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BIFROST Project and Funding Support 

The work presented in this thesis is part of the BIFROST project funded by the 

Excellence Initiative of Aix-Marseille University – A*Midex foundation, a French 

“Investissements d’Avenir” program. It involves three partners: Institut des Sciences 

Moléculaires de Marseille (ISM2) (with chemists), Institut des Mathemathiques de Marseille 

(I2M) (for mathematical part) and an industrial partner, IFP-Energies Nouvelles. 

BIFROST (Blind Identification, Filtering & Restoration On Spectral Techniques) concerns the 

development of data processing and data acquisition schemes able to improve the power of 

chemical analysis of complex mixtures, in view of achieving a qualitative and quantitative 

decomposition of instrumental responses, which are the NMR spectra by addressing bottlenecks 

in both disciplines. The challenge consists in generating stable algorithms producing high-

purity source representation in presence of signal distortions and instabilities and, more 

importantly, a wide dynamic range of molecular concentrations. This last aspect is crucial for 

several reasons. From the chemical point of view, the most abundant compounds do not always 

carry relevant information about the state of a sample, with biomarkers and contaminants being 

typical examples of this. The most intricate case of study is the one in which the spectrum 

presents severe overlaps, so when more intense signals obscure those ones from minor species. 

Consequently, an obvious possibility of investigation, improving the detection of less abundant 

compounds, is to try to find analytical techniques with increased resolution. Multidimensional 

(nD) analyses are a possible response to this approach that has been extensively researched. 

Interestingly, signal processing, namely covariance analysis, has been used with some success 

to create the equivalent of nD spectra by relying on variations of the signal intensity along series 

of samples. From the mathematical viewpoint, the unmixing problem is a blind source 

separation problem, which can also be seen as an instance of the dictionary learning problem, 

which currently receives considerable attention. Dictionary learning generally leads to difficult 

non-convex optimization problems, for which there exist very few probably convergent and 

stable algorithms. A main goal of this project was to develop mathematical and signal 

processing approaches which stay as close as possible to signal acquisition, e.g. avoiding pre-

processing methods and software.  

  



 10 
CHAPTER I: Literature Review  

 
Application and development of the state of the art analytical methods of mixtures of small molecules by NMR and advanced signal processing 

 



 11 
CHAPTER I: Literature Review  

 
Application and development of the state of the art analytical methods of mixtures of small molecules by NMR and advanced signal processing 

OUTLINE 

 Nuclear Magnetic Resonance spectroscopy is a powerful tool to analyze complex 

mixtures where it is possible to have structural and quantitative information within one 

spectrum. Despite the development of NMR methods, the growing complexity of the samples 

leads to crowded spectra that compromise the analytical performances of this technique. One-

dimensional NMR spectra can become unusable and the interpretation of two-dimensional 

spectra is often very difficult and time-consuming. The association of new mathematical 

methods for signal processing with the methodological developments in NMR is a promising 

evolution. In this context, the first part of my thesis is focused on the analysis of small molecule 

mixtures by NMR with the application of Blind Source Separation (BSS)1 algorithms. This 

source separation technique, originally used for other disciplines such as telecommunications 

and neurosciences,2,3 has shown its effectiveness for the de-mixing of 1D and 2D NMR spectra.4 

Spectral decomposition is performed using correlations, essentially variation in concentrations 

detected over a series of data sets, which allows the extraction of the spectra of compounds in 

mixtures.5 6 Several types of samples, synthetic mixtures of terpenes and many others, are used 

to evaluate the efficiency of the algorithms. 

The second part of my thesis is concerned with two additional developments which can 

be defined as side projects: (i) the implementation and assessment of T1ρ relaxation filter in 

metabolomics to remove the broad signals of macromolecules which are usually not taken into 

account; (ii) the application of the well-established 2D Maximum Quantum (MaxQ NMR) 

NMR approach to simplify the NMR spectra of mixtures resulting from the reaction of enzyme 

complexes. 

 

 

 

Keywords: NMR spectroscopy, signal processing, mixture analysis  



 12 
CHAPTER I: Literature Review  

 
Application and development of the state of the art analytical methods of mixtures of small molecules by NMR and advanced signal processing 

APERÇU GÉNÉRAL DE LA THÈSE 

 La spectroscopie par résonance magnétique nucléaire (RMN) est un outil puissant 

pour analyser des mélanges complexes où il est possible d'avoir des informations structurales 

et quantitatives à partir d’un seul spectre. Malgré le développement des méthodes RMN, la 

complexité croissante des échantillons conduit à des spectres encombrés qui compromettent les 

performances analytiques de cette technique. Les spectres RMN monodimensionnels peuvent 

devenir inexploitables et l'interprétation des spectres bidimensionnels est souvent très difficile 

et chronophage. L'utilisation de nouvelles méthodes mathématiques de traitement du signal 

associées aux développements méthodologiques en RMN est une évolution prometteuse. Dans 

ce contexte, la première partie de ma thèse est centrée sur l'analyse de mélanges complexes par 

RMN avec l'application d'algorithmes de séparation de source à l’aveugle (BSS)1. Cette 

technique, initialement utilisée pour des disciplines telles que les télécommunications et les 

neurosciences,2,3 a montré son efficacité pour la décomposition des spectres RMN 1D et 2D.3 

Elle est réalisée à l'aide de corrélations, essentiellement des variations de concentrations, 

détectées sur une série de données, ce qui permet l'extraction des spectres des composés du 

mélange.4,5 Plusieurs types d'échantillons, mélanges synthétiques de terpènes et d'autres, sont 

utilisés pour évaluer l'efficacité de ces algorithmes. 

 La deuxième partie de ma thèse concerne deux développements qui peuvent être 

considérés comme des projets annexes : (i) la mise en œuvre et l'évaluation du filtre T1ρ en 

métabolomique pour supprimer les signaux des macromolécules qui ne sont habituellement pas 

pris en compte ; (ii) l'application de la méthode dite « Maximum Quantum » (MaxQ RMN) 

pour simplifier les spectres RMN de mélanges résultant de la réaction de complexes 

enzymatiques. 

 Mots clés : analyse de mélanges, traitement du signal, spectroscopie de résonance 

magnétique nucléaire 
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Figure 1 Graphical summary of this Ph.D. thesis. 
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I.1. Introduction to NMR spectroscopy  
 

 Nuclear magnetic resonance (NMR) is a spectroscopy that exploits the magnetic 

properties of nuclear spins of a molecule when placed in a magnetic field and allows the 

identification of different nuclei, such as 1H, 13C, 31P, 15N, according to their characteristic 

nuclear resonance frequency. Indeed, for each spin moment 𝐼 is associated a magnetic moment 

µ⃗⃗  collinear with 𝐼  which is: µ⃗⃗  = γћ𝐼. Here, γ is the gyromagnetic ratio of the considered 

nucleus, expressed in rad T-1 . s-1 and ћ is Planck's constant divided by 2 (where ћ= 1.054 

x10-34 J . s). All atomic nuclei characterized by a non-zero spin moment 𝐼 are observable by 

NMR. The proton has a spin I = ½ and it is the first and the most recorded nucleus in NMR 

owing to its high gyro-magnetic ratio, and natural abundance of more than 99,98 %. Moreover, 

1H NMR is widely exploited because most of the known molecules contain hydrogen. For this 

nucleus, the spins can adopt two states m=+½ and -½ corresponding to two possible orientations 

of the magnetic moment µ⃗⃗ . In the presence of a static magnetic field  𝐵0
⃗⃗ ⃗⃗ ⃗⃗  , the spins polarize 

along the axis defined by the direction of  𝐵0
⃗⃗ ⃗⃗ ⃗⃗  , either parallel or antiparallel, with two distinct 

energy levels. It is then possible to induce a transition between these two energy levels if the 

sample is subjected to an electromagnetic wave of frequency ν0 obeying the Bohr relation 

E=h0, where 0 is the Larmor frequency (or resonant frequency) which is written: 

                                                       𝜈0 = 
𝛾𝐵0 

2𝜋
(1 − 𝜎)                                                           (1.1) 

, is a dimensionless number, called shielding constant, which reflects the shielding effect of 

the electronic procession on the field  𝐵0
⃗⃗ ⃗⃗ ⃗⃗ ,  as it is perceived at the level of the nucleus. It is of 

great interest as an analytical tool for NMR since it is specific to a chemical environment and 

is the origin of the so-called chemical shift. 
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Figure 2 a) Difference of energy levels of a ½ spin by the application of a static magnetic field 𝐵⃗⃗0. The parallel orientation is 

the most stable state noted α. b) a slight excess of the population corresponding to the parallel orientation to the 𝐵⃗⃗0 field 
results in an overall magnetization M over the entire sample, aligned at the equilibrium, along the z-axis. 

 

As shown in Figure 2.a, the most stable state, with the lowest energy, denoted , corresponding 

to an orientation parallel to the magnetic field, is the most populated. The overall balance in a 

sample gives rise to a total nuclear magnetization 𝑀0
⃗⃗ ⃗⃗ ⃗⃗ ⃗ aligned along the longitudinal axis 

denoted z, collinear with the magnetic field  𝐵0
⃗⃗ ⃗⃗ ⃗⃗  (Figure 2.b). It is a macroscopic quantity, which 

can therefore be modeled using classical mechanics. However, the nuclear magnetization 𝑀⃗⃗⃗ is 

not observable when it is parallel to 𝐵0
⃗⃗ ⃗⃗ ⃗⃗ . Another radiofrequency field 𝐵⃗⃗1 perpendicular to 𝐵0

⃗⃗ ⃗⃗ ⃗⃗  

must be applied to move it away from this equilibrium position. The equations of classical 

mechanics show that the magnetization vector  𝑀0
⃗⃗ ⃗⃗ ⃗⃗ ⃗ is then animated by a precession motion at 

a frequency which is known as the Larmor frequency (Equation 1.1). An NMR signal is 

obtained upon return to equilibrium: the Free Induction Decay (FID) in the time-domain. The 

obtained signal is complex and contains several frequencies. By applying a Fourier Transform 

(FT), we obtain an interpretable spectrum in the frequency-domain, as reported in Figure 2, 

from which information such as chemical shifts (in ppm), scalar coupling, and integrated 

amplitudes of peaks can be measured.  
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Figure 3 NMR spectrum in frequency-domain obtained after the Fourier Transform of the detected signal FID in time-domain. 

 

NMR spectroscopy is a relatively rapid, high throughput, robust and reliable technique that 

presents a high reproducibility and repeatability, and requires minimal and non-destructive 

sample preparation. However, it is an approach with a weak sensitivity, for example, compared 

to Mass Spectrometry (MS). However, the sensitivity can be improved by signal accumulation 

(repeating the number of scans, using longer analysis times), using higher magnetic fields 

or/and cryogenic probes. During this thesis, the NMR analyses were performed at high field 

spectrometers, mainly with a 600 MHz (14.1 Tesla) instrument.  

 

I.1.1 Multidimensional NMR Techniques 

 

 Before introducing multidimensional NMR experiments, some technical points have 

to be detailed describing how one-dimensional (1D) NMR spectrum is obtained for a targeted 

nucleus, such as proton 1H. The simplest measurement scheme, such as in a 1D 1H experiment 

(Figure 4), is composed of the so-called hard pulse which is a very short (about 10 μs), 

rectangular, non-selective pulse, performing a 90° (π/2) tilt angle for the magnetization M ⃗⃗⃗⃗⃗.  
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Figure 4 The simplest one-dimensional pulse sequence for a nucleus I with a relaxation delay to let the magnetization recover, 
a hard pulse and the FID detection. This measurement scheme can be repeated for a number of scans (NS). 

 

The measurable signal (FID) is then detected and acquired for a few seconds (e.g. 2 s). The 

signal is accumulated over a repeated number of scans (NS) during which the experiment is 

repeated in order to obtain a sufficient SNR (Signal-to-Noise Ratio), lengthening the 

experimental duration. SNR value increases with the square root of NS (e.g. if snr is the SNR 

for 1 scan, then the SNR for NS is snr x √NS). The NS should be a compromise between 

sensitivity and experimental time. The sum of the repetition time of each scan, in fact, leads to 

the total duration of the experiment. Performing one-dimensional quantitative experiments 

requires that the magnetization is completely recovered on the longitudinal axis before each 

scan.  

Since the excitation part is not always performed by a single hard pulse, NMR multi-pulse 

sequences have been developed to provide different information, using radio-frequency (RF) 

pulses, delays, and magnetic field gradients. 

In this context, multi-dimensional pulse sequences can be introduced as part of multi-pulse 

experiments. In a two-dimensional (2D) experiment the signal is recorded as a function of two 

variable times, t1 and t2, and then the double Fourier transform produces a 2D spectrum as a 

function of two frequency-domain variables, F1 and F2. In practice, a 2D spectrum is recorded 

as a series of 1D experiments collected with different incremented t1 to build the second 

dimension, as shown in Figure 5. Repeating the pulse sequence, that is increasing the t1, 
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provides an experimental time by the product of the repetition time, the NS, and the number of 

increments. 

 

Figure 5 The collection of the series of 1D experiments with t2 along t1 in 2D experiments. 

 

The general scheme of any 2D experiment consists of four blocks as shown in Figure 6. The 

first, the preparation which is defined by a delay allowing the relaxation of the system and the 

excitation of a population of spins, but may also have solvent suppression pulses. The second, 

the evolution time t1, is the incremented delay for mapping of chemical shifts, during which the 

system evolves. This evolution can take place under the effect of the chemical shift and/or the 

couplings between nuclei observed in the F1 dimension. The third is the mixing time during 

which through-bond (JHH) long range couplings take place. This transfer takes place by different 

mechanisms, scalar coupling, dipolar interaction, etc. Finally, the experiment is finished with 

the detection time t2 for the acquisition of normal FID (Figure 6). 

 

Figure 6  Basics of any 2D NMR experiment: general scheme. 

 

Resolution in the indirect dimension t1 is very important. Higher resolution in direct t2 

dimension costs little time, but the higher resolution in t1 adds time directly to the total 
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experimental time (for example, doubling the number of t1 leads to an experiment that is twice 

as long). 

2D NMR experiments can be of two types: homonuclear and heteronuclear. Each type can 

provide either through-bond (COSY-type) or through-space (NOESY-type) coupling 

information. 

 

I.1.1.1. Homonuclear NMR Experiments 

 

 The first and simplest two-dimensional NMR experiment is the homonuclear proton-

proton COrelation SpectroscopY (COSY).7 COSY spectra show connections between 

neighbour protons through non-diagonal peaks or cross peaks. It generates a 2D map which 

mostly shows cross peaks from geminal (2J couplings, where two links separate two protons) 

and vicinal (3J couplings) groups only. The simplest pulse sequence is constituted by two 90° 

pulses separated by the evolution period t1 as shown in Figure 7.  

  
Figure 7  Basic 2D Homonuclear proton-proton COSY experiment with the pulse sequence. 

 

Two-dimensional 1H-1H TOCSY (TOtal Correlation SpectroscopY) is a homo-nuclear 

experiment, generally used for protons.7 It gives a spectrum similar to that one of COSY, with 

additional correlations between all the protons within a spin system, in which coupling between 

two spins is indicated by the presence of a cross-peak multiplet. In TOCSY, the net 

magnetization transfers proceed from one spin to another through space even without direct 

coupling. If a spin A is coupled to spin B, and B is coupled to spin C, then in this kind of 
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spectrum we will see a cross peak between A and C, and also between A and D, as reported in 

Figure 8, even if there is no direct coupling between these two spins. 

 

Figure 8 Magnetization transfer from one spin to another even without direct coupling. If a spin A is coupled to spin B, and B 
is coupled to spin C, also a cross peak appears between A and C, and also between A and D. 

 

The key part of this experiment is the period of isotropic mixing, during the mixing time τmix, 

which forms the mixing period as shown in Figure 9. The difference from COSY is that the 

second 90° pulse is replaced by the spin-lock period which uses continuous irradiation along a 

transverse axis.  

 
Figure 9 Pulse sequence for the TOCSY experiment. During the mixing time there is the isotropic mixing which transfers 
magnetization between spins which are connected via a network of couplings. It is achieved by a specially designed multi-
pulse sequence such as DIPSI-2. It is arranged that only z-magnetization present at points A and B contributes to the spectrum. 

 

TOCSY experiment is extremely useful to identify networks of coupled spin. It is used for 

peptides analysis,8  since almost all of the side chains form one contiguous spin system, 

allowing the assignment of amino acids.8 However, for most organic compounds, the spin 

systems are isolated into several fragments by the presence of heteronuclei or non-protonated 

carbons. In such cases, additional NMR experiments or the use of heteronuclear-edited 1H 

TOCSY experiments (such as 2D HSQC-TOCSY9 or 3D heteronuclear TOCSY10) are required 

to complete the assignment.8  
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In this work, the assessment of the application of Blind Source Separation algorithms on 

TOCSY data sets is performed in view of future potential applications. 

 

I.1.1.2. Heteronuclear NMR Experiments 

 

 In the previously introduced NMR experiments, only one nucleus at the time was 

observed. Two-dimensional Heteronuclear Single Quantum Coherence (HSQC) sequence is the 

benchmark hetero-nuclear experiment allowing to highlight interactions between different 

nuclei such as 1H-13C correlations providing significant resolution and discrimination of 

resonances since the correlation peaks are carried by the chemical shifts of two different nuclei.  

This experiment is of great interest when the compounds to be studied have very similar 

structures with overlapping peaks.11 Indeed, the large spectral dispersion of 13C (0 to 250 ppm, 

against 0-15 ppm for proton) allows an increased spectral resolution. Cross peaks here indicate 

proton - carbon chemical bounds, combining the good sensitivity of 1H with the good resolution 

of 13C nucleus.  

In the HSQC experiment, the preparation period consists of a delay allowing the return to 

equilibrium of the magnetization and an Insensitive Nuclei Enhanced by Polarization Transfer 

(INEPT) block which transfers the polarization from the protons to the carbons.12 Figure 10 

shows the basic HSQC pulse sequence built using two INEPT refocusing blocks. The INEPT 

composes the first part of the HSQC pulse sequence, transferring the magnetization from 1H to 

13C, providing the evolution of magnetization of carbon spins during the period t1 under the 

effect of chemical shift.  



 23 
CHAPTER I: Literature Review  

 
Application and development of the state of the art analytical methods of mixtures of small molecules by NMR and advanced signal processing 

 

Figure 10 The simplest 2D HSQC pulse sequence, with water presaturation, for 1H-13C correlations with decoupling during 

acquisition. The INEPT delay is 𝛥 = 2
1

4𝐽𝐼𝑆
=

1

2𝐽𝐼𝑆
. 

 

INEPT transfers the nuclear spin polarization from sensitive spins, e.g. 1H, to less sensitive 

ones, such as 13C, that has a low gyromagnetic ratio and low natural abundance, in order to 

increase the sensitivity of the signal. During the evolution period, only the chemical shifts of 

13C are expressed during the incrementable time t1 thanks to a 180° 1H pulse in the middle of 

this period which refocuses the 1H-13C couplings as shown in Figure 10. This gives a proton-

decoupled 13C spectrum in the indirect F1 dimension. The mixing period allows the 

magnetization of carbons-13 to be transferred to protons with the same INEPT block. In the 

end, the 1H NMR signal is detected in the presence of a 13C decoupling, and therefore, during 

t2, the proton-carbon couplings are eliminated from the spectrum.  

In this thesis we used the standard “HSQCETGPSI” (according to the Bruker nomenclature) 

pulse sequence which is a phase-sensitive gradient HSQC using Echo-AntiEcho quadrature 

with sensitivity improvement.7,13 

The direct relation between signal surface or volume of the peaks and concentration is partially 

modified in conventional 2D NMR spectra, where the factors which affect the quantitative 

response are much more complex than with a simple one-dimensional excitation-acquisition 

scheme of Figure 4. The multidimensional equivalent of the integral, “the hyper-volume 

element”, becomes proportional to the transfer functions which take into account all interactions 
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contributing to produce the n-dimensional cross-peaks (J couplings, chemical shifts, relaxation, 

etc.), and depending on the timing and architecture of the pulse sequence. In this setting, the 

coefficient of proportionality between the signal and the concentration is different for each 

peak.14  

In this framework, the problem in HSQC is the non-quantitative response due to the dependence 

of the correlation peak volume (VC) to be integrated on the efficiency of the magnetization 

transfer of the two INEPT steps, which is proportional, among other things, to the heteronuclear 

coupling constant (JIS). The peak volume varies according to:15 

                                                              VC ∝ sin (πΔJIS)                                         (1.2) 

 where 𝛥 =
1

2𝐽𝐼𝑆
 is the polarization transfer delay of the INEPT block, corresponding to two 

times 
 1

4𝐽
. In the classical HSQC, Δ is adjusted to the average value of one-bond 13C–1H coupling 

constant 1JCH of 145 Hz corresponding to 3.45 ms to maximize the transfer efficiency of 

magnetization.15 Different coupling values can be maximized by changing Δ, but if there is a 

range of coupling constants, there is not one single value that would maximize the intensity of 

all of the resonances. The transfer efficiency will differ between peaks in the HSQC spectrum, 

with the consequence that the peak integrals will not be quantitative. Several strategies were 

proposed to overcome this issue. For example, in Q-HSQC, proposed by Heikkinen et al., the 

1JCH-dependence of correlation peak volumes, so the transfer efficiency is compensated by 

summing signals from experiments with different values for the INEPT delays.15 The relatively 

uniform response of Vc is achieved by adding together data from experiments with four values 

of Δ of 2.94 and 5.92 ms in a 3:1 ratio to average the dependence on 1JCH at less than 2% for 

1JCH between 100 and 240 Hz.16. The resulting spectrum, however, will have less sensitivity 

with a volume 25% lower than the conventional HSQC spectrum when actual 1JCH is close to 

1JCHexp.15 In the Q-HSQC, if a proton has many JHH couplings, the relatively long coupling 
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evolution period during polarization transfer INEPT periods, could lead to distort the line shape 

of the correlation peak, compromising the accuracy of the result and causing problems in the 

cross-peak integration.17,18 There is the combination of signals acquired using four different 

INEPT delays, consequently, the experiment requires four times as many scans as the HSQC 

experiment to achieve the same resolution in the indirect dimension. This problem was 

addressed later in the Quantitative Carr-Purcell-Meiboom-Gill (CPMG)-adjusted HSQC (Q-

CAHSQC) experiment, using CPMG pulse trains by replacing the constant-time INEPT periods 

with the constant-time CPMG-INEPT steps, allowing to suppress the evolution of JHH, and 

correct the cross-peaks shapes.18 Quick Quantitative HSQC (QQ-HSQC) has the quantitative 

properties of the Q-HSQC experiment but only requires as many scans as a conventional HSQC 

experiment. The signals corresponding to different INEPT delays are acquired simultaneously 

from different parts of the sample. Koskela et al.18 introduced later optimized the RF pulses 

using quantitative, offset-compensated, CPMG-adjusted HSQC (Q-OCCAHSQC) experiment, 

with improvement to the offset performance, covering the carbon chemical shift range. 

In this thesis, applying the BSS on HSQC data sets acquired with the same pulse sequence (the 

standard HSQCETGPSI), we look at the samples in a relative way. The changes in the volume 

intensities between the mixtures are only due to the variations in concentrations from one 

sample to another since we used the same INEPT delay for the HSQC (𝛥 =
1

2𝐽𝐼𝑆
= 3.45 𝑚𝑠), 

and the same parameters: recovery delay d1, number of scans and dummy scans, acquisition 

time...etc. 

 

I.1.1.3. Accelerating the multidimensional NMR 

 

An NMR experiment may last from a few seconds to several hours, even some days for 

some multidimensional experiments. Furthermore, long acquisition times are not suitable for 

large batches of samples or reactive molecules. 
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To save experimental time, there are two very common approaches that were not used in this 

work but that are described here. Multidimensional NMR experiments can be acquired with a 

single scan using UltraFast (UF) multidimensional acquisition techniques, limiting the duration 

of multidimensional NMR experiments into the lifetime of reactive systems, for example.19 UF 

technique involves a heterogeneous initial excitation with a single axis B0 field gradient, 

introducing artificial spectral heterogeneities within the sample, resulting in inhomogeneous 

spectral distribution. This leads to view the sample as composed of independent sub-ensembles, 

where their evolution can be manipulated selectively.19 

The other technique is Band-Selective Optimized-Flip-Angle Short-Transient (SOFAST) 

which combines the advantages of longitudinal-T1 relaxation enhancement or optimization and 

Ernst-angle (0° <α< 130°) excitation.20 21 This is useful to accelerate 2D experiments, by using 

very short inter-scan delays, according to the Ernst Angle strategy.  

 

I.1.1.3.1. Non-Uniform Sampling (NUS) 
 

The acquisition time of a 2D spectrum largely depends on the number of points, the 

increments, acquired in the indirect dimension (TD1, or time-domain points in t1, which 

represents the size of FID). It depends also on the duration of the acquisition of the direct 

spectrum, called recycling time or repetition time, TR, and the number of scans, NS (introduced 

in paragraph I.1.1.1). Based on the Nyquist sampling theorem, there is a limited flexibility on 

the choice of the size of the data matrix to ensure a suitable resolution and a wide enough 

frequency range, linked respectively to the number of the acquired indirect points and the 

sampling increment, Δt1. Resolution in the indirect dimension F1 must be large enough to 

resolve the correlations of interest, but the higher resolution in F1 implies a longer time for the 

construction of the indirect dimension and thus a longer acquisition time. Resolution and 

spectral width are obviously more critical in the context of mixture analysis.  
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The acquisition parameters of an NMR experiment – sampling rates and acquisition times in 

every dimension – are used to define the so-called data matrix, which tabulates the NMR signal 

intensity as a function of frequency in every dimension. With this in mind, the acquisition of a 

smaller data matrix is a solution to reduce the nD experiment duration, with the desired 

resolution recovered by signal processing. A practical procedure consists in skipping 

acquisition points acquired in the indirect dimension t1 from the list of the full experiment 

forming the full Nyquist grid. This leads to the so-called Non-Uniform Sampling (NUS) method 

(Figure 11 and Figure 12).  

 
Figure 11 a) Uniform Sampling in a 2D experiment, in which all the indirect data points are collected, from t1=0 to t1max. b) 2D 
NUS experiment with only a subset of complex points are collected (in red) (non-collected points are in white). 

 

Figure 12 Uniform sampling of points in 3D experiment (on the left-hand side). Distribution of complex points in a random 
NUS grid for a 3D experiment. Only a fraction of t1/t2 pairs are collected (on the right-hand side). 

 

Nyquist sampling theorem dictates that the sampling interval must be at least 1/DW. In NMR, 

dwell time (DW) is defined as the time between two successive points during data acquisition 

in the FID, also called the sampling rate which is also equal to 
1

2SW
, with SW the Spectral Width 

in Hz. Time-domain measurement of the FID consists in sampling the signal at a series of 

discrete intervals, where these intervals are kept uniform (thus uniformly sampling, US).22 

According to the classical Nyquist-Shannon sampling theorem, sampling at a constant rate, 
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which is equal or larger than the spectral width, is the necessary condition of the reconstruction 

of a spectrum. NUS acquires only a subset of these data points in a random manner that is 

sufficient for obtaining the exact reconstruction of the spectrum. NUS percentage of collected 

t1 points can be different. It is defined as the amount of sparse sampling equal to the ratio 

between the number of keep points and the total points. For example, with 25% of NUS points, 

the compression factor is equal to 4 (Figure 13 with t1 keep points for NUS 25% at the top, 

12,5% in the center, and 6,25% at the bottom). 

 

Figure 13 The distribution of t1 complex points recorded in the indirect dimension in a 2D NUS experiment from Topspin, with 
the 25% on the 128 uniformly sampled points (first line), 12,5% (second line) and 6,25% (third line). 

