Apprentissage automatique pour l’aide au diagnostic précoce du cancer du sein
Auteur / Autrice : | Mickael Tardy |
Direction : | Diana Mateus |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 12/10/2021 |
Etablissement(s) : | Ecole centrale de Nantes |
Ecole(s) doctorale(s) : | École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire des Sciences du Numérique de Nantes |
Jury : | Président / Présidente : François Rousseau |
Examinateurs / Examinatrices : Diana Mateus, François Rousseau, Elsa D. Angelini, Gustavo Carneiro, Maria Alejandra Zuluaga Valencia, Sébastien Molière | |
Rapporteur / Rapporteuse : Elsa D. Angelini, Gustavo Carneiro |
Mots clés
Résumé
Le cancer du sein est un des plus répandus chez la femme. Le dépistage systématique permet de baisser le taux de mortalité mais crée une charge de travail importante pour les professionnels de santé. Des outils d’aide au diagnostic sont conçus pour réduire ladite charge, mais un niveau de performance élevé est attendu. Les techniques d’apprentissage profond peuvent palier les limitations des algorithmes de traitement d’image traditionnel et apporter une véritable aide à la décision. Néanmoins, plusieurs verrous technologiques sont associés à l’apprentissage profond appliqué à l’imagerie du sein, tels que l’hétérogénéité et le déséquilibre de données, le manque d’annotations, ainsi que la haute résolution d’imagerie. Confrontés auxdits verrous, nous abordons la problématique d’aide au diagnostic de plusieurs angles et nous proposons plusieurs méthodes constituant un outil complet. Ainsi, nous proposons deux méthodes d’évaluation de densité du sein étant un des facteur de risque, une méthode de détection d’anormalités, une technique d’estimation d’incertitude d’un classifieur basé sur des réseaux neuronaux, et une méthode de transfert de connaissances depuis mammographie 2D vers l’imagerie de tomosynthèse. Nos méthodes contribuent notamment à l’état de l’art des méthodes d’apprentissage faible et ouvrent des nouvelles voies de recherche.