Thèse soutenue

Synthèse Directe d'Oléfines Légères par des Réactions d'Hydrogénation du CO et du CO2
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Alan Josue Barrios Medina
Direction : Andrei KhodakovJoris Thybaut
Type : Thèse de doctorat
Discipline(s) : Molécules et matière condensée
Date : Soutenance le 10/12/2021
Etablissement(s) : Centrale Lille Institut en cotutelle avec Universiteit Gent
Ecole(s) doctorale(s) : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Villeneuve d'Ascq, Nord)
Partenaire(s) de recherche : Laboratoire : UCCS - Unité de Catalyse et Chimie du Solide - UCCS - Unité de Catalyse et Chimie du Solide - Unité de Catalyse et Chimie du Solide - UMR 8181 / UCCS
Jury : Président / Présidente : Yves Schuurman
Examinateurs / Examinatrices : Mirella Virginie, Anne-Sophie Mamede, Georgios Stefanidis
Rapporteurs / Rapporteuses : Anne-Cécile Roger, Hilde Johnsen Venvik

Résumé

FR  |  
EN

L'hydrogénation du CO et du CO2 sont une voie intéressante de conversion des matières premières non pétrolières et renouvelables tels que la biomasse, le plastique et les déchets organiques, en carburant et en produits chimiques. L'activité, la sélectivité vers la production d’oléfines légères et la stabilité sont des défis majeurs de ces réactions sur les catalyseurs à base de fer. Dans cette thèse, nous avons synthétisé différents catalyseurs à base de fer pour l'hydrogénation du CO et du CO2 afin d'obtenir des catalyseurs hautement sélectifs, actifs et stables. Pour l'hydrogénation du CO, SiO2 a été utilisée comme support tandis que pour la réaction d'hydrogénation du CO2, les catalyseurs supportés par de la ZrO2 ont présenté les résultats les plus encourageants. Les résultats sont appuyés sur l'expérimentation à haut débit (EHD) pour identifier parmi 27 promoteurs les plus efficaces pour la synthèse de FT en évaluant également les différentes tendances de sélectivité en la réaction FT. Les tests EHD nous ont permis d'identifier clairement Sn, Sb, Bi et Pb comme les promoteurs les plus prometteurs afin d'obtenir des catalyseurs de Fe avec une plus grande activité. Après, nous nous sommes concentrés sur l'étude des promoteurs Sb et Sn, sur la performance catalytique des catalyseurs à base de fer supportés sur SiO2, en utilisant une combinaison de techniques avancées et in-situ. Les images MET du catalyseur FeSn/SiO2 activé ont montré des nanoparticules de Sn hautement dispersées sur le support de silice. D'autre part, le catalyseur FeSb/SiO2 activé a montré une morphologie coeur-coquille. Plus petite quantité de dépôt de carbone détectée est cruciale pour une meilleure stabilité des catalyseurs promus par Sn- et Sb dans la réaction FT. Finalement, nous nous sommes concentrés sur l'identification des promoteurs pour les catalyseurs de fer supportés sur ZrO2 pour la réaction d’hydrogénation du CO2. Nous avons observé une nette augmentation de la vitesse de réaction pour les catalyseurs promus par le K et le Cs. L’EHD a clairement montré que la présence de K est essentielle pour obtenir une plus grande sélectivité en oléfines légères. En plus, le Mo, Cu, Cs, Ce et Ga ont été identifiés comme des promoteurs capables d’augmenter encore la sélectivité en oléfines. Le travail effectué au cours de cette thèse a permis de concevoir de nouveaux catalyseurs pour la réaction d'hydrogénation du CO et du CO2 qui pourraient être facilement mis en oeuvre au niveau industriel. Les catalyseurs étudiés pour les deux réactions ont montré une amélioration de trois aspects clés : l'activité, la sélectivité et la stabilité.