 

The search for algorithms leading to a faithful compression/reconstruction has been the subject 

of numerous researches and theoretical developments, from which the most commonly 

employed NMR data processing approaches were adapted.23 The quality of processing for NUS 

data is assessed based on the existence of several artefacts, including baseline and peak shape 

distortion, aliasing (including “reconstruction noise”), and signal loss. The presence of such 

artifacts is clearly an even bigger issue for mixture analysis when the artifacts originating from 

the most intense peaks have intensities comparable to or larger than the resonances of the minor 

components. Several processing methods are available such as Maximum Entropy (MaxEnt),24, 

25,26,27 Multi-Dimensional Decomposition (MDD-NMR),28,29,30 Compressed Sensing or 

compressive sampling (CS),31 Multidimensional Fourier Transformation (MFT).32,33,34 
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Incomplete sampling multidimensional techniques rise essentially two questions: firstly, the 

limit of compressing the data acquisition set without losing accuracy and, secondly, the 

selective signal modifications according to the peak multiplicity. An important change in line-

shapes was reported by increasing the number of points dropped by NUS while preserving the 

same resolution. For mixtures, this is still a matter of investigation, and it was recently shown 

that the gain in time, by increasing the compression ratio with the same resolution, corresponds 

to a loss in signal.35,36 Le Guennec et al. demonstrated that for HSQC experiments, the 

integrated values of the peaks with low intensity dropped below 50% when NUS was 

employed.35  

 

I.1.2. NMR Dynamic Parameters 

 

 In this section, we will approach the dynamic aspect of NMR, which consists in 

relating the relaxation and diffusion parameters to molecular dynamics. We will present the 

relaxation parameters that we actually used in this thesis and we will define the self-diffusion 

coefficient which allows access to translational movements. We will devote a part to the 

experimental determination of the relaxation parameters and the self-diffusion coefficients. The 

spin relaxation and the diffusion coefficient determined by NMR depend to a large extent on 

molecular mobility and can provide fine structural information such as interatomic distances or 

more global such as the size of molecules or the viscosity of the medium.37–39  

 

I.1.2.1. Relaxation Parameters  

 

NMR relaxation involves the processes allowing a nuclear spin system to return to its 

equilibrium state after being removed from it, achievable by various disturbances. It can be 

understood by a phenomenological approach using Bloch's equations describing the evolution 
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of nuclear magnetization as a function of time.37 It should be pointed out that this approach 

which considers a global macroscopic quantity is useful for understanding relaxation but it is 

unsuitable for describing spin systems containing more than two states. In this case, quantum 

mechanics gives a complete description by no longer considering macroscopic quantities but 

rather the different spin states.  

As described previously, the equilibrium state corresponds to a magnetization  𝑀0
⃗⃗ ⃗⃗ ⃗⃗ ⃗ aligned along 

the z-axis which is collinear with the magnetic field  𝐵0
⃗⃗ ⃗⃗ ⃗⃗  ("longitudinal direction"). When the 

nuclear magnetization M0 is brought out of its equilibrium position by a radiofrequency (rf) 

pulse, two different processes bring the system back to its equilibrium state: the longitudinal 

relaxation which describes the reconstruction of the magnetization along the longitudinal z-axis 

and the transverse relaxation which rules the vanishing of components of the magnetization in 

the transverse plane (x, y).  

 

I.1.2.2 Measurement of the longitudinal relaxation time T1 by Inversion-Recovery 

 

In general, any measurement of relaxation time begins with a disturbance of the system 

to bring it out of its equilibrium state, followed by an evolution period during which the 

magnetization returns to equilibrium according to the relaxation process.40 The state of the 

system is usually observed by an rf read pulse (π⁄2 for example). The experiment is repeated 

for different values of the evolution time in order to follow the temporal evolution of the 

magnetization to extract the relaxation time(s). There are different methods of measuring T1, 

they are differentiated by the initial disturbance of the system which can be one or more rf 

pulses. In this thesis, we used the inversion-recovery experiment (Figure 14.a) which begins 

with an inversion  pulse that changes the nuclear magnetization from +𝑀𝑧 (equilibrium) to 

−𝑀𝑧. It is followed by an evolution delay during which the magnetization evolves and returns 
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to its equilibrium position along the z-axis, passing through the zero value (Figure 14.b), 

according to the following Equation 1.3: 

                           𝑀𝑧(𝜏) = 𝑀𝑧 (0) (1 − 2 𝑒
− 

𝜏

𝑇1)                                          (1.3) 

The state of the magnetization is read by a /2 pulse (Figure 14.a). 

 

Figure 14 a) Inversion-recovery sequence for measuring T1; b) Evolution curve of the amplitude of the NMR signal as a function 
of the evolution time. 

 

I.1.2.3 Measurement of relaxation times in the transverse plane, T2 and T 

 

I.1.2.3.1 T2 Measurement by the Carr-Purcell-Meibomm-Gill (CPMG) sequence 

 

The Carr-Purcell-Meibomm-Gill (CPMG) technique is based on the Hahn sequence also 

known as “spin echo” which allows, among other things, to overcome the contribution of the 

inhomogeneity of the magnetic field.41,42 Indeed, the inhomogeneity of the magnetic field B0 

leads to a dispersion of the precession frequencies (proportional to the effective field in each 

position in the sample). As a result, the decay of the free precession signal is faster with a 

constant T2
* lower than the true transverse relaxation time T2. As with any relaxation 

measurement, maximum disturbance should be applied. In the case of transverse relaxation, it 

consists of a 
𝜋

2
 pulse which brings the magnetization into the x, y plane. The application of a 

 pulse at the midpoint of the echo delay  cancels out the effect of the inhomogeneity of the 

magnetic field and "refocus" all precessions of the nuclear magnetization. The decay of the 
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magnetization after the delay  is only due to the transverse relaxation T2. The amplitude of the 

signal measured at the end of the delay  is given by Equation 1.4: 

                                                               𝑀𝑥𝑦(𝜏) = 𝑀𝑥𝑦 (0)  𝑒
− 

𝜏

𝑇2                                  (1.4) 

However, the impact of molecular diffusion on the spin-echo experiment has been demonstrated 

and leads to a faster signal decrease if the static magnetic field is not homogeneous.41,42 Indeed, 

after the  pulse and the second half of the echo delay, the magnetization returns to the starting 

position (along the y-axis for example) provided that its precession is done with the same 

frequency, this implies that the molecules have remained nearly in the same position during . 

Nevertheless, during the refocusing process the molecules undergo a translational movement, 

and, if the magnetic field, therefore the precession frequency, differs significantly from one 

position to another in the sample, an additional attenuation appears, proportional to the self-

diffusion coefficient D. 

Despite the sufficient homogeneity of the magnetic fields of recent instruments, the CPMG 

sequence is preferred for the measurement of T2 and for the application of relaxation filters. It 

consists of replacing the single  pulse of the Hahn method with a  pulse train (Figure 15) 

which enables to overcome the effects of molecular diffusion, even in the presence of internal 

gradients.  

 

 

Figure 15 Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence to measure T2 relaxation time (a), less affected by translational 
diffusion, using the intensity=f(τ) to derive T2 (b). 
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Regarding the implementation of CPMG, the length of the pulse train is increased (interval  

remains constant), by increasing the number of loops 2n. The transverse relaxation time T2 is 

then determined by adjusting the equation: 

 𝑀𝑥𝑦(2𝑛 𝜏) = 𝑀𝑥𝑦 (0) 𝑒
− 

2𝑛𝜏
𝑇2  

 

A more recent approach is the Periodic Refocusing of J Evolution by Coherence Transfer, 

PROJECT. It is based on the perfect echo approach by Takegoshi et al.,43 consisting in a CPMG 

with a 90°y refocusing pulse at the midpoint of a double spin-echo, to suppress the homonuclear 

J modulation. The presaturated sequence ([presat − 90° − (τ − 180° − τ – 90° − τ – 180° − τ 

−)n]) from Aguilar et al.,44 is reported in Figure 16. 

 

Figure 16 Presaturated PROJECT sequence ([presat − 90° − (τ − 180° − τ – 90° − τ – 180° − τ −)n]) from Aguilar et al.44 

 

I.1.2.3.2 Measurement of the relaxation time in the rotating frame T1 

 

 When the studied systems include scalar couplings, J, which was the case of the systems 

studied during this thesis, the correct measurement of T2 is hampered due to the modulation of 

the amplitude of the echoes due to the J couplings. The increasing of the  pulse frequency by 

reducing the inter-pulse delays (
𝜏

2
) leads to measurements that are increasingly insensitive to 

diffusion phenomena and to the modulation by J couplings. An extreme reduction of these 

delays would lead to approaching a locking of the magnetization along a transverse axis, y for 
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example. This situation is similar to a T1 measurement method which allows to determine the 

relaxation time in the rotating frame. 

The sequence for measuring T1 is described in Figure 17: a (π/2)x pulse brings the nuclear 

magnetization along the y-axis of the rotating frame. It will be locked by the continuous 

application of a B1 rf field (stationary along the y axis of the rotating frame, called “spin-lock”) 

for a time   with an appropriate amplitude which avoids the shift between the carrier frequency 

and the resonance frequencies (“offset effect”). The evolution of the magnetization takes place 

without precession and T1  is obtained by adjusting Equation 1.5 which rules the 

disappearance of the signal as a function of time  of the spin-lock (SL).  

                                 𝑀𝑦(𝜏) =  𝑀𝑦(0) 𝑒
−(

𝜏

𝑇1𝜌
)
                                          (1.5) 

 

Figure 17 a) The basic spin-locking pulse sequence for T1p measurement. The initial π/2 pulse converts the initial longitudinal 

magnetization into transverse magnetization along the rotating frame x or y axis. The parameter  concerns the spin-lock 

length, adjusted according to the sample, but usually set to 100 ms. b) The intensity=f() fitting curve to derive T1ρ. 

 

For the measurement of T1, it is suitable to know the spin-lock amplitude expressed generally 

according to the pulsation 𝜔1 = 𝛾𝐵1. Indeed, the T1 is very sensitive to the amplitude of the rf 

field. It is most often expressed by the frequency 𝜐1 =
𝛾𝐵1

2𝜋
 which is the nutation frequency. 

 

I.1.2.4. Translational Diffusion Measurement by NMR 

 

 The relaxation parameters that we have described are essentially related and 

modulated by molecular rotational movements whose characteristic times are of the order of a 
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microsecond to a nanosecond. Regarding the translational movements, directly quantified by 

NMR, they can be tracked for relatively long times, from a millisecond to seconds. More 

recently, the use of long-lived singlet spin order as a means of storing magnetization during the 

diffusion time has made it possible to follow the translation of molecules for durations of up to 

tens of minutes in order to measure tortuosity in porous media.45  

The following in this paragraph implies the assumption that the molecular translation is random 

and isotropic, which leads to the definition of the self-diffusion coefficient D according to 

Stokes-Einstein Equation 1.6: 

                                                           𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑅ℎ
                                                  (1.6) 

 

with D = diffusion coefficient (m2/s), kB = Boltzmann constant (1,380649 x10-23 J K-1), T = 

temperature of the system (K), η = medium viscosity, Rh = hydrodynamic radius of a sphere 

with equivalent hydrodynamic properties to the diffusing species. What is measured in NMR is 

actually a root mean square displacement. This diffusion coefficient generally reflects the size 

of molecules or the interactions they undergo. These features gave rise to several applications, 

the most popular consists in analyzing solutions containing complex mixtures (artificial 

analytical chromatography).46 Later, Morris and Johnson proposed the DOSY (Diffusion Order 

SpectroscopY) technique, described below, which is a representation of the result of the 

diffusion experiment according to a two-dimensional map, in the "direct" dimension the 

spectrum showing the chemical shifts, and in the "indirect" dimension the diffusion 

coefficients.47–54 

To measure the diffusion with NMR, magnetic field gradient pulses are used. One of the basic 

pulse sequences is the Pulsed Field Gradient Spin Echo experiment (PFGSE) (Figure 18). 
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Figure 18  PFGSE DOSY NMR schema of pulse sequence with δ, the duration of gradient, Δ, the diffusion delay, and g, the 
gradient strength. 

 

It is a spin-echo sequence in which two equal gradient pulses of the same intensity and duration 

δ are integrated into both τ periods. A first magnetic field gradient defocuses the nuclear spins 

and provides spatial labeling where each molecule is labeled according to its position in the 

sample. It is followed by a diffusion delay noted , during which the molecules diffuse, and 

therefore change their position. Since the “encoding” gradient corresponds to a controlled 

inhomogeneity of the static magnetic field B ⃗⃗⃗⃗ 0 which gives to each spin a position-dependent 

phase, a second “decoding” gradient pulse, equal in duration δ and magnitude (g, expressed in 

G/cm), will refocus the spins (it cancels the effect of the first). This complete refocusing is 

possible only when the magnetic field experienced by the spins is the same before and after the 

diffusion delay  provided that the molecules have not changed position during this delay.  

Actually, the molecules move in random translational motion, and the spins that diffuse do not 

experience exactly the same magnetic field during the second gradient pulse. Only partial 

refocus occurs, resulting in loss of NMR signal according to the Stejskal – Tanner Equation 

1.7:51                                                                                                       

𝐼 = 𝐼0𝑒𝑥𝑝[− 𝐷 𝛾2 𝑔2 𝛿2 ∆′]  𝑒𝑥𝑝
−2𝜏

𝑇2                                           (1.7) 
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where Δ’ is the diffusion delay which takes into account the diffusion during the gradient pulses, 

δ and g are the length and the amplitude of the gradient pulse, respectively,   the gyromagnetic 

ratio of the observed nuclei, and D the diffusion coefficient. In practice, a series of experiments 

is carried out for different values of the magnetic field gradient g, while keeping the diffusion 

delay Δ constant (Figure 19). Thus, the decay due to relaxation (𝑒𝑥𝑝
−2𝜏

𝑇2 ) is the same from one 

experiment to the next and the decay of the curve is only due to diffusion.  

For example, in a mixture of two molecules, the signal intensity of small molecules, with high 

D, decrease more rapidly (Figure 19.a) than that of large molecules with lower D (Figure 

19.b).  

 

Figure 19 Signal diffusion decay as a function of gradient strength (G/cm) for a small molecule with a large D (a) and for a 
large molecule which diffuses slower and with a smaller diffusion coefficient (b). Reprinted with permission from Cohen et al., 
Angewandte Chemie, 44 (2005) 520–554. Copyright 2005 Wiley.55 

 

As mentioned before, Fourier Transform (FT) is the data processing associated with most NMR 

experiments to transform time-domain signal to the frequency-domain spectra. Exceptions are 

done when the signal is characterized by multi-exponential decay, for example, in spin 

relaxation or in the dephasing of the NMR signal associated with the PFGs, where only one 

dimension is suitable for the FT. From PFG data, DOSY charts are obtained thanks to Laplace 

Inverse Transform (ILT) (Figure 20).56 
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Figure 20 Comparison of FT and ILT transformation for PFG data. Reprinted by I. Toumi thesis (2013).57 

 

The Fourier transform of the NMR signal and the inverse Laplace transform of the decay of the 

signals lead to a DOSY spectrum on which the chemical shifts (δ, in ppm) are located on the 

horizontal axis, while the diffusion coefficients are on the vertical axis (D, in m2 . s-1). All the 

signals of the same component will be aligned in the horizontal direction according to their 

chemical shifts and in the vertical direction according to their diffusion coefficients. The limit 

is that the different compounds of the mixture can be separated as a function of the value of 

their diffusion coefficients at the condition that spectra do not have very severe overlaps. In 

Figure 21, an example of resolved 2D DOSY chart of an equimolar mixture of toluene, benzyl 

alcohol, and tetraethylene glycol (TEG) in D20 (HOD) is presented. Four compounds are 

present according to the four groups of signals aligned to four different diffusion coefficients 

(dashed lines in Figure 21).48,58 
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Figure 21 An example of resolved 2D DOSY spectrum of an equimolar mixture of toluene, benzyl alcohol, and tetraethylene 
glycol (TEG) in D20 (HOD). The dashed lines indicate which peaks belong to a same component. Four compounds are present 
according to the four groups of signals aligned to four different diffusion coefficients. Reprinted with permission from Morris 
et al., Anal. Chem., 66 (1994) 211–215. Copyright 1994 American Chemical Society.48  

 

For some samples, the attenuation due to transverse relaxation is very large, which can interfere 

with a good measurement of the self-diffusion coefficient. Therefore, the most used approach 

is the stimulated echo sequence (PGSTE)52 which consists of storing the magnetization along 

the z-axis during . Consequently, the additional attenuation is due to longitudinal relaxation 

(T1) which is longer than the transverse relaxation (T2). 

 

I.1.3. Mixture Analysis by NMR 

 

Analytical chemistry techniques for mixtures have to be specific, sensitive, and 

repeatable, allowing the detection of molecular fingerprints to identify and quantify chemical 

species. Among them, the NMR spectroscopy is a powerful tool to analyse complex mixtures 

because structural information and quantification, with its linear response, are possible to 

extract within one spectrum. Generally, mixture analysis has two main objectives: the 
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identification and the quantification of the components present in a mixture. With NMR, the 

identification is performed by comparing the position of NMR peaks in ppm with a reference 

database. The quantification is purchased with an internal or external standard taking into 

account the detection limit of the NMR of the order of μM to a hundred of nM (at 600 MHz 

with a standard inverse probe).  

The mixtures can be more easily analysed by hyphenated methods using the help of other 

techniques where the samples can be physically separated with chromatography (e.g. LC-

NMR),59 or analysed with sophisticated NMR methods, such as multidimensional experiments, 

to overcome the lack of resolution in 1D spectra. The developments of this technique have led 

to greatly enhanced resolution using experimental techniques such as COSY, TOCSY, HSQC, 

HMQC, and HMBC which are commonly used for complex mixtures. More sophisticated 

experiments, such as 3D HSQC-TOCSY,60 2D DOSY,49 3D DOSY,61 and Maximum-Quantum 

(MaxQ) NMR,62 63 are used to obtain different information. Broadband homodecoupling 

techniques, also known as pure shift NMR methods, aim to disentangle overlapped spectra by 

suppressing the effects of homonuclear coupling interactions to turn multiplet signals into 

singlets.64 65 66 Unfortunately, the costs in sensitivity and experiment time can be high and 

increasing the spectral resolution, the freedom from signal overlap is not guaranteed at all. 

Molecule mixtures can also be processed with different decomposition techniques which, 

however, are not commonly used due to software difficulties, not simple literature explications, 

and lack of examples. 

The growing complexity of the samples leads to crowded spectra that compromise the analytical 

performances of NMR. Despite all the methodological developments of NMR, the analysis is 

sometimes still very challenging, especially for signal assignment.67 More precisely, this thesis 

is focused on mixtures of small molecules (less than 1kDa) by implementing different 

approaches by NMR.  
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I.1.3.1. Mixture analysis by DOSY 

 

DOSY spectra are an important approach for mixture analysis by NMR.49 As explained 

in paragraph I.1.2.4., in this experiment, the peaks belonging to the same compound should 

decay in the same way. The problem comes when many overlaps are present and it cannot be 

entirely seen how the diffusion should be.67 In this situation, multivariate processing is useful 

and the covariance helps to see what happens in diffusion experiments.  

It can be supposed that DOSY data compose an X-matrix, that is a table in which each row is a 

decaying spectrum. This data set can be described as a product of the decays (C-matrix) and the 

individual spectra (S-matrix): 𝑋 = 𝐶𝑆𝑇 + 𝐸, where X is the mixture matrix, C the mixing 

matrix, S the matrix of the pure spectra, T denotes the transpose, and E is the residual matrix 

with the experimental error, which is the noise (Figure 22). 

 

Figure 22  Schematic illustration of the decomposition of an experimental DOSY data set X into component spectra S and 
decays C. Reprinted with permission from Nilsson et al.68 Copyright 2008 American Chemical Society. 

 

In the matrix model, the mixing matrix C contains the associated set of diffusional decay shapes 

as a function of gradient amplitude. It is easy to simulate the X-matrix, from the product CS, 

but it is more difficult to find C and S from the X data set.69  

A typical way of handling multivariate data is with Principal Component Analysis (PCA).70 

The good strategy is to impose constraints. One of them is the imposition that the decay is going 

to be exponential.  
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Two tools for processing DOSY data, the DOSY Toolbox and the General NMR Analysis 

Toolbox (GNAT) were developed by M. Nilsson’s group that include algorithms like DECRA, 

MCR, OUTSCORE, SCORE, PARAFAC.71,72 PALM-software also uses an improved 

algorithm for DOSY signal processing developed by M. A. Delsuc’s group available online.73 

In most DOSY spectra, a lot of overlaps are present, which are confusing and difficult to 

interpret, thus different approaches are possible. Among them, the SCORE method uses the 

minimization of residuals in matrix E=X-CST assuming a known decay form.68 This is the most 

basic and one of the most efficient approaches if the diffusion coefficients are not so close and 

the overlaps are limited. The OUTSCORE method (Optimized Unmixing of True Spectra for 

COmponent REsolution) is used to un-mixing DOSY spectra with overlapped peaks for similar 

species, improving the situation by almost an order of magnitude.74 OUTSCORE analysis 

provides minimization of the spectral similarities, using the product 𝐸 = |𝑆𝑖|. |𝑆𝑗|. It acts by 

combining least squares, fitting cross-talk minimisation, and maximising spectral difference. 

SCORE needs more than 20% of difference in diffusion coefficients when the overlaps are not 

so strong. By minimizing the cross-talk in OUTSCORE, until 5% of difference in diffusion 

coefficients can be resolved.75 

Another multivariate analysis is Direct Exponential Curve Resolution Algorithm (DECRA)76,77 

which is a fast method to calculate decay rates for each component and to extract spectra 

mathematically, which does not require a threshold. It is less sensitive to noise levels and deals 

with moderate spectral overlaps. Deviations from the directly measured values (e.g. diffusion 

coefficients) are related to the fact that the algorithm did not completely purify the component 

spectra.76 The data need to be of very high quality to avoid problems. In this context, reference 

deconvolution methods aim to correct the spectral distortion due to the convolution by some 

instrumental lineshape function L(w). The corrected spectra are obtained by replacing the 

instrumental function L(w) (deconvolution) by an ideal lineshape I(w) (reconvolution).78  
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Instead of using multivariate analysis of DOSY data, multiway analysis is another possibility. 

As mathematical contribute, a diffusion spectrum constitutes a bilinear data set, a table, or a 

matrix, with diffusion in one dimension and chemical shifts in another. If a 3D data set is 

available, with one extra dimension, then the mathematical representation will be with another 

component added to the model (Figure 23). 

                        

 

 

Figure 23  Diffusion spectrum constitutes a bilinear data set. A 3D data set as another extra dimension, thus the mathematical 
representation has another component. Reprinted with permission from Matthias Nilsson’s talk at EUROMAR 2021 
conference.  

 

The difference with the 2D data set is that for trilinear data set it does not need to add any 

constraint. Parallel Factor Analysis (PARAFAC)79,80 uses an additional independent dimension 

to obtain trilinear data by varying three dimensions independently. The third component could 

be related by the difference in concentrations within recorded samples, by a natural or synthetic 

way,81 during a chemical reaction,82,83 or change in concentrations from sample to sample. 

PARAFAC requires only knowledge on the number of components to fit. 

Another general alternative to process PFGSE data is the maximum entropy reconstruction 

(MaxEnt).84 This is an approach that relies on finding the most probable Laplace spectrum by 

maximizing the entropy of the spectral distribution subject to certain constraints.  

Overall, all these decomposition approaches have some problems in estimating sources, and 

most of the time they require prior knowledge such as the number of sources.  

 

𝑋 =  ∑𝑎𝑟 𝑏𝑟 + 𝐸

𝑅

𝑟=1

 𝑋 =  ∑𝑎𝑟  𝑏𝑟 𝑐𝑟 + 𝐸

𝑅

𝑟=1
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I.2. Signal Processing and Mathematical Decomposition 
 

I.2.1. The Blind Source Separation paradigm 

 

Despite the methodological developments and the simplification of spectra, when NMR 

is challenged with very complex mixtures, it very quickly reaches its limits in terms of 

identification and quantification. One-dimensional spectra become unusable and the 

interpretation of two-dimensional NMR spectra is often very difficult and time-consuming or 

even impossible. This is why we choose to apply mathematical tools coupled to the NMR to 

decompose mixtures into source spectra.  

The aim of Blind Source Separation (BSS) is to use data processing methods to recover a set of 

pure signals, called sources, which constitute the spectra of the pure molecules, and their 

concentrations, starting from a set of linear mixtures. This is performed with limited 

information or without a prior knowledge of the system, especially regarding the sources and 

the mixing process, hence in a “blind” way. 

The BSS is an inverse problem where we are faced up with the process of calculating, from a 

set of observations (the mixtures of departure), the factors that produced them (which are the 

components and their concentrations).1 It is called “inverse” because it starts with the effects 

and then calculates the causes. Inverse problems are some of the most important mathematical 

topics because they tell us about parameters that we cannot directly observe. They have wide 

application, and especially the blind separation was originally used for disciplines such as 

telecommunications with Cardoso,2 and neurosciences with Jutten and Herault in the 1990s.3 

Other applications were carried out in acoustics for source reconstruction,85 for speech signals 

or bird chirpings, for example,86 and in many other fields, such as image processing.87 

In this approach, the X-matrix, containing the NMR spectra of the mixtures, is modeled as a 

linear combination of pure spectra, collected in a matrix S, the coefficients, being the 
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concentrations encoded in a matrix A, with an additional matrix term N, encoding measurement 

noise (Figure 24). Mathematically, this takes the form of a matrix product of these two 

matrices, complemented by the noise matrix.  In the BSS literature, S is called the source matrix, 

and A is the mixing matrix. 

  

Figure 24 Mathematical tools: modelling the NMR spectra with the Blind Source Separation algorithms. 

 

For the decomposition of the spectra, the algorithms use correlations, essentially variations in 

the concentrations of the molecules through the mixtures. From one sample to another, the 

intensities or the integrals of the peaks belonging to the same molecule will present the same 

evolution. In other words, the prerequisite for this extraction is that the samples are recorded in 

a manner of which the components of interest are purposely varied, here in concentration, either 

by design or by natural variation. These correlated variations will be detected by the algorithm 

to extract the pure source spectra, even if there are overlapped peaks. One of the potential 

applications of this approach will be in metabolomics where a series of samples are available 

with up to fifty molecules with varying concentrations (Figure 25).  
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Figure 25 A scheme to show the mechanism of the BSS. On the left, three mixtures containing two pure sources, the orange 
and the blue, of different concentrations or peaks integrals. In the spectra there are overlapped parts and isolated regions. On 
the right, each spectra is extracted for each estimated sources. 

 

I.2.1.1 Problem statement 

 

The goal of the BSS in NMR is to identify the composition of the mixtures, by extracting 

the spectrum of each compound. For this purpose, we assume that the observations, composing 

the matrix X of mixtures, are related to the matrices S and A (Equation 1.8).   

                                                                    𝑿 = 𝑨𝑺 + 𝑵                                            (1.8) 

where all quantities are represented by matrices, and AS is the standard matrix product. More 

precisely: 

• 𝑋 = (𝑥𝑚ℓ) ∈ ℝMxL is the matrix of observed mixtures: its rows are the M measured 

signals and L is the number of processed points in acquired spectra (chemical shifts, 

expressed in ppm or Hz, composing the length of the spectra) 

• 𝑆 = (𝑠𝑘ℓ) ∈ ℝKxL is the matrix of unknown sources, whose rows are the K spectra of 

compounds 
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• 𝐴 = (𝑎𝑚𝑘) ∈ ℝMxK is the mixing matrix, whose M rows label mixtures and L columns 

label compounds 

• 𝑁 = (𝑛𝑚ℓ) ∈ ℝMxL is the matrix representing acquisition noise, which has the same 

dimension as X. 

