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Abstract
Several approaches to quantum gravity entertain the idea that smooth spacetime is

an emergent approximation of a fundamental, discrete Planckian structure. Which

are the theoretical and observational consequences of this hypothesis?

Currently, we cannot test the geometry of the Universe down to the Planck scale. Still,

we can look for signs of discreteness and its consequences in our prevailing theoretical

and observational models.

In the first part of this thesis, we propose that a discrete microstructure at the Planck

scale provides a natural solution to the black hole information loss problem if taken

at face value. The fundamental discrete degrees of freedom provide a large reservoir

for information to be encoded at the end of black hole evaporation. We put forward a

conservative and natural perspective of the black hole evaporation puzzle where in-

formation is not lost or destroyed but simply degraded into correlations (inaccessible

to low-energy observers) with the microscopic structure of the geometry at the Planck

scale.

In the second part, we propose a model of inflation driven by a relaxation of an initially

Planckian cosmological constant via diffusion due to friction with a fundamentally

discrete Planckian structure. We show that this model can generate a nearly scale-

invariant spectrum of primordial adiabatic perturbations and its tilt that matches

observations. Moreover, this is done without the introduction of an inflaton field with

an arbitrary potential. Furthermore, this process admits a well-defined semi-classical

interpretation and avoids the trans-Planckian problem often found in the standard

treatment of structure formation.
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Résumé
La relativité générale et la théorie quantique sont souvent citées comme étant les

deux piliers de la physique théorique moderne. À grande échelle, les phénomènes

sont dominés par l’interaction gravitationnelle, où les observations sont décrites avec

précision par la relativité générale jusqu’à des échelles de l’ordre du millimètre[1],

tandis que les échelles submillimétriques jusqu’à 10−19m sont bien modélisées par la

théorie quantique.

La leçon centrale de la relativité générale (RG) est que la gravité est géométrie et ,

par conséquent, dans une théorie fondamentale, aucune background structure ne

devrait être privilégiée. Cela entre en conflit avec les besoins de la théorie quantique

qui, dans ses formulations standard, nécessite un background fixe et une séparation

préférentielle entre le temps et l’espace.

La théorie quantique fournit un cadre général pour toutes les théories décrivant les

interactions fondamentales. Elle a passé de nombreux tests expérimentaux avec une

précision remarquable (e.g. [2, 3]), et est considérée comme une théorie bien établie, à

l’exception des discussions en cours sur ses interprétations possibles. Jusqu’à présent,

la seule interaction qui n’a pas été entièrement intégrée dans ce cadre est l’interaction

gravitationnelle.

En outre, une théorie purement classique de la gravitation peut expliquer toutes les

données d’observation dont nous disposons actuellement. Un exemple remarquable

en est l’observation récente des ondes gravitationnelles[4, 5, 6, 7, 8], une conséquence

longtemps prédite de la relativité générale d’Einstein.

La quête d’une théorie quantique de la gravité n’est pas, pour l’instant, motivée par des

résultats expérimentaux. Il n’y a actuellement aucune observation qui indique sans

ambiguïté des phénomènes que nos théories actuelles ne peuvent expliquer. Ainsi,

nous ne disposons d’aucune expérience pour nous aider sur la voie d’une théorie

quantique de la gravité.

Où peut-on s’attendre à ce que les effets de la gravitation quantique deviennent inévi-

tables ? Quelles sont les échelles auxquelles nous devrions nous attendre à ce que ces

effets soient pertinents? Dans une théorie de la gravité quantique universellement

valide, de véritables effets gravitationnels quantiques peuvent se produire à n’importe

quelle échelle, le comportement classique apparaissant à une limite appropriée. Ce-
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Résumé

pendant, il devrait exister des échelles où les effets de la gravité quantique deviennent

non-négligeables.

Ceci est intimement lié à de vieilles questions de physique : existe-t-il une limite

fondamentale à la résolution des structures au-delà de laquelle nous ne pouvons pas

accéder ?

L’espace-temps est-il continu ? Ou cette image n’est qu’une bonne low-energy approxi-

mation qui émerge d’une structure discrète plus fondamentale?

L’analyse dimensionnelle fournit un indice de la réponse à ces questions. Trois constantes

sont censées jouer un rôle dans la gravité quantique : la constante de Planck ~, la

constante gravitationnelle G , et la vitesse de la lumière c. En 1899, Planck s’est rendu

compte que ces trois constantes pouvaient être combinées de manière unique pour

produire des quantités avec des unités de masse, de longueur et de temps. Ce sont la

masse de Planck, MPl, la longueur de Planck lP et le temps de Planck tP :

MPl =
√

~c

G
≈ 2.17×10−5 g ≈ 1.22×1019 GeV

tP =
√

~G

c5
≈ 5.40×10−44 s

lP =
√

~G

c3
≈ 1.62×10−33 cm

(1)

Notez que la masse de Planck est plutôt grande par rapport aux échelles microsco-

piques. Mais cela ne signifie rien en soi, cette masse doit être contenue dans une

région de dimension linéaire lP pour que les effets de la gravité quantique soient non

négligeables.

Plus précisément, les échelles de Planck sont atteintes lorsque la longueur d’onde

Compton d’une particule élémentaire est de l’ordre de son rayon de Schwarzschild :

~
MPlc

≈ 2MPlG

c2
, (2)

ce qui signifie que la courbure d’une telle particule élémentaire n’est pas négligeable

et conduit à la création d’un trou noir microscopique.

Cet argument, dû à Matvei Bronstein[9], qui reconnaissait déjà en 1936 le formidable

défi que représentait la quantification de la gravité, dans sa version moderne va dans

le sens suivant[10, 11] :

Supposons que l’on veuille déterminer la position x d’une particule avec une précision

L. Alors, en raison du principe d’incertitude de Heisenberg,∆x > ~
∆p et il s’ensuit donc

que ∆p > ~
L .

Puisque la valeur moyenne p2 est plus grande que la dispersion (∆p)2, nous avons
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que p2 >
(
~
L

)2
.

À son tour, un grand moment implique une grande énergie : dans la limite relativiste

(par exemple, une particule accélérée au CERN), nous avons que E ∼ cp, où c est la

vitesse de la lumière, ce qui explique pourquoi nous devons construire des accéléra-

teurs de plus en plus grands pour prouver des distances plus en plus petites. Nous

voyons donc que, pour localiser la particule avec précision, nous avons besoin de

grandes énergies.

Considérons maintenant la relativité générale. Une énergie E gravite avec une masse

M ∼ E
c2 . Lorsque l’énergie est suffisamment grande, et que la masse est concentrée

à l’intérieur d’une sphère de rayon RS = GM
c2 , un trou noir se forme. Ainsi, la région

initiale L que nous voulions localiser sera cachée derrière l’horizon du trou noir. Nous

concluons alors que L ne peut être diminué que jusqu’à une valeur minimale, qui est

atteinte lorsque le rayon de l’horizon est égal à L, c’est-à-dire RS = L.

