Thèse soutenue

Impact de l’écoulement sur le transfert de masse à partir de particules : applications biomédicales

FR  |  
EN
Auteur / Autrice : Clément Bielinski
Direction : Badr Kaoui
Type : Thèse de doctorat
Discipline(s) : Biomécanique et Bio-ingénierie : Unité de Recherche Biomécanique et Bio-ingénierie (UMR-7338)
Date : Soutenance le 23/09/2021
Etablissement(s) : Compiègne
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Compiègne)
Partenaire(s) de recherche : Laboratoire : Biomécanique et Bioingéniérie

Résumé

FR  |  
EN

Le transfert de masse à partir de particules présente de nombreuses applications biomédicales, telles que le relargage contrôlé de médicaments, la culture cellulaire, ou encore la conception d’organes bioartificiels. En conditions opérationnelles, les particules sont soumises à des écoulements de fluides de différentes natures, dont l’effet sur le transport du soluté est aujourd’hui encore mal connu. Dans cette thèse, nous nous intéressons à l’effet de l’écoulement sur le transfert de masse à partir de capsules et de fibres cœur-coque. Le cas du relargage d’un soluté par une fibre cœur-coque confinée dans un canal plan et soumise à un écoulement de Poiseuille est étudié à partir de simulations numériques en deux dimensions basées sur la méthode de Boltzmann sur réseau. Les effets combinés de l’écoulement et de la présence de la coque sur le transfert de masse sont analysés sur une large plage de nombre de Reynolds couvrant des écoulements stationnaires et instationnaires. Une corrélation donnant le nombre de Sherwood (le coefficient de transfert de masse adimensionnel) en fonction de la perméabilité de la coque, du nombre de Reynolds, et du nombre de Schmidt est proposée. La perméabilité de la coque est une propriété difficilement mesurable. Les méthodes actuelles de caractérisation ne permettent d’obtenir qu’une perméabilité effective pour l’ensemble de la particule (cœur et coque réunis), et non spécifiquement pour la coque. Une nouvelle méthode de caractérisation est proposée et validée sur des données numériques et expérimentales. Cette méthode consiste à extraire la perméabilité de la capsule par analyse inverse, en ajustant les courbes de relargage avec des solutions de la seconde loi de Fick calculées en une dimension par la méthode des différences finies. Le relargage d’un soluté par une capsule placée dans un écoulement de cisaillement est également analysé par des simulations tridimensionnelles couplant la méthode de Boltzmann sur réseau et la méthode des frontières immergées pour les interactions fluides-structure. L’écoulement améliore significativement l’efficacité du transfert de masse par convection forcée. L’effet des conditions aux limites à la surface de la capsule est examiné. Considérer des conditions aux limites de Dirichlet, comme fait classiquement dans la littérature, conduit à des nombres de Sherwood bien plus élevés que dans le cas de conditions aux limites de continuité, plus adaptées pour modéliser le relargage d’un soluté. La dynamique d’une suspension de capsules déformables en écoulement dans une constriction est aussi étudiée. Un diagramme d’états décrivant la transition entre le passage et le blocage de la constriction par les capsules est déterminé en fonction de leurs propriétés géométriques et mécaniques. Il peut être utilisé, par exemple, afin d’optimiser le design de systèmes microfluidiques dans le but d’améliorer l’efficacité du transfert de masse.