This model (Equation 1.8) is in the form of the so-called Linear Instantaneous Mixture (LIM) 

model. Even though departures from LIM are possible (for example, non-linear effects may 

occur in several places in the acquisition process), this model is generally accurate enough, and 

we will limit to it this work. 

Element wise, the model in Equation 1.8 may also be written as: 

                                                  Xmℓ = ∑ 𝑎𝑚𝑘𝑠𝑘ℓ + 𝑛𝑚ℓ
𝐾
𝑘=1  ,                                  (1.9) 

with:       m = 1, … M,      ℓ = 1, … L                  

Under the name of the BSS, one can include a large variety of algorithms adapted to various 

domains and various possible assumptions on A and/or S. The simplest approach in the BSS, in 

which we are interested here, is to consider our problem as a LIM model, where the observed 

mixtures are linear combinations of the sources. At this point, we are faced with two 

possibilities: simulated and real cases. In the so-called instantaneous BSS problems, no extra 

transformation is performed on the sources prior to mixing and creating simulated mixtures. 

The simulated data are mixtures mathematically generated from known matrices S and A. This 

leads to the generation of a non-noisy observable X as a function of A, S, under a well-defined 

model: 

𝑿𝒔𝒊𝒎 =  𝑨𝑺 
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The generation of a simulated noisy X is also possible, as a function of A, S if we consider the 

mean Gaussian noise equal to zero and corresponding to σ, the standard deviation of the noise, 

chosen in advance, where: 

𝑿𝒔𝒊𝒎 =  𝑨𝑺 + 𝑵 

In the real case, this applied model is not well-defined but is only approximate. In a real situation 

we have to be able to extract S and A from a given observation matrix X. There are more factors 

that can interfere such as spectrometer and experiment factors (nc_proc, rg, etc.), hence we use 

an observation model which is only approximate in a real situation: 

𝑿 ≈  𝑨𝑺 + 𝑵                                              

Pre-processing, in particular baseline correction, make the assumption possible that the noise is 

zero mean, and justifies the approximation: 

𝑿 ≈  𝑨𝑺    

The BSS problem, with various formulations, aims mathematically to estimate jointly the 

source matrix S and the mixing matrix A from the sole observation matrix X. 

A BSS problem is overdetermined if the number of observations m is greater than the number 

of the sources k to estimate (m mixtures > k sources), determined if m = k, otherwise the 

problem is called undetermined (m < k).57   

Different assumptions or models can lead to different identification algorithms, among them, 

we may mention statistics-based approaches such as Independent Component Analysis (ICA) 

and Second-Order Blind Identification (SOBI), or Non-negative Matrix Factorization (NMF). 
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I.2.2. State of The Art for Blind Signal Decomposition  

 

Blind signal processing has received attention during the last thirty years by C. Jutten,3 

J. F. Cardoso,2 A. Belouchrani,88,89 P. Comon,90,91 and others92–101 due to its wide range of 

potential applications in science and mathematics.57,92 These signal decomposition methods are 

already very useful in a number of fields such as speech processing or acoustics in general, 

seismic exploration, digital communications, mobile communications, radar, and in military 

applications such as interception and classification of radiating sources.92,90,93 Mobile 

communications need channel identification which is performed with the help of known 

sequences, thus involving semi-blind methods.90 BSS was initially developed in the context of 

multiple sensor signal processing, in which a set of sensors or channels (observations) receives 

signals from sources, with intensities depending on their relative positions. Since the data 

analysis produces the source signals and the mixing coefficients, different assumption or 

models can lead to different identification algorithms.  

Among them, statistics-based approaches such as SOBI (Second Order Blind Identification, 

which exploits second-order moments) or the many variants of ICA (Independent Component 

Analysis, which exploits higher-order statistics)57,90,102  are probably the most widely used.103 

In these approaches, one searches for an "unmixing matrix" that optimizes some statistical 

criterion (uncorrelatedness or independence of estimated sources). 

The recent developments in numerical optimization have motivated the use of variational 

approaches, in which the problem is formulated as the problem of minimizing with respect to 

A and S a suitable objective function. The latter often involves constraints or regularization, and 

sparsity enforcing constraints or regularizations have been proven efficient in many contexts. 

Sparsity essentially means that the solution is characterized by a small number of parameters in 

a suitably chosen representation (Annexe.1).57  
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Belouchrani et al. in 1997 exploited the time coherence of the source signals with the algorithm 

based on second-order statistics (SOBI), designed to deal with temporally correlated signals.2 

Their algorithm was used for the application of the BSS on NMR spectra by Nuzillard and co-

workers published in 1998.2, 104 In this work, applications on 1D 13C resolved spectra and 2D 

HSQC NMR spectra were performed. 2D results were not satisfying and the quantitative aspect 

was not assessed, however, it was the inspiring work to start our project from I. Toumi until 

us.57  

Before us, the application of the BSS on NMR data was carried out in our team on 1D DOSY 

spectra to improve the processing of these spectra with overlapping species, distinguishing 

molecules with similar spectra and diffusion constants.105, 106 

Our work inspired also, last year, R. J. McCArty et al., which published a paper on the BSS for 

NMR spectra with negative intensity.107  

Outside the BSS, unknown compound identification can be performed by statistics according 

to the variations along a series of spectra such as changes in concentrations of components in 

the mixtures. The peak intensity constitutes an additional dimension thanks to which the spectra 

are partially decomposed in the Statistical TOtal Correlation SpectroscopY (STOCSY).108,109  

The use of typical chemometrics tools applied to NMR spectra is another interesting 

approach.110 Among all, there is the processing method towards curve resolution, under the 

name of Multivariate Curve Resolution (MCR), which is most frequently used in diffusion 

applications. It aims to recover pure decay profiles from DOSY NMR data extracting pure 

components, but also to de-noise low sensitivity 2D 29Si-Solid-State MAS NMR 

data.111,112,113,114 No variations in concentrations were present but only in signal intensities 

because of the indirect evolution, since the spectra were acquired by varying some experimental 

parameters in the pulse sequence. This was applied on one sample acquired varying the 

efficiency of 1H-29Si transfer as function of mixing time, hence varying the cross-polarization 
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contact-time across different experiments. For MCR, a threshold value has to be added, and the 

number of components has also to be set for the initialization step.114 

 

I.2.2.1. Indeterminacies 

 

It is supposed that the estimated X is a function of S and A. The multiplicity of solutions 

A and S is computed at each iteration. Some difficulties are present in classical source separation 

in general, such as the non-unicity or indeterminacy of the solution. In this case, there are also 

problems related to the high dimension of NMR data and the poor resolution of one-dimensional 

NMR spectra. 

The solution of this problem is not unique, as for any solution (A, S) one can write 𝑋 = 𝐴𝑆 =

𝐴′𝑆′, where 𝐴′ = 𝐴𝛬 and 𝑆′ = 𝛬−1𝑆, for some invertible matrix Λ. There exist infinitely many 

such invertible matrices, thus infinitely many solutions. Additional assumptions or constraints 

are then, necessary to restore uniqueness (up to trivial indeterminacies to be discussed below). 

Among these indeterminacies, two types of matrices Λ can be presented (which represent the 

above-mentioned trivial indeterminacies). 

• Scale indeterminacy or renormalization (Λ diagonal): the sources can only be identified 

up to a normalization or constant factor. Multiplying a row of Sk,l by a non-zero value 

and dividing the corresponding column of Am,k by the same constant, do not modify 

Xm,l, or the product AS. 

• Order indeterminacy (Λ a permutation matrix): estimated sources are not ordered. 

Exchanging two rows of S and the corresponding two columns of A does not change X. 

The comparison of estimated sources with reference sources has to be preceded by an 

ordering step.  
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I.2.2.2. Optimization using Non-negative Matrix Factorization (NMF) 

 

Optimization of the model with additional assumptions is necessary to solve the problem 

of indeterminacies with respect to the two variables S and A and to stabilize the solution to 

guarantee the unicity and the convexity. 

With Non-negative Matrix Factorization (NMF), source coefficients 𝑠𝑘,ℓ, representing spectrum 

values, and mixing matrix coefficients am,k, representing concentrations, are non-negative. The 

objective function is introduced in Equation 1.10, which reports the most classical version, 

where there is the sum of squares (the squared ℓ2 norm) of the difference 𝑋 − 𝐴𝑆, between data 

in the given X-matrix and the ones derived by the LIM model 𝑋 = 𝐴𝑆: 

                                          F(Χ|A,S) = 
1

2
  || Χ − 𝐴𝑆|| 𝐹

2                                 (1.10) 

Previous approaches to NMF were proposed especially by Lee and Seung,115 where various 

formulations with numerical algorithms can be used to minimize the objective function 

depending on the two variables A and S: 

                              minA,S F(X|A,S), under constraints A ≥ 0, S  ≥ 0                   (1.11) 

wherewith NMF all the matrix elements of A and S, and X of consequence, has to be non-

negative.  

The objective function involves a data fidelity term, linked to the linear model, which forces 

the product AS to be as much as possible close to the given data of observations in X-matrix. 

Additional terms, encoding prior information on A and/or S, can possibly be added (for 

example, limiting the concentration range). The classical version of the objective function is to 

use penalization terms in the standard quadratic objective function (Equation 1.12): 

                                     F(X|A,S) = 
1

2
  || Χ − 𝐴𝑆|| 𝐹

2   + fA(A) + fS(S)                  (1.12) 
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where the first term is the squared ℓ2 norm that uses the least squares, which is the sum of 

squares of X-AS, and fA, fS  are regularization terms, which encode prior information on A and/or 

S matrices. 

 

I.2.2.3. Alternate Optimization 

 

The described non-negativity assumptions made in NMF approaches turn out to resolve 

a part of these problems, nevertheless, scale and order indeterminacies remain. 

The leading strategy is to estimate jointly S and A as outputs to minimize the objective function 

noted F(A, S), with respect to A and S alternatively until convergence of the objective function 

to a minimum. The objective function is generally chosen as the sum of the data fidelity term 

and regularization term (Equation 1.13). 

Regularized approach: 
                                 minimizeA≥0, S≥0  F (X|A,S) =  F (A,S) + f (A,S)                      (1.13) 

                                           Data fidelity term     Regularization term     

 
This problem is non-convex, more precisely bi-convex (i.e. convex with respect to A and S 

independently). The non-convexity is illustrated with the red line in Figure 26, where the 

objective function F is a function of the number of iterations, related to X estimated from AiSi, 

to reach the convergence as the optimal solution (blue line). 
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Figure 26 Objective function and number of iterations for the optimal solution with convergence in blue and a stabilized 
solution, and with the non-ideal case without convergence (divergence) in red. 

 

It is proposed to use the iterative optimization methods where the Majorize - Minimization 

seems to be a very efficient strategy.116–118 MM algorithm is described in Annexe.2. 

The goal is to minimize the average reconstruction error between the given X-matrix, the target, 

and the estimated X function of AS. This error has to be minimum; this means that we will look 

for the source and mixing matrices, S and A, such that the reconstruction error, i.e. the squared 

norm of the difference X-AS, is minimal. This squared norm (i.e. ||x||2 = ∑ |𝑥𝑛|𝑛
1

2) is a quadratic 

function of A (i.e. a second-order polynomial in the matrix coefficients of A), and a quadratic 

function of S. Hence its gradient with respect to A is a linear function of A, and its gradient with 

respect to S is a linear function of S too. Finding the minimum with respect to A and S amounts 

to find values for A and S such that these two gradients vanish. This can be achieved through 

iterative algorithms, which solve iteratively the two problems one after another. 

The bi-convexity of the problem ensures the existence of a global minimum for each unknown 

(A or S) when the other is kept fixed, but this is not true anymore when the two unknowns are 

considered jointly (Figure 27).  
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Figure 27 F(A,S) is function of A and S estimated at each iteration, which may be considered with two functions, once 
estimating A, once estimating S alternatively (left). If one variable is fixed, the objective function is simply convex. If both A 
and S has to be found, the problem is bi-convex. Hypothetically this may be a 3D plot, with two functions in the X2 (right), in 
case of an optimal solution with a global and unique minimum. 

 

There may be local minima, or even highly degenerate minima (minima that are reached for 

infinitely many pairs (A, S) (Figure 28). 

 

Figure 28 Local minima coexisting with the absolute minimum in a non-ideal case. 

 

The situation can be improved when the problem is modified, to involve additional terms in the 

objective function, whose role is to promote some specific behaviour of the solution. Examples 

are given by non-negativity constraints (all matrix coefficients of A and S have to be non-

negative) and sparsity enforcing penalizations, which promote matrices with few non-zero 

entries. These are the choices we have made in this work, enforcing non-negativity on both A 

and S and sparsity on S (Annexe.1). The positivity constraint is imposed for the mixing operator 

A, moreover, we can also strongly constraint A, not only between 0 and +∞, but we can fix an 
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interval if we want. For the source matrix, we can consider that the exploited data, representing 

NMR spectra, are always sparse and positive.  

To this end, we use the new objective function (Equation 1.14) with appropriate penalty 

functions fA and fS: 

- fA is the indicator function of non-negative matrices, equal to 0 for non-negative 

matrices and +infinity as soon as A has a negative coefficient, 

- fS is the sum of the indicator function of non-negative matrices and a constant λS times 

the ℓ1 norm. The latter turns out to promote sparse sources, the parameter λS controlling the 

degree of sparsity. In the algorithm, λS can be seen as a threshold, the entries of S smaller than 

λS being set to zero. 

The problem in Equation 1.14 involves the classical quadratic data fidelity term, and linked to 

the linear model, with the regularization functions just introduced, on A and S, represented by 

fA and fS (Equation 1.14): 

                      minimize A≥0, S≥0   
1

2
  || Χ − 𝐴𝑆|| 𝐹

2  + λA fA(A) + λS fS(S)                     (1.14) 

with λA and λS, the regularization parameters respectively on A and S (detailed in Annexe.4). 

In order to solve the bi-convexity of the problem, the alternate optimization on A and S was the 

adopted schema to solve this issue, which cannot be solved as a normal optimization. 

 

I.2.2.4. BSS Generic Algorithm 

 

The algorithms change depending on the choice of the objective function, optimization 

strategy and source representation domain (spectral or wavelet domain (Annexes.4-8)).  

The general structure of the algorithm is reported and the rules to optimize A and S change with 

updates (noted as UpdA and UpdS) in the generic form of: 



 57 
CHAPTER I: Literature Review  

 
Application and development of the state of the art analytical methods of mixtures of small molecules by NMR and advanced signal processing 

UpdA : means that just A will be updated (A, S) → UpdA (A, S) ∈ ℝMxK 

where M is always the number of mixtures and K the number of the sources. 

UpdS : means that just S will be modified (A, S) → UpdS (A, S) ∈ ℝKxL 

where K is the number of sources and L the observations, hence the values at frequency ℓ, 

composing the length of the spectrum. 

 With these updates, the generic structure of the alternate optimization algorithm for NMF is 

described below and reported in Figure 29. 

After entering the X-matrix and the number of iterations to arrive at the convergence, the 

alternate optimization algorithm starts to compute through different steps. The first stage is the 

initialization with the matrices A0 and S0 to be entered. Initial matrices Sinit and Ainit are necessary 

to start the iterations. Some algorithms require only one of these. The BSS algorithms require 

an initial estimate. Here we used Joint Approximate Diagonalization of Eigen-matrices (JADE) 

Independent Component Analysis (ICA) as initialization step to obtain estimates used also on 

the work of I. Toumi et al.57 JADE only requires the number of sources k to be estimated to 

start the initialization as a function of matrix X. JADE, using correlations and run on X-matrix, 

produces an estimated output, whose absolute value is used for the un-mixing matrix in order 

to obtain an estimate for the sources and the matrix A (JADE description in Annexe.3). 

The algorithm stops when a prescribed maximal number of iterations is reached, or preferably 

when some precision criterion reaches a small enough value. A possible choice used for the 

stopping criterion is with the normalized norms of differences between two consecutive iterates 

of A and S, that is with the objective function update from one iteration to the next: 

Crit(k) =    F(X|A(j+1), S(j+1)) – F(X|A(j), S(j))  

                                 F(X|A(j), S(j)) 
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where A(j), S(j) are the estimated matrices at iteration j, and A(j+1), S(j+1) are the ones to the next 

iteration. 

Before submitting the data to the algorithms, some formatting is necessary, for example, the 

normalization of the data to take into account the experimental variations, and the optional pre-

processing to project the data of matrix X to set all negative matrix elements xnℓ to zero: 

X(X<0)=0. 

After this description of the generic structure of alternate optimization using NMF, the general 

schema of the algorithm is reported below in Figure 29. 
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• iter_max: The number of iterations  

• Ainit : initial mixing matrix  

• Sinit : initial source matrix  

•   : the target value for the stopping criterion  

noted Crit (defined below) to end the optimization 

 

• Stopping criterion of departure = +∞ (starting from a big value). 

 

 

 

  

 

 

 

 

 

 

Optimization: normalization of A and/or S; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data : X-matrix 

Result: Non-negative matrix factors A and S 
 

 

Figure 29 Generic structure of the alternate optimization algorithm for non-negative matrix factorization, where this 
generic algorithm requires additional options. 

Data : X-matrix 

Initialization: A0=Ainit, S0=Sinit; for niter.=0 
 

Initial data 

and 

parameters 

provided by 

the user 

While: j ≤ iter_max and Crit>ε 

Update A:     A(j+1)  =  UpdA (A(j),S(j)) 
 

Update S:       S(j+1)  =   UpdS  (A(j+1),S(j)) 
 

Evaluation of stopping criterion Crit(j+1) 

 
 

Evaluation of the objective function F(X|A(j+1), S(j+1)) 

 
 

Crit ≤ ε 
 

end 
 

Crit > ε 
 j=j+1 

 

If 

iter_max 



 60 
CHAPTER I: Literature Review  

 
Application and development of the state of the art analytical methods of mixtures of small molecules by NMR and advanced signal processing 

I.2.2.5. Why NMR data can be subjected to BSS 
 

To understand how BSS works in NMR, it is important to understand that the NMR 

spectrum of a molecule can be modeled as a set of chemical shifts δ, with intensities that depend 

on the number of isotopes that represent each multiplet, and the overall intensity will depend 

on the concentration of the molecule noted A. 

𝑵𝑴𝑹 𝑺𝒑𝒆𝒄𝒕𝒓𝒖𝒎 = 𝒂 ( 𝑰 𝜹𝒊, 𝑱 𝜹𝒋, 𝑲 𝜹𝒌,… )  

where:  I δi, J δj, K δk, …= S, correspond to a table like that one reported in Table 1. 

 

Table 1 Illustration of an NMR 1D 1H spectrum represented in tabular form. In this example, the 
spectrum was divided into 0.001 ppm-wide buckets. 

δ (ppm) 9.9995 9.9985 9.9975 9.9965 9.9955 9.9945 ..... 

Intensity 40158.5 114354.56 242205.87 390999.75 104130.31 26666.62 ..... 

 

The NMR spectrum (in Figure 30) can therefore be represented by the product aS: 

𝑵𝑴𝑹 𝑺𝒑𝒆𝒄𝒕𝒓𝒖𝒎 = 𝒂𝑺  

 

Figure 30 Example of an NMR spectrum of a molecule. 
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To generate noisy mixtures, we add Gaussian white noise, with zero mean and standard 

deviation σ equal to the standard deviation of the true mixture, estimated from a signal-free 

region. 

 In the noiseless case, the spectrum of a mixture of two molecules is the sum of the two NMR 

spectra of each molecule. This property is related in mathematics to the LIM model, cited above, 

where the observed mixtures are linear combinations of the sources. 

𝑿 = (𝒂𝟏𝑺𝟏) + (𝒂𝟐𝑺𝟐)  

In the more realistic noisy case, these properties remain approximately true, as long as the noise 

is not too large, regardless of the number of molecules in the mixture. An NMR spectrum of a 

mixture with four compounds, for example, can be modelled as the sum (a linear combination) 

of the pure spectra of each molecule multiplied by its concentration (Figure 31). 

𝑿 = (𝒂𝟏𝑺𝟏) + (𝒂𝟐𝑺𝟐) + (𝒂𝟑𝑺𝟑)  + (𝒂𝟒𝑺𝟒)  

 

Figure 31 Superposition of the spectra of four molecules (on the bottom), and the mixture that can be obtained by the sum of 
the four spectra (on the top). 
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A dataset of several Xm mixtures with the same composition, in which the concentrations of 

each molecule change from one mixture to another can be represented in a matrix form, as a 

product of the matrices A and S (Figure 32).  

 

Figure 32 Matrix model of the BSS problem with a data set of five synthetic mixtures of four sources.  

 

In the 2D case, the model is also represented by the X-matrix with the five different mixture 

spectra, matrix X is equal to the matrix A with the concentrations of each source within the five 

mixtures, multiplied by matrix S with the spectra of the four sources. For this, 2D spectra have 

to be reshaped as 1D series, by concatenation of rows (see Figure 33).  

 

Figure 33 Schema for the explication of 2D NMR case represented in matrix form. 
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I.2.2.6. Dataset Construction 

 

If one gets at least as many linearly independent spectra of mixtures as there are 

individual components, then it is possible to separate their spectra. Usually, we collect m 

mixtures ≥ k sources to perform the BSS. This is a consequence of the rules followed in matrix 

multiplication, where the compatibility of the operands (rows and columns of the matrices) is 

accomplished when the inner dimensions must be equal. The same is for a homogeneous linear 

system of m equations with k unknowns; if m ≥ k hence the unknowns can be estimated. For 

matrix multiplication, in fact, the number of columns in the first matrix must be equal to the 

number of rows in the second matrix. The resulting matrix has the number of rows of the first 

and the number of the columns of the second matrix, as shown in Figure 34 in 1D case, and in 

Figure 35 in 2D case. 

m mixtures ≥ k sources are used 

 

Figure 34  One-dimensional situation illustrating the matrix dimensions. Data matricization is not needed in 1D data sets 
because the matrices S and X are 2D arrays, hence matrices. 65536 is the size of real spectra in processing parameters, 
composing the length of the spectra in matrices S and X. 
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Figure 35  In 2D case, the matrices S and X are 3D arrays. They need matrix reshape, hence the matricization step, multiplying 
1024 x 2048 which are the size of real spectra in processing parameters (SI in ProcPars), respectively in F1 and F2 frequency 
axes. In matrix multiplication, the operands must be compatible and the inner dimensions must be equal (same shape), in fact, 
the number of columns in the first matrix must be equal to the number of rows in the second matrix. 

 

I.2.2.7. Evaluation Criteria 

 

To evaluate the quality of un-mixing results, numerical indexes are used to pursue an 

objective assessment. The separation algorithms aim to estimate Â and Ŝ to be compared with 

the real S and A in a situation where it is possible to recover or acquire them by NMR.  

To assess the quality of estimated sources, the estimation error between real S and estimated Ŝ 

is evaluated using two numerical performance criteria with two types of error in S-Ŝ. Among 

them, Sources to Interferences Ratio (SIR) provides a quantitative evaluation of crossover terms 

after separation, which are the interferences due to the possible presence of spurious peaks from 

other sources in the pure spectra. It is used to evaluate if the sources in estimated Ŝ are well 

separated and it is defined as: 

SIR = 10 log 10 
||𝑆𝑡𝑎𝑟𝑔𝑒𝑡||

2

||𝑒𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠||
2
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Sources to Distortion Ratio (SDR) quantifies the level of global distortion due to mixing and 

separation processes. The SDR is defined as: 

SDR = 10 log 10 
||𝑆𝑡𝑎𝑟𝑔𝑒𝑡||

2

||𝑒𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠  + 𝑒 𝑛𝑜𝑖𝑠𝑒 + 𝑒𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠||
2
 

The best estimation corresponds to the highest measurements of these indexes and shows how 

much S and Ŝ are closer. They are expressed in decibels (dB) and are graded to a logarithmic 

scale as for the traditional Signal-to-Noise Ratio (SNR). These measurements are inspired by 

the usual definition of SNR, with a few modifications, as they express as well the logarithmic 

ratios of two physical quantities.85 

The quality of the estimated mixing matrix Â is evaluated by computing the Amari index which 

ranges between 0 and 1. When Amari is equal to 0, the best estimation of Â is obtained, and 

A=Â. When A and Â are maximally different, the Amari index is equal to 1.119 Furthermore, it 

is important to mention that the Amari index is not sensitive to reordering nor rescaling of 

sources (the above-mentioned trivial indeterminacies). 
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Blind source separation methods, and more generally blind signal processing, include 

various approaches which exploit different assumptions. Our approach was introduced and 

detailed on Faraday discussions on 2019.5  

The first application of the BSS on NMR spectra was carried out by Nuzillard et al. in 1998 

and it was applied on the 13C spectra and two-dimensional 1H-13C HSQC spectra.104 SOBI 

statistical-based method was used, imposing constraints on the time-shifted source signals, 

where each source was time-correlated and the noise generated was time-uncorrelated. A choice 

of the times for the analyses was done with prior knowledge of the time correlation properties 

of the pure compounds or sources during the reaction. 1D 13C NMR spectra to be separated do 

not overlap significantly and, furthermore, 13C resonances lines are narrow enough to limit the 

peak superimposition. 1D spectra dealt with the isomerisation of α-glucose into β-glucose in 

D2O where source mixing was considered a linear process, and the number of sources k to 

estimate was set to two using five m time-domain signals (where m ≥ k). The second application 

regarded the separation of 2D HSQC spectra of three mixtures of three sources: sorbitol, 

mannitol, xylitol in D2O with high concentrations in the range of 40-60 mM. However, there, 

only a qualitative aspect was discussed but it was the inspiration to start this project from I. 

Toumi until this work.57   

Before us, the application of the BSS on synthetic (artificial) NMR data was carried out in our 

team by I. Toumi,105,106 to improve DOSY processing with overlapping species, to distinguish 

molecules with similar spectra and diffusion constants. Two BSS techniques were presented. 

The first one was the variational approach, introduced there for the first time, born from the 

NMF approach using additional Sparse Conditioning (SC), giving the NNSC algorithm. The 

second one was the Joint Approximate Diagonalization of Eigenmatrices (JADE), declination 

of ICA, based on statistical modelling. JADE algorithm is computationally faster and simpler 

to use, and it can be a good tool for DOSY processing of mildly overlapping spectra, but fails 
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with the increase of the complexity of separation such as overlapping signals and similar 

diffusion coefficients. NNSC performs well at a high degree of difficulty although with still 

some imperfections. In Figure 36 and Figure 37 are reported the estimated sources from 1D 

and 2D DOSY spectra using both algorithms. The two methods can be considered 

complementary as JADE could be used to quickly estimate the number of sources in the mixture 

in some seconds, to accelerate the NNSC separation. Both methods however fail for too low 

signal-to-noise ratio levels, but NNSC is more tolerant. 

 

Figure 36 1D 1H PFG-NMR real (on the left) vs estimated sources by JADE and NNSC (on the right). Reprinted with permission 
from I. Toumi et al.105 Copyright 2014 Elsevier.  
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Figure 37 The reference spectrum (on the left) and the reconstructed DOSY spectra(on the right) of the for QGC mixture from 
mono-exponential fitting of the peaks in the 2D 1H PGF-NMR experiments, compared with JADE separation and NNSC 
algorithm. Experiments were carried out on a 400 MHz spectrometer. Reprinted with permission from I. Toumi et al.105 
Copyright 2014 Elsevier. 

 

The work was improved by introducing a novel sparsity penalized β-NMF (β-SNMF) method, 

a multiplicative approach, with increased convergence speed by the β-dependent power 

exponent and more robustness to noise for 2D DOSY spectra.120  

Another application was performed on fine-needle aspiration biopsies (FNAB) and plasma from 

thyroid cancer using CPMG relaxation-edited T2 spectra. JADE and NNSC algorithms can 

separate broad peaks from sharp ones with some imperfections such as negative peaks.57 

Potential applications of this example can be carried out for complete analysis in metabolomics.   