En d’autres termes, la longueur minimale dans laquelle nous pouvons localiser une

particule sans qu’elle soit cachée derrière son horizon est donnée par

L = RS = GM

c2
= GE

c4
= Gp

c3
= G~

Lc3
=⇒ L = `Pl (3)

Cet Gedankenexperiment nous dit donc qu’il n’est pas possible de localiser quoi que

ce soit avec une précision meilleure que la longueur de Planck.

L’échelle de Planck est remarquablement éloignée des échelles auxquelles nous

sommes habitués : le LHC sonde des régimes de 10−14 fois la masse de Planck, la

longueur de Planck est de 10−20 fois le diamètre d’un proton. Il est donc clair que l’ex-

ploration directe de l’échelle de Planck est impossible avec nos expériences actuelles.

Néanmoins, la présence d’une longueur minimale et/ou d’une microstructure dis-

crète à l’échelle de Planck est pertinente en physique des trous noirs et en physique

de l’Univers primitif. Que se passe-t-il lorsque la courbure de l’espace-temps est plan-

ckienne ? En d’autres termes, que se passe-t-il à proximité de la singularité à l’intérieur

des trous noirs et de la singularité du Big Bang? Si les attentes d’une longueur mini-

male sont alors satisfaites, la courbure de l’espace-temps ne peut être supérieure à

R ∼ `−2
Pl , les théoriciens s’attendent donc à ce que les singularités soient guéries dans

une théorie entièrement quantique-gravitationnelle. Ces idées font des trous noirs et

de la cosmologie des bancs d’essai parfaits pour les conséquences de la discrétisation

à l’échelle de Planck.

L’existence d’une structure discrète de background est un trait partagé par de nom-

breuses incarnations de la gravité quantique : Loop Quantum Gravity, String Theory,

Causal Set, Dynamical Triangulations entre autres. Dans toutes ces formulations,

l’espace-temps smooth résulte d’un coarse graining où les détails des relations entre

les constituants discrets sont perdus. Il est donc raisonnable de s’attendre à ce qu’une
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géométrie smooth donnée corresponde à de nombreux micro-états fondamentaux

différents.

Je passerai brièvement en revue le cas de la LQG, qui est non seulement la formulation

de la gravité quantique que je connais le mieux, mais aussi celle qui a motivé notre

travail.

Loop Quantum Gravity (LQG) est une approche background independent d’une théo-

rie quantique de la gravité, basée sur la quantification canonique non-perturbative de

la relativité générale. Dans ce cadre, il n’y a pas de background structure préférée et

l’espace-temps lui-même est une entité dynamique qui doit être quantifiée.

L’un des résultats clés de la LQG est que les opérateurs de l’espace-temps, tels que

l’aire et le volume, acquièrent des spectres discrets : les états des degrés de liberté

gravitationnels peuvent être envisagés en termes d’états de réseaux de spins, dont

chacun admet l’interprétation d’un état propre de la géométrie qui est discret au

niveau fondamental.

De manière plus détaillée, on veut travailler dans le cadre hamiltonien, nous considé-

rons donc la décomposition 3+1 de l’espace-temps. Les détails de la décomposition

3+1 et de la formulation Hamiltonienne peuvent être trouvés dans [12].

On introduit une foliation de l’espace-temps en termes d’hypersurfaces tridimension-

nelles Σ. Dans cette formulation, les dix composantes de la métrique sont remplacées

par les six composantes de la métrique induite sur les hypersurfaces qab , le shift

vector N a et la fonction de lapse N . Afin de préparer la quantification, on doit consi-

dérer la courbure extrinsèque Kab de l’hypersurface Σ, qui joue le rôle de momenta

canoniquement conjugué à la 3-métrique qab
1.

Nous introduisons ensuite la triade E a
i , qui est un ensemble de trois champs vectoriels

définis par la relation :

q ab = E a
i E b

j δi j . (4)

Pour quantifier le champ gravitationnel, au lieu d’utiliser la triade, nous utilisons

comme variable la triade densitisé définie par

Ẽ a
i =

√
det(q)E a

i . (5)

L’autre ensemble de variables est une connexion SU (2) Ai
a qui est liée à la connexion

de spin w i
a et à la courbure extrinsèque de Σ par

Ai
a = w i

a +γK i
a , (6)

où γ est un paramètre sans unites appelé "paramètre de Barbero-Immirzi".

1En fait, le momenta πab canoniquement conjugué à la métrique qab est donné par : πab =
q−1/2

(
K ab −K q ab

)
, où K = K ab qab .

vi



Résumé

Étant donné une 2-surface S qui est paramétrée par x1, x2 avec x3 = 0, l’aire de la

surface en termes de triade est donnée par :

AS =
∫

S
d x1d x2

√
Ẽ 3

i Ẽ i 3 (7)

L’aire peut être promue en un opérateur qui, agissant sur les états du réseau de spin,

donne les valeurs propres :

ÂSψs = 8πl 2
Pβ

∑
α

√
jα( jα+1)ψs , (8)

où la somme est prise sur tous les bords du réseau qui passent par S et jα étiquette la

représentation SU (2) portée par les bords.

Ainsi, nous voyons que LQG prédit l’existence d’une aire minimale donnée par :

Ami n = 4π
p

3βl 2
P (9)

Un argument similaire peut être avancé pour l’opérateur de volume[13, 14], montrant

qu’il possède du spectre discret.

Des efforts considérables ont été consacrés à l’étude de la limite de basse énergie

de la théorie. Alors que les difficultés dues à la background independence de la théo-

rie empêchent toujours une caractérisation précise de la limite de basse énergie et

qu’il n’est donc pas possible actuellement de décrire en détail la nature de la struc-

ture pré-géométrique qui peut survivre dans la limite semi-classique, on a appris

qu’une géométrie lisse devrait émerger des états prégéométriques planckiens via des

observateurs coarse-grained insensibles aux détails UV.

Il existe des exemples d’états dans la théorie qui semblent ne jouer aucun rôle impor-

tant dans la limite du continuum, mais qui devraient être produits par des processus

dynamiques. Par exemple, les boucles fermées et les nœuds trivalents des réseaux de

spins dégénèrent en états avec des quanta de volume évanouissants qui, en principe,

peuvent survivre dans la limite du continuum[15].

Le calcul de l’entropie du trou noir dans la LQG est un autre exemple de cette caracté-

ristique : l’entropie peut être calculée en comptant les réseaux de spin (microstates)

compatibles avec une géométrie lisse (macrostates) décrivant un trou noir de masse

M .

