Thèse soutenue

Cryptographie quantique dans un modèle de sécurité hybride

FR  |  
EN
Auteur / Autrice : Nilesh Vyas
Direction : Romain Alléaume
Type : Thèse de doctorat
Discipline(s) : Information, communications, électronique: Réseaux, informations et communications
Date : Soutenance le 21/12/2021
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de l'Institut polytechnique de Paris
Partenaire(s) de recherche : Laboratoire : Laboratoire Traitement et communication de l'information (Paris ; 2003-....)
Etablissement opérateur d'inscription : Télécom Paris (Palaiseau, Essonne ; 1878-....)
Jury : Président / Présidente : Alain Couvreur
Examinateurs / Examinatrices : Romain Alléaume, Alain Couvreur, Marco Lucamarini, Damian J. H. Markham, Marc-Olivier Renou
Rapporteurs / Rapporteuses : Marco Lucamarini, Damian J. H. Markham

Résumé

FR  |  
EN

L'extension des fonctionnalités et le dépassement des limitations de performances de QKD nécessitent soit des répéteurs quantiques, soit de nouveaux modèles de sécurité. En étudiant cette dernière option, nous introduisons le modèle de sécurité Quantum Computational Timelock (QCT), en supposant que le cryptage sécurisé informatiquement ne peut être rompu qu'après un temps beaucoup plus long que le temps de cohérence des mémoires quantiques disponibles. Ces deux hypothèses, à savoir la sécurité informatique à court terme et le stockage quantique bruité, ont jusqu'à présent déjà été prises en compte en cryptographie quantique, mais seulement de manière disjointe. Une limite inférieure pratique du temps, pour laquelle le cryptage est sécurisé du point de vue informatique, peut être déduite de la sécurité à long terme supposée du schéma de cryptage AES256 (30 ans) et de la valeur du temps de cohérence dans les démonstrations expérimentales de stockage puis de récupération de quantum optiquement codé. l'information, au niveau d'un seul photon, va de quelques nanosecondes à quelques microsecondes. Compte tenu du grand écart entre la borne supérieure du temps de cohérence et la borne inférieure du temps de sécurité de calcul d'un schéma de chiffrement, la validité du modèle de sécurité QCT peut être supposée avec une très grande confiance aujourd'hui et laisse également une marge considérable pour sa validité dans le futur. En utilisant le modèle de sécurité QCT, nous proposons un protocole d'accord de clé explicite à dimension d que nous appelons MUB-Quantum Computational Timelock (MUB-QCT), où un bit est codé sur un état qudit en utilisant un ensemble complet de bases mutuellement impartiales (MUB ) et une famille de permutations indépendantes par paires. La sécurité est prouvée en montrant que la borne supérieure sur les échelles d'information d'Eve est O(1=d). Nous montrons que MUB-QCT offre : une haute résilience aux erreurs (jusqu'à 50 % pour les grands d) avec des exigences matérielles fixes ; La sécurité MDI car la sécurité est indépendante de la surveillance des canaux et ne nécessite pas de faire confiance aux appareils de mesure. Nous prouvons également la sécurité du protocole MUB-QCT, avec plusieurs photons par utilisation de canal, contre les attaques non adaptatives, en particulier la mesure MUB proactive où eve mesure chaque copie dans un MUB différent suivi d'un décodage post-mesure. Nous prouvons que le protocole MUB-QCT permet une distribution sécurisée des clés avec des états d'entrée contenant jusqu'à O(d) photons, ce qui implique une amélioration significative des performances, caractérisée par une multiplication O(d) du taux de clé et une augmentation significative de la distance accessible. Ces résultats illustrent la puissance du modèle de sécurité QCT pour augmenter les performances de la cryptographie quantique tout en gardant un net avantage de sécurité par rapport à la cryptographie classique.