of Total
variation diminishing (TVD) schemes which provides the right constraints, or “limiters”, that
need to be enforced in order to retain robustness of the scheme. In other words, the value of
the slope cannot be reconstructed freely, but it needs to be limited. One possible solution for
structured meshes, as shown in Fig. 5.7, is to consider a stencil including the cell 𝑖, and the
direct neighbors 𝐿 and 𝑅. Two possible slopes can be computed,

∇𝒒𝑅 =
𝒒𝑅 − 𝒒𝑖
𝑥𝐿 − 𝑥𝑖

∇𝒒𝐿 =
𝒒𝑖 − 𝒒𝐿
𝑥𝑖 − 𝑥𝐿

(5.35)

(5.36)

then the effective slope is taken as (𝑓 = 𝐿,𝑅):

∇𝒒′
𝑖 = 𝜓(𝑟)∇𝒒𝑖 (5.37)

where 𝑟 = ∇𝒒𝐿 ⋅ 𝒏̂𝐿/∇𝒒𝑅 ⋅ 𝒏̂𝑅 is the ratio of successive gradients and 𝜓(𝑟) is the “slope lim-
iter”. As an example, the MINMOD limiter is:

𝜓MINMOD(𝑟) = max(0,min(1, 𝑟)) (5.38)

With the limited slope computed, the state can be reconstructed on the two opposite faces
𝒒𝑙, 𝒒𝑟. These two new left and right states can then be used in a Riemann solver to advance in
time as we discussed in section 5.2.2.5. A possible approach is given by the MUSCL-Hancock
approach, that is composed by three steps:

• Limited linear reconstruction of the state on the faces at the time instant 𝑘 as provided by
eq. (5.34), with the gradient computed as per eq. (5.37), providing (𝒒(𝒙𝐿) = 𝒒𝑘

𝐿, 𝒒(𝒙𝑅) =
𝒒𝑘

𝑅)

• A prediction step Δ𝑡/2 long in which intermediate predicted states at the interface be-
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tween the cells and its neighbors are obtained

𝒒𝑘+1/2
𝐿 = 𝒒𝑘

𝐿 − Δ𝑡
2

𝑆𝐿

|Ω𝑖|
(𝑭(𝒒𝑅) − 𝑭(𝒒𝐿))

𝒒𝑘+1/2
𝑅 = 𝒒𝑘

𝑅 − Δ𝑡
2

𝑆𝑅

|Ω𝑖|
(𝑭(𝒒𝑅) − 𝑭(𝒒𝐿))

(5.39)

(5.40)

(5.41)

• Using the approximate Riemann solver of choice with left and right state respectively
𝒒𝑘+1/2

𝐿 , 𝒒𝑘+1/2
𝑅 to compute the numerical flux at the interface

⌊𝑭(𝒒) ⋅ 𝒏̂⌋𝑓 𝑆𝑓 ≈ 𝑭(𝒒RP(0, 𝒒𝑖, 𝒒𝑘+1/2
𝑓 )) ⋅ 𝒏̂𝑓𝑆𝑓 (5.42)

TheMUSCL-Hancock approach to build high-order schemes is not the only choice possible.
More alternatives can be found, as for example theWENO schemes (Shu 2003), OSTVD high-
order schemes (Daru and Tenaud 2004) or Discontinuous Galerkin (DG) methods (Cockburn
and Shu 2001), possibly coupled with TVD time schemes (Gottlieb and Shu 1996; Gottlieb and
Shu 1998). We refer the reader also to complete overviews on the subject of LeVeque (1990);
Godlewski and Raviart (1996); LeVeque (2002); Bouchut (2004); Eleuterio F. Toro (2009)
among others and a multi-slope approach for unstructured meshes described in Le Touze et al.
(2014).

5.2.3 Discretization of the non-conservative term

The non conservative term

∫Ω𝑖

𝑩(𝒒) ⋅ ∇𝒒 (5.43)

is quite tricky to approximate. If 𝒒 is discontinuous, for example in presence of shocks, the
integral eq. (5.43) can be ill-posed. A satisfying theory on how to treat this term does not
exist, different attempts are indeed present in literature (Gallice 2002; Castro and E. F. Toro
2006; Wargnier et al. 2019). In specific cases, like the system from Baer and Nunziato (1986)
(section 5.4), it is possible to choose the closure for some terms of the model (notably the
interfacial velocity and pressure) in order to have the correct behavior in case of shocks (Coquel,
Gallouët, et al. 2002). For the sake of this work, we will limit ourselves to approximate the
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term as follows:

∫Ω𝑖

𝑩(𝒒) ⋅ ∇𝒒 ≈ ⟨𝑩(𝒒)⟩Ω𝑖
⋅ ∮𝜕Ω𝑖

(𝒒 ⊗ 𝒏̂) ≈ ⟨𝑩(𝒒)⟩Ω𝑖
⋅

𝑁faces

∑
𝑓

⌊𝒒 ⊗ 𝒏̂⌋𝑓 𝑆𝑓 (5.44)

That is, the non-conservative pre-multiplier 𝑩(𝒒) is computed as a sound evaluation at the cell
center, and considered constant over the cell volume, allowing to use the gradient theorem
for the rest of the term. For the purposes at stake in this work, 𝑩(𝒒) is generally made by
a combination of fluid velocities and pressures (e.g. in the B-N model (Baer and Nunziato
1986)), for this reason most of the times the ⟨𝑩(𝒒)⟩Ω𝑖

is estimated with an upwind scheme of
some sort. We will show that for the problems we are interested in, this approximation scheme
provides satisfying results.

5.2.4 Discretization of the diffusive term

The diffusive term

∫Ω𝑖

∇ ⋅ (𝑲(𝒒) ⋅ ∇𝒒) (5.45)

is approximated applying the divergence theorem:

∫Ω𝑖

∇ ⋅ (𝑲(𝒒) ⋅ ∇𝒒) ≈ ⟨𝑲(𝒒)⟩Ω𝑖
⋅ ∮𝜕Ω𝑖

∇𝒒 ⋅ 𝒏̂ ≈ ⟨𝑲(𝒒)⟩Ω𝑖
⋅

𝑁faces

∑
𝑓

⌊∇𝒒 ⋅ 𝒏̂⌋𝑓 𝑆𝑓 (5.46)

𝑲(𝒒) is the (potentially 4th-order) viscosity tensor and it is generally provided by the constitu-
tive equation of the fluid under study and it needs to be computed as a sound mean value over
the cell volume. As it is possible to note from eq. (5.46), the diffusive scheme FVM approx-
imation needs an estimation of the state gradient ∇𝒒 at the cell face. This estimation can be
provided with different strategies, they can account for contributions from a variable amount
of neighboring cells.

5.2.4.1 Forward differencing

This method is the easiest one. If we check eq. (5.46), we see that what we need is the normal
component to the face between a cell and the corresponding neighbor. Hence, the naive way
of approximating a normal gradient is,

⌊∇𝒒 ⋅ 𝒏̂⌋𝑓 𝑆𝑓 =
𝒒𝑛 − 𝒒𝑖

‖Δ𝒙𝑛𝑖‖
𝑆𝑛𝑖 (5.47)
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where 𝒙 indicates the position of the cell centroid, 𝑆𝑛𝑖 the surface of the face shared by the
cell and its neighbor and Δ𝒙𝑛𝑖 the relative distance between a cell Ω𝑖 and the corresponding
neighbor Ω𝑛 as shown in Fig. 5.8. Equation (5.47) is correct for pair of cells in which the two
centroids are aligned with the normal direction to the face. Examining Fig. 5.3, we can see
that when the centroids are misaligned, a non-orthogonal correction is required to improve
the estimation of the gradient. Moukalled et al. (2016), among others, provide details on the
subject.

5.2.4.2 Green-Gauss

This strategy expects the gradient to be volume-averaged locally to the cell 𝑖,

∮𝜕Ω𝑖

∇𝒒 ⋅ 𝒏̂ = |Ω𝑖| ⟨∇𝒒⟩Ω𝑖
⋅

𝑁neigh.

∑
𝑓

𝒏̂𝑓𝑆𝑓 (5.48)

and then the average gradient value is approximated via the Green formula,

|Ω𝑖| ⟨∇𝒒⟩Ω𝑖
=

𝑁neigh.

∑
𝑓

𝒒𝑓 ⊗ 𝒏̂𝑓𝑆𝑓 (5.49)

In eq. (5.49), 𝒒𝑓 is a sound approximation of the state on the cell face. This value then needs
to be retrieved using interpolation. One solution that requires a small stencil is:

𝒒𝑓 = 𝑤𝑛𝒒𝑖 + (1 − 𝑤𝑛)𝒒𝑛 (5.50)

where 𝑤𝑛 is a tunable weight, generally taken as the inverse of the relative distance Δ𝒙𝑛𝑖.

𝑤𝑛 = 1
‖Δ𝒙𝑛𝑖‖

(5.51)

5.2.4.3 Least Squares gradient

This numerical recipe applies a least-squares optimization over all the adjacent cell neighbors
to a given cell Ω𝑖. We note that a generic field 𝜑 can be expressed on a neighbor cell Ω𝑛 w.r.t.
to the cell Ω𝑖 with:

𝜑𝑛 = 𝜑𝑖 + (∇𝜑) ⋅ (𝒙𝑛 − 𝒙𝑖) (5.52)
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Figure 5.8: Estimating the gradient with a least square approach
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We can then define a cost function 𝐺(∇𝜑; 𝜑𝑛,𝜑𝑖,𝒙𝑖,𝒙𝑛) that takes into consideration all the
neighbors of a cell

𝐺(∇𝜑; 𝜑𝑛,𝜑𝑖,𝒙𝑖,𝒙𝑛) =
𝑁neigh.

∑
𝑛

𝑤𝑛[𝜑𝑛 − (𝜑𝑖 + (∇𝜑)𝑖) ⋅ Δ𝒙𝑛𝑖]
2 (5.53)

where 𝑤𝑛 is a tunable weight, generally taken as the inverse of the relative distance Δ𝒙𝑛𝑖.
𝑁neigh. is the number of neighbors of the point 𝑖. The set of neighbors of the point 𝑖 in a
structured mesh can also include the set of diagonal neighbors to improve the accuracy of the
estimation, as shown in Fig. 5.8. The weights 𝑤𝑛 defined as in eq. (5.51). If we optimize 𝐺 to
find a stationary point:

𝜕𝐺
𝜕∇𝜑

= 0

we obtain a linear system:

𝑴(𝑤𝑛,Δ𝒙𝑛𝑖)∇𝜑 = 𝒃(𝑤𝑛,Δ𝜑𝑛𝑖,Δ𝒙𝑛𝑖) (5.54)

where Δ𝜑𝑛𝑖 = 𝜑𝑛 − 𝜑𝑖, and the matrix 𝑴 is calculated as follows:

𝑴(𝑤𝑛,Δ𝒙𝑛𝑖) =
⎡
⎢
⎢
⎢
⎣

∑
𝑁neigh.
𝑛 𝑤𝑛Δ𝑥𝑛𝑖Δ𝑥𝑛𝑖 ∑

𝑁neigh.
𝑛 𝑤𝑛Δ𝑦𝑛𝑖Δ𝑥𝑛𝑖 ∑

𝑁neigh.
𝑛 𝑤𝑛Δ𝑧𝑛𝑖Δ𝑥𝑛𝑖

∑
𝑁neigh.
𝑛 𝑤𝑛Δ𝑥𝑛𝑖Δ𝑦𝑛𝑖 ∑

𝑁neigh.
𝑛 𝑤𝑛Δ𝑦𝑛𝑖Δ𝑦𝑛𝑖 ∑

𝑁neigh.
𝑛 𝑤𝑛Δ𝑧𝑛𝑖Δ𝑦𝑛𝑖

∑
𝑁neigh.
𝑛 𝑤𝑛Δ𝑥𝑛𝑖Δ𝑧𝑛𝑖 ∑

𝑁neigh.
𝑛 𝑤𝑛Δ𝑦𝑛𝑖Δ𝑧𝑛𝑖 ∑

𝑁neigh.
𝑛 𝑤𝑛Δ𝑧𝑛𝑖Δ𝑧𝑛𝑖

⎤
⎥
⎥
⎥
⎦

(5.55)

Please note that 𝑴(𝑤𝑛,Δ𝒙𝑛𝑖) depends only on the geometry of the mesh, so if the mesh is not
dynamic, it can be precomputed ahead of time and stored in memory, possibly in decomposed
form. The RHS 𝒃 is computed with eq. (5.56),

𝒃(𝑤𝑛,Δ𝜑𝑛𝑖,Δ𝒙𝑛𝑖) =
𝑁neigh.

∑
𝑛

𝑤𝑛Δ𝜑𝑛𝑖Δ𝒙𝑛𝑖 (5.56)

and it depends on the actual field value at the cell Ω𝑖 and its neighbors Ω𝑛, so it needs to be
recomputed at each time step. Exploiting vectorized linear algebra primitives that also support
broadcasting (like for example NumPy (Harris et al. 2020)), in the case of a structured mesh,
the system of eq. (5.54) can be stacked for all the cells of the mesh, and for all the fields of
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the state 𝒒 in order to provide a complete solution for the gradient ∇𝒒 all over the mesh cell
centers, with optimized memory footprint

𝑴(𝑤𝑛,Δ𝒙𝑛𝑖)∇𝒒 = 𝒃̂(𝑤𝑛,Δ𝜑𝑛𝑖Δ𝒙𝑛𝑖) (5.57)

Once eq. (5.57) is solved and the gradient is available at each cell Ω𝑖, the gradient at the face
can be interpolated between the value at the cell and the value at its neighbor Ω𝑛 sharing the
face 𝑓, for example with a simple mean:

|∇𝒒|𝑓 = 1
2(∇𝒒𝑖 + ∇𝒒𝑛) (5.58)

Other interpolation schemes are possible, the interested reader is referred to Moukalled et al.
(2016) for a detailed presentation of those possibilities.

5.2.5 Discretization of the source term

The source term:

∫Ω
𝒔(𝒒) (5.59)

generally undergoes specific treatment depending on its nature: it can be casted as the gradient
of some potential for conservative forces (𝒔(𝒒) = ∇𝜓) and be included in the discretization of
the convective term, for example, in the same level as a pressure. As a generic presentation, if
not otherwise specified, we simply discretize the source term as a volume-averaged constant
value on the cell,

∫Ω𝑖

𝒔(𝒒) = ⟨𝒔(𝒒)⟩Ω𝑖 |Ω𝑖| (5.60)

the simplest choice for the volume-averaged constant value is to just retain the value of the
source term calculated on the cell centroids,

⟨𝒔(𝒒)⟩Ω𝑖
≈ 𝒔(𝒒𝑖)

This choice might not perform as expected for coarse cells or strongly non linear source terms
(LeVeque and Yee 1990) which might required more advanced discretization techniques.
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5.2.6 Time integration

Let us consider the full PDE system under consideration discretized with the FVM:

|Ω𝑖|
𝜕𝒒
𝜕𝑡

+
𝑁faces

∑
𝑓

⌊𝑭(𝒒) ⋅ 𝒏̂⌋𝑓 𝑆𝑓 +
𝑁faces

∑
𝑓

⌊𝒒 ⊗ 𝒏̂⌋𝑓 𝑆𝑓 −
𝑁faces

∑
𝑓

⌊∇𝒒 ⋅ 𝒏̂⌋𝑓 𝑆𝑓 + ⟨𝒔(𝒒)⟩Ω𝑖 |Ω𝑖| = 𝟎

and then grouping all the space terms in the term −𝒇(𝒒, 𝑡), we achieve a semi-discretized form
of the PDE system (eq. (5.61)),

𝜕𝒒
𝜕𝑡

= 𝒇(𝒒, 𝑡) (5.61)

which can be written in integral form:

𝒒𝑛+1 = 𝒒𝑛 + ∫
𝑡+Δ𝑡

𝑡
𝒇(𝒒∗, 𝑡∗) d𝑡∗ (5.62)

The objective of the time scheme is to provide a sound discretization of the term∫𝑡+Δ𝑡
𝑡 𝒇(𝒒∗, 𝑡∗) d𝑡∗.

The ∗ symbol indicates that the RHS can be treated implicitly, where we can have ∗ = 𝑛 + 1,
or explicitly, where ∗ = 0 … 𝑛. When we employ an implicit time-scheme, being 𝒇(𝒒∗, 𝑡∗) po-
tentially non-linear, a root finding algorithm must be used at each time step to compute 𝒒𝑛+1.
For simplicity, in this context we will treat only explicit schemes and in particular Runge-Kutta
schemes,

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝒒𝑛+1 = 𝒒𝑛 + Δ𝑡
𝑠

∑
𝑖

𝑏𝑖𝐾𝑖

𝐾1 = 𝒇(𝒒𝑛, 𝑡𝑛)
⋮

𝐾𝑠 = 𝒇
(

𝒒𝑛 + Δ𝑡
(

𝑠−1

∑
𝑙=1

𝑎𝑠𝑙𝑛𝑙)
, 𝑡𝑛 + 𝑐𝑠Δ𝑡

)

(5.63)

where the coefficients 𝑎𝑠, 𝑏𝑠, 𝑐𝑠 are specific to each Runge-Kutta (RK) scheme, and they are
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generally graphically arranged in aButcher Tableau (Butcher 1996) as the one shown in eq. (5.64).

0

𝑐1 𝑎11

𝑐2 𝑎12 𝑎22

⋮ …

𝑐𝑠 𝑎𝑠1 𝑎𝑠2 … 𝑎𝑠𝑠−1

𝑏1 𝑏2 … 𝑏𝑠

(5.64)

Moreover, the coefficients can be also optimized in order to have Strong Stability Preserving
(SSP) behavior (Gottlieb and Shu 1996; Gottlieb and Shu 1998), a property that is of special
interest for the stability of high-order schemes in the simulation of conservation laws as the one
we treat in this work. When they are coupled with spatial schemes that preserve this property,
we talk about TVD schemes in the case of scalar equations.

5.2.6.1 The CFL Condition

t

xk

k+1

Δtmax

i-1 i+1i

Δx

Figure 5.9: The maximum CFL number allowed by the propagation of the information in hyperbolic
systems

A final note on the choice of the time step Δ𝑡 for explicit time integration. For what concerns
the convective term in hyperbolic systems, when using the Godunov method, as we do in this
study, the time step cannot be chosen freely. If we look at Fig. 5.9 that shows the propagation
of the information from a timeinstant 𝑛 to the next one 𝑛+1 for three generic points of the mesh
𝑖−1, 𝑖, 𝑖+1 we see that for a certain Δ𝑡, the characteristic lines intersect leading to multivalued
solutions. The characteristic waves are also shown since for each point of the domain we have
a RP to solve. The maximum time step possible is driven by the maximum speed of the waves
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along the entire mesh 𝗌max = max(𝗌𝑖,max), i.e.