Cette caractéristique de la LQG (et en général des théories de gravité quantique

où l’espace-temps est remplacé par une notion discrète) sera centrale dans notre

proposition de solution au problème de l’information des trous noirs : le nombre

infini de micro-états planckiens dégénérés compatibles avec un espace-temps plat et

lisse constituera le réservoir parfait pour le stockage de l’information.

Les approches modernes de la gravité quantique ont été développées avec l’espoir
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FIGURE 1 – Un observateur aux capacités limitées (coarse-grained observer) est inca-
pable de distinguer deux micro-états dans la théorie fondamentale. Chaque géométrie
lisse dans la description à basse énergie correspond à une myriade d’états dans la
théorie fondamentale.

que la cohérence avec la relativité générale et la théorie quantique suffirait à trouver

une théorie quantique cohérente de la gravité, repoussant ainsi la confrontation avec

l’observation à un stade ultérieur.

Cet espoir est encore loin de se réaliser, et le nombre sans cesse croissant d’approches

différentes de la gravité quantique nous rappelle l’importance capitale de tester les

idées par rapport aux observations.

L’un des principaux problèmes rencontrés lors de la construction d’une théorie quan-

tique complète de la gravité est le manque de données d’observation disponibles pour

guider les efforts théoriques.

Les approches de la formulation de la théorie que nous avons décrites jusqu’à présent

adoptent une démarche "de bas en haut" : elles commencent par des hypothèses

sur la nature de l’espace-temps à une échelle éloignée de ∼ 15 ordres de grandeur

des échelles qui sont actuellement accessibles expérimentalement, et à partir de là,

la théorie devrait remonter jusqu’à la limite dans laquelle elle devrait retrouver la

phénoménologie connue.

Dans d’autres domaines où les observations sont abondantes, on peut proposer

des modèles phénoménologiques qui expliquent les données. Bien que ces modèles

soient peut-être incohérents sur le plan conceptuel, ils peuvent servir de guide pour

l’identification de la théorie correcte et conceptuellement satisfaisante.

Un exemple emblématique est la théorie de l’interaction de Fermi. En 1934, Fermi a

proposé un modèle phénoménologique pour expliquer la désintégration β[16, 17].

À l’époque, Fermi ne disposait pas d’une description ultraviolette complète des in-
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teractions faibles, il a donc modifié la QED pour tenir compte de la désintégration

des neutrons. La description de Fermi s’est avérée très précise pour décrire les phé-

nomènes observés. Si l’extrapolation de la théorie de Fermi pour expliquer d’autres

interactions s’est avérée infructueuse, son échec même a ouvert la voie à une compré-

hension plus fondamentale des interactions faibles.

L’explication de Fermi sur la désintégration β peut être considérée en termes mo-

dernes comme (peut-être le premier) un exemple d’une EFT (Effective Field Theory) :

elle est extrêmement utile pour décrire les processus à des énergies bien inférieures à

la masse du boson W .

Cette approche "de haut en bas" est celle qui nous intéresse. En particulier, nous

voulons étudier la phénoménologie possible associée à la présence d’un substrat

discret sous-jacent.

Nous pensons qu’une voie prometteuse pour réaliser cette idée est l’étude des impli-

cations observationnelles (et théoriques) possibles d’un espace-temps fondamentale-

ment discret. À quoi peut ressembler cette évidence? Quel peut être le témoin de la

discrétisation? Quel est le mouvement brownien de notre temps? Dans la deuxième

partie de cette thèse (voir la section 6), nous proposons un modèle de formation

de structure[18] qui est la conséquence directe d’une diffusion de type brownien

planckien dans l’Univers primitif.

Permettez-moi enfin de mentionner que, comme nous l’avons dit plus haut, nous

n’avons pas observé de phénomènes quantiques-gravitationnels. Mais à mesure que

les expériences deviennent plus précises et capables de tester de nouveaux aspects de

la réalité physique, des tensions apparaissent avec les théories physiques établies. Ces

divergences apparentes n’ont, bien sûr, rien de nouveau : elles se produisent depuis

que les humains tentent de comprendre l’univers.

Néanmoins, si nous avons de la chance, ces divergences ne sont pas dues à une

expérience défectueuse ou à une mauvaise compréhension de la théorie, mais elles

sont la conséquence de nouveaux phénomènes physiques que les théories disponibles

ne peuvent expliquer.

La valeur non nulle de la constante cosmologique est généralement citée comme une

conséquence des effets gravitationnels quantiques. En outre, il existe actuellement

une tension entre l’observation de la constante de Hubble H0 en temps cosmologique

tardif et précoce. La valeur mesurée de H0 dans l’univers tardif est en désaccord

avec les valeurs de l’univers précoce de 5σ[19, 20, 21]. De manière intéressante, il a

été avancé que ces phénomènes peuvent être la conséquence de la microstructure

discrète de l’espace-temps à l’échelle de Planck[22, 23, 24, 25].

Cette thèse contient deux projets principaux réalisés au cours des trois dernières

années, nés de ces idées. La première partie propose une solution nouvelle pour le

paradoxe de l’information dans les trous noirs, et la seconde partie une vue sur la
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formation des structures en cosmologie à partir de la gravité quantique.

Partie I : Paradoxe de l’information des trous noirs
Les premiers indices du comportement thermodynamique des trous noirs sont ap-

parus au début des années 70 avec Bekenstein, Bardeen, Wheeler et Hawking, entre

autres. Il a été démontré que les solutions des trous noirs à l’équilibre de l’équation

d’Einstein satisfont des lois analogues à celles de la thermodynamique.

Mais ce n’est qu’avec les travaux fondamentaux de Hawking qu’un paradoxe apparent

est apparu. L’article révolutionnaire de Hawking a montré, à l’aide de considérations

semi-classiques, que les trous noirs perdent leur masse par rayonnement thermique.

De plus, le taux d’émission dépend inversement de la masse du trou noir, ce qui

suggère que les trous noirs s’évaporent en un temps fini. Si le trou noir disparaît

complètement, toute l’information autrefois contenue dans le trou noir disparaît

avec lui, ne laissant dans son sillage qu’un bain thermique de particules de Hawking.

Ainsi, un état initial pur s’est transformé en un état final mixte. En contradiction

flagrante avec la mécanique quantique, l’évolution entre l’état initial et l’état final

n’est pas unitaire et l’information est perdue : l’information codée dans l’état final

est insuffisante pour retrouver l’état initial. Ce phénomène est connu sous le nom

de paradoxe de l’information du trou noir. Dans la section 3.2, nous donnons une

discussion plus détaillée et approfondie du paradoxe.

Plusieurs propositions visant à résoudre ce paradoxe apparent sont apparues dans la

littérature au cours des 50 dernières années. Certaines de ces approches, cherchant

à restaurer l’unitarité dans la dynamique, proposent des écarts dramatiques de la

physique connue dans des régimes où les modèles semi-classiques sont considérés

comme une bonne approximation.

