Thèse soutenue

Analyse et réduction de la cinétique chimique pour la combustion

FR  |  
EN
Auteur / Autrice : Quentin Cazeres
Direction : Bénédicte CuenotEleonore Riber
Type : Thèse de doctorat
Discipline(s) : Energétique et Transferts
Date : Soutenance le 13/07/2021
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse)
Partenaire(s) de recherche : Laboratoire : Centre Européen de Recherche et Formation Avancées en Calcul Scientifique (Toulouse)
Jury : Président / Présidente : Pierre-Alexandre Glaude
Examinateurs / Examinatrices : Bénédicte Cuenot, Pierre-Alexandre Glaude
Rapporteurs / Rapporteuses : Epaminondas Mastorakos, Marco Mehl

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La combustion de carburants fossiles est utilisée depuis des décennies pour nombre d'applications, de la génération d'électricité au fonctionnement des moteurs d'avions, mais c'est également une des raisons principales du dérèglement climatique. De nouveaux carburants, durables et moins polluants, doivent être étudiés afin de diminuer l'impact humain sur notre planète. La combustion est un procédé complexe alliant mécanique des fluides, thermodynamique et chimie avec des centaines d'espèces impliquées dans celle-ci. Afin de pouvoir utiliser les outils de la simulation numérique pour représenter des phénomènes de plus en plus complexes, des cas canoniques jusqu'à des Simulations aux Grandes Échelles (SGE), l'analyse des chemins chimiques prépondérants et la réduction des mécanismes réactifs est nécessaire. La Chimie Analytiquement Réduite (CAR) est une méthode pour réduire la taille et la complexité des mécanismes chimiques dans laquelle seules les espèces et les réactions cohérentes avec les conditions opératoires sont gardées. La CAR n'est qu'une méthode parmi les nombreuses méthodologies pour la réduction de la cinétique chimique mais avec la complexité grandissante des carburants qui devront être étudiés dans les prochaines années, elle se distingue plus que jamais. Le premier objectif de ce travail est de développer une procédure entièrement automatique pour le développement de CAR sans demander à l'utilisateur une expertise poussée de la réduction et d'une manière adaptable au plus de conditions possibles dans un but de versatilité. Ce premier objectif a été rempli par la création du code ARCANE dont les performances sont démontrées sur 2 configurations. La première configuration consiste en une flamme swirlé de méthane/air prémélangée avec 2 niveaux d'enrichissement à l'hydrogène calculée avec le solveur AVBP. Le mécanisme CAR a été réduit en incluant les NOx et l'espèce chimiluminescente OH*. La réduction capture correctement les résultats expérimentaux et les effets de l'enrichissement sur la structure de flamme. La présence d'OH* dans le mécanisme permet une comparaison plus directe entre la simulation numérique et les expériences. La simulation numérique est aussi utilisée de manière prédictive pour identifier l'effet de l'enrichissement sur les émissions de NOx. La seconde configuration comporte la réduction de 3 carburants pour l'aviation (du kérosène conventionnel, un kérosène de synthèse renouvelable et un kérosène riche en aromatiques) décrits par des modèles à 3 composants. Les schémas réduits obtenus ont ensuite été utilisés dans des cas canoniques de combustion diphasique. Le modèle d'évaporation multi-composants discret implémenté dans AVBP permet d'observer les effets de l'évaporation préférentielle sur la structure de flamme. Enfin, les différents carburants sont comparés pour identifier leurs particularités et déterminer les avantages de l'approche multicomposants.