Δ𝑡conv ≤ Δ𝑥
𝗌max

(5.65)

When the system also features diffusion terms, another limiting condition on the time step can
be retrieved with a von Neumann stability analyis, that is:

Δ𝑡diff ≤ Δ𝑥2

2𝜇
(5.66)

where 𝜇 is the viscosity coefficient. Therefore, in cases where both diffusive and convective
terms are present in the system, the effective time step is takes an:

Δ𝑡 = min(Δ𝑡conv,Δ𝑡diff) (5.67)

.

It might happen that in specific cases, the requirements on the time step from the von Neu-
mann stability analysis might be too restrictive. In that case an implict approach (N’Guessan
2020) or a high-order explicit scheme with extended stabilility (Duarte et al. 2012) might be
more suitable.

5.3 The Euler system

The Euler system is an interesting PDE system of conservation laws of interest in high-speed
external aerodynamics and internal combustion (combined with chemistry) other than mere
mathematical delight. In its classical form it is defined as an homogeneous convective system
that features strict hyperbolicity under common hypotheses for the EoS. In order to present it,
let us recall our PDE reference model:

𝜕𝒒
𝜕𝑡

+ ∇ ⋅ 𝑭(𝒒) + 𝑩(𝒒) ⋅ ∇𝒒 − ∇ ⋅ (𝑲(𝒒) ⋅ ∇𝒒) + 𝒔(𝒒) = 𝟎

the Euler system is a homogeneous convective system,

𝜕𝒒
𝜕𝑡

+ ∇ ⋅ 𝑭(𝒒) = 𝟎
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where the state is given by:

𝒒 = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐸; 𝜌𝑒, 𝑢, 𝑣,𝑤, 𝑝, 𝑐) (5.68)

and the convective flux is defined as

𝑭(𝒒) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜌𝑢 𝜌𝑣 𝜌𝑤
𝜌𝑢2 + 𝑝 𝜌𝑢𝑣 𝜌𝑢𝑤

𝜌𝑣𝑢 𝜌𝑣2 + 𝑝 𝜌𝑣𝑤
𝜌𝑤𝑢 𝜌𝑤𝑣 𝜌𝑤2 + 𝑝

(𝜌𝐸 + 𝑝)𝑢 (𝜌𝐸 + 𝑝)𝑣 (𝜌𝐸 + 𝑝)𝑤

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.69)

5.3.1 Eigenstructure

Applying a change of variables to the system, in order to ease the computations, the eigen-
structure of the system does not change and the hyperbolicity is ensured for classical EoS, it is
then possible to find that the eigenvalues of the Euler system are:

𝜆1−5(𝒒) = (𝑢 + 𝑐, 𝑢, 𝑢, 𝑢, 𝑢 − 𝑐) (5.70)

with corresponding right eigenvectors 𝒓, that in the case the system is casted in primitive vari-
ables ̃𝒒 = (𝜌, 𝑢, 𝑣,𝑤, 𝑝)𝑇, read:

𝒓15 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜌
±𝑐
0
0

𝜌𝑐2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝒓2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
𝑣
𝑤
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝒓3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜌
0
1
𝑤
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝒓4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜌
0
𝑣
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.71)

The characteristic fields associated to the eigenvalues 𝜆2−4 are linearly degenerate and they
correspond to shear waves, across which we have changes of the tangential velocities (𝑣,𝑤).
Moreover, analyzing the components of 𝒓1,5, we see that across the shock/rarefactions the tan-
gential components of the velocity do not change since the components corresponding to (𝑣,𝑤)
are null. For a detailed overview on the Euler equations we refer the reader to Eleuterio F. Toro
(2009); Godlewski and Raviart (1996); L. Quartapelle (2015).
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5.3.2 An exact Riemann solver for a generic Equation of State (EoS)

In section 5.2.2.3 we presented the generalities of the RP. Generally, the tooling around the
retrieval of the exact solution of the Riemann Problem (RP) is presented and developed for EoS
that allow closed analytical solutions to the integrals needed for the resolution of the rarefaction
waves and that are easilymade explicit, such that the Hugoniot locus can be expressed explicitly
as a parametrization on the pressure 𝑝 → 𝜌:

𝜌 = 𝜌hugoniot(𝑝)

and the shock solution can be easily expressed analytically. In this section we present the nu-
merical procedure to retrieve the exact solution of the RP for the Euler systemwith a reasonably
general EoS 𝑒(𝑝, 𝜌) ↔ 𝑝(𝜌, 𝑒), potentially tabulated or not complete. We will show how the
solution requires two non-linear root-finding loops, together with coupled ODEs solutions in
the case rarefaction waves are present. The procedure is inspired by Colella and Glaz (1985);
Kamm (2015), but it features slight deviations to enhance comprehensibility. Before present-
ing the procedure, we briefly recap the equations that need to be solved to “connect” the left
state with the right state across a wave. The type of solutions that we can have are: rarefac-
tion or shocks for the genuinely non-linear characteristic fields associated to the eigenvalues
𝜆1,3 = (𝑢 + 𝑐, 𝑢 − 𝑐), and a contact discontinuity associated to the linearly degenerate field
𝜆2 = 𝑢.

5.3.2.1 Rarefaction wave

The rarefaction wave is a simple wave smooth solution of the RP that appears when the pressure
after the wave is lower than the pressure before the wave, i.e. 𝑝+ < 𝑝−. Since a rarefaction wave
is a simple wave, we know that (see definition 5) the Riemann invariants and the entropy 𝑠 are
constant across the wave. The thermodynamic entropy is defined via the Gibbs relation, i.e.

𝑇 d𝑠 = d𝑒 + 𝑝 d(
1
𝜌) (5.72)

Therefore, if we decide to express our thermodynamic potentials as functions of, for example,
one other potential and entropy, then across the rarefaction they are just function of the other
chosen dependent variable. We choose the pressure 𝑝 as the other functional dependency. For
the Euler system, the two Riemann invariants are (𝑢 ± ℓ) based on if we are considering the
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rarefaction wave corresponding respectively to 𝜆3 or 𝜆1. ℓ(𝑝) is defined in differential form:

𝜕ℓ
𝜕𝑝

= 1
𝜌𝑐

(5.73)

To fully resolve the state across the rarefaction wave, we set the corresponding differential of
the Riemann invariant to zero,

d(𝑢 ± ℓ) = 0

since it is constant, and we couple the definition of the speed of sound,

𝑐2 =
d𝑝
d𝜌| (5.74)

Thus, we obtain the following characteristic ODEs:

⎧
⎪
⎨
⎪
⎩

d𝜌
d𝑝

= 1
𝑐2 , 𝜌(𝑝𝑘) = 𝜌𝑘

d𝑢
d𝑝

=
𝜂𝑘
𝜌𝑐

, 𝑢(𝑝𝑘) = 𝑢∗
(5.75)

where the index 𝑘 = (𝐿,𝑅) indicates the left or right state of the RP, and the function 𝜂𝑘 is
defined as follows:

𝜂𝑘 =
{

1, 𝑘 = 𝐿

−1, 𝑘 = 𝑅
(5.76)

Equation (5.75) can also be written in compact form if we group the scalar fields in a state
vector ̂𝒒 = (𝜌, 𝑢) as

d ̂𝒒
d𝑝

= 𝒇𝑘(𝜌, 𝑐), ̂𝒒(𝑝𝑘) = ̂𝒒𝑘

being 𝒇𝑘 = (1/𝑐2, 𝜂𝑘/(𝜌𝑐))
𝑇 and it needs to be integrated within the pressure interval 𝑝 ∈

[𝑝𝑘, 𝑝∗]. Please note that solving the ODE system of eq. (5.75) returns directly the value of the
velocity in the star region that connects to the corresponding 𝑘-wave 𝑢∗

𝑘 (in addition to 𝜌∗
𝑘).

5.3.2.2 Shock wave

When the pressure after the wave 𝑝+ is higher than the one before 𝑝−, entropy conditions tell
us that the right wave typology is a shockwave. As we presented generally in section 5.2.2.2,
when we have a discontinuity, we need to enforce Rankine-Hugoniot conditions. For the Euler
system case, after somemanipulations of the fundamental relations (eq. (5.31)), we can retrieve
the Hugoniot locus, i.e. the set of states after the shock 𝒒+ that can be linked to a given state
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(a) Schematic of a rarefaction wave (b) Schematic of a shock wave (c) Schematic of contact discontinu-
ity

before the shock 𝒒−,

ℋ(𝑝, 𝜌; 𝑝𝑘, 𝜌𝑘) ∶ 𝑒(𝑝, 𝜌) − 𝑒𝑘 + 1
2(𝑝 − 𝑝𝑘)(𝜏 − 𝜏𝑘) = 0 (5.77)

taking into account that 𝜏 = 1/𝜌 is the specific volume and that in this specific case of the
RP, the state after shock are the “star-states”, and the states before the shock are the left and/or
right state 𝒒𝑘. To be clear, eq. (5.77) represents the set of (𝑝, 𝜌) that can be connected to a given
left/right state (𝑝𝑘, 𝜏𝑘 = 1/𝜌𝑘) by a shock. Please note that for general EoS, eq. (5.77) cannot be
written as an explicit relation 𝜌 = 𝜌hugoniot(𝑝) or viceversa 𝑝 = 𝑝hugoniot(𝜌), therefore it needs to
be solved numerically employing a zero-finding routine, hence an initial guess for the 𝜏 = 1/𝜌
is needed together with the classical initial guess for the pressure. Once we compute 𝜌∗

𝑘 for a
given 𝑝∗ from eq. (5.77), we can estimate the velocity after the shock 𝑢∗

𝑘 as:

𝑢∗
𝑘 = 𝑢𝑘 + (𝑝∗ − 𝑝𝑘)√

𝜏𝑘 − 𝜏∗
𝑘

𝑝∗ − 𝑝𝑘
= 𝑢𝑘 + 𝑓𝑘(𝑝∗) (5.78)

5.3.2.3 Contact discontinuity

For the linear degenerate characteristic fields (associated to the eigenvalue 𝜆2 = 𝑢 in the 1D
case), the wave typology is a contact discontinuity. Across this wave we can, again, enforce
Rankine-Hugoniot conditions (eq. (5.31)), knowing that the speed of the discontinuity is 𝑠2 =
𝑢. After simple manipulations, we retrieve that across a contact discontinuity pressure and
velocity do not change.

⎧
⎪
⎨
⎪
⎩

𝑝+ = 𝑝−

𝑢+ = 𝑢−

𝜌+ ≠ 𝜌−
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Figure 5.11: The Riemann Problem for the Euler system

and that means, for the complete RP, that

{
𝑝∗

𝐿 = 𝑝∗
𝑅= 𝑝∗

𝑢∗
𝐿 = 𝑢∗

𝑅= 𝑢∗
(5.79)

5.3.2.4 Complete Solution

One we have all the different solutions archetypes for the different typologies of waves we can
encounter in the RP for the Euler system, we will describe in this section the complete solution
algorithm implemented in josiepy. The main idea is to predict the value of the velocity in
the star region 𝑢∗ from the left state 𝑢∗

𝐿 and from the right state 𝑢∗
𝑅, and then find the value of

𝑝∗ that minimize the error
𝑢∗

𝐿 − 𝑢∗
𝑅 = 0

As we can understand from eqs. (5.75), (5.77) and (5.78), the expression of 𝑢∗
𝑘 are non-linear

functions of 𝑝, and can be rewritten (as it is classically done) in the form:

𝑢∗
𝑘 = 𝑢𝑘 + 𝑓𝑘(𝑝)

i.e., the non-linear minimization of eq. (5.80) is rewritten as:

𝑓𝐿(𝑝) + 𝑓𝑅(𝑝) + (𝑢𝑅 − 𝑢𝐿) = 0 (5.80)

The complete algorithm is provided in algorithm 5.1.
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Algorithm 5.1 Algorithm to solve the Riemann Problem for the Euler System
1: procedure ExactRP(𝒒𝐿, 𝒒𝑅)
2: 𝑝𝐿, 𝑢𝐿, 𝜌𝐿 ← 𝒒𝐿
3: 𝑝𝑅, 𝑢𝑅, 𝜌𝑅 ← 𝒒𝑅
4: 𝜌∗ = 0.5(𝜌𝐿 + 𝜌𝑅) ▷ Guess a star value for the density to be used in case we have a

shockwave

5: 𝑓𝐿(𝑝) ∶
6: if 𝑝 > 𝑝𝐿 then ▷ Assign the correct wave solution function to the left wave
7: ← shock(𝑝, 𝒒𝐿; 𝜌∗)
8: else
9: ← rarefaction(𝑝, 𝒒𝐿)

10: end if

11: 𝑓𝑅(𝑝) ∶
12: if 𝑝 > 𝑝𝑅 then ▷ Assign the correct wave solution function to the right wave
13: ← shock(𝑝, 𝒒𝑅; 𝜌∗)
14: else
15: ← rarefaction(𝑝, 𝒒𝑅)
16: end if
17: 𝑓(𝑝) = 𝑓𝐿(𝑝) + 𝑓𝑅(𝑝) + (𝑢𝑅 − 𝑢𝐿)

18: 𝑝∗ ← root(𝑓 (𝑝) = 0; 0 < 𝑝 < 1e8 )▷ Non-linear root finding iterating on the pressure
value in the star region

19: 𝑢∗ ← 0.5(𝑢𝐿 + 𝑢𝑅) + 𝑓𝑅(𝑝∗) − 𝑓𝐿(𝑝∗)
20: end procedure
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5.3.2.5 Notes on the numerical schemes

The complete solution of the RP features potentially two root-finding loops: one inner loop in
the eventuality of a shockwave (eq. (5.77)) to obtain the value 𝜌∗

𝑘 corresponding to the current
value of the 𝑝∗, and the outer loop on 𝑝∗. While the Rankine-Hugoniot non-linear function
(eq. (5.77)) is generally not problematic, and a Newton-Rhapson root-finding algorithm is sta-
ble and fast due to its convergence rate; the outer loop on 𝑝∗ needs special handling, especially
for left/right states that cause variation very close to the vacuum situation (𝜌 ∼ 0) (as for exam-
ple Eleuterio F. Toro (2009, Test #2, p. 131). In that case, bracketing methods as a bisection
method or the method suggested in Brent (2013, Chap. 4) are needed in order to avoid negative
values for the pressure or the density.

The solution of the rarefaction (eq. (5.75)) requires the solution of a coupled ODE. No par-
ticular care has been necessary in the context of this work, an embedded RK45 was used to
produce the reference curves for the RP results in the next section 6.1.

5.3.3 Description of some useful schemes

While the exact RP solver we described in section 5.7.1.1 is a useful tool, especially for the
very accurate resolution of test cases that can be casted as RPs, in industrial application it is
preferred to use approximate Riemann solvers to approximate the flux across neighboring cells.
Wewill now present a selection of approximated Riemann solvers schemes for the resolution of
the Euler system that are based on a a priori hypothesis for the approximated wave structured
and the associated wave speeds. The scheme are listed in order of complexity.

5.3.3.1 The Rusanov scheme

The Rusanov scheme (Rusanov 1962) is an approximate Riemann solver that approximates
the eigenstructure of the Euler system with two waves, with the same speed 𝗌, as shown in
Fig. 5.12. The intercell flux between a cell 𝑖 = 𝐿 and its neighbor 𝑅, sharing a face of surface
S𝑓 is then computed as:

⌊𝑭(𝒒) ⋅ 𝒏̂⌋𝑓 𝑆𝑓 = 1
2[(𝑭(𝒒𝐿) + 𝑭(𝒒𝑅))) ⋅ 𝒏̂ + 𝗌(𝒒𝑅 − 𝒒𝐿)]S𝑓 (5.81)

with the wave speed 𝗌 estimated as follows (𝒖𝑘 ⋅ 𝒏̂ = 𝑢𝑘)

𝗌 = max (|𝑢𝐿 + 𝑐𝐿|, |𝑢𝑅 + 𝑐𝑅|) (5.82)
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Figure 5.12: Rusanov scheme wave structure

5.3.3.2 The HLL scheme

The HLL scheme (Amiram Harten et al. 1983) is an approximate Riemann solver that approxi-
mates the eigenstructure of the Euler system with two waves, as for the Rusanov case, but with
different speeds 𝗌𝐿, 𝗌𝑅, as shown in Fig. 5.13. The intercell flux between a cell 𝑖 = 𝐿 and its
neighbor 𝑅, sharing a face of surface S𝑓 is then computed as:

⌊𝑭(𝒒) ⋅ 𝒏̂⌋𝑓 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑭(𝒒𝐿) ⋅ 𝒏̂ if 𝗌𝐿 ≥ 0

(𝗌𝑅𝑭(𝒒𝑅) − 𝗌𝐿𝑭(𝒒𝐿)) ⋅ 𝒏̂ + 𝗌𝐿𝗌𝑅(𝒒𝑅 − 𝒒𝐿)
𝗌𝑅 − 𝗌𝐿

if 𝗌𝐿 ≤ 0 ≤ 𝗌𝑅

𝑭(𝒒𝑅) ⋅ 𝒏̂ if 𝗌𝑅 ≤ 0

(5.83)

with the wave speed 𝗌 estimated as follows (𝒖𝑘 ⋅ 𝒏̂ = 𝑢𝑘)

{
𝗌𝐿 = max (|𝑢𝐿 − 𝑐𝐿|, |𝑢𝑅 − 𝑐𝑅|)
𝗌𝑅 = max (|𝑢𝐿 + 𝑐𝐿|, |𝑢𝑅 + 𝑐𝑅|)

(5.84)

5.3.3.3 The HLLC scheme

The HLLC scheme (Eleuterio F. Toro 2019) is an approximate Riemann solver that restores the
contact discontinuity and shear waves (in multidimensional cases), hence featuring 3 waves:
two discontinuities with speeds 𝗌𝐿, 𝗌𝑅 and a contact/shear discontinuity of speed 𝗌∗, as shown
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Figure 5.13: HLL scheme wave structure

Figure 5.14: HLLC scheme wave structure
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in Fig. 5.14. The intercell flux between a cell 𝑖 = 𝐿 and its neighbor 𝑅, sharing a face of
surface S𝑓 is then computed as:

⌊𝑭(𝒒) ⋅ 𝒏̂⌋𝑓 =

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑭(𝒒𝐿) ⋅ 𝒏̂ if 𝗌𝐿 ≥ 0
𝑭(𝒒)∗

𝐿 ⋅ 𝒏̂ if 𝗌∗
𝐿 ≤ 0 ≤ 𝗌∗

𝑭(𝒒)∗
𝑅 ⋅ 𝒏̂ if 𝗌∗ ≤ 0 ≤ 𝗌∗

𝑅
𝑭(𝒒𝑅) ⋅ 𝒏̂ if 𝗌𝑅 ≤ 0

(5.85)

with the star fluxes given by

𝑭(𝒒)∗
𝑘 ⋅ 𝒏̂ = 𝑭(𝒒𝑘) ⋅ 𝒏̂ + 𝗌𝑘(𝒒∗

𝑘 − 𝒒𝑘)

and the star states by

𝒒∗
𝑘 = 𝜌𝑘(

𝗌𝑘 − 𝑢𝑘
𝗌𝑘 − 𝗌∗ )

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

(𝑰𝗌∗ − 𝒖𝑘) ⋅ 𝒏̂

𝐸𝑘
𝜌𝑘

+ (𝗌∗ − 𝑢𝑘)
[

𝗌∗ +
𝑝𝑘

𝜌𝑘(𝗌𝑘 − 𝑢𝑘)]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with the wave speed 𝗌 estimated as follows (𝒖𝑘 ⋅ 𝒏̂ = 𝑢𝑘)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝗌𝐿 = max (|𝑢𝐿 − 𝑐𝐿|, |𝑢𝑅 − 𝑐𝑅|)
𝗌𝑅 = max (|𝑢𝐿 + 𝑐𝐿|, |𝑢𝑅 + 𝑐𝑅|)

𝗌∗ =
𝑝𝑅 − 𝑝𝐿 + 𝜌𝐿𝑢𝐿(𝗌𝐿 − 𝑢𝐿) − 𝜌𝑅𝑢𝑅(𝗌𝑅 − 𝑢𝑅)

𝜌𝐿(𝗌𝐿 − 𝑢𝐿) − 𝜌𝑅(𝗌𝑅 − 𝑢𝑅)

(5.86)

The Euler system is an important building block in the context of hyperbolic conservation
problems. The infrastructure provided by the library josiepy allowed the agile implementa-
tion of a set of different classical numerical schemes for the Euler systems and their second-
order extensions with the MUSCL-Hancock method. These schemes have been a motivation
also for the generation of a large test case suite that allows to benchmark the performances of
the code and to catch as early as possible major implementation bugs. Moreover, a big part
of the tools needed to implement schemes for the Euler system are reusable also for other sys-
tems like the one from Baer and Nunziato (1986). We will now describe the numerical aspects
associated to the resolution of this important system for two-phase flows.
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5.4 The Baer-Nunziato system

Accounting for velocity and pressure non-equilibrium between the two phases is a useful prop-
erty a model should feature in order to account for the most complex configurations. A first
attempt in that direction can be found in Ransom and Hicks (1982), while the work from Baer
and Nunziato (1986) became a reference text for the subject. The Baer-Nunziato (B-N) system
is a two-phase flow system that features complete disequilibrium in terms of velocity, pressures
and energies (or temperatures). The model also features two quantities, the interfacial velocity
𝒖𝒮 and the interfacial pressure 𝑝𝒮, that needs closure. The work from J. Glimm et al. (1998);
Coquel, Gallouët, et al. (2002) provide thorough analysis on that aspect. Additional work
based on the Baer and Nunziato pioneering work can be found in Seguin (2002); Daniel Lhuil-
lier (2003); Saurel, S. Gavrilyuk, et al. (2003); Guillemaud (2007); D. Lhuillier et al. (2013);
Y. Liu (2013). For what concerns the numerical resolution of the model, notable references are
Saurel and Abgrall (1999); S. Gavrilyuk and Saurel (2002); Gallouët et al. (2004); Schwende-
man et al. (2006); Deledicque and Papalexandris (2007); S. A. Tokareva and E. F. Toro (2010);
Chalons et al. (2011); Coquel, Hérard, and Saleh (2012); Saleh (2012); Crouzet et al. (2013);
Coquel, Hérard, Saleh, and Seguin (2014); Furfaro and Saurel (2015); Dallet (2016); Coquel,
Hérard, and Saleh (2016); S. Tokareva and E. Toro (2016); Nguyen Tri Nguyen (2018); Zou
et al. (2019); E. Toro et al. (2020). In the context of this work, we implement the sourceless
version of the system as it is done in S. A. Tokareva and E. F. Toro (2010). Recalling the
reference numerical template equation,

𝜕𝒒
𝜕𝑡

+ ∇ ⋅ 𝑭(𝒒) + 𝑩(𝒒) ⋅ ∇𝒒 − ∇ ⋅ (𝑲(𝒒) ⋅ ∇𝒒) + 𝒔(𝒒) = 𝟎

with the state
𝒒 = (𝛼, 𝒒1, 𝒒2) (5.87)

The individual phasic states are defined as

𝒒𝑘 = (𝛼𝑘𝜌𝑘, 𝛼𝑘𝜌𝑘𝑢𝑘, 𝛼𝑘𝜌𝑘𝑣𝑘, 𝛼𝑘𝜌𝑘𝑤𝑘, 𝛼𝑘𝜌𝑘𝐸𝑘; 𝜑𝑘, 𝑘 = 1, 2) (5.88)

where the auxiliary fields are:

𝜑𝑘 = (𝑢𝑘, 𝑣𝑘,𝑤𝑘, 𝑝𝑘, 𝑐𝑘) (5.89)
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We also define a modified non-conservative multiplier such that 𝑩(𝒒) ⋅ ∇𝒒 = 𝑩(𝒒) ⋅ ∇𝛼. The
modified 𝑩 pre-multiplies only the gradient of volume fraction instead of the entire state: this
allows to have a smaller matrix and therefore a lower storage footprint in the software for this
specific system. The convective flux is:

𝑭(𝒒) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
𝛼1𝜌1𝑢1 𝛼1𝜌1𝑣1 𝛼1𝜌1𝑤1

𝛼1(𝜌1𝑢2
1 + 𝑝) 𝛼1(𝜌1𝑢1𝑣1) 𝛼1(𝜌1𝑢1𝑤1)

𝛼1(𝜌1𝑣1𝑢1) 𝛼1(𝜌1𝑣2
1 + 𝑝) 𝛼1(𝜌1𝑣1𝑤1)

𝛼1(𝜌1𝑢1𝑤1) 𝛼1(𝜌1𝑣1𝑤1) 𝛼1(𝜌1𝑤2
1 + 𝑝)

𝛼1(𝜌1𝐸1 + 𝑝)𝑢1 𝛼1(𝜌1𝐸1 + 𝑝)𝑣1 𝛼1(𝜌1𝐸1 + 𝑝)𝑤1

𝛼2𝜌2𝑢2 𝛼2𝜌2𝑣2 𝛼2𝜌2𝑤2

𝛼2(𝜌2𝑢2
2 + 𝑝) 𝛼2(𝜌2𝑢2𝑣2) 𝛼2(𝜌2𝑢2𝑤2)

𝛼2(𝜌2𝑣2𝑢2) 𝛼2(𝜌2𝑣2 + 𝑝) 𝛼2(𝜌2𝑣2𝑤2)
𝛼2(𝜌2𝑢2𝑤2) 𝛼2(𝜌2𝑣2𝑤2) 𝛼2(𝜌2𝑤2

2 + 𝑝)
𝛼2(𝜌2𝐸2 + 𝑝)𝑢2 𝛼2(𝜌2𝐸2 + 𝑝)𝑣2 𝛼2(𝜌2𝐸2 + 𝑝)𝑤2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.90)

and the non-conservative multiplier,

𝑩𝑎𝑑(𝒒) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑢𝒮 𝑣𝒮 𝑤𝒮

0 0 0
−𝑝𝒮 0 0

0 −𝑝𝒮 0
0 0 −𝑝𝒮

−𝑝𝒮𝑢𝒮 −𝑝𝒮𝑣𝒮 −𝑝𝒮𝑤𝒮

0 0 0
𝑝𝒮 0 0
0 𝑝𝒮 0
0 0 𝑝𝒮

𝑝𝒮𝑢𝒮 𝑝𝒮𝑣𝒮 𝑝𝒮𝑤𝒮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.91)

𝑝𝒮 and 𝒖𝒮 are the interfacial pressure and velocity and need to be modeled. We assume the
“classical” choice, as shown in Baer and Nunziato (1986), that yields:

𝑝𝒮 = 𝑝2, 𝒖𝒮 = 𝒖1 (5.92)
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5.4.1 Eigenstructure

As shown in S. A. Tokareva and E. F. Toro (2010), the eigenvalues of the system are:

𝜆1 = 𝑢1 − 𝑐1, 𝜆2−4 = 𝑢1, 𝜆5 = 𝑢1 + 𝑐1,

𝜆6 = 𝑢2 − 𝑐2, 𝜆7−9 = 𝑢2, 𝜆10 = 𝑢2 + 𝑐2,

𝜆11 = 𝑢𝒮

(5.93)

5.4.2 The Rusanov scheme

In our tests, despite being very dissipative, we implement a Rusanov scheme that is analogous
to the one discussed for the Euler scheme in section 5.3.3.1. The wave speed is computed as
follows:

𝗌 = max(𝗌1, 𝗌2) (5.94)

where the phasic wave speeds are computed as in the Euler case, i.e.

𝗌𝑘 = max (|𝑢𝐿
𝑘 + 𝑐𝐿

𝑘 |, |𝑢𝑅
𝑘 + 𝑐𝑅

𝑘 |) (5.95)

5.5

A two-phase two-scale model featuring geometrical

fields

A part of the work described in the thesis by Cordesse (2020) delves with the development
of a two-phase model that includes geometrical properties like the mean and Gauss curvatures
together with a two-scale description, in which small cases and larger scales are explicitly taken
into account together with capillarity effects in the spirit of Brackbill et al. (1992). The process
is based on a variational derivation, on the lines of what we described in section 3.4, in which a
Hamiltonian action is made stationary under specific constraints in order to obtain a system of
governing equations. The work of Cordesse (2020), moreover, proposes a hierarchy of models
derived from the general one applying a sequence of simplifications such as the instantaneous
relaxation of the phasic pressures, asymptotic limit of micro-inertia and neglecting small scales
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governing equations. The homogeneous contribution of the resulting model is the following:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0

𝜕𝑌𝑘
𝜕𝑡

+ 𝒖 ⋅ ∇𝑌𝑘 = 0

𝜌𝜕𝒖
𝜕𝑡

+ 𝜌𝒖 ⋅ ∇𝒖 + ∇𝑃 + 𝜴 ⋅ ∇𝛼 = 0

𝜕𝑠𝑘
𝜕𝑡

+ 𝒖 ⋅ ∇𝑠𝑘 = 0

𝜕𝜔
𝜕𝑡

+ 𝒖 ⋅ ∇𝜔 = 0

𝜕𝖧
𝜕𝑡

+ 𝒖 ⋅ ∇𝖧 = 0

𝜕Σ̃
𝜕𝑡

+ 𝒖 ⋅ ∇Σ̃ = 0

𝜕𝛼
𝜕𝑡

+ 𝒖 ⋅ ∇𝛼 = 0

𝜕∇𝛼
𝜕𝑡

+ 𝒖 ⋅ ∇(∇𝛼) + ∇𝛼 ⋅ ∇𝒖 = 0

(5.96a)

(5.96b)

(5.96c)

(5.96d)

(5.96e)

(5.96f)

(5.96g)

(5.96h)

(5.96i)

where 𝜴 = 𝜎‖∇𝛼‖𝑰 − 𝜎∇𝛼 ⊗ ∇𝛼/‖∇𝛼‖ is a term associated to large scale capillarity effects,
𝑠𝑘 are the phasic entropies, 𝜔 is a subscale pulsation, 𝑌𝑘 are the mass fractions, 𝜌 is the density
and 𝑃 ≜ 𝑝 − 𝜎̃Σ̃, 𝑝 = ∑𝑘 𝛼𝑘𝑝𝑘 a reduced pressure, being 𝜎̃ a fluctuating surface tension
coefficient (see Cordesse (2020) for more details on how the macro scale is filtered out of the
fluctuating scale). Let us note that in eq. (5.96), eq. (5.96i) is redundant with eq. (5.96h).
Nevertheless, eq. (5.96i) allows to involve the capillarity terms within the wave structure of
the system. The numerical schemes to solve system 5.96 have been implemented in the CEDRE
code, a FVM-based proprietary code developed at ONERA. We decided to reproduce the
implementation and the test cases in order to provide an open implementation of the model
within an easy-to-use framework, such as josiepy, capable of helping with the general battle
testing of the model and the associated numerical strategies. The original work from Cordesse
proposes a splitting strategy in which the hydraulic flux (“the Euler subsystem”), the capillarity
flux and the instantaneous relaxation of pressures are tackled separately, while in the case of
this study, we solve the coupled system (neglecting capillarity effects).

5.5.1 Eigenstructure

In order to reproduce part of the solution proposed in Cordesse (2020), we simplify the sys-
tem 5.96 assuming 𝜎̃, 𝜎 = 0 ⇒ 𝜴 = 𝟎. Since capillarity effects are neglected (𝜴 = 0),
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the equation on the gradient of the volume fraction is omitted. If we consider the 1D 𝑥-split
projection of eq. (5.96) and the change of variables:

𝒘 = (𝜌, 𝑢, 𝑣,𝑤, 𝑌, 𝑠1, 𝑠2,𝜔,𝖧, Σ̃, 𝛼) (5.97)

we obtain the corresponding quasi-linear form of the system:

𝜕𝒘
𝜕𝑡

+ 𝑨(𝒘) ⋅ ∇𝒘 = 0 (5.98)

The 11 × 11 matrix 𝑨(𝒘) is:

𝑨(𝒘) = 1
𝜌

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜌𝑢 𝜌2 0 0 0 0 0 0 0 0 0
𝜕𝑃
𝜕𝜌

𝜌𝑢 0 0 𝜕𝑃
𝜕𝑌

𝜕𝑃
𝜕𝑠1

𝜕𝑃
𝜕𝑠2

0 0 0 𝜕𝑃
𝜕𝛼

0 0 𝜌𝑢 0 0 0 0 0 0 0 0
0 0 0 𝜌𝑢 0 0 0 0 0 0 0
0 0 0 0 𝜌𝑢 0 0 0 0 0 0
0 0 0 0 0 𝜌𝑢 0 0 0 0 0
0 0 0 0 0 0 𝜌𝑢 0 0 0 0
0 0 0 0 0 0 0 𝜌𝑢 0 0 0
0 0 0 0 0 0 0 0 𝜌𝑢 0 0
0 0 0 0 0 0 0 0 0 𝜌𝑢 0
0 0 0 0 0 0 0 0 0 0 𝜌𝑢

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.99)

with the associated eigenvalues:

𝜆1−9 = 𝑢, 𝜆10,11 = 𝑢 ± √
𝜕𝑃
𝜕𝜌

= 𝑢 ± 𝑐𝐹 (5.100)

where 𝑐𝐹 is the frozen sound speed

𝑐2
𝐹 =

2

∑
𝑘

𝑌𝑘𝑐2
𝑘, 𝑐2

𝑘 =
𝜕𝑝𝑘
𝜕𝜌𝑘

(5.101)
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5.5.2 Recasting of the energy conservation for numerical

implementation purposes

In Cordesse (2020), in order to improve the numerical results, it is mentioned that the phasic
entropy equations eq. (5.96d) fail at “preserving a uniform pressure and velocity flow”. There-
fore, they propose to replace the entropy equations with the internal energy equations, via the
Gibbs relation of thermodynamics which provides:

𝜕𝛼𝑘𝜌𝑘𝑒𝑘
𝜕𝑡

+ ∇ ⋅ (𝛼𝑘𝜌𝑘𝑒𝑘𝒖) − 𝛼𝑘𝑝𝑘∇ ⋅ 𝒖 = −𝑝𝑘 D𝑡𝛼𝑘 (5.102)

Nonetheless eq. (5.102) contains non-conservative terms that destroy the strict conservation
of the total energy due to the loss of Rankine-Hugoniot jump conditions. Therefore Cordesse
proposes the addition of a redundant total energy equation, in the same spirit as Saurel, Petitpas,
et al. (2009), i.e.

𝜕𝜌𝐸
𝜕𝑡

+ ∇ ⋅ [(𝜌𝐸 + 𝑝 − 𝜎‖∇𝛼‖ − 𝜎̃Σ̃ + 𝜎∇𝛼 ⊗ ∇𝛼
‖∇𝛼‖ )𝒖] = 0 (5.103)

5.5.3 Instantaneous relaxation of the phasic pressures

The pressure relaxation when neglecting capillarity effects,

𝑝1(𝜌1, 𝑠1) = 𝑝2(𝜌2, 𝑠2) (5.104)

can be recasted, as per Saurel, Petitpas, et al. (2009), in terms of a non-linear volume fraction
algebraic equation that is imposed instantaneously via a non-linear Newton-Rhapson solver
after the time step update,

𝛼𝑛+1
1 = 𝛼𝑛

1 −
𝑝𝑛

1 − 𝑝𝑛
2

(
d𝑝1
d𝛼1 )

𝑛
+ (

d𝑝2
d𝛼2 )

𝑛 (5.105)

After the relaxation, we obtain new values for the 𝛼′,Σ′, 𝜌′
𝑘. As described in section 5.5.2,

the total energy needs to be corrected because of the non-conservative terms that appears in
the phasic internal energies equations 𝜌𝑘𝛼𝑘𝑒𝑘. The fundamentals of the procedure lie in the
recalculation of an equilibrium pressure from the equation:

(𝜌𝐸 − 1
2

𝜌𝒖 ⋅ 𝒖) =
2

∑
𝑘

(𝛼𝑘𝜌𝑘)
0𝑒𝑘(𝑝, 𝜌′

𝑘) (5.106)

184



5.5 A two-phase two-scale model featuring geometrical fields

where the superscript •0 indicates fields before the relaxation procedure. The energy correction
returns a new value of the equilibrium pressure 𝑝′ that is then used to recompute 𝑒𝑘(𝑝′, 𝜌′

𝑘).