D’autres propositions, plus conservatrices, envisagent l’idée que la solution provienne

d’une nouvelle physique apparaissant à l’échelle de Planck, où la description semi-

classique devrait s’effondrer. Nous passons en revue les mérites et les inconvénients

de chaque proposition dans la section 3.3.

Dans la partie II, nous proposons une solution conservatrice et nouvelle au problème.

Dans les approches de la gravité quantique où la description de l’Univers comme

un espace-temps lisse est considérée comme une approximation d’une structure

discrète plus fondamentale à l’échelle de Planck, toute description en termes de

champs lisses est vouée à manquer une partie de ces degrés de liberté discrets et donc

à rompre l’unitarité. De ce point de vue, si ces degrés de liberté fondamentaux sont

pris en compte, le processus de formation d’un trou noir et son évaporation ultérieure

peuvent être décrits par une évolution unitaire. Cette idée, proposée pour la première

fois [15], est démontrée dans un contexte de gravitation quantique explicite dans la

section 6.78, suivant [26, 27].
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L’argument essentiel de la proposition consiste à noter que la formation et l’évapora-

tion éventuelle d’un trou noir peuvent être formulées dans les mêmes termes que le

processus de combustion d’un papier.

Considérons l’impression, la lecture et la combustion de cette page. L’état initial du

système est très particulier de notre point de vue : en tant qu’observateurs macrosco-

piques, nous pouvons distinguer les particules d’encre qui forment les lettres CMJ de

celles des lettres LBC.

S’il était placé dans un boîtier fermé, le texte imprimé sur cette page persisterait

pendant une période assez longue et les générations futures pourraient juger du

contenu de ces mots. L’espace de phase disponible pour les particules qui forment le

papier et les mots qui y sont écrits restent plus ou moins constants dans le temps.

Si, toutefois, nous décidions de mettre le feu au papier, les informations qui y sont

inscrites seraient-elles perdues à jamais? Pouvons-nous récupérer le texte écrit en

regardant ses cendres?

Jusqu’à présent, les théories physiques décrivant notre monde sont toutes réversibles

dans le sens où nous pouvons prédire l’état futur d’un ensemble de variables à partir de

leur état initial. Inversement, nous pouvons retrouver le passé à partir des valeurs des

variables dans le futur. Naïvement, cette caractéristique se heurte à l’intuition dans le

cas du papier qui brûle : les informations autrefois contenues dans le papier semblent

perdues à jamais. Cependant, il existe une explication physique du phénomène qui

préserve la réversibilité. Une fois le papier enflammé, l’information se transforme

en corrélations entre les molécules qui sont maintenant libres de se diffuser dans

l’atmosphère. L’information n’est alors pas perdue mais dégradée en corrélations

inaccessibles pour nous, coarse-grained observateurs.

Dans les premières sections de la partie II, nous soutenons que la formation et l’éva-

poration des trous noirs peuvent être encadrées de la même manière : une description

unitaire et réversible du processus est disponible lorsque les degrés de liberté plan-

ckiens sont considérés. Les corrélations établies avec la microstructure planckienne

sont manquées lorsque l’on considère des champs lisses qui ne tiennent pas compte

de ces degrés de liberté discrets et que l’on récupère la description non unitaire ha-

bituelle de la QFT à basse énergie. Ces corrélations sont alimentées par la présence

d’une région de haute courbure inévitable. Cette région de courbure planckienne

autour de l’endroit où il y a classiquement une singularité agit comme le feu dans

l’exemple du papier brûlé : elle ouvre une énorme, nouvelle et inexplorée région de

l’espace des phases en mettant le système en contact avec l’échelle de Planck.

Dans les sections 4.2-4.10 nous introduisons un modèle quantique-gravitationnel

dans lequel ces idées sont réalisées. Le modèle est basé sur les techniques de la

cosmologie quantique à boucles, qui est présentée dans les sections 4.2 ainsi que dans

l’annexe B.
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Nous soutenons que ce modèle cosmologique quantique contient les ingrédients es-

sentiels qui fournissent la solution dans le cas d’un trou noir : la présence de degrés de

liberté UV fournis par les ε− sector s. Les résultats peuvent alors être immédiatement

extrapolés au cas du trou noir.

L’étude de cette question dans les modèles polymères cosmologiques, outre le fait

qu’elle présente moins de difficultés techniques que son homologue du trou noir,

fournit une interprétation conceptuelle claire de la physique en jeu. Les résultats pour

le cas plus compliqué techniquement (mais analogue) du trou noir seront présentés

ailleurs[28].

Nous montrons que pour des observateurs coarse-grained insensibles aux degrés de

liberté planckiens, un état initialement pur développe des corrélations entre les degrés

de liberté à basse énergie et les degrés de liberté planckiens lorsqu’il évolue à travers

une région à forte courbure.

Ces corrélations sont inaccessibles aux observateurs de basse énergie, pour lesquels

la dynamique est non unitaire, même si la dynamique de la théorie sous-jacente est

unitaire. Ces observateurs coarse-grained voient l’entropie croître entre l’état initial et

l’état final, et cette entropie n’est qu’une mesure de l’ignorance de ces observateurs.

Partie II : observables du CMB à partir de la granularité planckienne.

Dans la partie III, nous étudions une autre conséquence possible d’un espace-temps

discret. Nous avons proposé un modèle d’inflation piloté par une constante cosmolo-

gique décroissante due à la friction avec une structure de background discret.

Dans ce modèle, les inhomogénéités observées dans le CMB proviennent de celles

associées à un espace-temps discret. Nous obtenons le spectre observé approximative-

ment invariant d’échelle des perturbations scalaires avec le blue-tilt correspondante.

Le modèle prédit également un rapport tenseur/scalaire extrêmement faible. Ces

prédictions phénoménologiques ne dépendent que des paramètres connus de la

physique du modèle standard.

Dans la section 6.1, nous présentons la gravité unimodulaire comme la limite à basse

énergie d’une théorie dans laquelle l’espace-temps est fondamentalement discret et

construit à partir de blocs de construction discrets à 4 dimensions : les quanta de 4

volumes.

Bien que le modèle phénoménologique que nous proposons puisse également être

réalisé dans le cadre de la relativité générale, la gravité unimodulaire offre un point de

vue conceptuel unique : elle décrit la limite de basse énergie d’une théorie fondamen-

talement discrète. En tant que telle, elle incorpore la friction comme une violation de

la conservation du tenseur énergie-momentum, c’est-à-dire ∇aTab 6= 0.

Il s’agit d’un ingrédient crucial : le signe habituel d’une structure de background est

la friction, la possibilité de perdre de l’énergie dans le chaos des micro-états non
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capturés par la théorie effective.

Dans la section 6.2, nous étudions la dynamique d’un espace-temps cosmologique

avec un terme cosmologique décroissant de façon exponentielle (par analogie avec

les systèmes dissipatifs standard).