 

II.1. BSS on Dataset with Concentration Variation  
 

As seen previously, the obvious strategy for blind source separation is to create the 

equivalent of nD spectra by relying on changes in signal intensity along a series of samples. 

The most evident come from variations in concentrations, whether natural or artificial.  

Several algorithms can be used to blindly decompose NMR spectra, among them, projected 

alternate least squares (PALS), soft threshold projected alternate least squares (STALS), 

proximal alternating linearized minimization (PALM), block-coordinate variable metric 
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forward-backward (BC-VMFB) (using spectral domain), and wavelet-based variants on these 

techniques, where the principals and features are reported in Annexes 5-9. 

 

II.1.1.  Samples under Investigation: Terpenes 

 

For the BSS applied to 1D and 2D NMR, a mixture data set of terpenes was analysed. 

Terpenes are natural molecules produced predominantly by plants, presenting highly crowded 

NMR spectra between 1 and 2.5 ppm, and a characteristic region between 4 and 5.5 ppm. 

Four commercially available terpenes were purchased from Sigma-Aldrich (Merck) and Saint 

Quentin Fallavier, France. 

• Terpenes: (R)-(+)-limonene, nerol, α-terpinolene, β-caryophyllene((-) -trans- 

caryophyllene) (Figure 38). 

 

Figure 38  Chemical structures of terpene molecules used in this study: (R)-(+)-limonene, nerol, α-terpinolene, β-caryophyllene, 
(-) -trans- caryophyllene. 

 

The pure compounds were dissolved in 600 μL of CDCl3 at respective concentrations of 181 

mM, 36,5 mM, 26,6 mM, and 43,7 mM, and transferred to 5 mm NMR tubes which were sealed 

to prevent loss of solvent. The samples were therefore stored at -4°C until the NMR 

characterization. Five synthetic mixtures of the four terpenes were then prepared, varying the 

concentrations of each compound as reported below with the recalculated ERETIC2 

concentrations. 

The studied mixtures are considered well adapted to evaluate the source separation algorithms 

since the highly crowded spectral region is present. 
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II.1.2. Using Electronic Reference (ERETIC2) to Accurate Determination of the 

Concentrations 

 

ERETIC2 is a quantification tool with an external standard, which replaces the ERETIC 

(Electronic Reference To access In vivo Concentration) method. In this thesis, all the 

concentrations were recalculated using the ERETIC2 method (Table 2).121,122 An NMR 

spectrum of TSP (TrimethylSilyl Propionic acid) of 7,3 mM in D2O was collected. The 

reference signal was integrated and defined as ERETIC2 reference. The concentration of the 

reference sample was defined (7,3 mM). The number of nuclei for signal (9 H), sample volume 

(600 µL), and molecular weight (172,27 g/mol) should also be defined.  

 

Table 2 Concentrations of each component of terpenes (in mM) in the five synthetic mixtures in sealed 
NMR tubes obtained by ERETIC2 method. 

 Limonene Nerol α-Terpinolene β-Caryophyllene 

Mixture 1 23.30 26.00 8.78 10.87 

Mixture 2 17.10 11.93 15.50 15.00 

Mixture 3 9.05 14.23 18.89 4.67 

Mixture 4 20.99 6.86 13.54 11.96 

Mixture 5 4.88 9.01 10.81 13.15 
 

 

II.1.3. nc_proc - Intensity Scaling Factor 

 

Processing in Topspin software performs calculations in double-precision floating point 

but stores the result in 32-bit integer values. During double to integer conversion, the data are 

scaled up or down such that the highest intensity of the spectrum does not exceed values that 

can be supported. This means that the 32-bit resolution is not entirely used. This allows for the 

highest intensity to be increased, for example during phase correction, without causing data 

overflow, and it can be used in 1D, 2D, and 3D datasets.  
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For this, an integer value, only existing as a processing status parameter, is taken. NC_proc 

shows the amount of scaling that was done. For example, for nc_proc = -3 data were scaled up 

(multiplied by 2) three times (23), for nc_proc = 4 the data were scaled down (divided by 2) 

four times (2-4). Although nc_proc is calculated automatically, it is possible to known and 

change its value using the “nc_proc” command. 2D processing also allows to change the scaling 

factor with the argument “xfb nc_proc 2” for example, scales down the data 2 times. However, 

one can only scale the data more down than the command would have done without the 

argument “nc_proc”. Smaller (more negative) values of nc_proc are ignored to avoid data 

overflow.  

In conclusion, it is important for 2D spectra to have the same nc_proc value and to scale down 

to the same higher positive value among all the spectra considered. 

Here is an example: for the terpene dataset containing the 2D HSQC US spectra, the highest 

value of nc_proc was equal to -1 for the limonene HSQC (Table 3). We could scale down all 

the spectra using the command “xfb nc_proc -1” to obtain uniform intensities, but we choose 

nc_proc= 0 to anticipate eventual down scaling due to an important intensity for the following 

experiments.  

Table 3 nc-proc values for 2D-HSQC original spectra of sources and mixtures. 

2D 

HSQC 

US 

Limon. Nerol α-

terpin. 

β-

caryoph. 

Mix. 

1 

Mix. 

2 

Mix. 

3 

Mix. 

4 

Mix. 

5 

nc_proc -1 -4 -5 -3 -4 -4 -5 -4 -5 

 

 

II.1.4. Save and Reading of NMR Data Sets 

 

First of all, it is necessary to convert, save and export NMR data from TopSpin (Bruker) 

to JCAMP-DX format with the suffix ‘.dx’. The possible output types are FID (FID), real 

spectrum (RSPEC), and complex spectrum (RSPEC+ISPEC). We used RSPEC to work only 
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on the real signal. Regarding the compression mode, there are different formats: FIX (table 

format), PACKED (no spaces between y values), SQUEEZED (sign coded into the first digit 

of the value, no spaces), DIFF/DUP (coding the differences of subsequent values in 

the SQUEEZED format with suppression of repeated values). In this work, we always use FIX 

format.  

 

II.1.5. Data reshaping in matrix form 

 

The matrix A is mxk dimensions that means 5 rows and 4 columns (for the four terpenes), 

matrix S is kxl dimensions which means that each one of the four rows represents a 

monodimensional spectrum with its 65536 processed points to reconstruct the real spectra. In 

the 1D case, matrices X and S take the form of two-way arrays with each 1D spectrum aligned 

in a line as a vector.  

In 2D data sets such as in the HSQC spectra, the observations in X and the pure signals in S are 

not matrix-shaped and actually give rise to 3D matrices. Source matrix will be S ∈ ℝKxL1xL2
 

where k are the numbers of sources and L its 2D spectrum (L1 x L2), and X ∈ ℝNxL1xL2. L is 

constituted by 1024 multiplied by 2048 ℓ values constituting the size of real spectra, 

respectively in F1 and F2 frequency axes.  One can represent each spectrum in a row as a vector 

in the matrices S and X. In other words, we have to linearize each source 2D spectra in the same 

line as a sum of the line blocks composing the 2D spectrum. As we transform all the n-

dimensional arrays into matrices, this approach of reshaping is called data matricization.  

Here, the LIM model can be re-written as (Equation 2.1): 

𝑋𝑚𝑙1𝑙2 = ∑ 𝑎𝑚𝑘𝑠𝑘ℓ1ℓ2 + 𝑛𝑚ℓ

𝑀

𝑚=1

                                     (2.1) 

with                          m = 1, … M,      ℓ1 = 1, … L1,   ℓ2 = 1, … L2    
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where ℓ1 and ℓ2 label are the two spectral dimensions. By re-organizing the ℓ1 and ℓ2 spectral 

dimensions into a single one of length L1L2 transforming the 3D arrays into matrices, one can 

be back to the initial LIM model. 

 

II.2. Results on 1D NMR Spectra of Terpenes 
 

II.2.1. 1D Simulated Data: Model Validation 

 

One-dimensional spectra were firstly evaluated in simulated cases to validate the model. 

In this approach, X-matrix is generated from given matrices S and A, linearly combined 

according to the LIM model, with a zero-mean Gaussian white noise N (according to the model 

Xsim=AS+N). The standard deviation σ of this noise was set equal to the one of the experimental 

noise, estimated from a signal-free segment of the real mixtures. This simulated dataset was 

reconstructed from the matrix S collected from the NMR spectra of the pure terpenes, where 

the concentrations were calculated for A (Table 2) and organized in a 5x4 matrix. The four 

algorithms described in Annexes.5-9 (PALS, STALS, PALM, and BC-VMFB using wavelets 

or not) were run on this simulated dataset.  

Independently, a Principal Component Analysis (PCA) can be carried out to identify intrinsic 

patterns within the samples of a data set.123 Samples with similarities will thus be clustered in 

the frame of the calculated principal components, i.e. linear combinations of the NMR variables. 

Here, the PCA of the X-matrix shows that only four out of five principal components are 

significant, which suggests setting to four the number of terpene sources to estimate (Figure 

39).  
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Figure 39 The Principal Component Analysis (PCA) on the observation matrix X with 5 mixtures shows that only four of the five 
variables are significant. The individual explained variance of each principal component tells us how much information 
(variance) can be attributed to each PC and how many PC we are going to choose for the new feature subspace. Most of the 
variance can be explained by the first principal component alone. The second one still brings some information while the third 
and fourth ones explain less information about the distribution of the data. This suggests the number of the components to 
fit in the system, here four. 

 

 

Except for PALS, the other algorithms such as STALS, PALM and BC-VMFB require the 

choice of a thresholding parameter λ, for which five choices were tested, namely 0.01σ, 0.1σ, 

1σ, 10σ and 100σ, where σ is always the standard deviation of the noise estimated from a signal-

free region of X-matrix. These choices are made also for the wavelet-based versions of PALM 

and BC-VMFB. In terms of thresholding values, we can consider PALS as a special case of 

STALS with λS = 0. 

On simulated data, we tested at the beginning all the algorithms with a fixed value of λS =10σ. 

We obtained good results, especially with STALS and PALS (Table 4). 
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Table 4 Numerical indexes Amari, SIR and SDR (dB) (defined in I.2.2.7) of all the sources on simulated 
data of 1H NMR spectra for all the algorithms with the thresholding parameter λS=10σ (m stands for 
mean value). 

Algorithms 

 PALS STALS PALM BC-VMFB PALM 

wav 

BC-VMFBwav 

Amari 0.019 0.008 0.022 0.025 0.036 0.031 

SIR(lim.) 26.7 52.4 22 24.4 20.7 22.2 

SIR(ner.) 32.5 31.2 29.8 28.5 30.1 32.5 

SIR(α-terp.) 19.5 45.7 41.6 25.2 24.3 23.5 

SIR(β-car.) 47.6 29.3 19.9 24 21.4 21.7 

SIR(m) 31.6 39.6 28.3 25.5 24.1 25 

SDR(lim.) 26.7 51.4 21.7 24.4 20.4 21.3 

SDR(ner.) 32.5 31.2 29.6 28.5 29.7 29.5 

SDR(α-terp.) 19.5 44.9 40.8 25.2 24 22.8 

SDR(β-car.) 47.4 28.6 19.6 23.9 21 20.6 

SDR(m) 31.5 39 27.9 25.5 23.8 23.6 

 

The estimated concentrations on simulated, with STALS at λS =10σ, are reported in Table 5 

where they are very close to the real ones. The numerical indexes SIR and SDR are ranged 

between 30 and 55 dB, then are considered very good. 

Table 5 Estimated concentrations (mM) on simulated data of 1H NMR spectra for STALS algorithm 
with the thresholding parameter λS=10σ. 

 Limonene Nerol α-Terpinolene β-Caryophyllene 

Solution 1 23.33 25.82 9.12 10.88 

Solution 2 17.05 12.02 15.51 14.99 

Solution 3 9.17 14.12 18.53 4.69 

Solution 4 20.71 7.00 13.49 11.96 

Solution 5 5.06 9.06 10.88 13.13 

 

Other simulations were performed using STALS with the five values of λS. To get a quantitative 

assessment, Amari, SIR and SDR are computed as shown in Table 6 as well as the resulting 

spectra of limonene are reported in Figure 40. 
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Table 6 Numerical indexes Amari, SIR and SDR (dB) on simulated data of 1H NMR spectra for STALS 
algorithm with five values of the thresholding parameter λS (m stands for the mean value). 

λ 

 0 0.01σ 0.1σ 1σ 10σ 100σ 

Amari 0.019 0.019 0.019 0.019 0.008 0.018 

SIR(lim.) 26.7 26.7 26.7 26.8 52.4 42.5 

SIR(ner.) 32.5 32.3 32.2 31.9 31.2 27.6 

SIR(α-terp.) 19.5 19.5 19.5 19.6 45.7 39.3 

SIR(β-car.) 47.6 45.9 44.6 42.4 29.3 18.3 

SDR(lim) 26.7 26.7 26.7 26.8 51.4 39.7 

SDR(ner.) 32.5 32.3 32.2 31.9 31.2 27.3 

SDR(α-terp.) 19.5 19.5 19.5 19.6 44.9 35.4 

SDR(β-car.) 47.4 45.8 44.5 42.3 28.6 17.1 
 

 

     

Figure 40 a) Limonene: (real) measured 1D 1H spectrum of reference with a focus on the overlapped region. b) estimated 1H 
NMR spectra with STALS, at different sigma and the measured spectrum of limonene. The arrows show the presence of three 
extra peaks. These peaks are not present for λS=10σ. These extra peaks are residual signals from nerol. 

 

II.2.2. Real 1D Mixtures 

 

Real mixtures are synthetic samples prepared by mixing the pure components, in which 

their concentrations vary within the samples. These analyzed mixtures m are five composed by 

four, k, sources of terpenes according to the rule m ≥ k mentioned before to estimate k from m 

(Figure 41). 



CHAPTER II: Evaluation of recent BSS algorithms on 1D and 2D NMR spectra of synthetic mixtures  
78 

 

Figure 41 The five real measured synthetic mixtures of the four terpenes composing the X-matrix, in which the concentration 
of each source varies from one sample to another. This means different intensities or integrals of the peaks belonging to the 
same molecule. 

 

The first attempt to decompose the real measured mixtures (i.e. the five rows of the X-matrix 

reported in Figure 41) failed. Despite the same calibration, the nature of 1D spectra can lead to 

variation in chemical shifts between spectra for same areas that have to be re-aligned. These 

shifts were corrected using the open source software NMRProcFlow, which provides a set of 

tools for processing and visualizing of 1D NMR spectra.124 They can be due to changes in 

experimental conditions such as, instability of the instruments, temperature variations, that are 

harmful for the decomposition or statistical analysis.  

 

II.2.3. Bucketing and Data Alignment on 1D NMR Spectra 

 

Data alignment was necessary to explore the full information of the variance within a 

data set of NMR spectra of mixtures thus ensuring the estimation of the terpenes. It is a crucial 

step to assure the same resonance values from one sample to another along all the data set in 

consideration. The 1H NMR spectra were directly exported in NMRProcFlow online software, 

and divided into 0.001 ppm-wide buckets leading to 10000 variables for 10 ppm total. Spectra 
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were divided in small regions which correspond to variables. A bucket table representing the 

X-matrix is then obtained and submitted to the alignment routine.  

NMRProcFlow software aligns independently each NMR signal to a target or reference 

spectrum and it is based on a least-squares algorithm. Another alternative algorithm is that one 

developed by Savorani et al. called Icoshift (interval-correlation shifting) used on MATLAB 

(by MathWorks),125 which maximizes the cross-correlation between user-defined intervals 

according to the peaks of the average spectrum. After the realignment, a comma-separated 

values .csv file, which allows data to be saved in a tabular format, is available to import in 

MATLAB.  The solvent peak can be suppressed if necessary, using NMRProcFlow. 

In Figure 42, the spectra of the real mixtures, which are the five rows of the X-matrix, and the 

simulated mixtures, the rows of Xsim, are reported before and after alignment. 

  

Figure 42 Focus on a region of 1H NMR spectra of X-matrix (in blue) and simulated Xsim-matrix (in red) before a), and after 
alignment b). 
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As for the simulated data, numerical indexes are computed to assess the adequacy of the 

previous model and eventually to see differences between X and Xsim. SIR values of simulated 

data (Table 7), are fairly good at about 10 dB, indicating that the peaks are at the right position 

of chemical shift and that the number of spurious peaks is low, or even null.  SDR values that 

compare real and simulated data sets are lower which may be interpreted as a consequence of 

signal amplitude differences. This suggests that a more adequate model to describe real 

mixtures should involve the correction of shifts and signals amplitude. 

Table 7 Amari, mean SDR and mean SIR indices (dB) for comparing measured and simulated mixture 
spectra. 

 Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5 

SDRm 10.86 8.84 12.90 9.76 9.72 

SIRm 16.12 12.96 18.89 19.95 17.15 

 

 

The de-mixing algorithms were then run on aligned real NMR mixtures, where the indexes 

using BC-VMFB with λS =1σ are reported in Table 8. 

 
Table 8 Amari, mean SDR and mean SIR indices (dB) comparing the estimated and pure source 
spectra to evaluate the BC-VMFB algorithm on real aligned 1D mixture data, while the thresholding 
parameter λ=1σ. 

 Limonene Nerol α-Terpinolene β-Caryophyllene 

Amari 0.081 

SDRm 9.7 9.9 4.8 6.8 

SIRm 13.1 15 20.2 14.8 

 

The estimated concentrations on aligned real 1D NMR mixtures are reported in Table 9 with 

the relative errors in Table 11 (estimated as in the example in Table 10).  
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Table 9 Estimated concentrations (mM) on real aligned data of 1D 1H NMR spectra for BC-VMFB 
algorithm with the thresholding parameter λS=1σ. 

 Limonene Nerol α-Terpinolene β-Caryophyllene 

Mixture 1 26.18 32.66 7.99 10.40 

Mixture 2 17.79 11.13 15.67 18.94 

Mixture 3 4.73 14.50 18.79 3.15 

Mixture 4 24.42 2.07 13.75 10.63 

Mixture 5 2.19 7.66 11.32 12.53 

 

The relative errors in the estimated concentrations expressed in %, compared to ERETIC 

concentrations (Table 2), are obtained like in the following example (Table 10): 

Table 10 Example of calculation of relative errors in the estimated concentrations (in %) compared to 
the ERETIC concentrations (Table 2). Here the example for α-terpinolene in mixture 1. 

 

Table 11 Relative errors in the estimated concentrations (in %) on real case of 1D 1H NMR spectra 
using BC-VMFB with λS=1σ. 

 Limonene Nerol α-Terpinolene β-Caryophyllene 

Mixture 1 +12.34 +25.61 -9.03 -4.33 

Mixture 2 +4.05 -6.68 +1.11 +26.27 

Mixture 3 -47.70 +1.91 -0.53 -32.53 

Mixture 4 +16.36 -69.78 +1.54 -11.15 

Mixture 5 -55.03 -14.94 +4.74 -4.70 
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The following estimated sources on aligned real 1D data set are reported in Figure 43. 

 

 

Figure 43 1H NMR spectra of the four terpene sources estimated using BC-VMFB algorithm with λS=1σ (in blue), compared to 
the real spectra of reference (in red). Extra peaks are indicated by red circles. 

  

From these results, we can assess the relevance of the chosen mathematical indexes. The SIR 

(Table 8), which reflects the ratio between the estimated spectrum and the spurious peaks from 

the other sources (red circles) indicates that the α-terpinolene is the most "clean" spectrum 

whereas, visually, it is the one that contains the most "fake" peaks. At the same time, the 

limonene is indicated as the one containing the most spurious peaks while it is the least polluted. 

When we look at the peak intensities, we observe an important difference between the estimated 

and real sources for the limonene than for the α-terpinolene, that could explain the SIR values. 

however, the SDR appears to correlate well with the visual assessment and the presence of the 

spurious peaks. 
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II.2.4. Conclusions on 1D Data 

 

The results on the 1D data show that pre-processing is a crucial step. In the case 

considered here, the alignment of the spectra turned out to be fundamental.126 However, even 

after careful alignment, the Linear Instantaneous Mixture model can be incompletely 

satisfactory, showing significant departures from that model. Therefore, this may suggest that 

the model is not 100% adequate and that it would be worth considering more complex models, 

that could include, for instance, amplitude modulations as we observed on the terpene data we 

studied. One may also imagine including a spectral shift in the model, provided the phenomenon 

could be sufficiently well understood and therefore modelled. Despite these remarks, the major 

signals of each source spectrum are recovered, allowing the identification of every singular 

molecular fingerprint.  

 

II.3. Results on 2D NMR Spectra of Terpenes 
 

II.3.1. Results on 2D Simulated HSQC NMR Spectra 

 

The algorithms were also evaluated on 2D 1H-13C HSQC on simulated and real data. The 

advantage in considering 2D NMR techniques for BSS is the spectral resolution, thus the 

possibilities of overlaps are lower and the requirement of source signal orthogonality (mutual 

uncorrelation) is easier to meet.104,127 Moreover, the spectral dispersion in the 13C dimension  

also provides the orthogonality constraint for the sources since their spectra to be separated do 

not overlap significantly. 2D HSQC spectra were recorded for the five mixtures. As discussed 

previously, since the acquisition conditions were similar, the difference in intensity of the 

correlation peaks is only due to the variation in the concentrations of the terpenes within the 

mixtures (Figure 44). 
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Figure 44 The five 2D HSQC spectra of the five synthetic terpene mixtures with different concentrations of each pure 
component, which means different intensities in correlation spots. 

 

The first results concern simulated 2D data, using all the previous algorithms but with a higher 

thresholding parameter λS=100σ. We can assess the performances of the different algorithms 

using SIR and SDR (Table 12). The best results are obtained with STALS algorithm. The BC-

VMFB algorithm, using wavelets, also leads to good results Table 12 and Figure 45). The 

separation result is visually good and the fingerprint of each terpene is recovered.  

Table 12 Numerical indexes SIR and SDR (dB) on simulated 2D 1H-13C HSQC NMR spectra for all the 
algorithms with the thresholding parameter λS=100σ (m stands for the mean value). 

Algorithms 

 PALS STALS PALM BCVMFB PALM 

wav 

BC-VMFB 

wav 

Amari 0.135 0.012 0.015 0.11 0.081 0.016 

SIR(lim.) 21.6 50.1 39.6 39.8 20.9 42.8 

SIR(ner.) 12.4 39.1 31.7 10.3 21.8 34.6 

SIR(α-terp.) 22 29 28 9.7 31.5 31.4 

SIR(β-car.) 8.3 41.4 45.4 20.8 34.2 28.6 

SIR(m) 16.1 39.9 36.2 20.2 27.1 34.4 

SDR(lim.) 20.5 25.9 25.7 24.6 19.8 24.9 

SDR(ner.) 11.6 16 17.2 9.3 16.4 16.4 

SDR(α-terp.) 15.1 13.6 13.5 8.6 14.1 13.2 

SDR(β-car.) 7.1 9.9 10.1 10.5 10.4 9.8 

SDR(m) 13.6 16.3 16.6 13.3 15.2 16.1 
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Figure 45 The estimated SIR (on the left) and SDR (on the right) indexes for all the sources using the different BSS algorithms. 

 

 

II.3.2. Results on 2D Real HSQC NMR Spectra 

 

The validated algorithms on 2D HSQC simulated data set were subsequently tested on 

real cases. The best performance was obtained as well with wavelet-based BC-VMFB algorithm 

using a λS=10σ, where the numerical evaluation indexes are reported in Table 13. SIR reported 

values are very good, but SDR estimated indexes are lower compared to the simulated 2D 

situation like in the 1D case. Again, this difference indicates that the linear mixing model, LIM, 

remains imperfect to well describe the real mixtures of components, even for the 2D spectra, 

when significant chemical shift changes are present due to intra- or intermolecular interactions.  

Table 13 Amari index, mean SDR and mean SIR indices (dB) on real 2D HSQC data set for wavelet-
based BC-VMFB with λS=10σ (m stands for the mean value between all the sources). 

 Limonene Nerol α-Terpinolene β-Caryophyllene 

Amari 0.042 

SDRm 8.5 13.1 9.4 9.4 

SIRm 46.3 25.2 22.7 32.1 

 

Despite the weaker numerical indexes compared to the simulated situation, the visual evaluation 

of the estimated sources leads to recognize the molecular fingerprints of these molecules as 

reported in Figure 46, Figure 47, Figure 48, Figure 49 with the estimated HSQC spectra of 

limonene, nerol, α-terpinolene, β-caryophyllene, respectively. The crowded region between 1 
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and 2.5 ppm and the characteristic region at about 5 ppm are well recovered. The nerol has one 

spurious peak of β-caryophyllene at 1.1 ppm. The α-terpinolene has several extra peaks of β-

caryophyllene especially at about 4.8 ppm, discussed in Figure 50 below. 

 

Figure 46  Real 2D 1H-13C HSQC spectrum of the estimated limonene using wavelet-based BC-VMFB algorithm with λ=10σ (in 
blue), compared to the real spectra of reference (in red). 

 

 

Figure 47 Real 2D 1H-13C HSQC spectrum of the estimated nerol using wavelet-based BC-VMFB algorithm with λs=10σ (in 
blue), compared to the real spectra of reference (in red). Extra peaks are indicated by red circles. 
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Figure 48 Real 2D 1H-13C HSQC spectrum of the estimated α-terpinolene using wavelet-based BC-VMFB algorithm with 
λ=10σ (in blue), compared to the real spectra of reference (in red). Extra peaks are indicated by red circles. 

 

 

Figure 49 Real 2D 1H-13C HSQC spectrum of the estimated source β-caryophyllene using wavelet-based BC-VMFB with λ=10σ 
(in blue), compared to the real spectrum of reference (in red). 

 

In Figure 50, a comparison between real 1D and 2D situations is shown. SIR is an indicator of 

the “pollution” from extra-peaks of other sources. These values are almost doubled passing to 

2D resolved spectra, except for one source, the α-terpinolene where SIR remains constant. This 
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is visually detected on 1D and 2D spectra with some peaks belonging to the β-caryophyllene at 

4.8 ppm and 1 ppm, and to the nerol at 4.1 ppm. 

 

Figure 50 Comparison of SIR indexes in 1D and 2D real data sets with the corresponding spectra of the α-terpinolene. 

 

The estimated concentrations on the real 2D dataset (Table 14), with the relative errors 

compared to ERETIC concentrations (Table 2) are reported in Table 15. The quantitative 

estimation here is better than the one-dimensional real situation (Table 8 and Table 9). 

Table 14 Estimated concentrations (mM) on real 2D NMR spectra for wavelet-based BC-VMFB 
algorithm with the thresholding parameter λs=10σ. 

 Limonene Nerol α-Terpinolene β-Caryophyllene 

Mixture 1 23.25 30.03 7.38 10.90 

Mixture 2 17.26 9.95 14.54 14.97 

Mixture 3 8.62 16.78 23.48 4.74 

Mixture 4 21.83 4.93 14.08 12.09 

Mixture 5 4.36 6.35 8.04 12.95 

 

Table 15 Relative errors in the estimated concentrations (in %) on real case of 2D NMR spectra using 
wavelet-based BC-VMFB with λs=10σ. Amari index is equal to 0.042. 

 Limonene Nerol α-Terpinolene β-Caryophyllene 

Mixture 1 -0.39 3.16 -7.02 9.53 

Mixture 2 -8.56 -3.43 -2.66 10.90 

Mixture 3 5.84 8.42 2.94 6.68 

Mixture 4 5.74 -14.40 3.47 -12.84 

Mixture 5 -10.66 -29.52 -25.62 -1.52 
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The non-quantitative response due to the dependence of the correlation peak volumes on the 

efficiency of the magnetization transfer of the INEPT delays in the classical HSQC, depending 

on the heteronuclear coupling constant (JIS), is not important in this study for the application of 

the BSS. As said before, the changes in the peak intensities within the mixtures are only due to 

variations in concentrations detected by the BSS. 