5.5.4 The final system

The final system to be solved, neglecting capillarity effects, is:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0

𝜕𝑌𝑘
𝜕𝑡

+ 𝒖 ⋅ ∇𝑌𝑘 = 0

𝜕𝜌𝒖
𝜕𝑡

+ ∇ ⋅ [(𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰)] = 0

𝜕𝛼𝑘𝜌𝑘𝑒𝑘
𝜕𝑡

+ ∇ ⋅ (𝛼𝑘𝜌𝑘𝑒𝑘𝒖) − 𝛼𝑘𝑝𝑘∇ ⋅ 𝒖 = 0

𝜕𝜌𝐸
𝜕𝑡

+ ∇ ⋅ [(𝜌𝐸 + 𝑝)𝒖] = 0

𝜕𝜔
𝜕𝑡

+ 𝒖 ⋅ ∇𝜔 = 0

𝜕𝖧
𝜕𝑡

+ 𝒖 ⋅ ∇𝖧 = 0

𝜕Σ̃
𝜕𝑡

+ 𝒖 ⋅ ∇Σ̃ = 0

𝜕𝛼𝑘
𝜕𝑡

+ ∇ ⋅ (𝛼𝑘𝒖) − 𝛼𝑘∇ ⋅ 𝒖 = 0

(5.107a)

(5.107b)

(5.107c)

(5.107d)

(5.107e)

(5.107f)

(5.107g)

(5.107h)

(5.107i)

to which we couple the instantaneous relaxation procedure we describe in section 5.5.3. Please
note that the equation on the volume fraction eq. (5.107i) is recasted in order to expose a non-
conservative contribution in terms of ∇ ⋅ 𝒖. Additionally, the system 5.107 as presented in
the original work of Cordesse (2020), features transport equations for all the mass fractions
(eq. (5.107b)) that are redundant with the global mass conservation equation (eq. (5.107a)).
Similarly for the volume fractions (eq. (5.107i)). In our implementation, we respected these
implementation choices to produce a result as closest as possible to the original one.

Recalling the reference numerical template equation

𝜕𝒒
𝜕𝑡

+ ∇ ⋅ 𝑭(𝒒) + 𝑩(𝒒) ⋅ ∇𝒒 − ∇ ⋅ (𝑲(𝒒) ⋅ ∇𝒒) + 𝒔(𝒒) = 𝟎

with the state

𝒒 = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐸,𝜔, 𝜌Σ, 𝜌𝖧, 𝜌𝑌1, 𝛼1, 𝜌1𝛼1𝑒1, 𝜌𝑌2, 𝛼2, 𝜌2𝛼2𝑒2; 𝜑𝑘) (5.108)
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where the auxiliary fields are:

𝜑𝑘 = (𝑢, 𝑣,𝑤, 𝑐𝐹, 𝑝1, 𝑐1, 𝑝2, 𝑐2) (5.109)

We also define a modified non-conservative multiplier such that 𝑩(𝒒) ⋅ ∇𝒒 = 𝑩(𝒒) ⋅ ∇𝒖. The
modified 𝑩 pre-multiplies only the gradient tensor of the fluid velocity instead of the entire
state: this allows to have a smaller matrix and therefore a lower storage footprint in the software
for this specific system. The convective flux is:

𝑭(𝒒) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜌𝑢 𝜌𝑣 𝜌𝑤
𝜌𝑢2 + 𝑝 𝜌𝑢𝑣 𝜌𝑢𝑤

𝜌𝑣𝑢 𝜌𝑣2 + 𝑝 𝜌𝑣𝑤
𝜌𝑤𝑢 𝜌𝑤𝑣 𝜌𝑤2 + 𝑝

(𝜌𝐸 + 𝑝)𝑢 (𝜌𝐸 + 𝑝)𝑣 (𝜌𝐸 + 𝑝)𝑤
𝜔𝑢 𝜔𝑣 𝜔𝑤
𝜌𝖧𝑢 𝜌𝖧𝑣 𝜌𝖧𝑤
𝜌Σ𝑢 𝜌Σ𝑣 𝜌Σ𝑤
𝜌𝑌1𝑢 𝜌𝑌1𝑣 𝜌𝑌1𝑤
𝛼1𝑢 𝛼1𝑣 𝛼1𝑤

𝜌1𝛼1𝑒1𝑢 𝜌1𝛼1𝑒1𝑣 𝜌1𝛼1𝑒1𝑤
𝜌𝑌2𝑢 𝜌𝑌2𝑣 𝜌𝑌2𝑤
𝛼2𝑢 𝛼2𝑣 𝛼2𝑤

𝜌2𝛼2𝑒2𝑢 𝜌2𝛼2𝑒2𝑣 𝜌2𝛼2𝑒2𝑤

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.110)
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and the non-conservative multiplier,

𝑩𝑎𝑏0(𝒒) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

−𝜔 0 0
0 0 0
0 0 0
0 0 0

−𝛼1 0 0
−𝛼1𝑝1 0 0

0 0 0
−𝛼2 0 0

−𝛼2𝑝2 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑩𝑎𝑏1(𝒒) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 −𝜔 0
0 0 0
0 0 0
0 0 0
0 −𝛼1 0
0 −𝛼1𝑝1 0
0 0 0
0 −𝛼2 0
0 −𝛼2𝑝2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑩𝑎𝑏2(𝒒) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 −𝜔
0 0 0
0 0 0
0 0 0
0 0 −𝛼1

0 0 −𝛼1𝑝1

0 0 0
0 0 −𝛼2

0 0 −𝛼2𝑝2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.111)

5.5.5 HLLC with pressure relaxation and energy correction

In addition to the pressure relaxation algorithm discussed previously, the convective flux is
approximated using an HLLC scheme analogous to the one described in section 5.3.3.3 for the
Euler system.

5.6

The system featuring a governing equation for the in-

terfacial area density

We already discussed in a fairly detailed manner the properties of the systems in section 3.6.
Here we will limit ourselves to express the terms in the framework of the generalized equation
we introduced in this chapter. The generalized template of the equations we can support in
josiepy is:

𝜕𝒒
𝜕𝑡

+ ∇ ⋅ 𝑭(𝒒) + 𝑩(𝒒) ⋅ ∇𝒒 − ∇ ⋅ (𝑲(𝒒) ⋅ ∇𝒒) + 𝒔(𝒒) = 𝟎

187



5 Numerical schemes and simulation of two-phase flows

The convective flux is:

𝑭(𝒒) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜌𝑢 𝜌𝑣 𝜌𝑤

(𝜌𝑢2 + 𝑝) (𝜌𝑢𝑣) (𝜌𝑢𝑤)
(𝜌𝑣𝑢) (𝜌𝑣2 + 𝑝) (𝜌𝑣𝑤)
(𝜌𝑢𝑤) (𝜌𝑣𝑤) (𝜌𝑤2 + 𝑝)
𝜌𝑌 𝑢 𝜌𝑌 𝑣 𝜌𝑌 𝑤

𝜌𝑌 𝜔𝑢 𝜌𝑌 𝜔𝑣 𝜌𝑌 𝜔𝑤
𝜌𝛼𝑢 𝜌𝛼𝑣 𝜌𝛼𝑤
𝜌𝑧𝑢 𝜌𝑧𝑣 𝜌𝑧𝑤

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.112)

and the source terms vector respectively is,

𝒔(𝒒) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0

𝑝2−𝑝1
√𝑚

−𝜌𝑌 𝜔
√𝑚

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.113)

5.6.1 The Rusanov scheme

In order to retain a certain stability of the system, since the phasic densities on which the phasic
pressure depends 𝑝𝑘 = 𝜌𝑘 can lead to stiffness in the source terms, we choose as numerical
scheme the Rusanov scheme discussed in section 5.3.3.1. The computation of the intercell flux
is analogous to the Euler case, taking into consideration that the effective sound velocity is:

𝑐2
𝑧 =

2

∑
𝑘

𝑌𝑘𝑐2
𝑘 + 𝜌(𝑌 𝜔)2 − 2

9
𝜎(

𝑧
𝜌)

2
3

5.7 A set of verification test cases

In this section we present a set of verification cases obtained with josiepy, a Python library
aimed at fast prototyping of problems governed by PDEs. In section 6.1 we discuss the phi-
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losophy behind the development of the software, together with the structure of the code. Here,
a set of tests have been performed on different systems, notably the Euler System, a NS pipe
flow configuration, the Baer-Nunziato system and the system proposed in Cordesse (2020) for
normal pulsations (i.e. a formal evolution of the system described in section 3.5.2) and we
highlight the level of accuracy we can achieve with the code.

5.7.1 A series of Riemann Problems (RPs) for the Euler system

The Euler system is an ideal candidate to benchmark the correct implementation of schemes,
data structures, boundary conditions implementation and all the machinery underlying a solver
code like josiepy. That is why in this section we present the implementation of a Rusanov,
HLL and HLLC schemes for the Euler system as briefly explained in section 5.3. Hence, the
set of tests proposed by Eleuterio F. Toro (2009) are used.

5.7.1.1 Euler exact Riemann Problem solver

Before delving in the discussion of the results, a note on the exact curves against which we
compare our results: all the reference data shown in Figures 5.16 to 5.20 are computed using
the exact Riemann solver for the Euler system we presented in section 5.3.2. In particular, the
case #2 (Fig. 5.17) features a situation where the density can reach 0 or even negative values if
the non-linear iterations in the Riemann solver are not bounded. In section 5.3.2 we discussed
the usage in one of the non-linear loop of a bounded root-finding algorithm to ensure robustness
of the resolution algorithm and we correctly obtain the theoretical curve with the general-EoS
RP solver. The exact solver is also available in the josiepy library.

5.7.1.2 Benchmark tests from Eleuterio F. Toro

Table 5.1: Left and right initial data for the Euler test cases

Test 𝜌𝐿 𝑢𝐿 𝑝𝐿 𝜌𝑅 𝑢𝑅 𝑝𝑅 CFL

1 1.0 0.0 1.0 0.125 0.0 0.1 0.5
2 1.0 −2.0 0.4 1.0 2.0 0.4 0.45
3 1.0 0.0 1000 1.0 0.0 0.01 0.5
4 1.0 0.0 0.01 1.0 0.0 100 0.5
5 5.999 24 19.5975 460.894 5.992 42 −6.196 33 46.0950 0.5

The reference curves for testing are taken from the tests described in Eleuterio F. Toro (2009,
Section 4.3.3); those tests are RP configurations with a selection of different initial states. All
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the results are obtained assuming a specific heat ratio 𝛾 = 1.4, on a 1D mesh of 500 cells. The
left and right Boundary Conditions are mostly irrelevant, since the simulation is stopped before
then the state could interact with the boundaries. Effectively, both Neumann and Dirichlet
conditions have been imposed with no tangible effect on the robustness of the resolution or
execution speed. More in details,

• Test 1 is a Sod (1978) test problem. The solution of this problem consists of a left
rarefaction, a contact and a right shock. The resulting curves are plotted at the time
instant 𝑡 = 0.25s. The results are shown in Fig. 5.16.

• Test 2 has a solution consisting of two strong rarefactions and a stationary contact dis-
continuity. This test is probably among the most challenging ones because the density
reaches values close to zero and this can lead to problems in the non-linear root finders.
Results in Fig. 5.17 at time 𝑡 = 0.15s.

• Test 3 is a severe problem whose solution is made of a left rarefaction, a contact and a
right shock. It is the left half of the blast wave problem ofWoodward and Colella (1984).
The results are shown in Fig. 5.18 at time 𝑡 = 0.012s.

• Test 4 is the corresponding right half of the blast wave problem from Woodward and
Colella (1984). The solution contains a left shock, a contact discontinuity and a right
rarefaction as shown in Fig. 5.19. The figures are shown for time 𝑡 = 0.035s.

• The final test 5 is made up of the right and left shocks emerging from the solution to test
3 and 4. The solution features a left facing shock, a right traveling contact discontinuity
and a right traveling shock wave. The simulation data are shown in Fig. 5.20 at time
𝑡 = 0.035𝑠.

All the tests configurations are summarized in table 5.1 and the mesh size is 500 cells for all
the trials. We will discuss the results of the tests globally, since the general performance of the
schemes is generally repeatable on each configuration. The three different first-order schemes
tested, i.e. the Rusanov, HLL and HLLC, perform substantially very similarly. The accordance
with the exact solutions of the RP is generally good considering the low order of the schemes,
featuring a noticeable amount of numerical diffusion specially detected in high-gradient zones.
As an example, the sudden increase of the density field in Figures 5.18c, 5.19c and 5.20c is
quite diffused having the peaks smeared out by the numerical diffusion. Inspecting Fig. 5.20c
for instance, we can appreciate how the HLLC scheme is less diffusive than the other two since
the peak is closer to the analytical one. This behavior can be verified in all the other figures.
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The implementation in josiepy allows to retrieve accurate results of some classical test
cases for the Euler system that validate the underlying implementation and opens up interest-
ing possibilities for the quick testing of numerical strategies for the Euer system. Notably,
the results for the verification tests we list in this section are part of the testing suite of the
library that is executed at each code commit, allowing an agile advancement in the numerical
computing for the classical Euler system.

5.7.1.3 Higher order

(a) First order Rusanov (b) Second order Rusanov with Su-
perbee limiter

Figure 5.15: Density field comparison of first and second order Rusanov schemes for an Euler jet at time
𝑡 = 0.03s

josiepy also includes higher-order extensions via the MUSCL-Hancock methodology. In
the context of this work, we focused especially on the flexibility of the library to allow the
fast introduction of several different type of solvers and the associated underlying phenomena.
Nonetheless, the PhD of Loison (2023) and the post-doc of Ait Ameur (2020) are ongoing
efforts to implement high-order methods for the simulation of two-phase flows, especially Dis-
continuous Galerkin schemes. Without the presumption of being complete, in this section we
just showcase a simple test case of a 2D “round” jet simulated using the Euler system.The con-
figuration of the case is the following: a box of dimensions 0.25×1m is meshed with 100×400
cells. The internal field is at rest 𝑢0 = 0, 𝑣0 = 0, 𝜌0 = 1, 𝑝0 = 1000. The left boundary con-
tains the inlet at the position 𝑦 = 0.5m, of radius 0.05m, which is configured as a Dirichlet BC
with state 𝑢jet = 1, 𝑣jet = 0, 𝜌jet = 1000𝜌0, 𝑝jet = 1000. The rest of the left boundary is set
with a zero-gradient Neumann BC. The top and bottom walls have a fixed value BC with the
same state as the internal field at 𝑡 = 0. The right wall instead has a complete zero-gradient
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Neumann BC. The scheme we show here is the Rusanov scheme and its extension to second or-
der with the MUSCL-Hancock strategy, with a SUPERBEE limiter (LeVeque 1990; LeVeque
2002; Eleuterio F. Toro 2009; Bouchut 2004). josiepy nonetheless contains second order ex-
tensions for HLL and HLLC with more limiters to choose from. Fig. 5.15 shows a comparison
of the 𝜌-field between the first order, very diffusive, Rusanov scheme and its corresponsing
second order limited version, where the chosen limiter is the SUPERBEE (Eleuterio F. Toro
2009).
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Figure 5.16: Test 1 at 𝑡 = 0.25𝑠 of Eleuterio F. Toro (2009)
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Figure 5.17: Test 2 at 𝑡 = 0.15𝑠 of Eleuterio F. Toro (2009)
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Figure 5.18: Test 3 at 𝑡 = 0.012𝑠 of Eleuterio F. Toro (2009)
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Figure 5.19: Test 4 at 𝑡 = 0.035𝑠 of Eleuterio F. Toro (2009)
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Figure 5.20: Test 5 at 𝑡 = 0.035𝑠 of Eleuterio F. Toro (2009)
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5.7.2 A series of Riemann Problems for the Baer-Nunziato (B-N)

system

The B-N model (Baer and Nunziato 1986) is a classical model in the two-phase flow commu-
nity that features phase disequilibrium in all aspects, that is in terms of velocity, pressures and
temperatures. It is used in different contexts that could lie even far from the original purpose
of simulating two-phase flow explosives for which it was originally conceived. For this rea-
son, josiepy contains an implementation of this model with associated numerical schemes.
In order to assess the correctness of the implementation, we decided to benchmark the code
against the tests that are suggested in S. A. Tokareva and E. F. Toro (2010). We also add
two additional “artificial” tests with the aim of reproducing the RP results for the Euler system
(see section 5.7.1), or a simple advection on the volume fraction 𝛼 field, but with the complete
implementation of the B-N solver. All the tests are solved on a 1Dmesh of 100 points, the sim-
ulation is stopped before the solution could interact with the boundaries hence the choice of
the boundary conditions has no effect (for the sake of completeness, Dirichlet BCs are imposed
with fixed value equal to the left/right state of the RP). The scheme used is a Rusanov scheme
for all the results shown here and an upwinding scheme is used for the non-conservative term.

5.7.2.1 Test 1: retrieving the Euler system results

Table 5.2: Left and right initial data for the B-N test 1

Phase 𝛼𝐿 𝛼𝑅 𝜌𝐿 𝑢𝐿 𝑝𝐿 𝜌𝑅 𝑢𝑅 𝑝𝑅 CFL 𝛾

1 0.5 0.5 1.0 0.0 1.0 0.125 0.0 0.1 0.5 1.4
2 1.0 0.0 1.0 0.125 0.0 0.1 0.5 1.4

The first “artificial” test is created in order to reproduce the results of the first test of the
Euler system (see table 5.1, Test 1). Therefore, the volume fraction field is set to a constant
value of 𝛼𝐿𝑅 = 0.5 on the entire domain, while the left and right state are the same as those of
table 5.1, Test 1, for both phases. Table 5.2 summarize the initial conditions for the simulation.
The results are shown in Fig. 5.21 in which the correct behaviour is retrieved, the two phases
fields effectively reproduce the Euler system results and the volume fraction field stays constant
as expected.
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Table 5.3: Left and right initial data for the B-N test 2

Phase 𝛼𝐿 𝛼𝑅 𝜌𝐿 𝑢𝐿 𝑝𝐿 𝜌𝑅 𝑢𝑅 𝑝𝑅 CFL EOS

1 0.8 0.3 1.0 0.0 1.0 1.0 0.0 1.0 0.45 (𝛾 = 1.4)
2 1.0 0.0 1.0 0.125 0.0 0.1 0.5 (𝛾 = 1.4)

5.7.2.2 Test 2: Pure interface advection

The second test is crafted in order to assess the correct implementation of the non-conservative
term discretization, as explained in section 5.2.3. The idea is to set constant values across the
domain for all the fields except the volume fraction, that is set to a step function, going from
the value 0.8 on the left side of the domain to 0.3 on the right, the onset point for the step is
at 𝑥 = 0.5. The closure for the interfacial velocity and pressure 𝒖𝐼, 𝑝𝐼 is set such that 𝑝𝐼 = 0.
Fig. 5.22 shows the results. As expected, only the volume fraction field evolves as a transported
scalar field, the slope of the curve also highlights the high diffusivity of the Rusanov scheme,
being the mesh quite coarse and the scheme first-order.