Λ(t ) =Λ0 exp
(−βMPlt

)
(10)

où MPl est la masse de Planck, β un paramètre sans dimension,Λ0 ∼ M 2
Pl et t le temps

cosmologique (unimodulaire) lié au temps comoving τ par

d t = a3dτ (11)

Nous montrons que, tant queβMPl < 1, l’Univers subit une phase d’inflation alimentée

par la désintégration de Λ. De plus, pour β suffisamment petit, la phase d’inflation

dure suffisamment longtemps pour résoudre les problèmes d’horizon et de planéité

indépendamment des conditions initiales.

Dans la section C, nous montrons que les conséquences observationnelles du modèle

ne dépendent pas fortement de la forme fonctionnelle exacte deΛ. En particulier, tant

queΛ est presque constant pour un nombre suffisamment long de e-folds de telle sorte

que les échelles observées aujourd’hui dans le CMB ont été créées à l’échelle de Planck

pendant l’inflation, puis que Λ décroît rapidement, les prédictions observationnelles

du modèle restent du même ordre de grandeur.

FIGURE 2 – Dynamique de background avec constante cosmologique décroissant de
façon exponentielle

Dans la section 6.2.2, nous étudions la dynamique du champ de Higgs couplé à la
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gravité. Nous montrerons que la discrétisation fondamentale s’imprime sur le degré

de liberté scalaire naturel du modèle standard, le boson de Higgs, qui portera ces

inhomogénéités jusqu’au CMB.

Dans la section 6.3, nous décrivons en détail le mécanisme de formation de structure

proposé dans [18]. Nous commençons par étudier les équations dynamiques des

fluctuations du champ scalaire (6.48).

Nous proposons que ces fluctuations proviennent d’un processus stochastique source

par la discrétisation associée aux effets de gravité quantique à l’échelle de Planck :

nous supposons que pendant son roulement vers le bas du potentiel, les modes zéro

du Higgs interagissent avec la granularité à l’échelle de Planck et diffusent de l’énergie

dans les modes avec le nombre d’onde physique k/a. Plus précisément, nous ajoutons

un terme de friction à-la Langevin à l’équation du mode scalaire homogène pour tenir

compte de cette interaction(6.71). Nous obtenons alors une équation d’équilibre

reliant l’énergie perdue par le Higgs qui diminue son potentiel au travail nécessaire

pour produire les fluctuations (6.73).

De plus, dans la section 6.4, nous montrons également que si nous supposons qu’une

partie de ces fluctuations se condensent pour former des trous noirs primordiaux, ces

trous noirs ne sont pas dilués par la phase d’inflation, et le modèle produit la quantité

de matière noire froide requise par les observations (6.95).

Dans la section 6.5, nous discutons des différences entre le modèle de formation de

structure que nous proposons et le compte standard basé sur les fluctuations du vide.

Une différence essentielle entre le mécanisme de formation de structure que nous

proposons et le compte standard est que notre modèle admet une interprétation se-

miclassique correspondant à la version linéarisée des équations de champ d’Einstein

semiclassiques.

Gab = 8πG 〈Ψ|Tab |Ψ〉 (12)

Dans notre modèle, les fluctuations naissent au moment du franchissement de l’hori-

zon et diffèrent donc du compte standard où les conditions initiales sont données par

le vide de Bunch-Davies qui est défini asymptotiquement dans le passé, ce qui donne

lieu au problème trans-Planckian.
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1 Discreteness in Quantum Gravity

General Relativity and Quantum Theory are often quoted to be the two pillars of mod-

ern theoretical physics. At large scales, phenomena is dominated by the gravitational

interaction, where observations are accurately described by General Relativity down

to milimeter-scales [1], while sub-millimiter scales down to 10−19m are well modelled

by Quantum Theory.

The central lesson in General Relativity (GR) is that gravity is geometry, whence, in

a fundamental theory, no background structure 1 should be preferred. This clashes

with the needs of Quantum Theory, which in its standard formulations need a fixed

background and a preferential splitting between time and space.

Quantum Theory provides a general framework for all theories describing particular

interactions. It has passed plenty of experimental tests with remarkable precision (e.g.

[2, 3]), and is considered a well-established theory, except for the ongoing discussion

about its possible interpretations. So far the only interaction which has not been fully

accommodated in this framework is the gravitational interaction.

Moreover, a purely classical theory of gravitation can explain every piece of observa-

tional data we currently have. One outstanding example of this is the recent observa-

tion of gravitational waves [4, 5, 6, 7, 8], a long-predicted consequence of Einstein’s

General Relativity.

The quest to find a quantum theory of gravity is not, as yet, motivated by experimental

results. There are currently no observations that unambiguously point to phenomena

that our current theories cannot explain. Thus, we have no experiment to help us in

the path towards a quantum theory of gravity.

1It is a widely shared opinion that the most outstanding feature of General Relativity is its manifestly
background independence. Usually confused with general covariance, these concepts are related but
certainly non-equivalent. See Giulini in [29] for an insightful discussion.
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Chapter 1. Discreteness in Quantum Gravity

Where do we expect quantum gravitational effects to become unavoidable? Which are

the scales we should expect these effects to be relevant? In a universally valid theory

of Quantum Gravity, genuine gravitational quantum effects can occur on any scale,

with classical behavior arising at a suitable limit. However, there should exist scales

where quantum gravity effects become non-negligible.

This is intimately related to old questions in physics: there exist a fundamental limit to

the resolution of structures beyond which we cannot access? Is spacetime continuous?

Or this picture is just a good low energy approximation that emerges from a more

fundamental, discrete structure?[10, 30]

One hint towards the answer to these questions comes from dimensional analysis.

There are three constants expected to play a role in Quantum Gravity: Planck’s con-

stant ~, gravitational constant G , and the speed of light c . In 1899 Planck realized that

these 3 constants could be combined uniquely to yield quantities with mass, length,

and time units. They are the Planck mass, MPl, Planck length lP and Planck time tP .

MPl =
√

~c

G
≈ 2.17×10−5 g ≈ 1.22×1019 GeV

tPl =
√

~G

c5
≈ 5.40×10−44 s

`Pl =
√

~G

c3
≈ 1.62×10−33 cm

(1.1)

Note that the Planck mass is rather large by microscopic standards. But this by itself

does not mean anything, this mass must be contained in a region of linear dimension

lP for the quantum gravity effects to be non-negligible.

In more detail, Planck scales are attained when the Compton wavelength of an ele-

mentary particle is of the order of its Schwarzschild radius:

~
MPlc

≈ 2MPlG

c2
, (1.2)

which means that the curvature of such elementary particle is not negligible and leads

to creation of a microscopic black hole.

