Thèse soutenue

Nouveaux mécanismes du développement des tumeurs cérébrales

FR  |  
EN
Auteur / Autrice : Joris Guyon
Direction : Andreas Bikfalvi
Type : Thèse de doctorat
Discipline(s) : Biologie Cellulaire et Physiopathologie
Date : Soutenance le 17/12/2021
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Sciences de la vie et de la santé (Talence, Gironde ; 1993-....)
Partenaire(s) de recherche : Equipe de recherche : Regulatory Networks of angiogenesis, Tumor Invasion and Metastasis
Laboratoire : Laboratoire Angiogenèse et Microenvironnement des Cancers (Bordeaux ; 2011-2021)
Jury : Président / Présidente : Sophie Javerzat
Examinateurs / Examinatrices : Andreas Bikfalvi, Sophie Javerzat, Marie-Pierre Junier, Eric Chevet, Audrey Carrière-Pazat
Rapporteurs / Rapporteuses : Marie-Pierre Junier, Eric Chevet

Résumé

FR  |  
EN

Le glioblastome (GBM) est la tumeur cérébrale maligne la plus fréquente et la plus agressive chez l’adulte. Il est hautement prolifératif et invasif et se caractérise par une forte angiogenèse et la présence d’un métabolisme altéré.Afin de mieux comprendre son développement, nous avons créé des modèles cellulaires tridimensionnels permettant de se rapprocher au mieux de l’architecture complexe de la tumeur. Nous avons également affiné des méthodes in vitro, tels que des essais de croissance ou d’invasion en collagène de type I, pour analyser certaines caractéristiques des GBMs.L’infiltration diffus des GBMs complique la prise en charge thérapeutique et est à l’origine des récidives tumorales. Les cellules qui envahissent le parenchyme cérébral sain peuvent former de nouveaux foyers tumoraux à distance de la tumeur originelle. En utilisant une analyse de protéomique sur des échantillons de tumeurs humaines dans des cerveaux de souris récupérées par microdissection laser, nous avons identifié de potentiels acteurs de l’invasion tumorale. Les protéines PLP1 (proteolipid protein 1) et DNM1 (dynamin-1) ont été retrouvées enrichies dans la partie invasive. Leur inhibition in vitro a permis la réduction de la capacité invasive des GBMs et pourrait représenter de potentielles cibles thérapeutiques.En adaptant son métabolisme glycolytique et oxydatif, les cellules de GBM sont capables de résister à la chimio- et radiothérapie. Le lactate est un des métabolites centraux de la physiologie cérébrale, il est impliqué dans la navette astrocyte-neurone ainsi que dans le développement tumoral. En l’absence de glucose, le lactate alimente la production d’énergie des GBMs par le biais du cycle de Krebs. Les lactates déshydrogénases (LDHs) sont les enzymes qui catalysent l’interconversion du pyruvate et du lactate. La simple perte d’expression des isoformes LDHA ou LDHB ne perturbe pas significativement le développement des GBMs. Cependant, la double extinction de LDHA et LDHB (KO LDHA/B) induit une réduction de la croissance tumorale, de l’invasion et en conséquence, allonge la survie des souris. Les analyses comparatives des données de transcriptomique et de métabolomique révèlent que la lignée double KO LDHA/B augmente le métabolisme oxydatif sensibilisant la tumeur à l’irradiation et augmentant la survie des souris. L’utilisation d’un médicament antiépileptique inhibiteur de l’activité de LDHA et LDHB a permis d’augmenter la survie des souris en association avec le bevacizumab, un médicament anticancéreux ciblant l’angiogenèse. Cette étude met en évidence le réseau métabolique complexe dans lequel LDHA et LDHB sont intriqués. Elle souligne l’importance de la double inhibition de LDHA/LDHB pour impacter le développement tumoral.