5.7.2.3 Tests 3-7: A set of RPs from S. A. Tokareva and E. F. Toro

Table 5.4: Left and right initial data for the B-N test from S. A. Tokareva and E. F. Toro, phase 𝑘 = 1

Test 𝑥0 𝛼𝐿 𝛼𝑅 𝜌𝐿 𝑢𝐿 𝑝𝐿 𝜌𝑅 𝑢𝑅 𝑝𝑅 CFL 𝛾 𝑝∞
0

1 0.5 0.8 0.3 1.0 0.0 1.0 1.0 0.0 1.0 0.45 1.4
2 0.5 0.2 0.9 1900 0.0 10 1950 0.0 1000 0.45 3.0 3400
3 0.5 0.8 0.3 1.0 0.75 1.0 0.125 0.0 0.1 0.45 1.4
4 0.5 0.8 0.5 1.0 −2.0 0.4 1.0 2.0 0.4 0.45 1.4
6 0.8 0.7 0.2 1.0 −19.5975 1000 1.0 −19.5975 0.01 0.45 3.0 100

Table 5.5: Left and right initial data for the B-N test 3–8, phase 𝑘 = 2

Test 𝑥0 𝛼𝐿 𝛼𝑅 𝜌𝐿 𝑢𝐿 𝑝𝐿 𝜌𝑅 𝑢𝑅 𝑝𝑅 CFL 𝛾 𝑝∞
0

1 0.5 0.2 0.7 0.2 0.0 0.3 1.0 0.0 1.0 0.45 1.4
2 0.5 0.8 0.1 2 0.0 3 1.0 0.0 1.0 0.5 1.35
3 0.5 0.2 0.7 1.0 0.75 1.0 0.125 0.0 0.1 0.45 1.4
4 0.5 0.2 0.5 1.0 −2.0 0.4 1 2.0 0.4 0.45 1.4
6 0.8 0.3 0.8 1.0 −19.5975 1000 1.0 −19.5975 0.01 0.45 1.4

The set of tests presented in this section are proposed in the work S. A. Tokareva and E. F.
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Toro (2010). The six test problems are characterized by the same structure: they are RP for the
B-N system in which a discontinuity placed at the coordinate 𝑥 = 𝑥0 separates two constant
states, (the “left” and “right” state). The initial conditions are summarized in tables 5.4 and 5.5
and the results are showcased in Figures 5.23 to 5.27. The phases can be routinely equipped
with a Perfect Gas EoS

𝑝 = (𝛾 − 1)𝜌𝑒 (5.114)

or a Stiffened Gas EoS to model liquid phases,

𝑝 = (𝛾 − 1)𝜌𝑒 − 𝛾𝑝∞
0

Tables 5.4 and 5.5 include one coefficient 𝛾 in the first case and two coefficients 𝛾, 𝑝∞
0 in the

second case. The convective scheme employed is a first-order Rusanov scheme.

• Test 1 consists in a left rarefaction, right shock and a right traveling solid contact for the
phase 1, and a left rarefaction, a contact and a right shock for the phase 2.

• Test 2 features larger variations w.r.t. Test 3, hence being more demanding.

• Test 3 consists in a right shockwave, a right traveling contact discontinuity and a left
sonic rarefaction wave for both phases.

• Test 4 showcases for both phases two symmetric rarefaction waves, bringing the density
close to vacuum, and a trivial stationary contact wave.

• Test 6 solution contains for both phases, a right traveling strong shockwave, a contact
discontinuity and a left rarefaction wave. The jump of pressure is very large Δ𝑝𝑘 = 1000

For all the cases the first-order Rusanov scheme is prohibitely diffusive. Even if the general
solution behavior is somehow recovered, confirming the correctness of the implementation,
this scheme with the chosen coarse resolution is not suitable. Even without the need of dealing
with higher order schemes, it is apparent that a more suitable choice like the HLLC solver from
S. A. Tokareva and E. F. Toro (2010) must be enforced in order to obtain accurate predictions.
Nonetheless, this suite of tests is included in josiepy as a guiding structure to implement more
complex approximation strategies for the B-N model and it is indeed useful as CI test to detect
the introduction of bugs in the underlying structures. Since the B-N is not a direct topic of this
work, we decided to forego the implementation of higher order schemes for the B-N model
referring to, among others, the future work of Ait Ameur (2020); Loison (2023).
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Figure 5.21: A test with constant 𝛼 to retrieve same results as Fig. 5.16, 𝑡 = 0.25s
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Figure 5.23: Test 1 from S. A. Tokareva and E. F. Toro (2010)
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Figure 5.24: Test 2 from S. A. Tokareva and E. F. Toro (2010)
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Figure 5.25: Test 3 from S. A. Tokareva and E. F. Toro (2010)
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Figure 5.26: Test 4 from S. A. Tokareva and E. F. Toro (2010)
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Figure 5.27: Test 5 from S. A. Tokareva and E. F. Toro (2010)
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5.7.3 Hagen-Poiseuille flow for the Navier-Stokes (NS) system

In order to test the implementation of the diffusive schemes in josiepy, we present here a
case in which the compressible NS equations have been implemented and a Hagen-Poiseuille
laminar pipe flow configuration is simulated. The configuration of the case is the following: a
box of dimension 3×1m is meshed with 150×50 cells. For what concerns the BCs, differently
from what we usually do in incompressible flow, the compressible NS system allows different
ways of imposing BCs, Rudy and Strikwerda (1981) for example performs a thorough study
on the different possibilities. The BCs we impose for this situation are:

• On the left boundary of the domain, an “inlet” BC is imposed, that is the velocity and
the internal energy of the flow are imposed (𝒖 = (𝑢(𝑦), 0)ms−1, 𝑒 = 300J kg−1), while
for the pressure a zero-gradient condition is enforced. The profile imposed for the x-
component of velocity is 𝑢(𝑦) = −20((𝑦 − 0.5)4) + 1.25.

• On the right boundary of the domain, an “outflow” BC is assigned, that is, the pressure
is imposed to a fixed value 𝑝 = 𝑝eos(𝜌 = 1, 𝑒 = 300) and the rest of the quantities have a
zero-gradient Neumann condition.

• On the top and bottom walls, the velocity is set to a fixed zero value 𝒖 = 𝟎, while all the
other quantities have a zero-gradient Neumann BC

The internal field is initialized with the fields 𝒖 = (1, 0)ms−1, 𝑒 = 300J kg−1, 𝜌 = 1kgm−3,
the dynamic diffusivity of the fluid is set to 𝜇 = 1.8e−5 Pa s, the bulk viscosity is set to zero
and the thermal diffusivity 𝑘𝑇 = 2.1e−5m2 s−1.

Fig. 5.28 shows the final outcome at 𝑡 = 10s. In particular Fig. 5.28b shows the velocity
profiles at three different stations of the pipe (the stations are highlighted in Fig. 5.28a). We
can effectively retrieve a Hagen-Poiseuille velocity profile ensuring that the diffusion-related
schemes and data structure are performing as expected.
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(a) Velocity field 𝒖⋅ ̂𝒆𝑥, [1.8m s−1 to 6.1e−2m s−1].
The white vertical lines define stations where a veloc-
ity profile is extracted
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Figure 5.28: Poiseuille Flow

5.7.4 Convective subsystem and relaxation procedure from Cordesse

system

In this section we present the first three validation cases from Cordesse (2020, Section 4.3).
These validation cases verify the first subsystem and the relaxation procedure used in a splitting
strategy to solve a two-phase flow system featuring capillarity force. The aim of these tests,
apart from the mere validation, is to put in place a first block to reproduce the results retrieved
by Cordesse with the proprietary CEDRE software, in a FOSS context as the software josiepy.
The tests are classical shock-tube problems found in literature. We use a Stiffened Gas EoS,

𝑝𝑘 = (𝛾𝑘 − 1)𝜌𝑘𝑒𝑘 − 𝛾𝑘𝑝∞
𝑘
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where 𝛾𝑘 is the ratio of the isentropic specific heat coefficients 𝛾 = 𝐶𝑝/𝐶𝖵 , 𝑝∞
𝑘 is the resid-

ual pressure at zero temperature used to enforce liquid or solid behavior. The corresponding
expression for the internal energy is:

𝑒𝑘 = 𝐶𝖵,𝑘𝑇𝑘
𝑝𝑘 + 𝛾𝑘𝑝∞

𝑘
𝑝𝑘 + 𝑝∞

𝑘

with 𝐶𝖵 the specific heat at constant volume. The chosen values for the coefficients of the EoS
are:

{

Air: 𝛾1 = 1.4, 𝑝∞
1 = 0, 𝐶𝖵,1 = 1000

Water: 𝛾2 = 4.4, 𝑝∞
2 = 6.8 × 108, 𝐶𝖵,2 = 4180

A major difference we want to highlight w.r.t. the configuration by Cordesse is that we use
a 1st order HLLC scheme with the same relaxation procedure described in the original work
for simplicity, while the original study employs a second order multislope HLLC scheme (Le
Touze et al. 2014).

5.7.4.1 Pure interface advection

Table 5.6: Pure interface advection (𝜖 = 1e−8, 𝜌1 = 10 kgm−3, 𝜌2 = 1000 kgm−3)

𝑥 𝛼1[−] 𝑢[ms−1] 𝑝1[Pa] 𝑝2[Pa]

[0, 0.5[ 𝜖 100 1e5 1e5[0.5, 1] 1 − 𝜖

The first benchmark case is a 1D pure interface advection. The domain is 1m long. The
interface between the two phases is initially placed at 𝑥 = 0.5, and it separates two zones of
the domain hosting the individual phase almost completely (𝛼𝑘 = 1 − 𝜖, 𝜖 ≪ 1, the volume
fraction is not exactly one to avoid zero division). The domain is discretized in 1000 cells and
the BCs are fixed values on the left and right boundaries, with the values of the left and right
fields summarized in table 5.6 (even if it is not incredibly important since the simulation is
stopped before the BCs can interact with the solution). Fig. 5.29a shows the volume fraction
profile. The general slope of the curve is well reconstructed even if the onset of the transition
is captured a bit later w.r.t. the exact solution, probably due to the 1st order scheme; Fig. 5.29b
shows the relative pressure ratio. The pressure in this case is supposed to stay constant and in
facts Cordesse (2020) explains the oscillating behavior with accumulating rounding errors in
the energy computation, errors that we do not encounter in our implementation.
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Figure 5.29: Advection test at instant 𝑡 = 229 µs from Cordesse (2020)

5.7.4.2 Moderate density water-air shock tube

Table 5.7: Water-air shock tube with moderate density ratio (𝜖 = 1e−8, 𝜌1 = 50 kgm−3, 𝜌2 =
1000 kgm−3)

𝑥 𝛼1[−] 𝑢[ms−1] 𝑝1[Pa] 𝑝2[Pa]

[−2, 0.75[ 𝜖 0 1e9 1e9
[0.75, 2] 1 − 𝜖 1e5 1e5

The second test we propose is a water-air shock tube happening in a domain of length 4m.
The interface lies initially at 0.7m and it separates pressurized water in a nearly pure volume
fraction (the usual 𝜖 ≪ 1 to avoid numerical problems) at 109 Pa, from a zone of the domain
with almost pure air at 105 Pa. The complete initial states are reported in table 5.7. Despite
the lower order scheme, we find a very good agreement with the theoretical data. The only
under optimal outcome is related to the temperature profile shown in Fig. 5.30d. The higher
numerical diffusion creates smoother gradients and undershooting in the zone of the shock.

5.7.4.3 High-Density water-air shock tube

The last test case features another shock-tube configuration, but with higher initial densities
(the ratio is raised to 1000) as shown in table 5.8. The length of the domain is 1m, and the
interface appears at 𝑥 = 0.75, the water phase has 109Pa pressure on the left of the domain,
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Figure 5.30: Shock tube at moderate density ratio at instant 𝑡 = 900 µs from Cordesse (2020)

Table 5.8: Water-air shock tube with high density ratio (𝜖 = 1e−8, 𝜌1 = 1 kgm−3, 𝜌2 = 1000 kgm−3)

𝑥 𝛼1[−] 𝑢[ms−1] 𝑝1[Pa] 𝑝2[Pa]

[−2, 0.75[ 𝜖 0 1e9 1e9
[0.75, 2] 1 − 𝜖 1e5 1e5
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the air phase is at 105Pa on the right side. As always, phases are almost pure except for a small
𝜖 value to avoid numerical difficulties. In this more challenging scenario, the first order HLLC
schemes shows higher diffusion in all the fields shown in Fig. 5.31 w.r.t. the second order
scheme used by Cordesse. In the velocity profile, the shock peak is overshoot and delayed
w.r.t. the theoretical slope. The results are in any case in good agreement.
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Figure 5.31: Shock tube at high density ratio at instant 𝑡 = 240 µs from Cordesse (2020)
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5.8

Results for the convective subsystem featuring an in-

terfacial area density equation

Table 5.9: Initial conditions for the system with the interfacial area density equation, 𝑃 = 0.71

𝑦 [m] 𝛼 [-] 𝜔[m s−1] 𝒖 [m s−1] 𝑧[kg
1/2 ]

> ̃𝑦(𝑥) + Δ𝑥 0.8 0 (−0.25, 0) 0
< ̃𝑦(𝑥) − Δ𝑥 0.2 0 (0.25, 0) 0

̃𝑦(𝑥) ± Δ𝑥 0.5 0 (0, 0) 1e−2

In this section we present the simulation we prepared in order to numerically experiment with
the convective part of the system described in section 3.6, i.e. eq. (3.159). In this section
we present the details of a simulation the purpose of which is to show the physical outcomes
the model. The chosen test case is a variation of the classical Kelvin-Helmoltz instability.
The initial domain is a 1 × 1m square meshed with 1500 × 1500 and 500 × 500 cells and
the numerical schemes employed are respectively a 1st order Rusanov scheme for the finest
case and a MUSCL-Hancock extension of the same scheme with a MINMOD limiter (see
section 5.7.1.3 for details) for the coarse case. The BCs are configured as follows:

• Periodic BCs on the left and right boundary

• On the top and bottom boundaries a zero-gradient condition for all the fields except the
vertical component of the velocity 𝒖 ⋅ 𝒏̂ = ±𝑣, that is set to zero 𝑣 ≜ 0.

The fields are initialized at 𝑡 = 0 dividing the original domain in two vertical sections, separated
by a an interface of thickness Δ𝑥, lying at the coordinates 𝑦 = ̃𝑦(𝑥) ± Δ𝑥, where Δ𝑥 is the cell
spacing that is taken uniform for the entire mesh. The midline of the interface is described by
the function ̃𝑦(𝑥), and for the current case it has the following expression:

̃𝑦(𝑥) =
⎧⎪
⎨
⎪⎩

0.5, 𝑥 ∈ [0, 𝑥𝑎[ ∪ ]𝑥𝑏, 1]

𝐾 sin(𝜋
𝑥 − 𝑥𝑎
𝑥𝑏 − 𝑥𝑎 ), 𝑥 ∈ [𝑥𝑎, 𝑥𝑏]

(5.115)

That is, in the interval [𝑥𝑎, 𝑥𝑏], a sinusoidal perturbation of the interface is introduced in order
to induce destabilization of the interface faster than what would happen in a classical case with
a completely flat interface (also, the model of section 3.6 does not feature viscosity, therefore
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the distortion of the interface would be caused only by numerical dissipation hence resulting
in very slow time scales and longer simulations would be needed). See Fig. 5.32 for a plot of
the initial fields at 𝑡 = 0 of the simulation and table 5.9 for the actual initial values. The EoS
for both pases is barotropic,

𝑝𝑘 = 𝐶𝑘𝜌𝛾𝑘
𝑘 , 𝑐𝑘 = 𝐶𝑘𝛾𝑘𝜌𝛾𝑘−1

𝑘 (5.116)

and the parameters are summarized in table 5.10. Figures 5.33 and 5.34 show the evolution

Table 5.10: Barotropic EoS coefficients

𝑘 𝐶𝑘 𝛾𝑘

1 1 1.4
2 1 1.65

of the case in time for the two time instants 𝑡 = 2.99 s, 4.99 s, for both the very refined case
solved with the first-order scheme, and the less-refined test with a second-order scheme. It is
possible to appreciate the correct onset of the typical Kelvin-Helmoltz vortices enhanced by
the sinusoidal instability. In particular, looking at Figures 5.33b, 5.33e, 5.34b and 5.34e, we
see the 𝑧(𝜌,Σ) field, that is function of the interfacial area density. We can appreciate the higher
concentration of 𝑧 in the zones which feature the smallest vortices lenght scales, intuitively the
most likely to feature the highest distortion, creation of ligaments and satellite objects, hence
higher Σ. This intuitive results is a positive outcome giving optimism on the mathematical
soundness of the model presented in section 3.6. Figures 5.33c, 5.33f, 5.34c and 5.34f show
the evolution of the field 𝜔, that we can interpret as a sort of small scale interface pulsation
indicator. The highest gradient of 𝜔 are an indication of interface stretching and small scale
inclusions pulsation.

In terms of comparison between the first order and second order schemes, we can say that
the higher order scheme, despite the less resolved mesh, is capable of capturing the evolution
at even finest scales w.r.t. the first order implementation. In terms of speed of execution, the
reduction in size of the mesh translates on a 92% reduction in computational time w.r.t. the
highly resolved case, in the context of this specific testing scenario. This allows meaningful
comparisons and fast iteration on the scheme development to be performed in very reasonable
times, justifying the effort of providing a second-order scheme for this problem.

The simulation of this test case shows the flexibility of the josiepy library1 and it is a
first attempt at numerically benchmarking the theoretical outcomes of section 3.6. The current
choice of destabilizing the flow with a localized sinusoidal perturbation is a first simple way
1The entirety of the code for this test case fits a 500 lines Jupyter notebook

216



5.8 Results for the convective subsystem featuring an interfacial area density equation

of performing such task. The sinusoidal “bump” connects to the rest of the constant interface
in a way that perturbates all the spatial frequency of the system. Future refining of the case
might envisage a perturbation that stimulates only a specific set of frequencies as a continuous
sinusoidal interfacial wave.