This argument, due to Matvei Bronstein[9], who already in 1936 recognized the

formidable challenge of quantizing gravity, in its modern version goes along these

lines[10, 11]:
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Suppose we want to determine the position x of a particle with precision L. Then, due

to Heisenberg’s uncertainty principle ∆x > ~
∆p and thus it follows that ∆p > ~

L .

Since the mean value p2 is larger than the dispersion (∆p)2 we have that p2 >
(
~
L

)2
.

In turn, large momentum implies large energy: in the relativistic limit (for example,

a particle being accelerated at CERN), we have that E ∼ cp, where c is the speed of

light, which is why we need to build larger and larger accelerators to prove smaller

distances. We see then that, in order to precisely localize the particle we need large

energies.

Let us now consider General Relativity. An energy E gravitates with a mass M ∼ E
c2 .

When the energy is large enough, and the mass is concentrated inside a sphere of

radius RS = GM
c2 , a black hole forms. Thus the initial region L we wanted to localize will

be hidden behind the black hole horizon. We conclude then that L can be decreased

only to a minimum value, which is reached when the horizon radius equals L, that is,

RS = L.

In other words, the minimal length within which we can localize a particle without it

being hidden behind its horizon is given by

L = RS = GM

c2
= GE

c4
= Gp

c3
= G~

Lc3
=⇒ L = `Pl (1.3)

This Gedankenexperiment tells us, then, that it is not possible to localize anything

with a precision better than the Planck length.

The Planck scale is remarkably far from the scales we are used to: the LHC probes

regimes 10−14 times the Planck mass, the Planck length is 10−20 times the diameter of

a proton. Thus, it is clear that the direct exploration of the Planck scale is impossible

with our current experiments.

Nevertheless, the presence of a minimal length and/or a discrete microstructure at

the Planck scale is relevant in black hole physics and the physics of the early Universe.

What happens when the curvature of the spacetime is Planckian? In other words,

what happens close to the singularity inside black holes and the singularity at the

Big Bang? If the expectations of a minimal length are then met, the curvature of the

spacetime cannot be larger than R ∼ `−2
Pl , thus theoreticians expect that singularities

to be cured in a fully quantum-gravitational theory. These ideas transform black holes

and cosmology into the perfect testbeds for the consequences of discreteness at the

Planck scale.
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Chapter 1. Discreteness in Quantum Gravity

The existence of an underlying discrete structure is a trait shared by many incarnations

of Quantum Gravity: Loop Quantum Gravity, String Theory, Causal Set, Dynamical

Triangulations, among others. In all of these formulations, smooth spacetime arises

from a coarse graining where the details of the relationships between the discrete

constituents is lost. It is reasonable then to expect that a given smooth geometry

corresponds to many different fundamental microstates.

I will briefly review here the case of LQG, which is not only the formulation of quantum

gravity I’m more familiar with but also the one that motivated our work.

Loop Quantum Gravity (LQG) is an approach to a background independent Quantum

Theory of Gravity based on the non-perturbative canonical quantization of General

Relativity. In this framework, there is no preferred background structure and the

spacetime itself is a dynamical entity that has to be quantized.

One of the keys results in LQG is that spacetime operators such as Area and Vol-

ume acquire discrete spectra2: states of the gravitational degrees of freedom can be

spanned in terms of spin-network states, each of which admits the interpretation of

an eigenstate of geometry which is discrete at fundamental level.

In more detail, one wants to work within the Hamiltonian framework thus we consider

the familiar 3 + 1 split of spacetime. The details of the 3 + 1 decomposition and

the Hamiltonian formulation can be found in [12]. One introduces a foliation of

the spacetime in terms of 3-dimensional hypersurfaces Σ. In this formulation, the

ten components of the metric are replaces by the six components of the induced

metric on the hypersurfaces qab , the shift vector N a and the lapse function N . In

order to prepare to quantization, one must consider the extrinsic curvature Kab of

the hypersurface Σ, which plays the role of momenta canonically conjugated to the

3-metric qab
3.

Next we introduce the triad E a
i , which is a set of three vector fields defined by the

2To be precise, Area and Volume operators are operators acting on the Hilbert space L 2(A /G ),
where A ∈ SU (2)-connections on Σ, a spatial hypersurface, and G the Gauss constraint. We will call
this space the Kinematical Space. Thus, to get the physical Hilbert space, we need to factor out the
Hamiltonian constrain. It is generally assumed that the discrete spectra of these geometrical operators
translate from the Kinematical space to the physical space. However, Dittrich and Thiemann showed
that discreteness at kinematical level not always translates to the physical level, although in a toy model
with few degrees of freedom[31].

3In fact, the momenta πab canonically conjugated to the metric qab is given by: πab =
q−1/2

(
K ab −K q ab

)
, where K = K ab qab .
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relation:

q ab = E a
i E b

j δi j . (1.4)

For quantizing the gravitational field, instead of using the triad we use as variable the

densitized triad defined by

Ẽ a
i =

√
det(q)E a

i . (1.5)

The other set of variables is a SU (2)-connection Ai
a which is related to the spin con-

nection w i
a and the extrinsic curvature of Σ by

Ai
a = w i

a +γK i
a , (1.6)

where γ is a dimensionless parameter called the “Barbero-Immirzi parameter”.

Given a 2-surface S that is parametrized by x1, x2 with x3 = 0, the area of the surface

in terms of the triad is given by:

AS =
∫

S
d x1d x2

√
Ẽ 3

i Ẽ i 3 (1.7)

The Area can be promoted to an operator that acting on the spin-network states gives

the eigenvalues:

ÂSψs = 8πl 2
Pβ

∑
α

√
jα( jα+1)ψs , (1.8)

where the sum is taken over all edges of the network that go through S and jα label

the SU (2) representation carried by the edges.

Thus, we see that LQG predicts the existence of a minimal area given by:

Amin = 4π
p

3β`2
Pl (1.9)

A similar argument can be made for the volume operator[13, 14], showing that posses

discrete spectra.

7



Chapter 1. Discreteness in Quantum Gravity

Considerable effort has been devoted to the study of the low energy limit of the

theory. While the difficulties due to the fundamental background independence of

the theory still prevent a precise characterization of the low energy limit and thus it is

not currently possible to describe in detail the nature of the pre-geometric structure

that may survive in the semiclassical limit, it has been learned that a smooth geometry

should emerge from the Planckian pre-geometric states via coarse-grained observers

insensitive to the UV details.

There are examples of states in the theory that appear to play no important role in

the continuum limit but are expected to be produced through dynamical processes.

For instance, closed loops and trivalent spin-network nodes degenerate states with

vanishing volume quanta which in principle can survive in the continuum limit

without spoiling it[15].

The black hole’s entropy account in LQG is another example of this theory’s feature[32,

33]: the entropy can be calculated by counting the spin-networks (microstates) com-

patible with a smooth (macroscopic) geometry describing a macroscopic black hole of

mass M .