 

II.3.4. Discussions on 2D HSQC results 

 

For two-dimensional data set of terpenes,126 we observed that alignment, as a pre-

processing step, was not problematic like for one-dimensional spectra. However, it must be 

noticed that it was necessary to re-scale the intensities using “nc_proc” processing parameter 

to normalise all the 2D spectra. 

The recovered molecular fingerprints after the BSS and therefore the identification, as well as 

the estimated concentrations, are of better quality in 2D than the 1D case as shown visually in 

the histograms in Figure 51. Some exceptions are present, in fact, in some cases, the estimated 

concentrations (expressed in mM) are better in 1D spectra such as for nerol in mixture 1, β-

caryophyllene in mixture 3 and mixture 2, nerol in mixture 4, and limonene in mixture 5. 
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Figure 51 Histograms to compare visually the ERETIC2 real concentrations (mM) of reference to the estimated 1D and 2D 
HSQC concentrations (mM) on real mixtures after the BSS. 

 

Histograms representing the relative errors (compared to the ERETIC2 concentrations) in the 

estimated concentrations, expressed in %, are reported in Figure 52 for the real cases of 1D 

proton and 2D HSQC NMR. The relative errors in the 2D case are smaller than the 1D situation 

as confirmed with the previously estimated concentrations which are better estimated (Figure 

52).  
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Figure 52 Histograms with the relative errors in the estimated concentrations (in %) in 1D and 2D data set for terpene mixtures 
compared to the ERETIC2 concentrations of Table 2. In the 2D case these errors are smaller than the 1D, consequence of the 
better estimated concentrations (mM). 

 

This better estimation may be interpreted as a consequence of data sparsity adding spectral 

dimensions. Everything is confirmed by the relatively high values of SIR and SDR indexes, and 

also by the Amari values. As seen, SDR values are lower which indicates the presence of 

distortions. However, in our work, we always used rather the SIR measurements to estimate the 

quality of estimated source spectra. 

The computational workload is significantly high using two-dimensional spectra, passing from 

less than 10 minutes in 1D to about three hours in 2D case. Moreover, it increases using higher-

dimensional spectra (tested on decomposing 3D spectra during this thesis, not shown). NMR 
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spectra, to be red and created in the code, are represented by matrices that will become bigger 

using more dimensions. This constitutes a limit, but it is obvious that the performances in 2D 

are better.  

Non-convex minimization problems leading to local minima require to optimize the objective 

function with an initialization. The algorithms are very sensitive to initialization where the BSS 

requires the knowledge of the number of sources to fit (S0) and a mixing matrix of departure 

(A0) to start the computation.  

These results indicate that the BSS algorithms are well suited for samples whose compositions 

and concentrations are relatively known, as is the case for the most studied samples, in 

metabolomics for example, where the composition is known and the concentrations are ranged 

in well-specific intervals. However, for the unknown samples, more developments are needed 

to perform the completely blind source separation.   

 

II.3.5. Results on 2D HSQC NMR Spectra Using Non Uniform Sampling 

 

The application of BSS algorithms to decompose Non Uniform Sampled 2D HSQC 

spectra of the five mixtures of the four terpenes is evaluated in this section. The impact of three 

different compression factors of 4, 8, and 16, respectively using only 25%, 12.5%, and 6.25% 

of the acquired t1 increments, was assessed on the performances of the algorithms, in terms of 

separation capability and quantitation.  

The first tests were carried out on simulated mixtures, with the more difficult case with 

NUS=6.25%. The best estimation of the A matrix and the sources was achieved using PALM 

algorithm with λS = 10σ. The SDR of β-caryophyllene, was the lowest value among the other 

sources, which could be explained by the higher level of noise present in this spectrum. we 

chose therefore to apply a λs =10σ for PALM calculations of the other NUS data and the 
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obtained results are reported in Table 16. The Amari index, SDR, and SIR were better for NUS 

25% and the quality of the de-mixing process decreased until NUS 6.25%.  

 

Table 16 1H–13C NUS HSQC spectra: numerical results on simulated data for PALM algorithm with 
λs=10 σ at NUS 25% (a), 12.5% (b) and 6.25% (c). 

a) 

HSQC 

NUS=25% 

λ=10σ 

Limonene Nerol α-Terpinolene β-Caryophyllene 

Amari  0.019 

SDR 27.27 20.25 18.28 14.49 

SIR 36.88 29.35 33.25 41.72 
 

b) 

HSQC 

NUS=12.5% 

λ=10σ 

Limonene Nerol α-Terpinolene β-Caryophyllene 

Amari  0.0204 

SDR 26.07 20.89 19.16 15.18 

SIR 36.29 32.08 34.89 27.39 

 

c) 

HSQC 

NUS=6.25% 

λ=10σ 

Limonene Nerol α-Terpinolene β-Caryophyllene 

Amari 0.0234 

SDR 24.89 18.78 17.72 16.02 

SIR 35.59 29.24 43.04 28.18 

 

 

The second tests were carried out on real mixtures spectra always using the five values of λs, 

and σ was calculated for each data set. The preliminary tests were done on the harder situation 

with a compression factor of 16 (6.25% of indirect sampled points recorded).  

In Table 17 the numerical results on real data were reported, where the best performances are 

obtained with PALM algorithm with λs=10 σ. Even if the quality indices are worse than the 

simulated case, they are still good. With BC-VMFB the best result is obtained with λs=100 σ. 

Between the two performances, the Amari index is better with PALM, confirmed also by the 

better-estimated mixing matrix A, here not reported.  
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Table 17 1H-13C HSQC NMR Spectra: numerical results on real mixtures, using λs =10 σ for PALM and 
λs=100 σ for BC-VMFB (m stands for the mean value). 

Real HSQC, NUS 6.25%  

 PALM λ=10σ BC-VMFB λ=100σ 

Amari 0.1066 0.2460 

SIR(lim.) 30.9 27.5 

SIR(ner.) 16.5 23 

SIR(α-terp.) 10.8 15.1 

SIR(β-car.) 8 8.1 

SIR(m) 16.5 18.4 

SDR(lim.) 4.4 2.8 

SDR(ner.) 7.9 8.7 

SDR(α-terp.) 6.9 8.6 

SDR(β-car.) 4.2 3.4 

SDR (m) 5.9 6 
 

 

In Table 18, the results of the PALM algorithm are reported using different values of the 

thresholding parameter. 

 

Table 18 1H-13C HSQC NMR spectra at NUS = 6.25%: numerical results on real mixtures, using different 
λs for PALM algorithm. 

PALM with λS → 0.01 σ 0.1 σ   1 σ 10 σ 

Amari 0.2480 0.2271 0.2608 0.1066 

SIR(lim.) 6.2 7.2 7.9 30.9 

SIR(ner.) 2.4 3.4 2.7 16.5 

SIR(α-terp.) 3.2 3.9 3.7 10.8 

SIR(β-car.) 2.5 3.2 3.1 8 

SIR(m) 3.6 4.4 4.3 16.5 

SDR(lim.) 2.7 3.2 3.5 4.4 

SDR(ner.) 0.5 1.3 0.7 7.9 

SDR(α-terp.) 1.7 2.3 2.1 6.9 

SDR(β-car.) 0.7 1.2 1.1 4.2 

SDR (m) 1.4 2 1.8 5.9 

 

The best result is obtained with PALM algorithm using λs = 10 σ as reported in Table 17 and 

Table 18. SIR values are acceptable and indicate that peaks are located at the right place in 

their ppm value and have not many interferences of other pure components. Contrarily, the SDR 

values are lower, generally related to the noise, and usually interpreted as a consequence of 

amplitude modulations. Here with NUS, we can suppose that these lower indexes are a 
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consequence of the t1 noise. These spectra with NUS=6.25% and λs =10 σ, are plotted, in red, 

with the real data of reference and, in blue, the estimated data after the BSS (Figure 53). The 

zooms of different regions show that the molecular fingerprints are recovered for each source.  

 

 
Figure 53 - 1H-13C HSQC recovered spectra with NUS at 6.25% after BSS with PALM algorithm, for λs = 10 σ. In blue, the 

estimated source spectra and, in red, the real data. a) On the top, there are four zooms of the common overlapped region of 

the terpenes (1-2.5 ppm). b) On the bottom, there are four zooms in the isolated region characteristic for each terpene (4.5-

5.5 ppm).  
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Interesting is the comparison using different contour levels to plot the estimated sources. Figure 

54 depicts the superposition of estimated (blue) and real NUS-6.25% (red) HSQC spectrum of 

-caryophyllene, with two different levels (lower level to the right, and higher-level to the left). 

With the low contour level, we highlight the presence of downsampling artefacts that seem to 

be filtered out in the estimated spectra (blue). We can attempt an explanation by considering 

that the downsampling artefacts do not behave like real NMR signals from one mixture to 

another, so the BSS cannot link them to the source. We discover here an unexpected virtue of 

the BSS which can restore artefact-free pure spectra from data set of mixtures 2D sub-sampled 

spectra with very high compression factors. 

 

 

Figure 54  1H-13C HSQC NMR recovered spectra of β-caryophyllene with NUS at 6.25% after BSS with PALM algorithm, for 
λs=10 σ. In blue, the estimated source spectra and, in red, the real data. On the left with a higher contour level and on the 
right with a lower one used to plot them. 

 

In the end, tests with the NUS using 25% of the indirect sampled points are performed, 

confirming the expectation in which more peaks, almost all, are recovered than with NUS at 

6.25%. The SIR and SDR values are better here of almost five units more than the ones at 

6.25%. Performances using PALM with λS=10σ are the best (Table 19) and in general, we 

privilege the situation which estimates the higher average SIR index.  
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Table 19 1H-13C HSQC NMR spectra at NUS = 25%: numerical results on real mixtures, using λs =10σ 
for PALM algorithm (m stands for the mean value). 

PALM λs=10 σ 

Amari 0.0567 

SIR(lim.) 36.7 

SIR(ner.) 18.1 

SIR(α-terp.) 17.7 

SIR(β-car.) 11.7 

SIR(m) 21.1 

SDR(lim.) 5.9 

SDR(ner.) 13 

SDR(α-terp.) 10.2 

SDR(β-car.) 8.3 

SDR (m) 9.3 

 

Regarding the quantitative aspect, using NUS=6.25% the estimated concentrations are very 

similar but only a little bit worse than the ones at NUS=25% reported in Table 20 with their 

relative errors in  

Table 21. 

 

Table 20 Estimated concentrations using PALM for real case of HSQC spectra with λs = 10σ with NUS 
at 25%. The symbol * indicates misestimated concentrations (mM). 

λS = 10 σ 

NUS 25% 

Limone

ne 

Nerol α-

Terpinolene 

β-

Caryophyllene 

Mixture 1 25.8 30.2 6.9 11 

Mixture 2 14.4 10.2 15.9 17.7* 

Mixture 3 8 14.4 19.7 4.1 

Mixture 4 24.2 4.8* 14.4 10.9 

Mixture 5 3* 8.3 10.6 12.2 
 

Table 21 Relative errors in the estimated concentrations (in %) on real case of HSQC spectra with NUS 
at 25% using PALM with λ=10σ. The symbol * indicates misestimated concentrations. 

λS = 10 σ 

NUS 6.25% 

Limonene Nerol α-Terpinolene β-Caryophyllene 

Mixture 1 +10.73 +16.15 -21.41 +1.2 

Mixture 2 -15.79 -14.5 +2.58 +18* 

Mixture 3 -13.13 +1.19 +4.28 -12.2 

Mixture 4 +15.29 -30* +6.35 -8.86 

Mixture 5 -38.52* -7.88 -1.94 -7.22 
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To sum up, these results demonstrate that the BSS works well to recover NUS spectra in 

simulated and real mixtures, also if, on the real data sets, the evaluation indexes are much 

smaller than the simulated case. The t1 noise is not present in the spectra but some peaks, also 

with high intensities, are not recovered. However, always in the real case, the performances are 

quite good for limonene and β-caryophyllene, but for the nerol and α-terpinolene, there are 

some differences from the real data, especially with the compressing factor of 16 (Figure 53). 

The plotted spectra show that the molecular fingerprints are recovered sufficiently.  

We observed that the BSS recovered spectra are similar to the original ones of the pure terpenes 

with less t1 noise in general.  

It must be noticed that by using multidimensional NMR spectra, the computational workload 

increases. Increasing the number of spectral dimensions, the matrices representing the NMR 

spectra are bigger. Since the reconstruction of the non-sampled points is performed prior to 

Fourier transform, the dimension of Χ-matrix is like that one in the US spectra. Thus, the NUS 

spectra have no benefit on the computational workload.  

 

II.3.6. Results on 2D TOCSY Spectra 

 

This short paragraph is dedicated to the assessment of the application of BSS on TOCSY 

data sets. This sequence is often used in the analysis of complex mixtures such as metabolomics 

for example.128–132 

Un-mixing algorithms were run on real mixture spectra using five values of λs, where σ was 

calculated for the terpene TOCSY data set. The best results were obtained using BC-VMFB 

with λs=10σ. 

In Table 22 the estimated sources after BSS in the column on the left are compared to the 

acquired sources on the right. 
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Table 22 Estimated TOCSY sources after BC-VMFB algorithm using λs=10σ on the left and the real 
acquired sources on the right. 

ESTIMATED SOURCES REAL SOURCES OF REFEENCE 
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As it is shown in Table 22, almost all the molecular fingerprints are visually recovered fairly 

good, also if some spurious peaks are present sometimes especially for the estimated limonene, 

and α-terpinolene in the region between 4 and 5 ppm. The numerical indexes reported in Table 

23 show the mean SIR value, related to the number of extra peaks of other sources, and the 

SDR value are not so high. Amari index related to the estimated mixing matrix A of the 

concentrations denoting that the estimated concentrations are quite different from the real 

matrix A. The estimated concentrations are in fact not satisfying and here are not reported. 

 
Table 23 2D TOCSY NMR spectra with NUS = 25%: numerical results on real mixtures, using λs =10σ for 
BC-VMFB algorithm where m stands for the mean value. 

Real 2D TOCSY NMR spectra with NUS = 25% 

Amari 0.406 

SIR m 7.6 

SDR m 2.4 

 

 

The low SIR and SDR values could be improved working on the initialization step, here carried 

out with the JADE algorithm.  

The future development of TOCSY spectra can be done by removing the diagonal peaks which 

are more intense than the cross-peaks, which can constitute an additional difficulty for the 

decomposition of the spectra. Another option could consist in not suppressing the diagonal 

because it is generally very precious for the structural analysis, therefore pre-processing could 

be proposed to reduce the diagonal rather than suppress it. 
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II.4. BSS on Data Sets with Spectroscopically Induced Variations 

(Diffusion Spectroscopy) 
 

As it has been shown, the BSS algorithms decompose the spectra of mixtures using the 

concomitant variations of the peaks belonging to the same molecule within the different 

mixtures. In this part, we consider the use of “artificial” intensity variations, induced by 

spectroscopic methods that mime the concentration variations. With such approach, BSS 

algorithms could be used even if only one mixture sample is available. This situation was dealt 

previously by J. M. Nuzillard and co-workers133 to demonstrate the LP-BSS (Linear 

Programming BSS) method on a mixture of menthol and -sitosterol submitted to PFGSE 

experiment. In this case, the diffusion-modulated spectra can be decomposed in the same way 

to mixtures which are modulated by the differences in concentrations. 

To evaluate the algorithms studied in this thesis in such a situation, we used the data sets of the 

NMR diffusion experiment of different samples to decompose NMR spectra blindly, without 

prior knowledge of the signal evolution, unlike other diffusion processing methods. In this 

work, all algorithms presented in the previous sections were tested, with X containing the set of 

spectra evolving as a function of the gradients. The best results were obtained using wavelet-

based BC-VMFB mentioned above, with the thresholding parameter λS = 0,01σ. The results are 

assessed qualitatively and the mathematical indexes are not presented. 

Standard DOSY spectra (“dstegp3s” according to Bruker nomenclature) were recorded by a 

conventional convection compensated pulse sequence, based on the stimulated echo and 

incorporated bipolar gradient pulses, and an Eddy current delay (BPP-LED). The shape of all 

gradient pulses was Smoothed Square and the LED delay was 5 ms. The gradient 

strength, g, was linearly incremented in 16 steps from 2% to 98% of its maximum value, and 

16 scans were recorded. The diffusion delay and gradient pulse duration were specifically 

adjusted for each studied system in this section. 
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II.4.1. 1D and 2D DOSY experiments 

 

II.4.1.1. Results on terpene sample 

 

The first test was applied using a home-made 3D DOSY-HSQC pulse sequence obtained 

by concatenating the “dstbpgp3s” and “hsqcetgpsi3d” sequences, the time domains have been 

assigned as follows: td1 diffusion, td2 indirect HSQC dimension, td3 direct dimension. Since 

this experiment gives a 3D spectrum, there are three axes that give three information for each 

one: the chemical shift of the proton, that one of the carbon, and the diffusion dimension in 

which the gradient strength of the magnetic field varies. The result can also be seen as various 

2D HSQC spectra acquired for each value of gradient strength along the diffusion dimension, 

in which the intensities of the cross-peaks decrease. The BSS was tested using all the 2D HSQC 

spectra, considered as mixtures. The resolution due to translational mobility has to be quite 

sufficient to allow the detection of the four pure compounds. Preliminary data showed that BSS 

algorithms do not work on terpene mixtures. It showed that there is a sensitivity to the diffusion 

coefficient resolution. The difference in the molecular diffusion coefficients has to be large 

enough. 

To improve this resolution, we resorted to a so-called “chromatographic-NMR” approach 

which consists in using a solid matrix to better differentiate the diffusion coefficients thanks to 

the difference in affinity of the molecules to the solid matrix and the different interaction of the 

compounds with the solid and the liquid phase which can affect the molecular 

movements.58,134,135 

The experiments were carried out with a HR-MAS (High Resolution-Magic Angle Spinning) 

probe-head spectrometer. 50 μl of the four terpenes solution dissolved in CDCl3 was introduced 

into a rotor (4 mm) filled to 2/3 with silica, and before closing the rotor, silica was added to 

equilibrate the sample. The used LiChrospher Si 100, purchased from Merck, is a sorbent that 
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offers optimal polar properties for normal-phase separations. It is based on spherical silica 

particles with a pore diameter of 100 Å, and a particle size of 10 µm. 

In Table 24, diffusion coefficients after chromatographic NMR are reported which are more 

differentiated from that one obtained with liquid state analysis. 

Table 24 Measured diffusion coefficients of terpenes with a DOSY experiment using a 600 MHz liquid 
state spectrometer compared to the ones obtained after chromatographic-NMR with a normal solid 
phase and the apolar solvent CDCl3 using a 400 MHz HR-MAS spectrometer at the spinning rate νR = 
4000 Hz. 

Diffusion coefficient m2/s Liquid state After Chr-NMR (in CDCl3) 

LIMONENE 1,759 x 10-9  5,05 x 10-9  

α-TERPINOLENE 1,592 x 10-9  4 x 10-9  

β-CARYOPHYLLENE 1,577 x 10-9  3,58 x 10-9  

NEROL 1,616 x 10-9  1,50 x 10-9  

 

Results on BSS applied on 1D DOSY of one mixture of terpenes after Chr-NMR do not allow 

to recover the sources spectra, probably due to the non-sufficient diffusion resolution and an 

important number of the sources to be estimated. 

 

II.4.1.2. Results on polysaccharide sample 

 

 The successive experiments were performed on a synthetic mixture of three sugars, 

particularly, a mono-saccharide, mannitol, a disaccharide, sucrose, and a pentasaccharide, 

maltopentaose (Figure 55).  

 

Figure 55 The three saccharides constituting the sample of polysaccharide mixture: mannitol (mon-saccharide), sucrose 
(disaccharide), maltopentaose (pentasaccharide). 
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The idea was to have more different molecular sizes and therefore more differentiated diffusion 

coefficients. As shown in Figure 56, they have a superposed region on the spectrum between 

3 and 4 ppm, which represents another challenge, and a characteristic region between 4 and 5.5 

ppm.  

 

Figure 56 The NMR spectrum of mannitol in blue, in green the sucrose and in red the maltopentaose with the overlapped 
region at about 3.7 ppm. 

 

Using the 1D spectra from a classical 2D DOSY experience, the separation results were not 

good enough because the resolution in diffusion was not sufficient enough (Table 25 and 

Figure 64). 

  

Table 25 Measured diffusion coefficients from DOSY experiment of the pure components in the 
mixture of polysaccharides. 

POLYSACCHARIDE MIXTURE DIFFUSION COEFFICIENTS m2/s at 300K 

Mannitol 5,7 x 10-10 

Sucrose 5,2 x 10-10 

Maltopentaose 2,9 x 10-10 
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Figure 57 a-c) Polysaccharide sources not recovered after BSS. 

 

Again, with this sample, the used algorithms failed to estimate the sources. At this point, we do 

not have a clear explanation for the failure of the BSS. Our hypothesis is that there are two 

hurdles which accumulate, the number of sources to find and the too similar diffusion 

coefficients. 

 

II.4.1.3. Results on micelle sample 

 

The followed experiments were performed on mixtures with a sugar, the sucrose, and a 

surfactant giving a micellar structure. The idea was to amplify the difference in diffusion 

coefficients between compounds, always using one sample mixture. 
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The first sample mixture was obtained using sucrose and sodium dodecyl sulfate, commonly 

named SDS in D2O (Figure 58).  

 

Figure 58  Sucrose and sodium dodecyl sulfate (SDS) NaC12H25SO4. 

 

The critical micellar concentration (CMC) of the SDS is in the range of 8-100 mM at 25°C.136–

139 The concentrations used here to obtain the synthetic mixture were of 30 mM of sucrose and 

50 mM of SDS in 600 μL of D2O.  

The application of the BSS was performed on the eleven 1D 1H DOSY spectra along the 11 

points of the gradient strength (Figure 59). The initial A0 and S0 matrices were built randomly 

using the random generation function in the MATLAB library. The variations in signal 

intensities in this unique sample are induced by the gradient strength as an alternative to mime 

the variation in concentrations.  

 

Figure 59 Eleven superposed 1D proton spectra from the 2D DOSY experiment used for BSS on sucrose and SDS mixture. 
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The measured diffusion coefficients are presented in Table 26. 

The difference from the previous 1D and 2D NMR applications of the BSS is that here the 

solvent can be considered as a pure source to be estimated since its diffusion is very 

discriminant. For the previous applications, it could be considered as a source, or a constant 

peak present in all the other components, or as a region of the spectrum to be suppressed. 

 

Table 26 Diffusion coefficients and decays for the pure components SDS (green), sucrose (red) and 
water(water) of the mixture. 

 DIFFUSION COEFFICIENTS m2/s at 300K 

SDS 1.32 x 10-10 

Sucrose 4.88 x 10-10 

Water 2.38 x 10-9 

 

In this sample, the BSS succeeded in extracting the spectra of the three sources, reported in 

Figure 60. The spectrum of the estimated sucrose, in red, contains the residual peaks of the 

SDS with a low intensity (blue circle in Figure 60.c).  
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Figure 60  Estimated spectra of sources. From the top SDS (green), water (black), and sucrose (red). The blue circle indicates 
the residual peaks of the SDS in the sucrose spectrum with the focus of the reference spectra in the boxes. 

 

In the following, the objective is to know if the more important difference in the evolution of 

the intensities of the peaks as a function of the gradients would enable to recover the spectra of 

the sources without spurious peaks.  

The second synthetic sample was composed mixing the sucrose and cetrimonium chloride, 

named also cetyltrimethylammonium chloride (CTAC), in D2O (Figure 61).  
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Figure 61 Molecules composing the mixture of sucrose and cetyltrimethylammonium chloride (C19H42ClN) (abbreviated as 
CTAC). 

 

The CMC of CTAC is > 1.3 mM at 25°C.136 Concentrations used to obtain the synthetic mixture 

were of 30 mM of sucrose and 50 mM of CTAC in 600 μL of D2O.  

In the 2D DOSY experiment, all the sixteen one-dimensional proton spectra along the diffusion 

dimension (Figure 62) were used to apply the BSS.  

 

 

Figure 62 Sixteen superposed 1D spectra of the sample from the 2D DOSY experiment used for BSS on sucrose and CTAC 
mixture in D2O. 

 

In this system, the micellar component, the CTAC, and the sucrose have more differentiated 

translational diffusion decays (Figure 63) and diffusion coefficients ( 

Table 27). 
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Figure 63   CTAC diffusion curve with average D = 8.82 x 10-11 m2/s (green),  sucrose diffusion curve with D = 4.46 x 10-10 m2/s 

(red),  water diffusion curve with D = 3.31 x 10-9 m2/s (black). 

 

Table 27 Diffusion coefficients for the pure components CTAC, sucrose and water of the mixture. 

 DIFFUSION COEFFICIENTS (m2/s) at 300K 

CTAC 8.82 x 10-11 

Sucrose 4.46 x 10-10 

Water 3.31 x 10-9 

 

The estimated source spectra after the BSS are reported in Figure 64. In this case, the estimated 

sucrose spectrum contains less intense residual peaks of CTAC and is less noisy than the 

previous case with SDS. 
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Figure 64 Estimated spectra of sources. From the top CTAC (green), water (black), and sucrose (red). 

 

The third synthetic mixture was made up of sucrose and a copolymer in D2O. Pluronic P123 

(P123) is a symmetric triblock copolymer composed of polyethylene oxide at the sides and 

polypropylene oxide at the centre (Figure 65).  

 

Figure 65 Molecules composing the mixture of sucrose and P123 in D20. 

 

The characteristic of the central block is the hydrophobic property at above 288 K, and the 

analyses were carried out at 300 K. Dissolved P123 forms micelles when placed in a selective 
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solvent such as water and with a concentration above its CMC. The micellization of P123, in 

fact, has a relatively low CMC in water (0.313 mM at 20°C) and is sensitive to the changes of 

conditions such as temperature.140 Concentrations used in this synthetic mixture were of 50 mM 

for the sucrose and 30 mM for P123 in 600 μL of D2O.  

In Figure 66, all the fifteen one-dimensional proton spectra from the 2D DOSY experiment, 

used as X matrix for the BSS, are reported except one outlier. 

 

Figure 66 Fifteen 1D proton spectra from the 2D DOSY experiment used for BSS applied on the sucrose and P123 mixture. 

 

The measured diffusion coefficients are presented in Table 28. 

Table 28 Diffusion coefficients and decays for the pure components P123 (green), sucrose (red) and 
water(water) of the mixture. 

 DIFFUSION COEFFICIENTS (m2/s) at 300K 

P123 7.77 x 10-11 

Sucrose 5.25 x 10-10 

Water 2.26 x 10-9 
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The estimated sources are reported in Figure 67 with the focus of the reference spectra of each 

source. An extra peak of the P123 is present in the estimated spectrum of the sucrose, less 

intense than for the previous mixtures. 

 

Figure 67 Estimated spectra of sources. From the top P123 (green), water (black), and sucrose (red). 
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II.4.1.4. Conclusions on spectroscopic variations applied to the BSS  

 

 This work confirms that, when only one sample is available, it is possible to introduce 

and exploit spectroscopic perturbations that mimic the concertation variations to blindly 

decompose NMR spectra, without a prior known of intensity evolution.  

Unlike the founding work of Nuzillard and co-workers,133 the samples used here were 

composed of at least three molecules. Despite relatively different diffusion coefficients, 

especially for polysaccharides, the algorithms we used did not succeed in decomposing the 

mixtures. We think that the number of sources to decompose is a limitation, at this level, that 

can add up to the non-sufficient difference in the diffusion coefficients.  For micelle samples, 

with significant diffusion differences (an order of magnitude), the algorithms were efficient in 

estimating the sources spectra, despite a few spurious peaks.  

