Thèse soutenue

Inférence de la réfraction troposphérique par méthodes d’optimisation
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Uygar Karabaş
Direction : Michel Salaün
Type : Thèse de doctorat
Discipline(s) : Electromagnétisme et Systèmes Haute Fréquence
Date : Soutenance le 04/11/2021
Etablissement(s) : Toulouse, ISAE
Ecole(s) doctorale(s) : École doctorale Aéronautique-Astronautique (Toulouse)
Partenaire(s) de recherche : Equipe de recherche : Équipe de recherche en Télécommunications (Toulouse)
Laboratoire : Institut supérieur de l'aéronautique et de l'espace (Toulouse, Haute-Garonne). Département d’ingénierie des systèmes complexes
Jury : Président / Présidente : Hélène Barucq
Examinateurs / Examinatrices : Michel Salaün, Hélène Barucq, Jean Virieux, Peter Gerstoft, Jacques Claverie, Jérôme Monnier
Rapporteurs / Rapporteuses : Jean Virieux, Peter Gerstoft

Résumé

FR  |  
EN

La réfraction troposphérique anormale entraîne une déviation des performances des systèmes radar marine par rapport à la normale. L'objectif principal de la thèse est de développer une technique d'inversion de la réfractivité pour prédire les anomalies de la couverture du radar avec précision et en temps réel. Dans cette étude, la réfractivité est supposée ne dépendre que de l'altitude et elle est prédite à partir de mesures d'ondes radio sans phase prises en configuration bistatique. Nous sommes intéressés par l'exploration des techniques d'inversion qui sont efficaces dans des scénarios réalistes à haute dimension pendant les opérations maritimes et qui peuvent maintenir la précision avec un minimum de besoin de connaissance a priori spécifiques au cas par cas. L'objectif à long terme est de transférer les techniques et les connaissances développées pour progresser vers un système de 'Refractivity-From-Clutter', qui est la technique d'inversion autosuffisant idéale pour améliorer l'autodéfense des navires, mais plus complexe à analyser et à développer correctement. Le problème inverse est formulé comme un problème d'optimisation non linéaire basé sur la simulation, qui est abordé à l'aide de méthodes Quasi-Newton. Les simulations sont modélisées par l'équation d'onde parabolique grand angle de Thomson et Chapman. Le gradient du problème d'optimisation est obtenu à l'aide de l'approche variationnelle adjointe et il est estimé de manière peu coûteuse au coût de deux simulations du modèle direct, quelle que soit la dimension des paramètres. Les dérivations sont validées numériquement en utilisant des mesures générées synthétiquement. Les tests numériques ont révélé la gravité de la non-linéarité et du caractère mal posé du problème inverse qui conduit souvent à des résultats d'inversion inexacts, même dans des conditions idéales lorsqu'il n'existe aucune erreur de modélisation ou de mesure. Des stratégies multi-échelles sont utilisées pour atténuer la non-linéarité du problème. Des résultats d'inversion précis sont obtenus en réduisant les espaces de paramètre et de mesures. Les avantages et les limites de la technique sont discutés dans des scénarios réalistes à haute dimension. Mots clés: propagation des ondes radio, optimisation numérique, problèmes inverses, inversion de la réfractivité, équation parabolique grand angle, modèle adjoint.