Analyse des données pour la surveillance de la voie ferrée : L’intelligence artificielle au service du ferroviaire
Auteur / Autrice : | Alain Rivero |
Direction : | Philippe Vanheeghe, Emmanuel Duflos |
Type : | Thèse de doctorat |
Discipline(s) : | Automatique, génie informatique, traitement du signal et des images |
Date : | Soutenance le 26/01/2021 |
Etablissement(s) : | Centrale Lille Institut |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'ingénieur (Lille) |
Partenaire(s) de recherche : | Laboratoire : CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille - Centre de Recherche en Informatique- Signal et Automatique de Lille (CRIStAL) - UMR 9189 / CRIStAL |
Jury : | Président / Présidente : Sophie Tison |
Examinateurs / Examinatrices : Émilie Poirson, Adnane Boukamel, Pierre Marie Rogier | |
Rapporteur / Rapporteuse : Sriram Narasimhan, Christophe Pouet |
Mots clés
Mots clés contrôlés
Résumé
La tendance actuelle en matière de capteurs et d’équipements industriels déployés sur le réseau ferré nous amène à gérer des systèmes de plus en plus complexes qui obligent les agents à travailler dans un environnement incertain. Dans le même temps, le domaine du transport ferroviaire devient de plus en plus concurrentiel, ce qui contraint les gestionnaires d’infrastructures à une recherche permanente d’amélioration, d’optimisation et de productivité. Parallèlement, l’utilisation des techniques de surveillance classiques est de plus en plus coûteuse, tout en offrant des performances de moins en moins satisfaisantes. Les fonctions de surveillance du réseau sont souvent opérées hors ligne, empêchant ainsi le traitement en temps réel de l’information. L’intelligence artificielle offre des outils totalement dissociés de la structure de l’infrastructure, ne nécessitant pas la modélisation préalable de cette dernière et permettant un suivi en temps réel de son évolution. Cette nouvelle approche de la maintenance s’avère par conséquent évolutive et plus en adéquation avec les contraintes économiques auxquelles est soumise notre activité. Dans ce cadre, nous avons étudié une nouvelle architecture combinant l’emploi de plusieurs couches de réseaux neuronaux profonds et un modèle de fusion. Cette solution permet de garantir un taux de disponibilité optimale du réseau et de préserver l’infrastructure existante par une maintenance au juste à temps et au juste nécessaire. Pour le système destiné aux trains commerciaux, nous avons abordé les problématiques de programmation distribuée telles que la co-allocation des ressources. Une étude économique complète cette étude.