It should be noted that the BSS succeeded in finding the sources composing the mixtures as 

long as the number of spectra m in the matrix X was greater than or equal to the number of 

sources to be estimated k (m ≥ k). However, the more the number of m spectra increased, the 

better the estimate.  

Further methods to introduce other spectroscopic perturbations to blindly decompose the 

mixtures can be envisaged. One can imagine an approach using selective saturation in mixtures 

in which the spin diffusion is present due to the size of the molecules or by the addition of 

viscous solvent as proposed by the group of J.M. Nuzillard.141–143 
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III.1. Assessment of Tρ filter in metabolomics 
  

The first part of this section presents a study that investigates the use of the rotating-

frame relaxation T1ρ filter in biological samples in the context of metabolomics. This work is 

carried out both in solution and HR-MAS NMR. It draws detailed comparisons with 

conventional CPMG filtering as well as the more recent approach PROJECT based on the 

perfect echo approach for T2 filtering.44 The data showed that the T1ρ filter is suitable for 

metabolomic investigation involving multivariate statistical analysis on sample cohorts, with 

results equivalent to the ones with T2 filter. 

 

III.1.1 General Principles of Metabolomics 

 

Metabolomics is a recent versatile science that was introduced in the 2000s following 

genomics and proteomics of which it is often complementary. Its purpose is to study the 

dynamic and global metabolic response of a biological system following biological stimuli such 

as disease or treatment, or due to environmental or genetic perturbations (e.g. drug, diet, 

lifestyle, environment, stimuli, genetic and other modulations) by the statistical analysis of 

biological data obtained by spectroscopic analysis, such as NMR or Mass Spectrometry (MS). 

The objective is to characterize and identify the metabolites produced, used, and excreted by 

cells, organs, or organisms, to identify biomarkers associated with well-defined systemic states 

in order to highlight the metabolic involved pathways.144 145 146 147  

The metabolites are usually defined as any small molecule with a molecular weight less than 

1.5 kDa including several organic species such as amino acids, fatty acids, carbohydrates, 

vitamins, but they can also contain inorganic species.148 149 Metabolome, by analogy with the 
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notion of genome and proteome, is defined as a collection of all metabolites, endogenous or 

exogenous, which can be detected in cells, tissues, extracts or bio fluids.  

The main strategy adopted is to obtain a classification based on the statistical analysis of the 

metabolic profiles mainly obtained by NMR and /or MS. Thus, the information that is extracted 

and exploited concerns the modulations of metabolite concentrations induced by the state of the 

sample. In practice, the experimental metabolomic approach can be described in three main 

steps (Figure 68). Firstly, the simultaneous identification and quantification of metabolites are 

achieved by analytical techniques. The obtained raw data are then subjected to multivariate 

statistical analysis. At the end, the metabolic signature is examined. Metabolite characteristics 

are identified from spectral data, a biological interpretation of experimental data is performed, 

and research for individual or composite biomarkers is also performed.  

 

Figure 68 Strategy for metabolomic analysis: a)Acquisition of spectral data, b) Classification of samples by multivariate 
statistical analysis, c) Identification of metabolic signature (metabolic phenotype). 

 

III.1.2 NMR Relaxation Filters in Metabolomics 

 

The number of samples submitted to high-throughput analysis without complete prior 

components separation and with minimal pretreatment (protein removal in blood, for example) 

has been increased by the development of NMR-based metabolomics.35,129–131,146,149,150 To face 

the obvious complexity of NMR spectra of biological samples, such as blood plasma and 

tissues, containing different molecules of widely varying structures and sizes (metabolites, 

proteins, lipoproteins, lipids), several spectral editing NMR sequences have been proposed to 
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suppress the signal of macromolecules which are not usually taken into account in 

metabolomics (proteins, lipoproteins and lipids).151 In general, the complete elimination or the 

attenuation of macromolecule signals exploits the large difference in transverse or spin–spin 

relaxation T2 times between small molecules and macromolecules using relaxation-weighted 

experiments to filter out the NMR signals from proteins and other biomolecules. In the 

established metabolomic protocols, the only filter used is the T2-based one with the CPMG 

pulse sequence (Figure 15).41,152 As presented before (paragraph I.1.2.2.1), the relaxation in the 

transverse plan can be characterized by two relaxation times, T2 and T1ρ. Even if the relaxation 

mechanisms are not the same,7 the same macroscopic phenomenon prevails with the same 

equation describing the signal evolution as a function of time (Equation 1.4 and 1.5):  

A major drawback of the T2 based filter with the conventional CPMG pulse sequence is the 

echo modulation arising from homonuclear scalar coupling which is not completely refocused 

by the multiple CPMG block even when the inter-pulse frequency (1/ where  is the inter-

pulse delay) is much larger than J coupling values (1  J).152,153 Several strategies have 

been proposed to overcome these issues.77,154–158 However, the proposed approaches so far are 

limited to scalar coupled two-spin systems and do not allow a broad-based application. More 

recently, Aguilar and co-workers44 formally demonstrated that the effect of the so-called 

''perfect echo'' sequence, proposed by Takegoshi et al.,43 is not limited to AX spin systems but 

can be extended to multiple coupled spins. Hence, CPMG with a 90°y refocusing pulse at the 

midpoint of a double spin-echo was introduced as PROJECT and was successfully used in 

metabolomics, particularly for HR-MAS studies on tissue samples, where long inter-pulse 

delays must be used for rotor synchronization.159–161 Figure 69 presents a standard 1H NMR 

spectrum of liver sample (Figure 69.a) and a T2-filtred spectrum using the standard CPMG 

NMR spin-echo (Figure 69.b), both with water presaturation pulse during the relaxation delay. 
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Figure 69 a) A zgpr 1H spectrum on the left and b) a relaxation-edited CPMGpr 1H spectrum of rat liver at 400 MHz HR-MAS. 
The asterisks * indicate the fatty acids which are attenuated in CPMG experiment as confirmed in the literature.162 

 

When dealing with a proton spectrum involving many multiplets, a simple alternative can be 

used, the relaxation time in the rotating frame, T1ρ. It is measured from the decay of nuclear 

magnetization locked in the transverse plan by an rf field by using the spin-lock as described in 

Figure 17.163 An immediate advantage of this relaxation time is that there is no precession 

during the evolution period of the magnetization. This results in the absence of modulations 

related to possible scalar J couplings.159  Although similar results are obtained using T2 or  

filters, and despite the advantages of T1ρ, there is no application in mixture analysis and it has 

never been used in metabolomics.164,165 

Generally, the CPMG filter duration used in metabolomics is between 60 ms and 120 ms 

depending on the studied samples (serum, plasma, different types of tissues, etc.) which is 

sufficient to attenuate the resonances from large macromolecules.  

 

 

III.1.3 Samples used for this study 

 

The collection of the samples used for this study is detailed in our previous publications by 

Tranchida et al.166,167 Serum and liver samples were collected from rats following two diets: (i) 
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a standard diet (control group – C) and (ii) a High Fructose and Saturated fatty acids diet (HFS 

group). The distribution of the groups is given in Table 29.  

 

Table 29 Number of independent samples in each analysed group (control and HFS) of rat serum and 
liver. 

 Control group HFS group 

Serum 6 12 

Liver 6 12 

 

Serum samples were prepared adding 200 μl of serum with 400 μl of 0.9 g.L-1 saline solution 

in D2O. For the HR-MAS study, about 15 mg of liver tissue were placed into a 30 μl cylindrical 

disposable insert where 10 µl of D2O were added. The insert was then placed into an 80 μl 4 

mm ZrO2 HR-MAS rotor. 

 

III.1.4 NMR recording conditions 

 

Three pulse sequences were implemented: (i) a standard CPMG NMR spin-echo sequence from 

the Bruker pulse program library, preceded by a water presaturation pulse during the relaxation 

delay ([presat − 90° − (τ − 180° − τ)n]) (Figure 15); (ii) a standard T1ρ sequence, also preceded 

by a water presaturation pulse during the relaxation delay (presat − 90ϕ° − (SL)ϕ±90°]) (the pulse 

sequence and implementation details are given in Figure 17); and (iii) the presaturated 

PROJECT sequence ([presat − 90° − (τ − 180° − τ – 90° − τ – 180° − τ −)n]) from Aguilar et 

al.,44 (Figure 16) used for HR-MAS experiments.  

For liquid-state NMR, the experiments were performed at 293 K. For HR-MAS NMR 

Spectroscopy, all spectra were acquired at 277 K. For CPMG and PROJECT, the inter-pulse 

delay had to be synchronized with the two MAS periods used in this study, τ = 1 ms and 250 

μs for νrotation = 1000 and 4000 Hz, respectively.159,167 The filter length was 100 ms. To reach 

this length, it is necessary to take into account the number of inter-pulse delays inside the loops 
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of the two sequences, two for CPMG and four for PROJECT. The distribution of these 

parameters is summarized in Table 30. 

The same filter length was used for the T1ρ spectra without any calculation by adjusting the spin-

lock pulse, “p3” in Figure 17. For each experiment, the spectral width was set to 4500 Hz and 

sampled with 32,768 data points, leading to an acquisition time of 2.26 s and a total experiment 

time of 10 min. 

Table 30 Parameters τ (inter-pulse delays) and n (number of loops) used for CPMG and PROJECT to 
obtain a filter length of 100 ms for two MAS rates (1000 and 4000 Hz). 

Rotation 
CPMG 

(τ-180°-τ)n 

PROJECT 

(τ-180°-τ-90- τ-180- τ-)n 

1000 Hz  = 1 m / n = 50  = 1 m / n = 25 

4000 Hz  = 250 us / n = 200  = 250 us / n = 100 

 

 

III.1.5 Statistical Analysis 

 

For metabolomics analysis, the most widely used NMR experiment yields a one‐

dimensional 1H spectrum containing complex patterns which constitute a metabolic fingerprint 

describing all visible metabolites at a given time. Statistical analyses allow providing 

understandable and usable information about these metabolic fingerprints. The proton NMR 

spectra are divided into 1000 to 10000 buckets characterized by a width and an integral 

proportional to the concentration of the metabolites. This first step facilitates pattern 

identification, or group clustering, based on spectral pattern differences. In general, two major 

types of pattern recognition processes are used, unsupervised and supervised. Unsupervised 

data analysis, such as Principal Component Analysis (PCA), already introduced before, 

measures the intrinsic variation in data sets, whereas the supervised approach, such as 

Orthogonalized Projections to Latent Structures – Discriminant Analysis (OPLS-DA), uses 

prior information (the group distribution for example) to generate the clusters of patterns. The 

comprehensive representations of the data that allow to visualize the discrimination between 
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groups are called “score plot” (Figure 68.b). In addition, the “loading plot” representation 

(Figure 68.c) allows highlighting specific spectral regions which are responsible for group 

clustering and linking them to specific metabolites according to their NMR chemical shifts. 

The 1H NMR spectra were exported to AMIX software and divided into 0.001 ppm-width 

buckets. To remove the effects of possible variations in the water suppression efficiency, the 

region of the water signal between 4.7 and 5.2 ppm was suppressed. The obtained data set was 

then normalized to the total spectrum intensity and scaled to Unit-Variance (UV) and imported 

to SIMCA P-14 software (Umetrics, Umeå, Sweden) for the multivariate analysis. 

OPLS-DA was then performed on the data set to discriminate between C and HFS groups.168 

The robustness of each discriminant model was then validated using the goodness-of-fit, R2
Y, 

and the predictive parameter, Q2
y, that were calculated. The highest the Q2, the more the model 

can be considered predictive. In model systems, Q2 are high typically > 0.7 or 0.8 for predictive 

models. For biological samples, it is different. The inter-individual variability among biological 

samples is quite regular and therefore the overall changes are weak between different groups, 

therefore we considered that a predictive model is statistically robust for Q2
y value ≥ 0.4.169,170 

 

III.1.6 Impact of T1ρ filter on sample heating 

 

Some studies involving the T1ρ filter evoke a problem of sample heating during the application 

of an excessive and long spin-lock.171 This effect is inherent to the nature of rf pulse and due to 

its electric component. We evaluated this using a sample of methanol as a molecular 

thermometer to measure the actual temperature before and after the application of a 480 ms 

spin-lock of different amplitudes, i.e. 2000 Hz, 4000 Hz, and 5000 Hz. For each amplitude, 

three spectra were recorded using a one pulse sequence (“zg” according to Bruker 

nomenclature), after 1, 8, 64 and 128 dummy scans. The results are reported in Table 31.  
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Table 31 Temperatures measured from 1H spectra of methanol-d4 using one pulse (zg), CPMG and T1ρ 

sequences with the same filter duration (480 ms), different number of dummy scans (DSs) were used, 
with number of scans NS=1. The target sample temperature was set to 277 K. The difference between 
the target and actual temperature is reported. 

Sequence used Number of dummy scans Spin-lock amplitude (Hz) Δ Temperature (K) 

zg  
 

1 

 =0 

CPMG  +0.10 

 

T1 

2000 +0.16 

4000 +0.12 

5000 +0.15 

zg  
 

7 

 =0 

CPMG  +0.10 

 

T1 

2000 +0.07 

4000 +0.14 

5000 +0.15 

zg  
63 

 +0.02 

CPMG  +0.13 

 

T1 

2000 +0.12 

4000 +0.10 

5000 +0.17 

zg  
 

128 

 +0.02 

CPMG  +0.07 

 

T1 

2000 +0.08 

4000 +0.15 

5000 +0.19 

 

Recorded temperatures show the same small increase as for the CPMG pulse sequence, less 

than 0.2°C, regardless of the number of used dummy scans. The use of T1ρ for these amplitudes 

and durations remains safe since it does not cause sample overheating.  

 

III.1.7 Spin-lock amplitude 

 

Conventionally the spin-lock pulse is obtained by a continuous rf wave with an 

appropriate amplitude which avoids the shift between the carrier frequency and the resonance 

frequencies (“offset effect”) and unsuitable power deposition due to excessive amplitude.  

T1p general pulse sequence is reported in Figure 17. For example, the resulting relaxation-edited 

spectrum is reported in Figure 70 when using low ν1 for spin-lock amplitude such as 1000 Hz 

and putting the carrier ν on the water peak at 4.8 ppm, there is a low spectral coverage and an 

offset effect is visible around 1 ppm. 
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Figure 70 Relaxation-edited T1ρ spectrum of proton using only one channel with the carrier frequency for a pulse v1=1000 Hz 
centered on the water peak. At low v1, due to the low spectral coverage, an offset effect is present. 

 

Five spectra of serum were recorded with CPMG filter using two inter-pulse delays (200 μs and 

600 μs) and T1 filter with different spin-lock intensities expressed as 
𝛾𝐵1

2𝜋
  (2 kHz, 4 kHz, and 5 

kHz). Figure 71 represents the 480 ms T2- and T1-edited proton spectra with the carrier ν at 

4.7 ppm (water frequency, also used for presaturation). The first finding was that the same 

filtration effect was retrieved whatever the sequence used (Figure 71.a). However, the three 

T1 spectra obtained with different B1 showed expected differences due to the offset effect.172 

Around the carrier frequency, the integrals of the signals remained unchanged when B1 

amplitude increased (Figure 71.b), while the integrals of the peaks at the edges of the spectra 

increased (Figure 71.c). Moreover, we observed a decrease of the resolution when increasing 

B1 (therefore of the nutation frequency, 𝜈1 =
𝐵1

2
) leading to a broadening of the width at half-

height (e.g. the creatine singlet at 3.03 ppm) (Figure 71.a).  
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Figure 71 (a) T1p and T2 filtered spectra of serum recorded at different spin-lock amplitudes, from top to bottom: 5 kHz, 4 kHz, 
and 2 kHz, and CPMG with inter-pulse delays of 200 and 600 μs. Quartet (b) and doublet (c) of lactate acquired at 5 kHz 
(green), 4 kHz (red) and 4 kHz (blue). The relative integrals are reported for each peak with the same colour. The widths at 
half height (WHH) of the peak at 3.03 ppm (creatine singlet) are reported on the right of each spectrum. 

 

This trend was identical for the CPMG sequence, the resolution obtained with an inter-pulse 

delay of 600 μs, i.e. a CPMG pulse frequency (𝜈𝐶𝑃𝑀𝐺 =
1

4𝜏
, with   the inter-pulse delay of the 

CPMG block) of 416.66 Hz, was higher than for the one obtained with an inter-pulse delay of 

200 µs, i.e. a CPMG pulse frequency of 1250 Hz. This effect is summarized in Table 32.  

 

Table 32 Width at half height of the creatine singlet (3.03 ppm) [Average over five randomly selected 
samples]. 

 

 

 𝐶𝑃𝑀𝐺600µ𝑠
  416𝐻𝑧 𝐶𝑃𝑀𝐺 200µ𝑠

 1.25 𝑘𝐻𝑧 𝑇1𝜌
2𝑘𝐻𝑧 𝑇1𝜌

4𝑘𝐻𝑧 𝑇1𝜌
5𝑘𝐻𝑧 

WHH 1.06 Hz 1.24 Hz 0.95 Hz 1.09 Hz 1.44 Hz 
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The best resolution is obtained with 𝑇1𝜌
2𝑘𝐻𝑧 but it is obvious that, with this power, the spectral 

coverage is not optimal to avoid offset effects. With the 𝑇1𝜌
5𝑘𝐻𝑧, two disadvantages add up: i) the 

power that could be excessive, and ii) the decrease of the resolution. The 𝑇1𝜌
4𝑘𝐻𝑧 seems to be, 

for our study, the better amplitude allowing to have an equal resolution of the 𝐶𝑃𝑀𝐺600µ𝑠
416 𝐻𝑧 

sequence (see Table 32). However, the latter cannot be used since the inter-pulse delay does 

not allow the refocusing of the modulations due to scalar couplings as shown in Figure 72 with 

the negative doublet at 4.65 ppm. In liquid-state metabolomic studies by NMR, with the 

commonly used CPMG filter (𝐶𝑃𝑀𝐺200µ𝑠
1,25𝑘𝐻𝑧),  this effect is limited and invisible.  

The impact of the offset effect on the intensities at the edge of the spectra can be explained 

qualitatively by using the vector model (Figure 72). When the nuclei are on resonance (ν0=νr), 

they perceive an effective field equivalent to the field B1 but if the shift between the carrier 

frequency and the resonant frequencies becomes important, the effective field in the rotating 

frame, Beff, is defined as the vector sum between the vector of the field B1 (aligned along the 

axis of the spin-lock, y for example) and the vector of the residual field Bres aligned along the 

z- axis of the static magnetic field B0 (Figure 72). Knowing that Bres is proportional to the offset 

(ν0-νr) and given by: 

𝐵𝑟𝑒𝑠 = 2𝜋
𝜈0−𝜈𝑟

𝛾
= 𝐵0 −

2𝜋𝜈𝑟

𝛾
                                    (3.1) 

In this case, the spin-lock axis is not aligned along y but along a shifted axis with an angle  

which increases when the shift between the resonance frequency r and the carrier frequency 

0 increases (an increase of the Bres, Equation 3.1), and obviously when the B1 field decreases 

(𝐵1
′  in Figure 72). The magnetization initially aligned along the y-axis (before the spin-lock) 

will be aligned along the Beff, then appear components perpendicular to the Beff axis which will 

be destroyed (defocused) and a collinear component to Beff which will be locked and therefore 
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maintained. In addition, the amplitude of the effective field becomes greater than that of B1 due 

to the vector sum, 𝐵𝑒𝑓𝑓 = √𝐵1
2 + 𝐵𝑟𝑒𝑠

2 , so the precession will be greater around Beff.   

 

 

 

 

 

 

 

For the same offset (same Bres, in Figure 72), the increase of the amplitude of the B1 field leads 

to the decrease of the angle . In this case, the component perpendicular to Beff (at the origin of 

the loss of intensity) will be less important, which explains the increase of the signal at the end 

of the spectra when increasing the spin-lock amplitude.  

In other words, to compensate for the difference between the carrier frequency and the resonant 

frequencies (Bres), it is necessary to systematically use a spin-lock amplitude that covers all the 

spectral width (the entire spectrum).  

 

III.1.8 T1ρ Measurements for Some Chosen Metabolites 

 

  The measurements of the relaxation times T1ρ and T2 for some chosen metabolites in 

serum confirm that these two relaxation times are substantially similar. To avoid the offset 

effect, a sequence using two channels with two carrier frequencies was used (Figure 73), the 

first for water presaturation and the second placed at 2,2 ppm centered on the peaks of interest. 

𝐵𝑒𝑓𝑓 Bres 

Z 

Y 

X 

 

𝐵𝑒𝑓𝑓
′  

𝐵1
′  𝐵1 

 ‘ 

Figure 72 Representation of the magnetic fields present during spinlock application. In the rotating frame, the effective field 
Beff is the vector sum of the residual field Bres and the B1 field. The tilt angle, θ, is defined as the angle between Beff and Bres. 
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Above 3000 Hz, we observed that the measured of T1ρ were insensitive to the position of the 

carrier frequency when placed on the water peak. 

 

Figure 73 The best edited-relaxation spectra come from the T1p pulse sequence using two channels, F1 and F2. The second 
channel F2 is used for the pulse on the water frequency (o2p=4,8 ppm). The first channel F1 is for the hard pulse to let the 
magnetization going on the transverse plane, and the carrier frequency for the spin-lock wave set on the center of the region 
with the peaks of interest, at 2.2 ppm (o1p), between the water at 4.8 ppm and 0 ppm, for a good spectral coverage. 

 

Figure 74 depicts the evolution of the relaxation rates (inverse of the relaxation times) R1ρ as a 

function of the nutation frequency (ν1). The stability of the R1ρ measurements (Figure 74.a, b) 

depends largely on the slow molecular dynamics and the offset effect. These effects are visible 

at low spin-lock amplitudes, below ν1 = 2.5 kHz. However, the dispersion curves show that 

above 3 kHz, R1ρ stabilizes for most peaks. These results confirm that the previously designated 

spin-lock amplitude (4 kHz, red circle) is an adequate value for serum samples.  
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Figure 74 R1ρ relaxation rates as a function of υ1, for C and HFS serum samples relative to the peaks of four metabolites. (a) 

R1ρ for the C1 sample and (b) R1ρ for the HFS15 sample. Dotted lines are used to help visually track the progress of R1ρ. 

 

III.1.9 Effect of B1 Amplitudes on Statistical Analysis 

 

To compare the separation capability of T1 and T2 filtered spectra, OPLS-DA was 

performed to discriminate the C and HFS groups. The score plots are presented in Figure 75, 

where, the two OPLS component models (1 predictive + 1 orthogonal component) display a 

clear discrimination between HFS and Control samples with comparable statistical results 

obtained for all sequences (Table 33).  

Table 33 The OPLS-DA R2
Y, Q2

Y and p-values for HFS vs. C serum samples. 

A N = 18 R2
Y Q2

Y p-value 

1+1+0 CPMG 0,887 0,678 0,0034 

1+1+0 𝑇1𝜌
2𝑘𝐻𝑧 0,898 0787 0,00027 

1+1+0 𝑇1𝜌
4𝑘𝐻𝑧 0,854 0,645 0,0062 

1+1+0 𝑇1𝜌
5𝑘𝐻𝑧 0,886 0,737 0,00098 

 

These results show that the properties of each of the experiments used are reproducible and 

allow discrimination between groups by multivariate analysis (Figure 75). In addition, the 

loading plots exhibit the same profile for all the sequences with identical correlation 

coefficients. 
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Figure 75 OPLS-DA score plots for N=18 rat serum samples comparing the distribution of the HFS group with the C group using 
different sequences: (a) CPMG 200 μs, (b) T1ρ at 2000 Hz, (c) T1ρ at 4000 Hz, (d) T1ρ at 5000 Hz. 

 

The choice of the appropriate experiment may be guided by reviewing the pros and cons of 

each sequence. The 𝑇1𝜌
4𝑘𝐻𝑧 seems to be the best compromise between optimal spectral coverage 

and the use of moderated spin-lock amplitude. In this study, the filter duration of 480 ms was 

applied and chosen by eye to eliminate all the broad signals, including those of lipids, to process 

only the signals of the metabolites. Even if we consider that the amplitude of  𝑇1𝜌
5𝑘𝐻𝑧 is not 

excessive, especially with the filter lengths commonly used in metabolomics (between 60 ms 

and 100 ms), we must point out the only drawback which concerns the lower resolution obtained 

with this amplitude, which remains however safe to use. 𝑇1𝜌
2𝑘𝐻𝑧, as seen above, is characterized 

by a significant offset effect and should be ruled out.  

 
 
 

III.1.10 Assessment of T1 filter on HR-MAS Metabolomic Studies 

 

The relevance of the use of the T1 filter for HR-MAS metabolomics has never been 

discussed in the literature. In this section, we propose to assess this relaxation time on rat liver 

samples. 
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It should be noted that in HR-MAS studies of tissues, the possible degradation of the samples 

is an important issue. For a relatively high spinning rate (e.g., 4 kHz), tissue degradation can 

lead to the release of metabolites into the extracellular medium, resulting in narrowing of the 

peaks over the experiments and therefore bias in the comparison. However, the impact of 

freezing and prolonged HR-MAS analysis on the metabolic profile was assessed and shows that 

after 1.5 h, with a spinning rate of 5000 Hz, the levels of certain metabolites start to change.173 

In this section, the relaxation measurement was performed on freshly prepared samples from 

pieces of liver, stored at −80 °C, with a total experiment time of about 1 hour 40 min (10 min 

per T1ρ measurement), during which we did not observe significant changes in the spectra 

(Figure 76).  For the statistical assessment, the total experiment time was about 1 hour (10 min 

per experiment, CPMG / PROJECT / T1ρ), two MAS rates were used each time, starting with 

the slow spinning rate (1000 Hz). Moreover, tissue degradation during the NMR experiments 

was avoided by maintaining the sample at 4 °C with the Bruker cooling unit (BCU).  

 

 

Figure 76 No significant changes in the spectra even after two hours of experiments are reported. Here, the superposition of 
two spectra: red, at time 0 and the blue, after 2 hours. 

 

Conventionally, HR-MAS metabolomic studies are carried out by using CPMG filtered spectra 

at a relatively fast-spinning rate (4 kHz). The rotor synchronization does not seem to be a 

drawback and leads to relatively short inter-pulse delays (250 μs) that can be considered as 
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sufficient to refocus the J-modulation, even if this refocusing is imperfect. At low spinning rates 

(1 kHz, for example), rotor synchronization leads to a long inter-pulse delay (1 ms) and the 

PROJECT sequence is used to generate spectra without “J-modulation artifacts”. T1ρ filtered 

experiment can be a simple and efficient alternative since there is no precession during the 

evolution period of the magnetization and therefore no J-modulation artifacts. However, some 

properties related to the dependence of T1 to the nutation (1) and the rotation (r) frequencies, 

in addition to the obvious contribution of slow dynamic processes, have to be taken into 

account. This dependence has been widely noted on several applications are using T1 for the 

determination of the local dynamics of proteins by MAS.174–176  

Recently, Krushelnitsky et al.177 published a comprehensive article that presents the MAS 

dependence of the relaxation rate R1ρ, which was modulated by correlation times of slow 

motions, from 10 μs to 1 ms, green, red, and black curves in Figure 77 which depicts the R1ρ 

evolution as a function of spinning rates and correlation times.  

 

Figure 77 Analytical calculation of the on-resonance 15N R1p MAS dependence at different correlation times of motion of a 
15N–1 H spin pair. Reprinted with permission from  A. Krushelnitsky et al.105 Copyright 2014 Elsevier. 