This feature of LQG (and in general of quantum gravity theories where spacetime

is replaced by a discrete notion) will be central in our proposal for a solution to

the black hole information problem: the infinite number of degenerated Planckian

microstates compatible with flat smooth spacetime will provide the perfect reservoir

for information to be stored.

Figure 1.1 – An observer with limited capabilities (coarse-grained observer) is unable
to distinguish between two microstates in the fundamental theory. Each smooth
geometry in the low-energy description correspond to a myriad of states in the funda-
mental theory.
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Modern approaches to quantum gravity have been developed with the hope that

consistency with general relativity and quantum theory would be sufficient to find a

coherent quantum theory of gravity, thus postponing the confrontation with observa-

tion to a later stage4.

This hope is still far from becoming true, and the ever-growing number of different

approaches to quantum gravity reminds us of the uttermost importance of testing

ideas against observations.

One of the biggest problems when constructing a complete quantum theory of gravity

is the lack of availability of observational data to help guide the theoretical efforts.

The approaches to the formulation of the theory we described so far take an “bottom

to top” approach: they start with some assumptions about the nature of spacetime

at a scale ∼ 15 orders of magnitude away from the scales that are currently accesible

experimentally, and from there the theory should make its way back to the limit in

which it should recover the known phenomenology.

In other areas where observations are abundant one can propose phenomenologi-

cal models that explain the data. Although perhaps these models are inconsistent

conceptually, they may serve as guidance for the identification of the correct and

conceptually satisfactory theory.

An emblematic example is the theory of Fermi’s interaction. In 1934 Fermi proposed a

phenomenological model to explain β-decay[16, 17]. At the time, Fermi didn’t have

a complete ultraviolet description of weak interactions, so he tweaked QED to ac-

count for neutron decay. Fermi’s account proved to be very accurate in describing the

observed phenomena. While the extrapolation of Fermi’s theory to explain other in-

teractions proved unsuccessful, its very failure paved the way for a more fundamental

understanding of weak interactions.

Fermi’s account of β-decay can be thought of in modern terms as (possibly the first)

an example of an EFT: it is extremely useful to describe processes at energies well

below the mass of the W boson.

This “top to bottom” approach is the one we are interested in. In particular, we want to

investigate the possible phenomenology associated with the presence of an underlying

discrete substratum.

4In this thesis I will not review the various attempts to quantize gravity (Or those, certainly fewer, but
for that not less compelling attempts to gravitize quantum mechanics[34]) or the reasons why looking
for such a theory seems reasonable. For that the reader is referred to the various textbooks and reviews
available in the literature[35, 36, 37, 38, 39].
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Chapter 1. Discreteness in Quantum Gravity

We believe that one promising avenue to realize this idea is studying the possible

observational (and theoretical) implications of a fundamentally discrete spacetime.

How may this evidence look? Which can be the tell-tale of discreteness? Which is

the Brownian motion of our time? In the second part of this thesis (see Section 6),

we propose a model of structure formation[18] which is the direct consequence of

Planckian Brownian-like diffusion in the early Universe.

Let me finally mention that, as mentioned above, we have not observed quantum-

gravitational phenomena,but as experiments become more precise and able to test

new aspects of the physical reality, tension with the established physical theories

arises. These apparent discrepancies are, of course, nothing new: they have been

occurring since humans attempt to understand the universe.

Nevertheless, if we are lucky enough, these discrepancies are not due to a faulty

experiment or a misunderstanding of the theory, but they are the consequence of new

physical phenomena that the available theories cannot explain.

Several of these apparent discrepancies are present in our current understanding of

cosmology. For example, observations of the rotation curves of galaxies 5 suggest that

the visible matter of the Universe accounts only for 15% of the total matter content

of the Universe while the remaining 85% corresponds to a yet unseen type of matter:

dark matter.

The standard account of structure formation[43] in contemporary cosmology relies

on the amplification of quantum fluctuations during an inflationary epoch. These

quantum effects are assumed to break the background’s homogeneity and source the

inhomogeneities that, according to the standard account, will evolve to form all the

stars, galaxies, clusters, and everything we observe in the Universe.

The standard treatment has several unsatisfactory features, among which is the so-

called quantum-to-classical transition[44, 45, 46]: near the end of the inflationary

epoch, the quantum nature of the system is disregarded, and quantum uncertainties

are replaced (usually implicitly) by classical density fluctuations. This transition in

the framework still constitutes an unexplained phenomenon[47, 48, 49].

In the majority of incarnations of the framework, the inflationary epoch is driven

by a yet unseen (i.e., a scalar field which is not part of the standard model of par-

ticle physics6) scalar field evolving under an arbitrary potential. In each of these

examples, the primordial fluctuations are created asymptotically far in the past at

5Observational evidence for dark matter can be found in gravitational lensing, in the CMB, in galaxies
clusters, etc.[40, 41, 42]

6There are proposals of inflation fueled by the Higgs scalar[50]
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trans-Planckian lengths, which is usually quoted as the trans-Planckian problem.

In the model we propose in Part III these problems are surmounted. The fluctuations,

born at the Planck scale due to the intrinsic granularity of spacetime, can be treated

in an explicit semi-classical setting[18].

The non-zero value of the cosmological constant is usually quoted as a consequence

of quantum gravitational effects. Also, there is currently a tension between the late and

early cosmological time observation of the Hubble constant H0. The measured value

of H0 in the late universe disagrees with the early Universe values by 5σ[19, 20, 21].

Interestingly, it has been argued that these phenomena can be the consequence of the

discrete spacetime microstructure at the Planck scale[22, 23, 24, 25].

This dissertation contains two main projects carried out during the last three years

born from these ideas. The first part proposes a novel solution for the information

paradox in black holes, and the second part a view on structure formation in cosmol-

ogy from quantum gravity.

1.1 Part I: Black Hole Information Paradox

The first hints towards the thermodynamical behavior of black holes came in the early

70s with Bekenstein, Bardeen, Wheeler, and Hawking among others. It was shown

that equilibrium black hole solutions of Einstein’s equation satisfy laws analogous to

those of thermodynamics.

But it wasn’t until Hawking’s seminal work that an apparent paradox arose. Hawking’s

ground-breaking paper showed, using semi-classical considerations, that black holes

lose mass via thermal radiation. Moreover, the emission rate depends inversely on

the black hole’s mass, suggesting that black holes evaporate in finite time. If the black

hole completely disappears, all the information once contained inside the black hole

disappears with it, leaving only a thermal bath of Hawking’s particles in its wake. Thus,

an initial pure state has evolved into a mixed final state. In stark contradiction with

quantum mechanics, the evolution between the initial and final state is not unitary

and information is lost: the information encoded in the final state is insufficient to

recover the initial state. This is known as the black hole information paradox. In

Section 3.2 we give a more detailed and thorough discussion of the paradox.

