Thèse soutenue

Fissuration en mode mixte I+II du bois à différentes teneurs en eau : expérimentation et proposition d'un modèle de courbe-R

FR  |  
EN
Auteur / Autrice : Cedric Perez
Direction : Stéphane Morel
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 12/07/2021
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Institut de mécanique et d'ingénierie de Bordeaux
Jury : Président / Présidente : Frédéric Dubois
Examinateurs / Examinatrices : Stéphane Morel, Frédéric Dubois, Nuno Miguel Dourado, Octavian Pop, Xiao-Jing Gong, Hubert Maigre, Evelyne Toussaint, Myriam Chaplain
Rapporteurs / Rapporteuses : Nuno Miguel Dourado, Octavian Pop

Résumé

FR  |  
EN

La problématique liée à la fissuration des éléments de structure en bois interpelle les professionnels depuis de nombreuses années. Les risques de fissurations sont intimement liés aux variations climatiques et notamment aux conséquences, en termes de teneur en eau du bois. De plus, en fonction de la géométrie de l’élément et des sollicitations appliquées, les fissures se propagent généralement en mode mixte et de manière intermittente.Cette thèse a pour but de caractériser les propriétés de rupture du bois et plus particulièrement du pin maritime, pour différentes teneurs en eau et pour différents modes de propagations de fissure : en Mode I (ouverture), en Mode II (cisaillement plan) et en mode mixte I+II. Cette caractérisation s’appuie sur la Mécanique Linéaire Elastique de la Rupture équivalente permettant l’estimation de courbes de résistance à la propagation de fissure (courbe-R). Par ailleurs, les propriétés de rupture étant influencées par la géométrie des spécimens d’essais nous avons fait le choix d’utiliser une unique géométrie (Mixed Mode Bending) pour caractériser les propriétés des différents modes de rupture. Ce choix entraine néanmoins un risque élevé d’instabilité de la fissuration dans bon nombre de configurations d’essais et nous avons donc dû recourir à un asservissement en déplacement par voie externe des essais afin de minimiser ces risques. Cette procédure conduit à un taux de réussite des essais (i.e., l’obtention d’une courbe de résistance « complète ») supérieur à 60 % pour les essais de Mode I (Double Cantilever Beam) et plus de 40 % pour les essais de Mode II (End Notched Flexure), toutes teneurs en eau confondues (5 % à 20 %).Parallèlement, nous proposons un modèle de courbe de résistance en mode mixte I+II basé sur les courbes-R des Modes purs I et II et leur dépendance vis à vis de la teneur en eau. Ce modèle, inspiré des modèles de zone cohésive, est composé de deux critères formulés en énergie : le premier est basé sur la résistance à la propagation de la fissure élastique équivalente et s’appuie sur la notion de taux de développement de la zone d’élaboration (FPZ) tandis que le second est fondé sur l’énergie nécessaire au développement de la zone d’élaboration. Le modèle proposé, décrit les courbes-R de mode mixte I+II expérimentales avec une précision satisfaisante et ce quels que soient la teneur en eau et le taux de mixité considérés.