 

In semi-solid samples, one can expect a contribution of both isotropic and anisotropic 

interaction to the relaxation mechanisms.178 To evaluate this behaviour, we measured the R1ρ at 

the two spinning rates, 1000 and 4000 Hz, commonly used in HR-MAS metabolomics, for 

selected B1 amplitudes. We report in Figure 78 the relaxation rates R1ρ (= 1/T1ρ) of some 
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selected metabolites for one randomly chosen sample (control-3) to assess its evolution as a 

function of B1 expressed by the nutation frequency (υ1 = γB1/2π) for the two MAS rates, 1000 

Hz (Figure 78.a) and 4000 Hz (Figure 78.b).  

 

Figure 78 R1  as a function of ν1 for liver control sample (C3) relative to six different peaks of six metabolites (a) at νr = 1000 

Hz and (b) at νr = 4000 Hz. Dotted lines are used to help visually track the progress of R1 . 
 

The general observation concerns the MAS dependence of the relaxation rates, which confirms 

the behaviour reported in the literature in the solid state.177 If we focus on ν1 = 4000 Hz, which 

was defined as optimal in the liquid study (as a better compromise for a moderated amplitude, 

sufficient spectral coverage, and better resolution), one can analyse quantitatively these 

evolutions (Table 34 and Table 35).  

 
Table 34 R1 (s-1) evolution of some chosen metabolites, from liver sample C3, randomly chosen, as a 
function of spinning (νR) and nutation (ν1) frequency. 
 

 νR = 1000 Hz νR = 4000 Hz 

Metabolites 6000 5000 4000 3000 2000 6000 5000 4000 3000 2000 

β-D-Glucose Doublet  4,92 4,95 4,88 4,89 4,83 11,84 7,07 5,03 6,49 9,05 

Creatine  Singlet 5,38 5,54 5,81 5,89 6,22 5,66 5,95 6,19 6,85 6,45 

Glycerophosphocholine Singlet 2,64 2,29 2,64 2,33 2,56 5,06 5,19 5,47 5,85 31,32 

Choline  Singlet 6,63 6,99 7,302 7,72 8,28 4,70 4,63 4,59 5,12 35,39 

Alanine  Doublet 6,11 6,07 6,15 6,28 6,98 7,35 7,66 8,56 9,32 27,91 

Lactate  Doublet 8,27 8,97 9,42 10,07 11,95 16,35 16,92 19,31 18,83 17,09 

ν1 (Hz) 
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Table 35 R1 evolution of some chosen metabolites, from liver sample C3, as a function of spinning 
rate (νR) for ν1 = 4 kHz. 
 

 

 

 

For certain metabolites, probably depending on the slow dynamic contribution, R1ρ increases 

with the MAS rate (e.g., lactate doublet and glycerophosphocholine singlet), for others, it 

remains substantially the same (creatine singlet and β-D-glucose doublet), and for some others, 

it decreases (i.e., choline singlet). These expected results, due to the heterogeneity of the tissues 

analysed in HR-MAS, do not constitute a drawback for metabolomic applications. Indeed, the 

behaviour of each metabolite is reproducible through different samples. However, the stability 

of the relaxation values around the chosen ν1 (4000 Hz) is critical. For both MAS rates, we 

found that around this value, the relaxation rates would not be drastically affected by the 

expected slight variation in B1 due to eventual different probe tuning from one sample to 

another. To assess qualitatively the reproducibility, we recorded the T2- and T1ρ-edited spectra 

for three samples taken from the same control liver (Figure 79).  

 

 νR = 1000 Hz νR = 4000 Hz R1  evolution 

β-D-Glucose Doublet 4,88 5,03 ↑ 

Creatine  Singlet 5,81 6,19 ↑ 

Glycerophosphocholine Singlet 2,64 5,47 ↑ 

Choline  Singlet 7,302 4,59 ↓ 

Alanine  Doublet 6,15 8,56 ↑ 

Lactate  Doublet 9,42 19,31 ↑ 
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Figure 79 - T2 and T1 edited spectra for three samples taken from the same control liver, sample C2. (a) CPMG, (b) T1, (c) 
PROJECT. In red the spectra acquired at νR = 4000 Hz, in blue at νR = 1000 Hz. 

 

The T1ρ and PROJECT filtered spectra are identical whatever be the MAS rate (νr = 1000 and 

4000 Hz), while the CPMG-filtered spectra present J-artefacts at νr = 1000 Hz, which result in 

negative signals and an intensity loss, especially between 1.5 and 3 ppm (Figure 79.a). 

 

 

III.1.11 Statistical Analysis on Liver Samples 

 

The spectra obtained with each pulse sequence (CPMG, PROJECT and T1) have the same 

filtration effect but the profiles show predictable intensity differences due to the different 

mechanisms involved in each relaxation filter.179 The impact of these differences on the 

statistical processing obviously depends on the reproducibility of the artefacts of each sequence 

Another important experimental consideration for the T1  is to avoid the synchronization of the 
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spinning frequency r with the spin-lock frequency 1. Indeed, this leads to a recoupling of the 

Chemical Shift Anisotropy (CSA), dipolar interactions, and magnetic susceptibility effects, 

which results in a loss of resolution.180,181 To avoid these contributions, we used a spin-lock 

amplitude of 4.3 kHz for both used spinning rates, 4 kHz and 1 kHz. Figure 80.a presents an 

OPLS-DA plot of all the spectra obtained with a MAS = 4 kHz. It shows that the CPMG and 

the PROJECT spectra are relatively similar and significantly different from the T1 filtered one. 

Interestingly, at low spinning rate, 1 kHz (Figure 80.b), the synchronization of the inter-pulse 

delays (1 ms) lead to significant discrimination between CPMG and PROJECT filtered spectra, 

due to the J modulation effect, which is not compensated with the CPMG sequence.  

 

Figure 80 OPLS-DA score plots performed on all liver samples including the two groups C and HFS obtained for each sequence 

(CPMG vs. PROJECT vs. T1) at r =4 kHz (a) and r =1 kHz (b). 

 

These differences can be assessed in a relevant way, directly on the spectra, but, in addition, 

statistical tools allow to evaluate the overall “inter-sequence” differences and the “intra-

sequence” reproducibility. 

The OPLS-DA multivariate analyses on the two groups, control against HFS, are depicted in 

Figure 81 and Figure 82. They enable us to evaluate the separation capability and the steadiness 

of T1 and T2 filtered spectra obtained at the two spinning rates, 1 kHz and 4 kHz.  
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Figure 81  Multivariate analysis using OPLS-DA performed on liver samples for the two groups:  C and HFS obtained for each 

sequence: CPMG (a), T1  (b) and PROJECT (c), at r =1 kHz. 

 

 

Figure 82 Multivariate analyses using OPLS-DA performed on liver samples for the two groups:  C and HFS obtained for each 

sequence: CPMG (a), T1  (b) and PROJECT (c), at r =4 kHz. 
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Whatever the spinning rate, the main observation is that the discrimination between the two 

groups is clear and the score plots obtained with the T1 filter provide similar statistical 

parameters to those ones obtained with PROJECT and CPMG sequences (Table 36). 

 

Table 36 The OPLS-DA R2
Y, Q2

Y and p-values for HFS vs. C samples of livers without one outlier (with N= 
number of the samples and A= number of components to fit the model) using Unit Variance (UV) 
scaling. 

 N A R2
Y Q2

Y p-value 

r =1000 Hz 

CPMG 17 1+1+0 0,966 0,770 0,00083 

T1ρ 17 1+1+0 0,869 0,673 0,0062 

PROJECT 17 1+1+0 0,857 0,650 0,0090 

r = 4000 Hz 

CPMG 17 1+1+0 0,947 0,798 0,00039 

T1ρ 17 1+1+0 0,923 0,793 0,00045 

PROJECT 17 1+1+0 0,943 0,797 0,00041 

 

The observed intragroup variation for the HFS group in each experiment can be explained by 

taking into account the inhomogeneity of the response of complex organisms to an external 

imbalance, here a food difference.182,183  This effect is observed on several parameters: overall 

weight of animals, gain weight, normalized liver weights, Homeostasic Model Assessment of 

insulin resistance (HOMA-IR) levels, serum glucose, triglycerides, cholesterol and insulin 

levels. In the previous article, which dealt with these samples,167 we clearly noted an increase 

of the standard deviation for all these parameters when we pass from controls to an increasing 

introduction of the number of external stimuli or imbalance (standard diet, HFS diet, HFS diet 

plus medication) (Table 37).  
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Table 37 Results of serum biochemical analysis and body weight after 10 weeks of diet. Table duplicate 
from the paper by Tranchida et al.166 Data of an additional group (HFS + C) are added to illustrate the 
increase in standard deviation by the introduction of an external factors: HFS dietary imbalance, then 
HFS + C supplementation (or medication). The heterogeneity of the response to each stimulus results in 
an increase in the standard deviation. 

HFS high fructose and saturated fatty acids, C curcuma (administration of hydroalcoholic extract of 
tumeric 100 mg/kg/day). Relative liver weight is defined as liver weight divided by body weight. Values 
are mean ± S.E.M (n = 6-12 rats/group). 

Group  Controls HFS HFS+C 

Body Weight (g)  435.17  20.74 438.42  31.85 444.75  50.78 

Gain Weight (g)  245.16  8.47 248.42  9.19 254.75  14.66 

Relative liver weight   0.0262  0.00078 0.0310  0.0010 ** 0.0334  0.0016 ** 

HOMA-IR   1 ± 0.33 10.79 ± 1.89 ** 6.97 ± 2.05 * 

Insulin (μg/l)  0.48  0.13 3.34  0.50 * 2.22  0.69 * 

Glucose serum (g/l)  1.07  0.185 1.82  0.41 * 1.80  0.44 * 

Total cholesterol serum (g/l)  0.60  0.02 0.68  0.04 * 0.66  0.06 

Triglycerides serum (g/l) 0.435  0.15 0.878  0.22 * 1.114  0.36 * 

*P < 0.05 vs. the control 

**P < 0.01 vs. the control. 

HOMA-IR: Homeostasic Model Assessment of Insulin Resistance. 

 

This dispersion is usually lower or even absent for the control groups.167 However, whatever 

the sequence used, this intra-group reproducibility is not found at r =1 kHz, as we can see in 

Figure 81, because of the non-reproducible sidebands present in the spectra, depending on the 

sample preparation. At r = 4 kHz, the absence of the sidebands allows to retrieve the intra-

group reproducibility for the control group (Figure 82).  

These results show that the artefacts inherent in each sequence are reproducibly replicated over 

the samples, and the multivariate analysis allows to detect the discrimination between the two 

groups, including the CPMG sequence at r = 1000Hz, which presents J-artefacts (negative 

signals and an intensity loss especially between 1.5-3 ppm) due to the long inter-pulse delay (1 

ms) used for rotor synchronization (Figure 81). However, CPMG sequence must obviously be 

excluded at r = 1000 Hz, since the quality of the spectra does not allow an accurate 
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determination of biomarkers. The T1 and PROJECT filtered spectra are identical for the two 

MAS spinning rates (r = 1000 Hz and 4000 Hz) and the loading plots provide the same profiles 

with comparable correlation coefficients (Figure 84 and Figure 83). However, the loading plot 

for the CPMG at r = 1000Hz (Figure 83.a) is obviously different and is unsuitable for the 

extraction of discriminating metabolites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                             

 

 

 

 

Figure 83 Loading plots of the OPLS-DA models of 
Figure 81 for a) CPMG, b) T1ρ, c) PROJECT experiments 
at νR = 1000 Hz for liver samples of control and HFS (rich 
in fructose diet) groups. 

Figure 84 loading plots of the OPLS-DA models of 
Figure 82 for a) CPMG, b) T1ρ, c) PROJECT at νR = 4000 
Hz for liver samples of control and HFS (fructose) 
groups. 
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III.1.12 Conclusions for T1ρ Assessment 

 

In this section, we have shown the application of the T1 filter in metabolomics on liquid 

samples (serum) and on tissues (liver). Its implementation is simple and does not require 

calculations for the adjustment of the duration of the filters, nor synchronization whatever the 

MAS spinning rates. Despite its advantages, its use remains “rejected”, probably due to the 

overheating effect which would be caused by the spin-locking. For the filter duration (hundreds 

of ms) and also the amplitudes used in metabolomics, up to 5 kHz, the heating is not a drawback. 

It is important to note that this work relates to spectrometers operating at 400 MHz and 600 

MHz. If metabolomic experiments with a T1 filter were to be performed at higher magnetic 

fields, the power of the spin-lock may not be sufficient to cover the entire spectrum. To avoid 

the offset effects, it will be necessary to use higher amplitudes, that, taking into account the 

metabolomic duration of the filters, should not have a deleterious effect. Moreover, we showed 

that if moderated offset effect is present, the analysis of the results leads to the same 

observations: the inter-group discrimination, and the extraction of the discriminant spectral 

regions from the loading plots. However, the developments and the implementation of the offset 

methods used in solid-state NMR184 to enhance the total effective field of the spin-lock 

represent an interesting prospect for wider spectral covers in metabolomics.185 
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III.2. Application of the 2D Maximum Quantum NMR for the 

characterization of enzymatic reaction medium 
 

In this section, we present a simple analytical method for rapid characterization of 

reaction mixtures involving enzyme complexes, using Maximum Quantum (MaxQ) NMR, 

accelerated with the Non-Uniform Sampling (NUS) acquisition procedure. Specifically, this 

approach enables, in a first analytical step, to count the components present in the samples.  We 

show, using two different enzymatic systems that, in this case, the implementations imply 

precautions related to the short relaxation times, in particular, for metalloenzymes or 

paramagnetic catalysts. Under these conditions, the 2D MaxQ experiment can be used 

qualitatively, for the assignment of the compounds. Finally, the combination of MaxQ NMR 

and diffusion, which leads to a 3D chart, greatly improves the resolution and offers an extreme 

simplification of the spectra while giving valuable indications on the affinity of the enzymes to 

the different compounds present in the reaction mixture. 

 

III.2.1 Quick Review of Enzyme Activity Monitoring by NMR 

 

NMR has been widely used to monitor enzymatic activity by recording the evolution of 

the spectra of substrates and/or products to characterize enzymatic processes that are complex, 

dynamic, and time-dependent. For complex systems involving the coexistence of multiple 

compounds (substrate, final product, and various intermediates), the identification and 

quantification can be a more arduous task. Thanks to the quantitative linear response, one 

dimensional 1H and hetero-nuclei (13C, 31P, 19F...)52 186 NMR have been the most used to record 

the delicate and fast variations in concentrations of substrates and products as a function of 

time.187 188 The methodological developments associated with recent studies have undergone a 
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significant renewal and provided versatile protocols, as the real-time NMR experiments,189  190 

191 to monitor in a fast and reproducible manner enzyme kinetics192 and to estimate, under 

favourable conditions, the Michaelis constant.193 188 In general, the effective use of quantitative 

1H NMR depends on the speciation of one or several well-defined peaks from crowded spectra 

for each component in the reaction mixture, even if the information has to be extracted from 

overlapping peaks. In this context, the contribution of NMR methods designed for mixture 

analyses is valuable and obvious. The algorithms for mathematical deconvolution of 

superimposed peaks were successfully transposed to the real-time NMR to identify the 

metabolites and propose an enzymatic reaction network.193 The most common NMR techniques 

used for mixture analysis are TOtal Correlation SpectroscopY (TOCSY) and Diffusion Ordered 

SpectroscopY (DOSY) (that brings the closest similarity to chromatography). As it was 

discussed in paragraph I.1.2.4., in this experiment, molecules are labeled by their molecular 

diffusion, which is roughly determined by the molecular size.46 Thus, the spectra of the 

components can be extracted if the differences in the molecular diffusions are large enough.194 

52 53 54 48 47 Otherwise the resolving power of DOSY will be restricted.195 The recent 

developments of the three-dimensional NMR sequences aimed to increase the resolving power 

of DOSY through a third dimension to resolve the overlapping resonances.196 197 198  199 200 but 

the wide use of these methods has been thwarted due to the long acquisition time required for 

recording several dimensions.  

 

III.2.2 Maximum-Quantum (MaxQ) NMR for the Analysis of Complex Mixtures 

 

1H Maximum-Quantum (MaxQ) NMR is a recently introduced approach for mixture 

analysis. It provides high-resolution spectra, in favorable cases up to tens of molecules.201 

MaxQ-NMR is a 2D experiment that aims at isolating, in a complex NMR spectrum, the signals 

of molecular fragments, carrying at least a specific number of protons, p. In the indirect 
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dimension, all of these signals contribute to a single Maximum-Quantum resonance, as in an 

ideal well-resolved 2D DOSY spectrum. MaxQ order corresponds, in fact, to the higher 

quantum transition leading to a singlet in the second indirect dimension. Moreover, these 

signals are dispersed in the horizontal direct direction according to their chemical shift and 

scalar coupling corresponding to the single quantum order (p=1). This technique can filter out 

the signals of several molecules, and thus simplify the spectra. Beyond the 2D-MaxQ NMR, 

the 3D-MaxQ-DOSY NMR leads to simplified spectra.202 203 MaxQ-NMR applications until 

now have focused on food chemistry (polyphenols) and environmentally relevant species 

(polyaromatic molecules).204 62 205 206 In this study, we go beyond exploring the application of 

2D-MaxQ NMR and 3D-MaxQ-DOSY NMR to simplify the spectra of the enzymatic reaction 

mixtures. Two enzymatic systems were used as case studies to assess this approach. The first 

system involved a fungal Copper Radical Alcohol Oxidase assisted by two accessory enzymes 

with 4-pyridinemethanol as substrate. The second system relies on a photo-induced system 

using a catalyst.  

 

III.2.3 Enzymatic systems under investigation 

 

In the first system the enzyme, a fungal alcohol oxidase (Copper Radical Alcohol 

Oxidase, CgrAlcOx), carries out the oxidation of 4-pyridinemethanol (the substrate), to an 

aldehyde and a carboxylic acid. The major expected products/intermediate are given in Table 

38.  
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Table 38 Probable compounds of the first enzymatic system. CrAlOx enzyme from PDB database (on 
the right) which catalyses the oxidation of the alcohol to the corresponding aldehyde. 

 

The enzyme employed in the second system is a laccase, a multi-copper oxidase, presents in 

plants, fungi, and bacteria, which oxidizes the substrate through the active site of four copper 

centres. The substrate used here is the para-styrene sulfonate (pSS), which is transformed in 

epoxide giving an opened diol species later, and then becomes an aldehyde. The major expected 

products/intermediates are given in Table 39. 

Table 39 Compounds of the second enzymatic system with the substrate para-styrene sulfonate, the 
intermediates and the final expected product. 

 

 

III.2.4 NMR Analysis of the Enzymatic Reaction Medium 

 

The 1D 1H spectra of both enzymatic mixtures present several signals in the aromatic 

regions, expected from the different compounds (intermediates) present in addition to the initial 

substrate and the final product. Figure 85 shows the 1D proton spectrum of the first reaction 

mixture after 16 hours of reaction in presence of 4-pyridinemethanol as substrate. 
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Figure 85  1D 1H spectrum of the first enzyme system with the 4-pyridinemethanol as substrate, with a zoom in the region 
between 8.8 and 7.2 ppm. 

 

As explained before, the 1H Maximum-Quantum NMR is a 2D experiment that isolates the 

signals of the same molecular fragments. Depending on the number of protons in the coupled 

spin system, the excitation of the highest coherence order (MaxQ) provides a singlet in the 

indirect dimension correlating all the peaks involved in this spin system. In this study, the 

substrates, 4-pyridinemethanol and para-styrene sulfonate (pSS), as well as the products and 

intermediates (illustrated in Table 38 and Table 39) are di-substituted aromatic molecules, with 

a maximum excitable coherence of 4 quanta (p = 4). Therefore, the 4Q multiple quantum spectra 

will allow to isolate the peaks belonging to the different molecules in the mixture. 

 These MaxQ spectra (2D MQ/SQ correlation) were acquired with a standard sequence 90x-τ/2-

180x-τ/2-90 described in detail in previous works,62,201,207 the coherence order selection was 

carried out by two pulse field gradients around the last 90° pulse, by selecting the intensity of 

the second PFG equal to p times the first one.208 The interval d2 was optimized to obtain the 

highest signal intensity, for the 4Q-1Q spectra, this corresponded to 90 ms and 55 ms for the 

first and second samples, respectively (Figure 86). 
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Figure 86 2D MaxQ pulse sequence. The duration of the preparation period τ was optimized to obtain as uniform as possible 

MQ excitation of the desired coherence order. The ratio of the coherence selection gradient pulses was chosen to fulfil G2 = p 

× G1, where p is the MQ coherence of choice.  

 

In the 2D MQ NMR, the multiple quantum coherences are excited using the pulse sequence in 

Figure 86. After the last (/2) pulse, the amplitude of the antiphase terms produced by the 

coupling Hamiltonian is determined by the intensity of the selected coherence orders which are 

modulated by (Equation 3.2):209 

                                                2𝑝 ∏ sin(𝐽𝐼𝑋𝜏)
𝑝−1
𝑖=2  𝑒𝑥𝑝

−(
𝜏

𝑇2𝑖
∗ )

           (3.2)                                           

The amplitude of the different coherence orders is strongly modulated by the main delay of the 

preparation period,  In a spin system with different coupling constant J, the delay  which 

provides the maximum intensity, corresponds to the reciprocal of the smaller coupling constant 

(Jsmall), 1/2Jsmall. Theoretically, in an aromatic spin system, this corresponds to J about 1 Hz, 

hence 
𝜏

2
 = 0.5 𝑠. It has been shown that for free small molecules the sinusoidal dynamics along 

the  delay is hampered by the exponential decrease due to the relaxation188 and that 
𝜏

2
 around 

0.3 s is most often found as the optimal value.210 However, this feature has never been assessed 
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in the presence of large entities where the relaxation times decrease drastically. The evolution 

of the intensities of the 4Q signals as a function of the 
𝜏

2
 delay for the two pure substrates and 

the reaction mixtures are depicted in Figure 87. As expected, the evolutions in the presence of 

the enzymatic complexes are different from those ones of the free molecules. According to 

Equation 3.2 the sine evolution of the 4-quanta coherence intensity will be thwarted by the 

relaxation decay leading to signal attenuation. The ideal and uniform excitation is rarely 

achieved because of this effect and the good compromise is to get as close as possible to the 

optimal value to access distant couplings without signal loss. For the free molecules (Figure 

87.c and Figure 87.d) the second vertex of the sinusoid provides a relatively uniform excitation 

with the 
𝜏

2
 delay of 230 ms and 180 ms for the first and the second substrate, respectively. For 

the reaction mixtures (Figure 87.a and Figure 87.b) the relaxation decay is more manifest.  

However, for the first system (Figure 87.a), the second vertex remains visible at 
𝜏

2
= 210 𝑚𝑠 

unlike the second system (Figure 87. b) for which the only exploitable vertex is the first at 
𝜏

2
=

55 𝑚𝑠. 
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Figure 87  Evolution of the 4Q-filtered signals, displayed in absolute mode, of the reaction mixtures. a) first system with the 
enzyme, c) first system only with the substrate, b) second system with the enzyme, d) second system only with the substrate. 

 

The interactions between the compounds and the large protein complexes, whether specific or 

not, lead to a drastic reduction of the relaxation times. However, depending on the sample used, 

the behaviours are different. We retrieve the sinusoidal oscillation for the first system (Figure 

87.a) but it is absent for the second one where the relaxation contribution seems very important 

leading to rapid extinction of the signal, probably due to the paramagnetic contribution from 

the multi-copper oxidase enzyme, the laccase, and the ruthenium photo-catalyser (Figure 87.b). 

These observations show that a standard implementation of MQ NMR cannot be envisaged to 

characterize the enzymatic reaction mixtures. The choice of the optimal preparation time, , 

should be guided visually for each sample. 

Figure 88 and Figure 89 show the 2D 4Q-1Q spectra for the two reaction mixtures obtained 

with the sequence Figure 86. These spectra provide a fingerprint in which the visual 
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enumeration of molecules is simplified since the peaks belonging to the same molecular 

fragments are aligned on the same frequency in the indirect dimension, and we can count six 

and four different components for the first (Figure 88) and the second reaction mixture (Figure 

89), respectively.  

   

 

Figure 88  2D 4Q-1Q spectrum of the first system with a NUS at 25 % acquired with TD1=128, NS=32 with a total experimental 
time of 30 minutes. 

 

An interesting feature can be highlighted. When certain products or intermediates are present 

in low concentration, they can be confused with 13C satellites in the 1D 1H spectra. This 

ambiguity is resolved in the 2D MaxQ spectra where only the peaks of the compounds are 

recorded. 



CHAPTER III: Application of NMR developments on real samples 

152 

 

Figure 89  2D 4Q-1Q spectrum of the second system with a NUS at 25 % (compression factor=4) acquired with TD1=128, NS=32 
with an experimental time of 30 minutes. 

 

III.2.5 Acceleration and Resolution Improvement 

 

For dynamic systems, it is important to propose and perform experiments with short 

acquisition times. To reduce the experiment time without information loss, we may apply the 

standard NUS acquisition procedure available within the Topspin software. It is known that the 

assessments of the correct NUS spectra reconstruction are qualitative and closely linked to the 

signal-to-noise ratios.211 We did not resort to this visual evaluation, since this work has been 

widely carried out in the literature, and it is now admitted that a compression ratio of 4 (NUS 

at 25%) allows producing faithful spectra in a reasonable experimental time without significant 

loss of resolution or signals while avoiding artifacts. For each sample, the experiment time of 

the two-dimensional 4Q-1Q spectrum was reduced to 34 min. Another application of the NUS 

acquisition procedure is to increase the resolution in the indirect dimension without experiment 

time cost by increasing the number of points in the indirect dimension with a factor equal to the 

compression rate. Figure 90 shows the NUS 2D 4Q-1Q spectrum of the laccase reaction 

mixture (second system) recorded with 256 points in F1 and a compression rate of 4. An 

increased resolution is obtained and enables the two peaks around 6 ppm, in the indirect 
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dimension, to be well resolved. However, some compression artifacts appear (red circle in 

Figure 90).  

 

Figure 90  2D 4Q-1Q NUS (25%) of the second system using 256 points (TD1) in the indirect dimension, obtained in 48 minutes. 
Standard experiment time is 3.25 hours. Compression artefacts are showed inside the red circles. 

 

III.2.6 2D DOSY and 3D MaxQ-DOSY  

 

In this framework, the effectiveness and the power of DOSY NMR for direct 

identification of mixture composition are well established.48,54 Provided that both mobility and 

spectral resolution are sufficient, it allows the extraction of NMR spectra of pure compounds. 

On the other hand, the resolving power of DOSY has been limited by technical and signal 

processing difficulties. Indeed, much of the research in the development of better DOSY 

experiments focuses on this latter aspect. When a numbering purpose is sought during a first 

analysis step, DOSY NMR can also be an appropriate method. This feature is explored in this 

section. The DOSY spectrum of the CgrAlcOx reaction mixture (first system) obtained using 

the standard convection compensated pulse sequence is presented in Figure 91. The first 

interesting finding that can be highlighted concerns the non-expected resolution due to the 

mobility which is sufficient to allow the detection of the six compounds and extract their 
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diffusion coefficients. Given the identical molecular size of these compounds which have only 

undergone chemical modifications at the main functions (alcohol - aldehyde- acid-...), the 

diffusion coefficients should be very close and would not allow isolating the compounds. The 

only entity presents in the mixture which can affect the diffusion coefficients in a different way 

is the protein complex, which can differentially interact with the compounds according to the 

affinity. 

 
Figure 91  2D DOSY spectrum for the first system using a standard convection compensated pulse sequence (Bruker notation: 
dstebpgp3s). Processed with DOSY Toolbox (GNU General Public License) with 512 points. 

