Thèse soutenue

Imagerie sub-longueur d'onde de nuages atomiques optiquement denses dans un microscope à gaz quantique

FR  |  
EN
Auteur / Autrice : Romain Veyron
Direction : Simon Bernon
Type : Thèse de doctorat
Discipline(s) : Lasers, Matière et Nanosciences
Date : Soutenance le 17/12/2021
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Photonique, Numérique et Nanosciences (Bordeaux)
Jury : Président / Présidente : Bruno Laburthe-Tolra
Examinateurs / Examinatrices : Simon Bernon, Bruno Laburthe-Tolra, Fabrice Gerbier, Thierry Lahaye, Robin Kaiser, Philippe Bouyer, Trey Porto, Jean-Philippe Brantut
Rapporteurs / Rapporteuses : Fabrice Gerbier, Thierry Lahaye

Résumé

FR  |  
EN

Les atomes froids sont un système quantique très bien isolé de l’environnement. Depuis les années 80s, ils sont utilisés pour faire des capteurs atomiques très sensibles et pour approfondir la compréhension des phénomènes de la physique quantique. À de très basses températures, des régimes de gaz atomiques dégénérés peuvent être atteints. Ils sont caractérisés par un état quantique macroscopique qui peut être manipulé et contrôlé par lasers. En chargeant ces états quantiques bien déterminés dans des réseaux optiques il est possible d'étudier la dynamique de systèmes complexes à N corps qui ne peuvent être simulés numériquement. Les microscopes à gaz quantique limités par la diffraction ont ensuite émergé comme des outils pour sonder de tels systèmes et mesurer des corrélations de densité atomique entre les sites du réseau. En réduisant la taille des réseaux optiques jusqu’à des dimensions sub-longueur d’onde, il devrait être possible d’atteindre de nouvelles transitions de phase quantiques. De tels réseaux nécessitent le développement de techniques de piégeage et d’imagerie permettant de manipuler les atomes froids avec des résolutions spatiales sub-longueur d’onde.Dans ce travail de thèse, nous démontrons expérimentalement une imagerie sub-longueure d’onde d’atomes ultra-froids de Rubidium 87 dont nous expliquerons brièvement la production expérimentale. Cette imagerie utilise une méthode d’état excité habillé, initialement proposée pour générer des potentiels de piégeage sub-longueur d’onde. Pour être quantitatif sur notre imagerie par absorption de volumes sub-longueur d'onde, nous avons réinterprété et modifié une méthode de calibration des nombres d’atomes communément utilisée dans la communauté. Cette ré-interprétation repose sur une compréhension fine de l’interaction d’un atome multi-niveaux avec un champ cohérent saturant dans des conditions perturbées. En mesurant in situ la transmission d’un champ cohérent, nous montrons alors que la section efficace de diffusion à un seul atome diminue linéairement avec la densité optique et nous proposons une interprétation et un model pour cette dépendance. Après avoir calibré notre méthode d’imagerie sub-longueur d’onde qui permet d’atteindre des résolutions spatiales de 20 nm en quelques microsecondes, nous l’appliquons à la mesure super-résolue des sites d’un réseau très fortement compressés.