Thèse soutenue

Investigation et Modélisation de la Haute Fréquence Effets dans les HBT SiGe
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Bishwadeep Saha
Direction : Thomas ZimmerAnjan Chakravorty
Type : Thèse de doctorat
Discipline(s) : Electronique
Date : Soutenance le 26/10/2021
Etablissement(s) : Bordeaux en cotutelle avec Indian Institute of technology (Chennai, Inde)
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)
Partenaire(s) de recherche : Laboratoire : Laboratoire de l'intégration du matériau au système (Talence, Gironde)
Jury : Président / Présidente : Fabien Pascal
Examinateurs / Examinatrices : Thomas Zimmer, Anjan Chakravorty, Fabien Pascal, Philippe Ferrari, Sébastien Frégonèse, Nihar Ranjan Mahapatra
Rapporteurs / Rapporteuses : Philippe Ferrari

Résumé

FR  |  
EN

Ce travail de thèse présente une étude concernant la caractérisation des effets hautefréquence dans les transistors bipolaires à hétérojonction (HBT) en SiGe. Lors de ces travaux,le transistor du procédé BiCMOS B55 (55nm) de STMicroelectronics a été principalementanalysé. Cette technologie à l’état de l’art est caractérisée par une fréquence de transition de320 GHz et une fréquence maximale d’oscillation (fMAX) de 370 GHz. Les travaux se divisenten trois sous-thèmes dont les objectifs sont une meilleure caractérisation et une meilleuremodélisation de ces composants. Une première partie concerne l’extraction de la fMAX destransistors miniaturisés. En effet, cette fréquence fMAX est une figure de mérite de premièreimportance qui est utilisée pour valoriser une technologie. Malheureusement, on observe que laméthodologie utilisée pour extraire fMAX en utilisant directement la formule de gain de Masonsur les données mesurées donne des résultats très incertains sur les composants très avancés.Ceci complexifie l’analyse des lots de fabrication de transistors. Il a été démontré qu’un modèlepetit signal simple extrait à partir des paramètres Y supprime les incertitudes d’extraction etpermet l’évaluation fine d’une technologie. La seconde partie concerne le substrat du transistor.En effet, cette zone du transistor est la plus importante en terme de géométrie entrainant deseffets distribués dont la contribution est plus importante à haute fréquence. Celui-ci joue doncun rôle essentiel dans la modélisation des caractéristiques des paramètres S à haute fréquencedes HBT SiGe modernes. Dans ce travaux, nous avons donc étendu et validé le modèle du substratdu transistor et nous avons confronté les simulations de type SPICE et les mesures jusqu’àdes fréquences supérieures à 300 GHz. Finalement, dans une troisième partie, nous avons cettefois orienté nos travaux de modélisation vers les accès de base, collecteur et émetteur ainsi quesur le transistor intrinsèque. En effet, à très haute fréquence, c’est-à-dire au-delà de 100 GHzpour cette technologie, les accès du transistor doivent être modélisés par des éléments distribués.Le transistor intrinsèque est quant à lui sujet à des effets dits non-quasi-statiques. Des étudesde sensibilité des paramètres haute fréquences du modèle HICUM ont été menées permettantd’établir une stratégie d’extraction de paramètres. Les paramètres haute fréquence sont extraitsà l’aide de la simulation TCAD et comparés aux mesures des paramètres S jusqu’à 500 GHz.