2.0e-01 8.0e-010.4 0.6

alpha

(a) The initial 𝛼 field, [0.8 to 0.2]
0.0e+00 1.0e-020.002 0.004 0.006 0.008

z

(b) The initial 𝑧 field, [1e−2 to 0]

Figure 5.32: Initial condition for the Kelvin-Helmoltz case
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2.0e-01 8.0e-010.4 0.6

alpha(a) The 𝛼 field, [0.8 to 0.2]
5.0e-26 1.4e-045e-5 0.0001

z (b) The 𝑧 field, [1.4e−4 to 0]
-8.0e-03 1.4e-020 0.005 0.01

w(c) The 𝜔 field, [8e−3 to
1.4e−2]

(d) The 𝛼 field, [0.8 to 0.2] (e) The 𝑧 field, [1e−3 to 0] (f) The 𝜔 field, [2.3e−2 to
−1.6e−2]

Figure 5.33: State of the Kelvin-Helmoltz case for 𝑡 = 2.99 s. Top row with the fist-order scheme on a
1500 × 1500 mesh. Bottom one with MUSCL-Hancock MINMOD scheme on a 500 × 500
mesh
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2.0e-01 8.0e-010.4 0.6

alpha(a) The 𝛼 field, [0.8 to 0.2]
5.0e-26 1.4e-045e-5 0.0001

z

(b) The 𝑧 field, [1e−3 to 0]
-8.0e-03 1.4e-020 0.005 0.01

w

(c) The 𝜔 field, [8e−3 to
1.4e−2]

(d) The 𝛼 field, [0.8 to 0.2] (e) The 𝑧 field, [1e−3 to 0] (f) The 𝜔 field, [1.4e−3 to
−8e−3]

Figure 5.34: State of the Kelvin-Helmoltz case for 𝑡 = 4.99 s. Top row with the fist-order scheme on a
1500 × 1500 mesh. Bottom one with MUSCL-Hancock MINMOD scheme on a 500 × 500
mesh
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5.9 Conclusions and perspectives

The implementation of a generic numerical framework implemented with an accessible pro-
gramming language as Python into the library josiepy has been presented in this chapter.
The general aspects of the numerical strategy allow to decouple the implementation of specific
terms in isolated modules granting agility in the implementation of numerical aspects from the
perspective of the modeler. In facts, at the current date, josiepy features a wide selection of
different solvers and schemes that showcase the flexibility of this choice and allow to simu-
late classical systems like the Euler equations with exact and approximated solvers, two-phase
flow advanced problems as the ones governed by the B-N (Baer and Nunziato 1986), com-
plex two-phase flow systems necessitating of elaborate numerical stategies as the sub-system
from Cordesse (2020). In addition, the simulation of the brand new model we introduced in
section 3.6. All the schemes are moreover easily usable with a second-order extension via a
MUSCL-Hancock approach that is also already available in the library. In facts the josiepy
proved to be a very useful tool to ascertain the numerical simulability of the theoretical model
we developed with the SAP and to produce a set of testing scenarios that can be easily adapted
to future implementations in an agile way.

Future work is currently ongoing, especially with the post-doc of Ait Ameur (2020) and the
PhD thesis of Loison (2023), in order to extend the capabilities to high-order DG schemes and
to include additional models, such as the complete system from Cordesse, Di Battista, Cheva-
lier, et al. (2020) with large and small scale capillarity effects. On the scientific computing side
we are also actively working on the parallelization of the code for modern architectures, we
talk about this subject more specifically in chapter 6.
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scientific computing

Most of current scientific endeavor nowadays could not be achieved without the aid of a com-

puter. A lot of high-level science discoveries are obtained thanks to well-optimized software.

Two-phase flowmodeling and simulation is no exception. The long-term success of a software

depends not only on the scientific outcome it can provide, but also on the easines of accessing

its codebase, the level of testing and associated coverage, the readiness of its API, the cross-

compatibility of its code, the efficiency of its build system, the rapidity of bug fixes and new

features implementations. While those aspects are now common knowledge in the applied

computer science world, scientific software tends to neglect the aspects that are peculiar of

modern software development that are also undervalued in publications, where code is hardly

accessible. We believe that the free access to high-quality software stacks that follow modern

practices for Software Architecture is paramount to long-term success of scientific efforts. For

this reason, in this chapter we present the two libraries that have been developed in the con-

text of this thesis: a FVM-based PDE solver written in Python named josiepy, whose target is
to be a fast-prototyping tool for modelers, and Mercur(v)e, a C++ library that implements the
details of the geometrical post-processing routine that has been discussed in chapter 4. Both

libraries are FOSS, and accessible freely on the Internet.

6.1

josiepy: APDE solverwritten in Pythonwithout sac-

rificing (too much) performance

The situation of simulation codes in the framework of physics systems governed by PDEs
is characterized by the co-existence of two kinds of software: industrial codes that are ex-
tremely flexible and performant, with enhanced multiphysics capabilites. Notable examples
are closed commercial or enterprise specific suites like CEDRE from ONERA (Le Touze et al.
2014), products from NUMECA, ANSYS, ConvergeCFD, COMSOL just to cite few. FOSS
examples are also available like OpenFOAM (Greenshields 2015) or FreeFem++ (Hecht 2012).
These advanced suites are often optimized for the execution time on CPU-centric virtual Non-
UniformMemory Access (NUMA) architectures on HPC clusters. On the other side, academic
codes that work on simplified configurations, sometimes limited to low dimensionalities, that
assume lots of hypotheses on the mesh structure (e.g. undeformed, regular Cartesian meshes
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with fixed spacing) and can have limited applicability on real scenarios. For the first category,
often the chosen implementation language is low-level and compiled, often being C++, with a
steep learning curve and a real difficulty of integrating localized modifications to specific part
of the code. Testing different numerical approaches to solve a complex PDE system can be
long, cumbersome and sometimes frustrating, if the solver you need to embed your schemes
into is written in a complex, compiled, programming language such as C++ or you have lim-
ited access to the entire code base or documentation. Despite C++ being invented to produce
pain, and pain being cathartic sometimes, when half way through the journey of your life, you
find yourself in a gloomy wood, because the path which led aright was lost1, having an easy
framework to test your numerical experiments without the need of a savvy guide like Virgil,
can be useful. Jokes apart, having C++ a clear established role in the field, we believe that there
is room for a mid-ground solution that can be optimized on the global “Time to Market” of a
simulation including in the evaluation metrics also the time a developers needs to understand
and get acquainted with a certain code base in order to set up a reasonably complex case. In
addition to that, nowadays, the Python language is used in all sort of HPC fields, like Data Anal-
ysis and AI, its ecosystem is equipped with powerful compiled extensions like NumPy (Harris
et al. 2020), that allow fast debugging cycles without sacrificing too much performance in the
execution.

Here comes josiepy (Di Battista 2019), a Python library that allows to easily solve multi-
dimensional2 PDE systems encoded in the same spirit as described in section 5.2. It is heavily
based on the solid fundamentals of the NumPy API—that incidentally allows to use different
backends like DistArray (Ganger 2008), for distributed arrays allowing parallel execution on
CPUs, or cupy (Preferred Infrastructure, Inc. 2021), for execution on GPUs, or even Bauer and
Garland (2019) for hybrid large scale workflows— and it basically allows to “program” your
test case in Python, without the need of cryptic and limited configuration files. In addition to
that, josiepy also ships a basic structured mesher based on TFI (Thompson et al. 1998, Chap.
3) that allows to “program” your meshes directly in Python, without the need of interfacing
with other meshing tools. The simulation results can be exported in common files such as XDMF
and inspected in post-processing tools such as Paraview. The framework aims at providing a
fast prototyping tool granting the possibility to have all the required tools for a simulation in
one place: a structured mesh generator, a selection of space and time schemes, high-order ex-
tensions of those schemes, a selection of explicit time integrators, everything easily installable
using Python packaging tools and accessible with a familiar programming language API. The
1Adapted from Alighieri (n.d.)
2At this time, the dimensionality of the problem is limited to 2D. Future plans are to extend to 3D block-

structured meshes
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numerical schemes can be implemented directly in Python and they can run as fast as NumPy
API allows, that in most cases is close to what compiled high performance languages like C
and C++ allow (Harris et al. 2020).

6.1.1 Architecture of the code

josiepy has been thought as a fast prototyping tool that would allow to experiment on a single
aspect of the resolution of a PDE problem, without the need of knowing how things are done
for the other modules. A representation of the core modules is shown in Fig. 6.1. We can see
that the code is logically arranged in three macro-areas:

• Mesh Generation

• Physics of the problem to be solved

• Numerics

The three aspects are then combined and used in the solver module the aim of which is to
orchestrate the simulation exposing the mesh geometry to the chosen scheme, advance the sim-
ulation in time, and store all the metadata about the simulation. The io module operates on
the solver object in order to serialize simulation results to the disk. All the underlying data
structures for storing mesh-related quantities or the problem fields evolved in time during the
simulation are based on the NumPy array API. This allows to define operations on the entire
block of values, exploiting modern processor optimizations for large float vectors operations
(SSEx, AVX2, AVX512) that NumPy ships internally via the linking to optimized linear alge-
bra implementations, but also other type of low-level containers that are not stored locally on a
machine, as for the bare NumPy ndarrays, but potentially on distributed machines and GPUs
(Harris et al. 2020; Preferred Infrastructure, Inc. 2021; Bauer and Garland 2019).

6.1.1.1 Physics of the Problem

The model template which josiepy supports is,

𝜕𝒒
𝜕𝑡

+ ∇ ⋅ 𝑭(𝒒) + 𝑩(𝒒) ⋅ ∇𝒒 − ∇ ⋅ (𝑲(𝒒) ⋅ ∇𝒒) + 𝒔(𝒒) = 𝟎 (6.1)

in order to take care of most of the problems governed by PDEs that concern the underly-
ing scientific context of this work with a logic separation of the various type of contributions
(convective, non-conservative, diffusive and source terms) together with time integration im-
plemented with the Method of Lines (MoL) semi-discretization technique. This is indeed an
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Figure 6.1: The architecture of the josiepy solver
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opinionated choice, but it appeared flexible enough for the purpose of this work. The dynamic
nature of the Python language allows faster refactoring w.r.t. C++ nonetheless.

The State object The first thing to do is to define the phase space containing the problem
variables. For example, to create a solver for the Euler system (section 3.4.1.7), the fields are
defined as,

from josie.fluid.fields import FluidFields

class EulerFields(FluidFields):
# Conservative fields
rho = 0
rhoU = 1
rhoV = 2
rhoE = 3

# auxiliary fields
U = 4
V = 5
rhoe = 6
p = 7
c = 8

Strictly speaking, the fields that are present in the equations are the conservative ones, but
to compute the other properties of the system, notably using the EoS, it might be necessary to
access other auxiliary fields, arbitrarily defined (increasing thememory footprint of the running
simulation and the corresponding size of the saved file on disk). Once the fields of the problem
are defined, they can be assigned to a State object,

class EulerState(State):
fields = EulerFields

which, under the hood, is a familiar NumPy array. In facts it is possible to cast a NumPy array
into a State object, and access it with integer indices or using its fields,

rnd_state = np.random.random(len(EulerFields)).view(EulerState)
fields = rnd_state.fields
assert rnd_state[0] == rnd_state[fields.rho]
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The class EulerFields is actually an enumeration of integers, that is fast to access and with
small memory footprint, that can be used to index the State array without the need of remem-
bering the index of the desired field. State can also be multidimensional (as it is within the
solvers namespace), and the Ellipsis [...] Python object allows to retrieve all the values of
a set of fields for all the cells of a mesh irrespective of the dimensionality (1D, 2D or 3D) of
the problem.

rnd_state = np.random.random((100, 100, len(EulerFields))).view(EulerState)
U = rnd_state[..., EulerFields.U]

There is also a functional API to define a state class, that can allow the definition of a state in
a slightly less verbose fashion,

MyStateClass = StateTemplate("rho", "rhoU", "rhoV")
zero = np.zeros(10).view(MyStateClass)

The Problem object The Problem is the “continuous” representation of the problem the
user is willing to simulate. The Problem class implements the corresponding methods to the
terms 𝑭(𝒒),𝑲(𝒒),𝑩(𝒒), 𝒔(𝒒) of the reference eq. (6.1). As an example, the implementation of
the josie.euler.EulerProblem needs to provide the implementation of the convective flux
for the Euler system, that is

class EulerProblem(Problem):
def __init__(self, eos: EOS):

self.eos = eos

def F(self, cells: CellSet) -> np.ndarray:
values: Q = cells.values.view(Q)
fields = values.fields

num_cells_x, num_cells_y, _ = values.shape

# Flux tensor
F = np.empty(

(num_cells_x, num_cells_y, len(ConsFields), MAX_DIMENSIONALITY)
)
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rhoU = values[..., fields.rhoU]
rhoV = values[..., fields.rhoV]
rhoE = values[..., fields.rhoE]
U = values[..., fields.U]
V = values[..., fields.V]
p = values[..., fields.p]

rhoUU = np.multiply(rhoU, U)
rhoUV = np.multiply(rhoU, V)
rhoVV = np.multiply(rhoV, V)
rhoVU = rhoUV # np.multiply(rhoV, U)

F[..., fields.rho, Direction.X] = rhoU
F[..., fields.rho, Direction.Y] = rhoV
F[..., fields.rhoU, Direction.X] = rhoUU + p
F[..., fields.rhoU, Direction.Y] = rhoUV
F[..., fields.rhoV, Direction.X] = rhoVU
F[..., fields.rhoV, Direction.Y] = rhoVV + p
F[..., fields.rhoE, Direction.X] = np.multiply(rhoE + p, U)
F[..., fields.rhoE, Direction.Y] = np.multiply(rhoE + p, V)

return F

The Problem.F method operates on all the cell meshes (cells) as an entire entity to promote
vectorized operations driven by NumPy. To understand better the data structure for the mesh
and the values contained in each mesh cell, we will now discuss the mesh generation.

6.1.1.2 Mesh Generation

In section 5.2.1 we discussed the mathematical background that backs our implementation of
the structured mesher integrated in josiepy. Here we will discuss the choices we made for
the API. The mesh generation starts defining the boundaries of the domain, directly in Python

from josie.boundary import Line, CircleArc

left = Line([0, 0], [0, 1])
bottom = CircleArc([0, 0], [1, 0], [0.5, 0.5])
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right = Line([1, 0], [1, 1])
top = Line([0, 1], [1, 1])

to be sure that the defined domain coincides exactly with what the user had in mind, without
the need of saving the mesh in another format and then opening in a post-processing tool, it is
possible to simply plot the curves that constitute the domain boundary,

for curve in [left, bottom, right, top]:
curve.plot()

and the resulting image is shown in Fig. 6.2.

Figure 6.2: The plotted boundary of the domain

A problem governed by a system of PDEs requires the imposition of BCs on all the domain
boundaries. With josiepy it is possible to directly assign the BCs to the actual boundaries
of the domain. The generic module josie.bc provides the Dirichlet and Neumann base
classes that the user can use respectively to impose a fixed value for the state on a boundary
or a gradient value. As an example, let us impose a zero value on the left, bottom, and right
boundary and a zero-gradient BC on the top boundary:

from josie.bc import Dirichlet, Neumann

Q_zero = np.zeros(len(EulerState.fields)).view(EulerState)
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dQ_zero = Q_zero

left.bc = Dirichlet(Q_zero)
top.bc = Neumann(dQ_zero)
bottom.bc = Dirichlet(Q_zero)
right.bc = Dirichlet(Q_zero)

This way of defining the BCs is easy and allows to assign to the entire state the same BC. More
often it is needed to set different conditions on the individual fields of a state. This is indeed
also possible with josiepy,

from josie.bc import BoundaryCondition

Q_bc = EulerState(rho=Dirichlet(1), rhoU=Neumann(0), rhoV=Dirichlet(1),
rhoE=Dirichlet(1), rhoe=Dirichlet(3), U=Neumann(0),
V=Neumann(0), p=Dirichlet(1), c=Dirichlet(10))

left.bc = BoundaryCondition(Q_bc)

What is happening here is that we can assign per each field of the state a Dirichlet or Neumann
condition. In facts, the boundary conditions objects act a bit magically based on the given
input. If the given input value is an entire State object, then the BC is set on all the fields of
the problem. If the input value is just a float, then the returned BC object is a ScalarBC, and
it just sets the condition on one individual (that is “scalar”) field. As boundary values, not only
constant values are possible: in order to impose space and time dependent boundary values,
also Callable objects can be given as argument to the BCs. For reference, the josie.ns.bc
module implements some specific BCs for the Navier-Stokes problem that make use of the
Callable input.

Internally, the Boundary Conditions are applied assigning a value to the ghost cells of the
mesh. Fig. 6.3 shows a sample mesh with the ghost shell next to each boundary highlighted.
The entire mesh including the ghost cells is allocated in a contiguous memory region such
that much of the NumPy slicing operations are just memory views and not copies of the same
data. The corner values are unused in the current implementation and NaNs are stored in those
locations. The Dirichlet BC implementation currently imposes the boundary value as the
arithmetical mean of the neighboring points,

𝜑𝐷 =
𝜑𝑖 + 𝜑𝐺

2
(6.2)
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where 𝜑𝐷 is the value to impose on the boundary face for the generic field 𝜑. Therefore this
is translated on a ghost value to be imposed:

𝜑𝐺 = 2𝜑𝐷 − 𝜑𝑖 (6.3)

Similarly, the Neumann condition is imposed as:

∇𝜑𝑁 ⋅ 𝒏̂ =
𝜑𝐺 − 𝜑𝑖
Δ𝒙𝐺𝑖 ⋅ 𝒏̂

≜ 𝑔𝑁 (6.4)

hence the value of the field on the ghost cell is evaluated (at each time step) as:

𝜑𝐺 = 𝑔𝑁Δ𝒙𝐺𝑖 ⋅ 𝒏̂ + 𝜑𝑖 (6.5)

being 𝑔𝑁 the value of the gradient to impose on the boundary for the generic field 𝜑 and Δ𝒙𝐺𝑖

is the relative distance vector between the boundary cell 𝑖 and the corresponding ghost 𝐺.