 

Standard DOSY spectra were recorded by a conventional convection compensated pulse 

sequence, based on the stimulated echo and incorporated bipolar gradient pulses, and an Eddy 

current delay (BPP-LED).199 The shape of all gradient pulses was Smoothed Square and the 

LED delay was 5 ms. The diffusion delay  was set at 100 ms, the gradient strength, g, was 

linearly incremented in 32 steps from 2% to 98% of its maximum value with a duration of 1 

ms, and 8 scans were recorded. Data were processed using Dosy Toolbox (GNU General Public 

License)212 with 256 points for the inverse Laplace diffusion dimension.  

Several three-dimensional NMR sequences have been proposed to increase the spectral 

resolution of DOSY through a third dimension to further spread out overlapping 
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resonances.199,197,213,196 Recently, we developed 3D MaxQ-DOSY that associates the two 

“demixing” power of each method (MaxQ and DOSY) and offers a more simplified layout.63  

The diffusion measurement using multiple-quantum coherences was demonstrated in the cases 

of scalar, dipolar, and quadrupolar coupling.214–218 It has been shown that if the dephasing 

information resulting from translational dynamic is encoded while a p-coherence order has been 

selected, the apparent gradient, or the effective gyromagnetic ratio γ, is multiplied by p.214,215 

In this case, the echo signal attenuation 
𝐼

𝐼0
 of the PGSE NMR experiment is governed by a term 

of the type:194 

 𝑒(−𝜸𝒆𝒇𝒇
2 𝑔2𝐷𝛿2 ∆′)                                               (3.3) 

where for homonuclear p-quantum coherence, the apparent gyromagnetic ratio 𝛾𝑒𝑓𝑓 = 𝑝𝛾. 

Equation 3.3 is calculated assuming square pulses for the field gradient, and, like in Equation 

1.7, Δ’ is the diffusion delay that takes into account the diffusion during the gradient pulses. 

The design of the MQ-DOSY sequence aimed at obtaining a uniform overall diffusion-induced 

signal loss. In practice, to compensate for the increased sensitivity to magnetic field gradients 

due to effective gyromagnetic ratio (𝑝𝛾), the gradient pulse duration  was divided by p.  

A crucial aspect for fine separation of mixture components using DOSY experiments is the 

compensation of convection effects. This is once again demonstrated here. Initially, a standard 

Hahn spin-echo-based PGSE was integrated into the sequence. In this case, significant 

convection effects occur and the diffusion-based spin-echo attenuation failed to properly 

determine diffusion coefficients. In the presence of convection, the spin-echo attenuation is 

modulated by a cosine term and Equation 3.3 becomes (Equation 3.4):161,195,219,220  

 cos(𝛾𝑒𝑓𝑓𝛿𝑔𝜈Δ) 𝑒(−𝛾𝑒𝑓𝑓
2 𝑔2𝐷𝛿2 (∆′))                                     (3.4) 

where  represents the convection velocity. The other parameters are defined in Equation 3.3.  
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As shown in Equation 3.4, convection effects appear amplified by the effective gyromagnetic 

ratio (𝑝𝛾), and become a real nuisance, especially when high-quantum orders (4Q in this study) 

are selected. The incorporation of a convection compensation scheme in 2D and 3D sequences 

allows recovering characteristic diffusion attenuation for measuring diffusion coefficients.198,221 

The convection compensation effect of the used scheme in Figure 92 can be easily 

demonstrated by considering the phase shift at the level of each spin.222       

After the first gradient echo, the phase shift is given by: 

∆∅𝑖
(1)

= 𝛾 (𝑝 × (𝐺3))𝛿𝑧0,𝑖 +  𝛾(𝑝 × (−𝐺3))𝛿(𝑧0,𝑖 + 𝑖
∆

2⁄ ) =  𝛾(−𝑝𝐺3)𝛿𝑖
∆

2⁄  

where p represents the coherence order, 𝑖 the convection velocity,  is always the diffusion 

delay, z0,i stands for the initial position of spin i, G3 and  stand for the strength and the duration 

of the gradient, respectively. 

The  pulse results in the inversion of the sign of the coherences and allows refocusing the 

chemical shift evolution during the diffusion delay. 

∆∅𝑖
(1)

=  𝛾(𝑝𝐺3)𝛿𝑖
∆

2⁄  

The second gradient echo considered independently gives the net phase shift: 

∆∅𝑖
(2)

=  𝛾 (𝑝 × (𝐺3))𝛿𝑧0,𝑖 +  𝛾(𝑝 × (−𝐺3))𝛿(𝑧0,𝑖 + 𝑖∆) =  𝛾(−𝑝𝐺3)𝛿𝑖
∆

2⁄  

Thus, at the end of the sequence the sum of the two echoes leads to the complete suppression 

of convection effects: 

∆∅𝑖
(1)

+ ∆∅𝑖
(2)

 = 0  

The three-dimensional 4Q-DOSY pulse sequence and the obtained spectrum for the first 

system, with its three 2D projections, are reported in Figure 92 and Figure 93, respectively. 
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To resume, 4Q-DOSY means that the diffusion effect was encoded while the 4Q coherence 

order was excited, which is also the MaxQ order for the six molecules within the reaction 

mixture. To compensate the increased sensitivity to magnetic field gradients because of 

effective gyromagnetic ratios (γeff=pγ), the gradient pulse duration δ was divided by p (here 

δ/4). A better resolution is provided especially in the 4QDOSY-4Q projection plane with only 

one spot par molecule located at the crossing of the value of the translational molecular 

diffusion and the MaxQ (4Q) chemical shift, δMaxQ. We can hence extract the diffusion 

coefficient and classify the molecules of the first system according to their affinity to the 

enzymatic complex (by increasing affinity: 5 and 6 not observed due to the lower sensitivity, 

and 1 / 3 / 2 / 4). The duration of 3D spectra is a drawback. For this reason, we collect this 

experiment with the NUS using a compression factor of 4 (25 %), leading to an experiment 

time of 3 hours (Figure 93).  

Figure 92 Pulse Sequences for 3D MaxQ-DOSY. Black and white pulses represent rf pulse flip angles of  and , 

respectively. The phases of the first three pulses where along the x axis. The phase  was chosen to select odd or even 
MQ orders (x or y for even or odd order excitation, respectively). The duration of the preparation period d2 was optimized 
for the uniform excitation of homonuclear MQ of the desired coherence order, the ratio of the gradient pulses was 

selected to fulfill the intensity of G2 = p × G1, where p is the MQ coherence of choice. r means gradient recovery times 

and a additional delay equal tor introduced to center the second  pulse. For 3D experiment:  = 0.5ms,  = 100ms.  
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Figure 93 Projections of the zoom of the 4QDOSY-4Q 3D experiment in the region of 9.5-7 ppm for the first enzyme system. 
Left: 4QDOSY-1Q projection; middle: 4Q-1Q projection; right: 4QDOSY-4Q projection. The scale in the 4Q dimension, δ′MQ, 
corresponds to a normalization to the p-quantum order (a division by 4 in this case). 

 

III.2.7 Conclusions 

 

In this section, we showed that the NMR spectra of mixtures resulting from the reaction 

of enzyme complexes can be simplified by the well-established 2D Maximum Quantum NMR 

approach, which allows rapid counting of molecules by isolating the peaks belonging to the 

same component. For quantification purposes, the simple approach that can be envisaged is to 

return to the 1D proton spectra to perform the integration of the identified peaks. In the case of 

mixtures of free small molecules, the delay of the preparation period, τ, of the Multiple 

Quantum pumping block of 500 ms is accessible. This parameter becomes very limiting when 

compounds are interacting with large entities and even more when paramagnetic elements are 

present. Depending on the studied system, the reduction of the relaxation times implies an 

adjustment to find a compromise between a uniform excitation and loss of the signal. Recent 

developments with the NUS recording approach enable the acquisition of 2D MQ spectra with 

short experimental times appropriate to fragile and unstable systems.159,223 Finally, the 
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association of the MaxQ and diffusion spectroscopy represents an interesting combination that 

provides an extreme simplification of NMR spectra and allows access to valuable information 

as the molecular interactions and probably to other physico-chemical information.  

  



CHAPTER III: Application of NMR developments on real samples 

160 

General Conclusion and Perspectives 

The main work in this thesis was to evaluate the BSS algorithms for the decomposition 

of NMR spectra of complex mixtures.126 These algorithms were already used for NMR and 

showed great potential, calling for further development, to produce rapid and stable algorithms, 

which can be applied to multidimensional NMR spectra with reasonable computation times, 

two or three hours, depending on the number of spectra and the power of the 

computers.     During this thesis, several algorithms have been tested on synthetic mixtures of 

terpenes which present complex and extremely overlapped 1D spectra. We showed that STALS 

algorithm is the most adapted for the decomposition of 1D simulated spectra, BC-VMFB for 

1D real spectra, while PALM and BC-VMFB-wavelets are the most efficient for the 

decomposition of the 2D HSQC US and NUS, and TOCSY. For each case, the spectral 

fingerprint is retrieved for the compounds of the mixtures, despite some spurious peaks. An 

interesting point in this thesis is the use of SIR, SDR, and Amari indexes on NMR data. These 

parameters appear to be suitable for evaluating the decomposition of spectra and for estimating 

the concentrations of components in mixtures. At first sight, SIR can be considered as the most 

relevant criterion to evaluate separation capabilities of the BSS. However, SIR seems to be 

blind to the shifts, while SDR goes in the sense of the visual evaluation and it seems more 

appropriate. There is a need to better evaluate the SIR and SDR indexes for a quantitative 

assessment of the BSS. Smoothing the spectra with pre-processing before applying the BSS to 

broaden the peaks can be an interesting perspective for making SIR less sensitive to the shifts. 

The BSS requires the knowledge of the number of the sources to fit. A statistical analysis, as 

the Principal Component Analysis, can be helpful for the initialization.  
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This work highlighted obvious issues concerning the need for pre-processing steps, which were 

included in the algorithms, to take into account the receiver gain and nc_proc factor, for 

example. The alignment of the mixture spectra is also a fundamental step. However, even after 

careful alignment, the Linear Instantaneous Mixture is not the ideal model and has to be 

improved. These improvements could include, for example, the chemical shift variations or the 

influence of peak width.  

In 2D case, the separation is better and the concentrations are well estimated in comparison to 

the 1D situation, maybe a consequence of the increased dispersion and data sparsity, also if the 

computational workload increases. In this context, the reduction of data dimensions to process 

only the regions containing signals, to significantly reduce the workload, is a promising 

perspective. Furthermore, the application of the BSS on NUS data sets highlights an interesting 

feature that can be considered as a denoising filter, which restores source spectra without NUS 

artefacts. The combination of data dimension reduction and NUS leads to the shortening of the 

overall analysis time (signal acquisition and signal processing).  

Obviously, the BSS works for other 2D experiences, but each one has its own features that need 

an adaptation. Preliminary results for TOCSY are promising, either in standard acquisition (US) 

or NUS. In this case, the evaluation indexes are not too satisfactory with the SIR and SDR lower 

and the Amari index one order of magnitude higher than for 1D and 2D HSQC. This can be due 

to the presence of the diagonal peaks (more intense) in homonuclear 2D experiments. The 

attenuation and removing of these latter with particular processing can be a solution.  

We explored the use of a single sample with spectroscopic disturbances that mime the 

concentration variations to blindly decompose NMR spectra. We have shown that, for the 

diffusion experiments, the concomitant variations of the intensities can be detected by the BSS 

algorithms if the difference in diffusion coefficients is of an order of magnitude. These results 
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show that it is possible to associate any spectroscopic disturbances with BSS, provided that they 

produce a concomitant variation. 

In the third chapter, several NMR experiments are applied in order to analyse real complex 

mixtures, such as biopsies and enzyme systems. 

- The results obtained on the assessment of the T1p filter in metabolomics are very satisfying in 

terms of overheating of samples and offset effect. Further developments and implementations 

in metabolomics studies will be expected in the future with a robust evaluation of the impacts 

on statistical analyses, using different spin-lock schemes. 

- NMR spectra of enzymatic reaction medium can be simplified by the 2D Maximum Quantum 

NMR approach, which allows rapid counting of components by isolating the peaks belonging 

to the same compound.  We show, using two different enzymatic systems that the 

implementations imply precautions related to the short relaxation times, in particular, for 

metalloenzymes or paramagnetic catalysts. Under these conditions, the 2D MaxQ experiment 

can be used qualitatively, for the assignment of the compounds. The association of the MaxQ 

and diffusion spectroscopy represents an interesting combination, which leads to a 3D chart 

that greatly improves the resolution and offers an extreme simplification of the spectra while 

giving valuable indications on the affinity of the enzymes to the different compounds present 

in the reaction mixture.  
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Annexes 

Annexe.1 Data Sparsity 

  

In signal processing, statistics or machine learning, sparsity (sometimes called also 

sparseness or parsimony) refers to situations where a vast majority of data is either zero-valued 

or extremely small. In a sparse matrix most of the elements are zero, and in our case this is 

referred to no intensity signals, otherwise the matrix is considered dense (if most of the elements 

are non-zero valued).224  

During the last years, sparsity has become a popular paradigm in several contexts, emerging in 

signal de-noising, inverse problems, etc., where it may be good to search for sparse solution, 

thus reducing the number of unknowns.57  

ℓ1 norm and entropy allow to introduce parsimony. In this work, we impose this on S-matrix, 

considering that the spectra are sparse. We added an indicator to have the data bigger than a 

small value such as epsilon (non-negative). In the entropy there is a logarithm, so we must have 

positive data anyway, which is not the case with the standard ℓ1.225 

 

Annexe.2 Majorize-Minimization (MM) algorithm 

 

Majorize-Minimization (MM) algorithm substitutes a difficult minimization problem 

into a simpler optimization problem.116–118 It can be defined as an iterative optimization method 

which at each iteration finds an upper bound for the objective function at the current value, and 

searches for the minimum of this upper bound. The upper bound has to be such that its minimum 

can be easily computed. In our approach, following seminal work by Lee and Seung,115,226 the 

objective function is split as the sum of a concave function and a convex function (Figure 94).  
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Figure 94  The given function F(x), which is objective function in our case, is split as the sum of a concave function and a convex 
function. Here, the example of majorization of a concave function by the tangent. Reprinted by I. Toumi thesis (2013). 

 

The concave function can be upper bounded by its tangent at the current point, while an upper 

bound for the convex part can be computed using a technique called Jensen's inequality. The 

upper bound of the objective function is the sum of the two upper bounds, and a closed form 

solution can be found in some specific situations (Figure 95). 

 

Figure 95 Explication scheme of Majorize-Minimization (MM) algorithms. It operates by creating one or more auxiliary 
majorizing functions of a given function F to be optimized, starting from a certain point where the tangent passes.  Given F(x), 
the starting point is xt where a majoring tangent and convex quadratic function is constructed and it is known how to optimize 
it. The minimum in xt+1 is where the calculated gradient is = 0. Another quadratic majorizing tangent function is then 
constructed in xt+1 where the minimum is found in xt+2. The main idea is to optimize the coloured majorizing functions (in blue 
and green) rather than the more difficult F(x) in black. 
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Annexe.3 JADE initialization  

 

Joint Approximate Diagonalization of Eigen-matrices (JADE) is an approach to BSS 

that exploits a hypothesis of statistical independence of sources. As such it can be called an ICA 

(Independent Component Analysis) method. ICA generally proceeds by minimizing an 

objective function that quantifies the degree of dependence between candidate sources. In the 

case of JADE, the criterion is based on higher order moments. JADE only requires the number 

of sources to be estimated to start the initialization in function of matrix X, with the mixtures of 

departure, and K, the number of the sources (B=jadeR (X, K)). JADE, using correlations and 

run on X-matrix, produces an estimate for the un-mixing matrix, denoted by B. S=BX provides 

an estimate for the sources and the pseudo inverse of B (A=pinvB) yields an estimate for A. 

Pinv stands for pseudo inverse for the use of the least squares, because inverse matrix may not 

exist. These estimates in fact take both positive and negative values, thus we use as initialization 

the absolute values S=|BX| and A=|pinvB|. 

 

Annexe.4 Projected Alternate Least Squares (PALS) algorithm 

 

PALS algorithm used the most classical objective function with the squared ℓ2 norm of 

the difference X-AS between data in given X-matrix and the ones derived by the LIM model AS 

(Equation 1.10): 

                                               F(Χ|A,S) = 
1

2
  || Χ − 𝐴𝑆|| 𝐹

2  

The corresponding update rules are given by: 

UpdA(A, S) = Π+[(AS - X)ST ],      UpdS(A,S) = Π+[AT(AS-X)], 
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where Π+ denotes the operator that sets to zero all negative matrix coefficients of its argument.5 

(AS - X)S T and A T(AS-X) are the solutions of the equations ∇F = 0 with respect to A then with 

respect to S, where ∇ is the gradient.  

The gradient at a point p of a scalar multi-variable differentiable function f is the vector ∇ f (p) 

which gives the direction in which the function grows fastest in the neighbourhood of p. A 

gradient exists at every point p where the function f is differentiable, ∇ f is called a vector field.  

∇f (p) = 

[
 
 
 

𝜕𝑓

𝜕𝑥1
(p)

⋮
𝜕𝑓

𝜕𝑥𝑛
(p)]

 
 
 

 

  

This is a differentiable optimisation with a F that is differentiable and the gradient can be 

calculated and annulated. 

 

Annexe.5 Soft Threshold Projected Alternate Least Squares (STALS) algorithm 

 

To enforce the sparsity of the sources, a common practice is to add to the quadratic 

objective function, an ℓ1 penalization, which represents the sum of the absolute values of the 

sources terms (Equation A.1): 

                                               F(Χ|A,S) = 
1

2
  || Χ − 𝐴𝑆|| 𝐹

2  + λ s||S||1                                (A.1)                                                   

where ||S||1 is the so-called ℓ1 norm of S, in other words the sum of absolute values of the 

elements of S, and λ s is a positive constant which modulates the strength of the penalty, setting 

to zero the values whose absolute values are smaller than the threshold λs. It is user defined, 

and must be carefully chosen. If λS is taken too big, part of the signal is erased and considered 

as noise, while if λS is set too low, part of the noise is kept into the signal. In our work we have 
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systematically compared results obtained with 0,01 σ, 0,1σ, 1σ, 10σ, 100 σ, etc., where σ is the 

standard deviation of the noise estimated from real data, using a signal-free segment. 

 To solve this problem, commonly, the projection Π+ of S is replaced by the non-negative soft 

thresholding operator Sλ, which sets to zero all matrix coefficients smaller than the threshold. 

The corresponding update rules become: 

UpdA(A,S) = Π+[(AS - X)ST ],  UpdS(A,S) = Sλ [AT(AS-X)], 

where PALS coincide with STALS when λS = 0. 

 

Annexe.6 Proximal Alternating Linearized Minimization (PALM) and Block 

Coordinate Variable Metric Forward- Backward algorithms 

 

Proximal Alternating Linearized Minimization (PALM) and Block Coordinate Variable 

Metric Forward- Backward have the objective to minimize the cost function (Equation A.1), 

considering both the minimization of the quadratic part and the regularization part.227 They are 

based on a projected gradient descent algorithm. BC-VMFB algorithm is a pre-conditioned 

algorithm using variable metrics (VM) allowing the increase of convergence speed.227 It uses 

the D. D. Lee and H. S. Seung preconditioning, where γg, the gradient descent step size, is 

represented by a preconditioning matrix.115 

PALM is different from BC-VMFB because has not the preconditioning step and γg is scalar. 

The update rules for BC-VMFB and PALM are given by: 

UpdA(A,S) = Π+[A - γg(AS - X)ST ], 

UpdS(A, S) = (Sλ/ γg [ψT(S- γg AT(AS-X))]), 

The γg is used in convex optimization to minimize and find the location of the global minimum 

of a multi-variable function. Since the gradient ∇f (p) gives the direction in which the function 
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grows faster, to find the minimum, γg goes in the opposite direction to that of the gradient. The 

algorithm starts at an initial point, then moving a small distance in the negative of the gradient, 

will go to a new point more or less quickly thanks to γg. The moved distance is in fact decided 

by the step size γg. This new point approaches the solution. If the value of γg is too small, the 

algorithm will be too slow to find the global minimum, while if it is too big we miss the 

minimum and the algorithm diverges.  

In PALM, the fixed step size is γg <  1/ κ where κ is the Lipschitz constant, derivation of the 

Lipschitz continuity. 

As shown in Figure 96, given two metric spaces (X, dx) and (Y, dy) where dx denotes the metric 

on the set X and dy is the metric on set Y, a function f: X→ Y is called Lipschitz continuous if 

there exists a real constant κ≥0 such that, for all x1 and x2 in X:228 

dy (f(x1),  f (x2)) ≤ κ  dx(x1, x2) 

and 

|f(x1) - f (x2)| ≤ κ |x1 - x2| 

where κ is referred to the Lipschitz constant for the function f. The smallest constant is usually 

the best constant.  

 
Figure 96 Explication scheme for the Lipschitz constant. 

 

F: ℝ N → ℝ is differentiable. Moreover, F has an κ-Lipschitzian gradient where κ>0:227 

||∇F(x) − ∇F(y)|| ≤ κ ||x – y|| 
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This is possible only if f(x) is a convex function (Figure 97): 

f(x) is a convex function if and only if for all real 0 < t < 1 and all x1, x2 ∈ Χ such that x1 ≠ x2:  

f (tx1 + (1-t) x1) ≤ t f (x1) + (1-t) f (x2) 

 

Figure 97 Example of a convex function. 

 

Annexe.7 Changing the representation domain using wavelets 

 

The algorithms used also change with respect to the source representation domain, 

which can be in spectral domain or wavelet domain. This regards a new optimization method, 

different from the alternate approach on A and S for the bi-convex problem, used to optimize 

the least squares criterion, with respect our two variables A and S. 

In digital signal processing, the word wavelet comes from Morlet and Grossmann that used it 

in the early 1980s. The French translation is “ondelette” meaning small wave.  

The use of wavelets to process NMR signals has been exploited by several authors where the 

main advantage was its ability to compress signals.229 230 231 A wavelet is a wave-like oscillation 

defined as a sinus function. Using convolution techniques, wavelets can be combined with 

known portions of a damaged signal, for example, to extract information from the unknown 

region.   

It is a useful mathematical tool that can be applied to several subjects, in different kind of data, 

but also to extract information from audio signals and images. In data analysis, they are 
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generally used as sets of complementary wavelets to reversibly decompose data without gaps 

or overlaps. Wavelet compression/decompression algorithms are useful to recover the original 

information with minimal loss.  

The mixtures and sources are represented by point values, skℓ and xnℓ. The objective functions 

are separable. For a certain A, columns of S (same regions if spectra for different sources) are 

processed independently of each other. Possible correlations in the spectral domain (represented 

by index ℓ) are not exploited. It is possible, in this way, to describe the spectral domain using a 

different representation based on an expansion on a set of L-dimensional vectors, which form a 

basis of the L-dimensional space. Using this representation, a regularization is introduced on 

the corresponding coefficients rather than the source matrix S. If these vectors are noted as 

{ψ(c), c=1, … L}, and therefore they are concatenated in a square matrix denoted by ψ (where 

the columns of ψ are the vectors ψ(c)), it may be shown that the coefficients of the source matrix 

in this basis are given by matrix Γ= ψTS (where T stands for matrix transposition). This new 

adaptation of the generic objective function can be re-written as: 

F(Χ|A,S) = 
1

2
 || Χ − 𝐴𝑆|| 𝐹

2  + fA(A) + f Γ(ψTS), 

where fΓ is a penalty function. We will choose an ℓ1 penalization with a regularization parameter 

λ ≥ 0.  f Γ(Γ) = λ Σk,l |γk,l|, where the coefficients of matrix Γ are γk,l in the optimization in the 

wavelet transform domain. This enforces the sparsity, concentrating the information in very 

few coefficients, with a larger number of coefficients close or equal to zero.5 

 

Annexe.8   Wavelet-based PALM and BC-VMFB Algorithm  

 

Here the sparsity is imposed on the wavelet coefficients of the spectra γm,l . The 

objective function will be: 
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F(Χ|A,S) = 
1

2
  || Χ − 𝐴𝑆|| 𝐹

2  + λ||ψTS||1, 

where ||Γ||1 (Γ= ψTS) is the sum of the absolute values of coefficients γm,l. The variation 

from BC-VMFB and PALM is that here the threshold operation is done on wavelets 

coefficients rather than spectrum coefficients. 

UpdA(A,S) = Π+[A - γg (AS - X)ST ], 

UpdS(A, S) = ψ(Sλ/ γg [ψT(S - γg AT(AS-X))]), 

where Sλ sets only the values whose absolute value is smaller than λS to zero.232 
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Résumé 

Cette thèse vise au développement de méthodes de traitement du signal pour l'analyse de mélanges de 

petites molécules. La première partie est centrée sur l'évaluation d'algorithmes de séparation aveugle de sources 

(BSS) sur des données RMN 1D et 2D. Les résultats sur les données simulées fournissent une bonne estimation 

des empreintes spectrales et des concentrations des composants dans les mélanges. Pour les données réelles, 

le prétraitement est important comme l'alignement des spectres. Le modèle de mélange instantané linéaire s’est 

avéré incomplet pour décrire les ensembles de données. Pour une évaluation quantitative des performances, 

nous avons proposé des paramètres utilisés pour le BSS dans d'autres domaines que la spectroscopie : l'indice 

d'Amari, le SIR et le SDR. Leur pertinence pour ce type de données doit être validée avec un ensemble de 

données plus large.  

Ensuite, deux méthodes de RMN sont évaluées dans deux applications originales : la première 

concerne la mise en œuvre et l'évaluation du filtre de relaxation T1ρ en métabolomique pour supprimer les 

signaux des macromolécules. Ce filtre est bien adapté aux échantillons étudiés en métabolomique, qu'ils soient 

liquides ou tissulaires, avec des résultats similaires à ceux obtenus avec le filtre de relaxation T2. La seconde 

concerne l'application de l'approche Maximum Quantum (MaxQ-NMR) pour simplifier les spectres de 

mélanges issus de réactions enzymatiques. La présence d'enzymes et de complexes paramagnétiques conduit 

à une réduction significative des temps de relaxation nécessitant un réglage fin des paramètres expérimentaux 

pour trouver un compromis entre excitation uniforme des cohérences et perte de signal. 

 

Mots clés : analyse de mélanges, traitement du signal, Résonance Magnétique Nucléaire, 

métabolomique. 

 

 

Abstract 

This thesis aims to develop signal processing methods for the analysis of mixtures of small molecules. 

The first part is focused on the evaluation of blind source separation (BSS) algorithms on 1D and 2D NMR 

data. The results on simulated data provide a good estimate of the spectral fingerprints and the concentrations 

of the components in the mixtures. For the real data, pre-processing steps are very important such as the 

alignment of the spectra. The linear instantaneous mixing model was found to be incomplete to accurately 

describe the datasets. For a quantitative evaluation of performances, we have proposed parameters used for the 

BSS on other fields than spectroscopy: the Amari index, SIR and SDR. Their relevance to this type of data has 

to be validated with a larger dataset.  

In the second part, two NMR methods are evaluated in two original applications: the first concerns the 

implementation and evaluation of the T1ρ relaxation filter in metabolomics to suppress large signals from 

macromolecules. It is shown here that this filter is well suited for samples studied in metabolomics, whether 

liquids or tissues, with results similar to those obtained with the T2 relaxation filter. The second concerns the 

application of the Maximum Quantum (MaxQ-NMR) approach to simplify the NMR spectra of mixtures 

resulting from enzymatic reactions. The presence of enzymes and paramagnetic complexes leads to a 

significant reduction in relaxation times requiring fine adjustment of experimental parameters to find a 

compromise between uniform excitation of coherences and loss of signal. 

 

 

Keywords: mixture analysis, signal processing, Nuclear Magnetic Resonance, metabolomics. 