6.1.1.3 The Numerics

Again referring to Fig. 6.1, we talked about the mesh generation module in section 6.1.1.2 and
of the physical properties configuration in section 6.1.1.1. We are now going to introduce the
fundamentals for the implementation of a numerical scheme well suited to a specific problem.
The core object of our discussion is going to be the josie.scheme.Scheme class.

The Scheme object The Scheme object is an Abstract Base Class (ABC), a sort of interface
for those more comfortable with C-family languages vocabulary, that exposes methods that
act like “hooks” that are called at specific moments during the simulation lifetime. Fig. 6.4
shows a graphical representation of how the josie.solver.Solver object interacts with the
Scheme. In order to modularize even further the code, allowing very precise editing of the
scheme implementation in order to implement exactly what the mathematical modeler has in
mind, the classes ConvectiveScheme, NonConservativeScheme, DiffusiveScheme and
SourceScheme are direct children mixins3of the parent Scheme and they expose the interface
to implement the terms explained in chapter 5 for the discretization of the reference equation

𝜕𝒒
𝜕𝑡

+ ∇ ⋅ 𝑭(𝒒) + 𝑩(𝒒) ⋅ ∇𝒒 − ∇ ⋅ (𝑲(𝒒) ⋅ ∇𝒒) + 𝒔(𝒒) = 𝟎

3A mixin is a separate class that implements a specific functionality that can be then plugged into other classes
via multi-inheritance to enrich their API
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Figure 6.3: The mesh data structure including the ghost cells
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that are:

• The convective term approximation (see section 5.2.2),

𝑁faces

∑
𝑓

⌊𝑭(𝒒) ⋅ 𝒏̂⌋𝑓 𝑆𝑓, ConvectiveScheme.F

• The non-conservative term approximation (see section 5.2.3),

⟨𝑩(𝒒)⟩Ω𝑖
⋅

𝑁faces

∑
𝑓

⌊𝒒 ⊗ 𝒏̂⌋𝑓 𝑆𝑓, NonConservativeScheme.G

• The diffusive term approximation (see section 5.2.4),

𝑁faces

∑
𝑓

⌊∇𝒒 ⋅ 𝒏̂⌋𝑓 𝑆𝑓, DiffusiveScheme.D

• The source term approximation (see section 5.2.5),

⟨𝒔(𝒒)⟩Ω𝑖 |Ω𝑖|, SourceScheme.s

In addition the TimeScheme class provides the abstract interface to implement time schemes
(without needing to know how the other terms have been implemented). Some of those terms
can be problem specific, notably the convective term implementation that depends on the
eigenstructure of the problem, others may be reused as-is for most schemes. That is why
a meta-module named josie.general contains all the schemes that can be used “vanilla”
for all scheme implementations, notably different gradient schemes (see section 5.2.4) stored
in josie.general.schemes.diffusive, the different time schemes (see section 5.2.6) in
josie.general.schemes.time, and the source schemes (see section 5.2.5) in josie.general. ⌋

schemes.source. Fig. 6.5 shows graphically this modularized organization.
As a final note, let us propose as an example the implementation of the Rusanov scheme

for the Euler system as explained in section 5.3.3.1. This implementation is directly extracted
from the josie.euler.schemes package.

class Rusanov(EulerScheme):
@staticmethod
def compute_sigma(
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Figure 6.5: Each solver can have its own specific implementation of objects or share the general ones
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U_L: np.ndarray, U_R: np.ndarray, c_L: np.ndarray, c_R: np.ndarray
) -> np.ndarray:

sigma_L = np.abs(U_L) + c_L[..., np.newaxis]

sigma_R = np.abs(U_R) + c_R[..., np.newaxis]

# Concatenate everything in a single array
sigma_array = np.concatenate((sigma_L, sigma_R), axis=-1)

# And the we found the max on the last axis (i.e. the maximum value
# of sigma for each cell)
sigma = np.max(sigma_array, axis=-1, keepdims=True)

return sigma

def F(self, cells: MeshCellSet, neighs: NeighboursCellSet):
Q_L: EulerState = cells.values.view(EulerState)
Q_R: EulerState = neighs.values.view(EulerState)

fields = EulerState.fields

FS = np.zeros_like(Q_L).view(EulerState)

# Get normal velocities
U_L = self.compute_U_norm(Q_L, neighs.normals)
U_R = self.compute_U_norm(Q_R, neighs.normals)

# Speed of sound
c_L = Q_L[..., fields.c]
c_R = Q_R[..., fields.c]

sigma = self.compute_sigma(U_L, U_R, c_L, c_R)

DeltaF = 0.5 * (self.problem.F(cells) + self.problem.F(neighs))
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# This is the flux tensor dot the normal
DeltaF = np.einsum("...kl,...l->...k", DeltaF, neighs.normals)

# First four variables of the total state are the conservative
# variables (rho, rhoU, rhoV, rhoE)
Q_L_cons = Q_L.get_conservative()
Q_R_cons = Q_R.get_conservative()

DeltaQ = 0.5 * sigma * (Q_R_cons - Q_L_cons)

FS.set_conservative(
neighs.surfaces[..., np.newaxis] * (DeltaF - DeltaQ)

)

return FS

As it is possible to see, the implementation is very dense and abstracted. EulerScheme is a
child of the general mixin ConvectiveScheme that makes easier to set up an Euler problem
(e.g. providing EoS implementation stored in josie.euler.eos). The important aspect is
the implementation of the ConvectiveScheme.F method. This method acts on all the cells
of a mesh and the corresponding neighbors (as shown graphically in Fig. 5.3), to be treated
as a whole vector to benefit of the NumPy acceleration. Once the “space part” of the scheme
implementation is ready, the user can actually plug it with whatever time scheme they like,
exploiting multi-inheritance, as for example:

from josie.euler.schemes import Rusanov
from josie.general.schemes.time import RK2

class MyRusanov(Rusanov, RK2):
pass

That is all it is needed to do to define a Rusanov scheme integrated in time with a RK 2.

6.1.1.4 Wrapping things up, the Solver object

Once all the aspects for the definition of the case to simulate are ready, that is the physical
description of the problem (section 6.1.1.1), the mesh (section 6.1.1.2), the Numerics (sec-
tion 6.1.1.3), then everything is wrapped into the Solver object. As reference, let us consider
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Fig. 6.4, it shows the interoperability among the different principal objects that take a role
during a simulation, that are the Solver, Mesh, Scheme classes. The Problem object is
embedded into Scheme in a composition approach. Two main “hooks” are available:

• init method that is called once at the beginning of the simulation where the Mesh and
Scheme object can initialize their local data structures, storing mesh geometry informa-
tion and scheme-specific data respectively, and the Solver objects applies the initial
condition to the whole domain. For certain objects, the init method is decomposed in
multiple sub-steps that are shown in Fig. 6.4 as dashed circles.

• step method that is called routinely at each time step. This hook is decomposed in
several different sub-steps within the Scheme object, notably the pre_accumulate
method that exposes access to all the neighbors of the mesh cells as a whole, in order
to apply operations that need to access all the neighbors simultaneously (as for example
the Least Square method to approximate fields gradient described in section 5.2.4.3).

6.1.1.5 I/O Control

The last element wewant to discuss in this section is about controlling the I/O of a test case. The
user certainly does not want to save everything at each time step and, for different simulations,
often different serialization strategies are required. For this reason a hierarchy of objects are
stored in the josie.io.write package. Notably it is possible to choose a WriteStrategy,
that imposes (tautologically) which strategy the user wants to use to serialize the results on disk,
e.g. every 𝑁 time steps or every 𝑑 seconds. Those strategies are then taken as input argument by
a concrete implementation of a Writer object, that takes care of actually serializing the data to
disk. This structure allows to implement very easily and independently different serialization
strategies and different serialization drivers. At the date of editing of this manuscript, the
josie.io.write.writer module allows to serialize simulation results into XDMF (XDMF
Model and Format - XdmfWeb 2021), memory (but be careful to not fill up your machine
RAM!), and nowhere (that is always a sound option). Other drivers are indeed very easy to
implement at need. As a final note we show how to finally run a simulation saving data every
0.01 s in a XDMF file,

from josie.io.write.strategy import TimeStrategy
from josie.io.write.writer import XDMFWriter
writer = XDMFWriter("euler.xdmf",

TimeStrategy(dt_save=0.01, animate=True),
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solver, final_time=1, CFL=0.2)
writer.solve()

Finally a complete test case “main” file, from top to bottom, is shown in section 6.A. The
test case is a 2D jet governed by the Euler system of equations as presented in section 3.4.1.7.
The code is quite verbose in order to explain each step of the code, but a complete non-trivial
simulation for an Euler jet can be written in about 100 lines.

6.1.2 Future plans and perspectives

The main focus of josiepy as we already mentioned is not to replace or to compete with es-
tablished Computational Fluid Dynamics (CFD) software that can encompass extremely varie-
gated configurations, mesh types, and industrial-specific needs. The vision behind the library
is to provide an agile framework in a familiar language that allows to test the implementation of
different aspects of a simulation, notably numerical schemes, Boundary Conditions, Equation
of States, and so on, without sacrificing too much performance. That is why the envisioned
roadmap is the following:

• Better integration of the NumPy API that will allow to leverage different backends, po-
tentially on GPUs like CuPy; “Legate NumPy.”

• Extending the integratedmesh generator to allow the creation of block-structuredmeshes

• The addition of 3D capability both for mesh generation and simulation

• The addition ofmore advancedmesh generation algorithms, like the one based on elliptic
and hyperbolic equations (see section 5.2.1)

• The addition of modern turbulence models

• Improvement of the infrastructure to facilitate interoperability with HPC clusters (no-
tably an agile, automatic checkpointing ability)

The code is available with a very permissive license at the link https://gitlab.com/
rubendibattista/josiepy, all the interested individuals are encouraged to join the Git-
Lab project and exchange ideas and code to improve the current state of josiepy. The cur-
rent workable tasks and encountered bugs are readily reported at https://gitlab.com/
rubendibattista/josiepy/issues and the official documentation can be found at josiepy.
rdb.is, where few tutorials can be executed directly on the browser thanks to Jupyter (jupyter.
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org). The ongoing work of Ait Ameur (2020); Loison (2023) will leverage the capabilities of
josiepy. Most of the results presented in chapter 5 are promptly available in the repository as
Jupyter notebooks or integration tests that are automatically executed at each commit, ensur-
ing the correct functioning of the code while it gets improved. At the current date, the testing
suite of the software counts 480 tests with a code coverage of 93% of the total code base, all
executed automatically at each commit.

6.2

Mercur(v)e: A post-processing library to perform

analysis on two-phase flow simulations using differ-

ential geometry

One of the main aspect discussed in this work is the sound derivation of reduced order mod-
els that can be used for situations where high-fidelity simulations are not feasible. Notably,
in chapter 3 we largely discuss the different methods one can use to derive a set of governing
equations that accurately represent the phenomenon of injection we are focusing here. No-
tably, section 3.5.3 introduces the derivation of a model that features a small-scale submodel
that supposes oscillating ellipsoidal inclusions. In the formulation of the Lagrangian in facts,
we faced the necessity of choosing the right set of energies that were correctly representing
the phenomenon we wanted to represent. In order to do that, we decided to leverage the infor-
mation a DNS could provide and we developed the Mercur(v)e library in order to perform
the post-processing of these high-fidelity simulations and extract geometrical information from
the triangulated interface. The details are thoroughly explained in chapter 4 in terms of formal
algorithms and related results. The library offers a higher-level abstractions on top of the VTK
graphic toolkit (Will Schroeder et al. 2006), therefore the underlying data structures are for the
most part borrowed from VTK.

6.2.1 The architecture of the code

Mercur(v)e can actually be used in two ways: as a standalone executable (named hgve), or
as a library to be used in your own code. This double mode allows the software to be used
by user that are only interested to the post-processing functionality offered by the software
via the standalone executable, while providing full access to the API to people interested to
customize a specific behavior. The general architecture (that is not listing specific low-level
data structures) is shown in Fig. 6.6. We will start our presentation from the entry point, that
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Figure 6.6: Mercur(v)e architecture
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is the hgve executable.

6.2.1.1 The standalone executable

Usage:
hgve [--mirror=<axis> ...] [options] <file>

Options:
-D, --output_dir=<dir> Directory where to store output files

[default: .]
-h, --help Print this help message
-a, --average=<timesDx> Average points within the radius equal to

<timesDx> times the spacing of the original
grid (computed as the average of the three
axes)

-s, --write_stats Write point data to file
--nooverlap Flag to set for a multiblock input file

in order to remove first layer of points that
are overlapping

--merge-only Execute the merge step only
--mirror=<axis> Before computing the curvature, mirror the

along the specified axis. Possible values of
<axis> are `+X`, `-X`, `+Y`, `-Y`, `+Z`, `-Z`,
the option to mirror along multiple axis (in
order).

--sanitize True if you need to sanitize the resulting
triangulated surface. Check Surface::Sanitize
method for more information

The hgve program exposes most of the library functionality via an easy-to-use Command Line
Interface (CLI). It takes as input an XDMF (XDMF Model and Format - XdmfWeb 2021) file
containing the level-set field computed via the DNS software (e.g. ARCHERVaudor et al. 2017),
on a Cartesianmeshwith uniform spacing4. Once the file is read (using VTK I/O classes), a poly-
morphic behavior is encountered: based on the size of the simulation, the resulting data can be

4This is not a hard requirement. Strictly speaking the input data can be whatever is supported by the VTK iso-
surfacing routines
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included in just a single rectangular grid, or in a set of blocks, each one being a Cartesian grid.
In order to resolve correctly the problem, the executable dispatches the decision to the Runner
object that based on the nature of the input files, can actually exploit the MultiBlockRunner
to perform the merging of the blocks with the algorithm presented in algorithm 4.A.1. The fi-
nal outcome of the Runner execution is then a single rectangular block containing the level-set
field, and stored in a vtkImageData low-level data structure provided by VTK. This low-level
structure is wrapped by the Volume object.

6.2.1.2 The Volume and Surface objects

The Volume objects wraps the rectangular grid exposing methods to retrieve general statistics
(as the total number of points and the spacing), but most of all it allows the triangulation of the
interface between the two phases present in the provided input file. Volume::Triangulate is
the method used to obtain the resulting surface. At the current date, the iso-surfacing algorithm
used to obtain the triangulated surface representing the interface is hardcoded to be the Flying
Edges algorithm (William Schroeder et al. 2015), since from our experimentation, it is the one
providing the best results with the most efficient computation. A further modularization of the
code might easily allow to use different algorithms like the MC (Lorensen and Cline 1987;
Chernyaev 1995). Once the triangulation is completed, a Surface object is returned.

The Surface object is a high-level wrapper over the VTK vtkPolyData container. This
low-level container can store a polygonal surface connectivity or relatively arbitrary form, but
in the context of this application, a triangulated surface is employed. This implementation also
exposes a polymorphic iterator interface that allows to loop over the Points,

// Get norm of the position vector associated
// to the iterated point
for (auto p : surface.IterateOver<Point>()) {

auto norm = p.Norm();
}

respectively the Cells, of the triangulated surface very easily.

// Sum cell areas
double A = 0;

for (auto c : surface.IterateOver<Cell>()) {
A += c.Area();

}

242



6.2 Mercur(v)e: A post-processing library to perform analysis on two-phase flow
simulations using differential geometry

In addition, the object encapsulates the functionality to actually perform the computation using
the “1-ring averaging algorithm” discussed in chapter 4 via the Surface::ComputeCurvatures
method. It also allows the topology-preserving averaging we present in section 4.4.2.1 via the
Surface::Average, that takes as input the radius aroundwhich we are keen on performing the
averaging. Both the Surface and Volume objects expose a way to serialize their data on disk,
notably in VTK format. The Surface object can be also serialized in a human-readable for-
mat via the SurfaceASCIIWriter helper (opposed to the SurfaceVTKWriter for VTK format
serialization) and it is easily extensible.

A Volume cannot only be created reading the output data of an actual simulation. Sometimes
it could be useful to have the possibility of creating artificial level-set fields that yield interest-
ing surface objects. Actually a distance function like a level-set embodies interesting properties
that allow a sort of “set operations” like addition or subtraction between basic, canonical, ob-
jects described by level-sets. Mercur(v)e offers an easy way of performing those operations
to create arbitrary objects to experiment with, i.e. the LevelSetObject.

6.2.1.3 Playing with distance functions to create artificial surfaces

The functionality described in this section is heavily based on the classical work in the frame-
work of Computer Graphics and rendering. We shall not discuss the mathematics behind the
composition of distance functions, the interested reader can refer to Inigo Quilez :: Fractals,
Computer Graphics, Mathematics, Demoscene and More (2018) for an hands-on description.
The LevelSetObject is the abstract class that overrides the +, -, ^ operators to allow re-
spectively the union, difference and intersection of other generic LevelSetObjects and the
additional LevelSetObject::Elongate transform that creates derived objects via elonga-
tion of the basic ones. The concrete implementations of LevelSetObject are topological
objects that feature analytical or easily approximable expressions for their level-set function,
i.e. LevelSetSphere, LevelSetEllipsoid, LevelSetCylinder, LevelSetTorus. Each
individual object can then be unioned, subtracted, intersected or elongated to obtain complex
objects with composition of transforms. As an example, we can create a “Mickey Mouse”-
shaped object (Fig. 6.7) and compute curvatures on it with the code shown in section 6.B.
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Figure 6.7: A “Mickey Mouse” object made by the composition of level-set spheres. The
maps the Gauss curvature value

6.2.2 Future plans and perspectives

The Mercur(v)e library was an invaluable tool that allowed the sound closure of the model
described in section 3.6. Nonetheless, the library can still be advanced to become a complete
post-processing tool for two-phase flowDNS and beyond. The following point of improvement
can be identified in the short and medium term:

• Making the curvatures computation algorithms pluggable: at the current date, the only
algorithm that is possible to use is the one described in chapter 4 that exploits the “1-ring
averaged values” over the surface. Other techniques are indeed available (see for example
Bermejo-Moreno and Pullin (2008); Bermejo-Moreno, Pullin, and Horiuti (2009)). It
would be highly beneficial to allow the user to easily choose among a set of possibilities
via the implementation of a pluggable interface like the one exposed by the Surface
object for the serialization to disk

• Allowing the curvatures computation on unclosed objects: currently, the computation of
the curvatures via the algorithms described in chapter 4 can only be performed on closed
or symmetrical objects. In order to allow the post-processing of unclosed surfaces, a fix
for those calculations is required

• Performing the curvature computation at runtime during a simulation and not only as
post-processing: this point of improvement actually requires the previous one to be im-
plemented first, since a DNS simulation that has an actual value must be performed on a
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partitioned domain in parallel, each block may contain an unclosed section of the inter-
face. The interest of performing a runtime computation for the curvatures is to benefit
of the topology-preserving averaging kernel discussed in section 4.4.2.1 to compute the
surface tension in a simulation. In the ARCHER code for example, in the parts of the
domain where strong topological variations undergo, the computed values of the mean
curvatures that are needed for the surface tension estimation can spike to extreme values,
therefore a manual and somehow arbitrary threshold is applied. The averaging kernel
we presented in this thesis might lift this restriction acting as a regularization strategy
in these difficult part of the domain. This runtime curvature estimation however may
require a higher computing cost associated to the triangulation, together with the need
of projecting back the computed values of curvature to the rectangular volumetric mesh,
maintaining the topological invariance.
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Appendices

6.A

A “main” file to run an Euler jet simulation with

josiepy

import numpy as np

from josie.bc import Dirichlet, Neumann, NeumannDirichlet
from josie.boundary import Line
from josie.euler.eos import PerfectGas
from josie.euler.solver import EulerSolver
from josie.euler.state import Q

from josie.mesh import Mesh
from josie.mesh.cell import SimpleCell

# Definition of the domain
left = Line([0, 0], [0, 1])
bottom = Line([0, 0], [0.25, 0])
right = Line([0.25, 0], [0.25, 1])
top = Line([0, 1], [0.25, 1])

# Choose your gas EOS
eos = PerfectGas(gamma=1.4)

# Conditions of the inlet jet and its position
JET_CENTER = 0.5
JET_RADIUS = 0.05
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# Inlet
U_JET = 1
V_JET = 0
RHO_JET = 1000
P_JET = 1e3

RHOe_JET = eos.rhoe(RHO_JET, P_JET)
E_JET = RHOe_JET / RHO_JET + 0.5 * (U_JET ** 2 + V_JET ** 2)
C_JET = eos.sound_velocity(RHO_JET, P_JET)
Q_JET = Q(

RHO_JET,
RHO_JET * U_JET,
RHO_JET * V_JET,
RHO_JET * E_JET,
RHOe_JET,
U_JET,
V_JET,
P_JET,
C_JET,

)

# Conditions for the rest of the domain at t=0
U_INIT = 0
V_INIT = 0
RHO_INIT = RHO_JET / 1000
P_INIT = P_JET
RHOe_INIT = eos.rhoe(RHO_INIT, P_INIT)
E_INIT = RHOe_INIT / RHO_INIT + 0.5 * (U_INIT ** 2 + V_INIT ** 2)
C_INIT = eos.sound_velocity(RHO_INIT, P_INIT)

Q_INIT = Q(
RHO_INIT,
RHO_INIT * U_INIT,
RHO_INIT * V_INIT,
RHO_INIT * E_INIT,
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RHOe_INIT,
U_INIT,
V_INIT,
P_INIT,
C_INIT,

)

# Zero-gradient value
dQ = np.zeros(len(Q.fields)).view(Q)

# Partition function that sets the part of the left boundary on which to impose
# the inlet conditions
def partition_fun(centroids: np.ndarray):

yc = centroids[..., 1].flatten()

# Partition cells of the inlet
idx = np.where((yc - JET_CENTER) ** 2 < JET_RADIUS ** 2)

return idx

# Assign BC to boundaries
left.bc = NeumannDirichlet(

dirichlet_value=Q_JET, neumann_value=dQ, partition_fun=partition_fun
)
top.bc = Dirichlet(Q_INIT)
right.bc = Neumann(dQ)
bottom.bc = Dirichlet(Q_INIT)

# Generate your mesh
mesh = Mesh(left, bottom, right, top, SimpleCell)
mesh.interpolate(25, 100)
mesh.generate()
mesh.write("mesh.xdmf")
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# Definition of the Scheme
from josie.euler.schemes import Rusanov
from josie.general.schemes.time import ExplicitEuler

# Choose your convective scheme and time integration via inheritance
class MyScheme(Rusanov, ExplicitEuler):

pass

scheme = MyScheme(eos)

# Define the Solver object
solver = EulerSolver(mesh, scheme)

# Init function that initializes the domain at t=0
def init_fun(solver):

solver.values[...] = Q_INIT

# Perform the initialization
solver.init(init_fun)

from josie.io.write.strategy import TimeStrategy
from josie.io.write.writer import XDMFWriter

# Run the simulation and write the results to file every 0.01s of simulated
# time
writer = XDMFWriter(

"euler.xdmf",
TimeStrategy(dt_save=0.01, animate=True),
solver,
final_time=1,
CFL=0.2,

)
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writer.solve()

6.B

A “Mickey Mouse” shaped object obtained with the

composition of basic level-set objects using Mercur-

(v)e

#include "CompositeLevelSetObject.h"
#include "LevelSetSphere.h"
#include "Volume.h"

using namespace hgve;

int main(int argc, char *argv[]) {
Volume domain(250, 250, 250, SimpleVector(4, 4, 4));

// Generate the central sphere
double radius = 1.0;
SimpleVector center(2, 2, 2);
LevelSetSphere sphere(radius, center);

// Generate the ears spheres
LevelSetSphere ear1(radius / 2, SimpleVector(1, 1, 2));
LevelSetSphere ear2(radius / 2, SimpleVector(3, 1, 2));

// Combine objects
auto mickeyMouse = sphere + ear1 + ear2;

// Materialize in the domain
domain.AddLevelSetObject(mickeyMouse);

// Save the level-set fields
domain.Write("mickey-mouse.vti");

// Triangulate the domain
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auto surface = domain.Triangulate();

// Compute curvatures and save
surface->ComputeCurvatures();
surface->Write("mickey-mouse.vtp");

// Test Gauss Bonnet
double GA = 0;
for (auto p : surface->IterateOver<Point>()) {

auto curv = p.OneRingProperties();
double G = curv.G();
double A = curv.A();
GA += G * A;

}

std::cout.precision(std::numeric_limits<double>::max_digits10);
std::cout << "Gauss Bonnet: " << GA / 4 / vtkMath::Pi();

}
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7 General conclusions and

future perspectives

The endeavor of this thesis has been focused on improving the current state of the art regard-
ing the modeling and simulation of two-phase systems, with a particular interest towards space
propulsion systems. The general picture we aim at providing at the end of this work is the one
of a mathematically sound methodology that allows the derivation of two-phase flow mod-
els that have desirable mathematical properties, notably a hyperbolic convective structure and,
where needed, source terms that respect the second principle of thermodynamics dissipating
entropy in a correct manner. This modeling strategy is then coupled with a flexible computing
environment in which Free and Open Source Software (FOSS) libraries act as useful tools that
help the modeler to close their modeling assumptions and also to benchmark the most suit-
able numerical schemes for the specific model under investigation. The final, global target, of
this effort is the creation of an accessible ecosystem to perform accurate predictions of flow
behavior for systems that are intrinsically complex and feature multiple scales. In facts, the
major difficulty that makes performing accurate simulations is this inherent multiscale nature
and the necessity of being able to simulate both the separated phase regime and the disperse
phase regime, that are often co-existent in a single case. The current state-of-the art strategies
that account only for the disperse phase regime, neglecting the correct resolution of the liquid
film that actually produces the final spray droplet distribution fail at providing a satisfying out-
come. The approach we presented in this work is therefore centered at providing the building
elements of a unified modeling approach that allows the resolution of the liquid film close to
the injector, together with an Eulerian modeling of the spray. This objective has been tackled
on different levels:

• On the modeling side, we have proposed a unified approach based on a variational math-
ematical tool called Stationary Action Principle (SAP). The current presentation of the
method is the coronation of a lot of years of investigation and it stands on the shoulder of
other studies performed within the research team, notably Drui (2017); Essadki (2018);
Cordesse (2020). The main idea of the method is based on the injection of additional ge-
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ometrical properties such as the interfacial area density and the average mean and Gauss
curvatures into the set of fields featured in the modeling equations. These properties
are injected in the set of equations assuming a specific behavior of the unresolved small
scales of the interface dynamics, as for example the oscillation of an ellipsoidal inclusion
at constant volume or its normal pulsation complying with theWeyl’s tube formulaWeyl
(1939). The behavior is translated in a set of small scale energies that are featured in the
global Lagrangian of the system and their evolution is constrained by specific governing
equations. The optimization of the Hamiltonian Action, which is the integral over the
available phase space of the chosen Lagrangian functional, under the constraints as for
example the conservation of the mass, phase mass fractions or a specific governing equa-
tion for the interfacial density area, yields the set of the governing equations. The novelty
of this work resides in the possibility of addressing the interfacial area density equation,
the source terms of which are derived using averaging techniques and sometimes closed
with empirical correlations drawn from experiments or physical considerations, as de-
scribed in Drew (1990); Morel et al. (1999); Daniel Lhuillier (2004). In particular we
provide a possible methodology to consider these source terms in the framework of the
SAP, we introduce them in a way that complies with the correct dissipating structure
mandated by the second principle of thermodynamics.

• Sometimes, as in the case of the oscillating ellipsoidal inclusion in the context of this
thesis, the right modeling assumptions to be taken are not straightaway clear. In order
to validate a certain choice of Lagrangian small scale energies we leverage the higher
density of information contained in high-fidelity simulations such as DNS to guide the
choice. In order to do that, we have developed a library called Mercur(v)e following
the tracks of Essadki (2018) the aim of which is to offer an easy way to implement a
post-processing procedure based on the triangulation of the interface between the two
phases and the associated topological invariant calculation of the local and averaged sur-
face related quantities as the interfacial area density, mean and Gauss curvatures. The
discretized estimation of these quantities is performed with an algorithm that conserves
the Gauss-Bonnet theorem. Moreover, for situations in which the interface undergoes
strong topological deformations, we also provide an averaging kernel that smooths out
non-physical peaks of values for the geometrical fields, always respecting the Gauss-
Bonnet theorem. This framework allowed in the context of this thesis to perform ener-
getic choices on the modeling side that lead to the development of a model that partially
overcomes the limitations of the model of Drui (2017), extending it for objects home-
omorphic to a sphere and not only strictly spherical. Also, compared to more classical
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methods that do not enforce topological invariance, such as for example the curvature
estimation routine of the DNS code ARCHER (Vaudor et al. 2017), the approach presented
in this work show higher accuracy at same level of refinement of the mesh.

• Reduced order models are developed to be then simulated in HPC codes and used in
industry to drive design choices. Sometimes these industrial codes can be complex to
manipulate and can translate in long development times to implement and bug fix a
new feature. In this thesis we propose a FOSS software library aimed at simulating
PDEs-driven problems named josiepy, which is based on the API of familiar language
like Python and its ecosystem of high-performance extensions like NumPy (Harris et al.
2020; Bauer and Garland 2019). The dynamic nature of the language speeds up the de-
velopment cycle and it allows a more comfortable test of innovative numerical schemes,
BCs or conservation systems, without sacrificing (too much) performance thanks to the
use of high-performance low-level compiled libraries that are accessible from Python
via some form of binding. We verify the correctness of the results obtained using this
library on classical testing cases for different systems and we also showcase its capa-
bilities on the implementation of a system featuring the equation of the interfacial area
density, with first and second order MUSCL-Hancock schemes.

The work we performed undoubtedly opens up different future perspectives for improve-
ment. Most of these perspectives are discussed in fair detail in each specific chapter of the
thesis. We will limit ourselves to repeat them in a prosaic fashion here:

• For what concerns the unified modeling framework we put in place, we succeeded in
extending the small scale scenarios we are able to account for with the SAP; still, more
work is indeed necessary to achieve a reasonable accuracy for industrial cases. No-
tably, the highest order objects we are able to account are inclusions homeomorphic to
spheres. After primary and secondary atomization, a non-negligible percentage of ob-
jects is non-homeomorphic to a sphere, therefore our modeling assumptions need further
extension. The multi-dispersion nature of the disperse phase regime, in which distribu-
tion of droplets are present in each point of the domain, needs to be tackled with ad-
ditional care. The possibility of exploiting geometrical fields such as the curvatures as
moments of a NDF from which, through a realizable quadrature, is a promising path for
the future. Future work to integrate the ideas of Drew (1990); Vallet and Borghi (1999);
Morel (2015) in the variational SAP method is also a path of advancement. Both direc-
tions have been taken over by Loison in his PhD at CMAP (Loison 2023).
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7 General conclusions and future perspectives

• The computation of the geometrical properties on triangulated interfaces we introduced
and implemented in the library Mercur(v)e is currently used only as a post-processing
tool. But the possibility of employing the smoothing kernel at runtime, for example
during an ARCHER simulation, might open interesting perspectives on the effect of the
method used to estimate mean curvature (and then surface tension). In order to be able
to perform such calculations, the algorithm needs to be corrected to operate also on un-
closed objects surfaces. Also, the values of the curvatures are needed on the original
volumetric mesh on which the original level set values are stored, therefore a projec-
tion method needs to be built which is able to keep the topological invariance benefits
provided by the calculation on triangulated interfaces.

• On the numerical side, even if the josiepy library is not aimed at replacing multi-
physics industrial codes, the recent advances on heterogeneous computing libraries fea-
turing data structures that are storable on heterogeneous architectures made of CPUs
and GPUs (Bauer and Garland 2019) open up interesting possibilities. A multi-block
3D PDE solver capable running on multiple GPUs is a target that is envisioned in the
near future for the library. In parallel, the easy to use API we worked hard to deliver
might also lead to new outcomes in the framework of numerical schemes and models
simulation that could benefit also the higher level multi-physics computing platforms.
So far, josiepy library has been chosen in the PhD of A. Loison, in the post-doctoral
work of K Ait-Ameur, as well as by our colleagues at ONERA in the DMPE department
in collaboration with VKI and CMAP (future PhD of W. Haegeman).
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BC Boundary Condition. 190–192, 198, 208, 210, 215, 228, 229, 255

CD Continuous Development. 12, 34

CFD Computational Fluid Dynamics. 238

CI Continuous Integration. 12, 34, 200

CLI Command Line Interface. 241
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HPC High Performance Computing. 12, 34, 221, 238, 255
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HTPB Hydroxil-terminated polybutadiene. 20, 21

IP Intellectual Property. 21

IVP Initial Value Problem. 155

LB Laplace-Beltrami. 110
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LHS Left-Hand Side. 85
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MoL Method of Lines. 223
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TFI Trans-Finite interpolation. 146, 148, 222
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Titre : Vers un cadre unifié de modélisation eulérienne pour les écoulements diphasiques : phénomènes
géométriques à petite échelle et stratégies de calcul flexibles associées

Mots clés : écoulements diphasiques, modélisation de sous-échelle, densité surfacique d’interface, cour-
bures, DNS, géométrie computationnelle, calcul scientifique

Résumé : Nous assistons actuellement à une
� deuxième course à l’espace � : des entreprises
privées comme SpaceX ouvrent la voie à une nou-
velle génération de systèmes de lanceurs spatiaux
optimisés pour leur rentabilité et leurs performances
extrêmes, qui permettront à l’humanité d’atteindre
Mars pour la première fois dans son existence. L’un
des aspects essentiels de ces systèmes est d’offrir
un niveau élevé de réutilisation, ce qui entraı̂ne une
baisse drastique des coûts de lancement. Cela se
traduit par des systèmes de propulsion qui doivent
fonctionner dans des enveloppes de vol plus larges,
avec des paires d’ergols plus avantageuses comme
le méthane et l’oxygène liquides, ce qui exige une
conception plus rigoureuse des systèmes d’injection.
Les injecteurs sont responsables de la nébulisation
correcte des ergols et ils ont un impact direct sur les

performances des moteurs.
Ce travail identifie trois points principaux
d’amélioration : le développement de modèles d’ordre
réduit avec le principe d’action stationnaire, com-
portant un ensemble d’équations qui incluent des
propriétés géométriques telles que la densité de
la surface interfaciale et les courbures moyenne et
de Gauss ; la mise en œuvre d’un outil de post-
traitement géométrique pour les simulations à haute-
fidelité utilisé pour recueillir des informations utiles
afin d’élaborer un modèle d’ordre réduit précis, et le
développement d’une bibliothèque Python qui agit
comme un outil de prototypage rapide visant à tester
rapidement des idées dans le contexte des schémas
numériques, des conditions limites, des configura-
tions de domaine, avec la possibilité d’exploiter des
architectures de calcul modernes comme les GPU.

Title : Towards a unified Eulerian modeling framework for two-phase flows: geometrical small-scale pheno-
mena and associated flexible computing strategies

Keywords : two-phase flows, subscale modeling, interface area density, curvatures, DNS, computational geo-
metry, scientific computing

Abstract : In current times we are witnessing a � se-
cond space race �: private companies like SpaceX
are paving the way to a new generation of space laun-
cher systems optimized for cost effectiveness and ex-
treme performances that will bring humankind to Mars
for the first time in its existence. A key aspect of those
systems is to provide a high level of reusability lea-
ding to a drastic drop of launch costs. This translates
into propulsion systems that need to operate on wider
flight envelopes, with more advantageous propellant
pairs like cryogenic methane and liquid oxygen, there-
fore requiring tighter designs for the injection systems.
The injectors are responsible for the correct nebuliza-
tion of fuel and oxidizer and they have a direct impact
on the performance of the engines. These kind of pro-
blems are shared across different applications and are
somehow generic.
The current state of the art modeling strategies fail at
predicting the correct distributions of droplets in the
combustion chamber. Therefore, the target of this the-
sis is to contribute to the design of a unified mode-
ling framework addressing the derivation of system of
equations governing two-phase flow systems charac-

terized by a sound mathematical structure via a va-
riational approach named Stationary Action Principle
(SAP) coupled to the second principle of thermodyna-
mics. This effort is backed by a tailored computational
toolset that allows the rational choice of modeling as-
sumptions and the effective simulations of the develo-
ped models, possibly on modern computing architec-
tures.
This work identifies three main points of improve-
ment: the development of reduced-order models via
a variational procedure named the SAP featuring
a set of equations that include geometrical proper-
ties such as the interfacial surface density and the
mean and Gauss curvatures; the implementation of a
geometric Direct Numerical Simulations (DNS) post-
processing tool that is used to collect useful insight
from high-fidelity simulations in order to craft an ac-
curate reduced-order model, and the development of
a Python library that acts as a prototyping playbook
aimed at quickly testing ideas in the context of nume-
rical schemes, boundary conditions, domain configu-
rations, with the potential ability of leveraging modern
computational architectures such as GPUs
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