Several proposals to solve this apparent paradox have appeared in the literature

over the last 50 years. Some of these approaches, seeking to restore unitarity in the

11



Chapter 1. Discreteness in Quantum Gravity

dynamics, propose dramatic departures of known physics in regimes where semi-

classical models are thought to be a good approximation.

Other, more conservative proposals entertain the idea of the solution coming from new

physics arising at the Planck scale, where the semi-classical description is expected to

break down. We do a review of the merits and drawbacks of each proposal in Section

3.3.

In Part II we propose a conservative and novel solution to the problem. In approaches

to quantum gravity where the description of the Universe as smooth spacetime is

thought of emerging as an approximation of a more fundamental, discrete structure

at the Planck scale, any description in terms of smooth fields is bound to miss part of

these discrete degrees of freedom and thus break unitarity. Under this point of view, if

these fundamental degrees of freedom are taken into account, the process of black

hole formation and subsequent evaporation can be described by a unitary evolution.

This idea, first proposed [15], is shown in an explicit quantum gravitational context in

Section 6.78, following [26, 27].

The essential argument in the proposal is to note that the formation and eventual

evaporation of a back hole can be framed in the same terms as the process of burning

a paper.

Let’s consider printing, reading, and burning this page. The system’s initial state is

highly special from our perspective: as macroscopic observers we can distinguish the

ink particles that form the letters CMJ from the ones in the letters LBC.

If placed in an enclosed case, the printed text on this page would persist for a fairly

long time and be left for future generations to judge the content of these words. The

phase space available to the particles forming the paper and the words written on it

remain more or less constant through time.

If, however, we decided to set the paper on fire, is the information written on it lost

forever? Can we recover the written text by looking at its ashes?

So far, the physical theories describing our world are all reversible in the sense that

we can predict the future state of a set of variables from their initial state. Conversely,

we can recover the past from the values of the variables in the future. Naively, this

feature clashes with the intuition in the case of the burning paper: the information

once contained in the paper appears forever lost. However, there is a physical account

of the phenomenon that preserves reversibility. Once the paper is set on fire, the

information goes into correlations between the molecules that are now free to diffuse

into the atmosphere. Information is then not lost but degraded into correlations that

12
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are inaccessible to us, coarse-grained observers.

In the first sections of Part II, we argue that the formation and evaporation of black

holes can be framed along the same lines: a unitary, reversible account of the pro-

cess is available when Planckian degrees of freedom are considered. Correlations

established with the Planckian microstructure are missed when considering smooth

fields that disregard these discrete degrees of freedom and the usual low-energy, QFT

non-unitary description is recovered. These correlations are fueled by the presence

of a unavoidable high curvature region (the would-be singularity). This Planckian

curvature region around the place where classicaly there is a singularity acts as the fire

in the burning paper example: it opens a huge, new and unexplored region of phase

space by bringing the system in contact with the Planck scale.

In Sections 4.2-4.10 we introduce a quantum-gravitational model where these ideas

are realized. The model is based on the techniques of Loop Quantum Cosmology,

which is presented in 4.2 as well as in the Appendix B.

We argue that this quantum cosmological model contains the essential ingredients

which provide the solution in the black hole case: the presence of UV degrees of

freedom provided by the so-called ε-sectors. The results can then be immediately

extrapolated to the black hole case.

The study of this issue in cosmological polymer models, aside from having fewer

technical difficulties than its black hole counterpart, provides a clear conceptual

interpretation of the physics in play. The results for the more technically complicated

(but analogous) black hole case will be reported elsewhere[28].

We show that for coarse-grained observers insensitive to Planckian degrees of freedom,

an initially pure state develops correlations between low-energy and Planckian degrees

of freedom when evolved through a region of high curvature.

These correlations are inaccessible for low-energy observers, for which the dynamics

are non-unitary even though the dynamics of the underlying theory are unitary. These

coarse-grained observers see the entropy grow between the initial and final state, and

this entropy is just a measure of the ignorance of such observers.

13
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1.2 Part II: CMB observables from Planckian granular-

ity

In Part III we study another possible consequence of a discrete spacetime. We pro-

posed a model of inflation driven by a decaying cosmological constant due to friction

with a discrete background.

In this model, the inhomogeneities observed in the CMB arise from those associated

with a discrete spacetime. We obtain the observed approximately-scale invariant

spectrum of scalar perturbations with the correspondent blue tilt. The model also pre-

dicts a vanishingly small tensor-to-scalar ratio. These phenomenological predictions

depend only on known parameters of standard model physics.

In section 6.1 we introduce unimodular gravity as the low-energy limit of a theory

in which spacetime is fundamentally discrete and built from 4-dimensional discrete

building block: quanta of 4-volume.

While the phenomenological model we propose can also be realized within General

Relativity, Unimodular Gravity provides a unique conceptual point of view: it describes

the low-energy limit of a fundamentally discrete theory. As such, it incorporates

friction as violations of conservation of the energy-momentum tensor, that is ∇aTab 6=
0.

This is a crucial ingredient: the usual smoking gun of a discrete background structure

is friction, the possibility of energy to be lost into the chaos of microstates not captured

by the effective theory.

In Section 6.2 we study the dynamics of a cosmological spacetime with an exponen-

tially (in analogy with standard dissipative systems) decreasing cosmological term

Λ(t ) =Λ0 exp
(−βMPlt

)
(1.10)

where MPl is the Planck mass, β a dimensionless parameter, Λ0 ∼ M 2
Pl and t the

cosmological (unimodular) time related to the comoving time τ by

d t = a3dτ (1.11)

We show that, as long βMPl < 1, the Universe undergoes an inflationary phase fueled

by the decayingΛ. Moreover, for small enough β the inflationary phase lasts enough

to resolve both the horizon and the flatness problems independently of the initial con-
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ditions7. See Figure 2. We see also that the decay once βMPl ∼ 1 is largely independent

of the value of β.

In Section C we show that the observational consequences of the model are not

strongly dependent on the exact functional form of Λ. In particular, as long as Λ is

nearly constant for a long enough number of e-folds in such a way that the scales

observed today in the CMB were created at the Planck scale during inflation, and

Λthen rapidly decays the observational predictions of the model remain of the same

order of magnitude.

Figure 1.2 – Background dynamics with a decaying cosmological constant

In Section 6.2.2 we study the dynamics of the Higgs field coupled to gravity. We will

show that the fundamental discreteness is imprinted on the natural scalar degree

of freedom in the standard model, the Higgs boson, which will carry these inhomo-

geneities to the CMB.

In Section 6.3 we thoroughly describe the structure formation mechanism proposed

in [18]. We start by studying the dynamical equations for the scalar field fluctuations

(6.48).

These fluctuations are proposed to arise from a stochastic process source by the

discreteness associated with quantum gravity effects at the Planck scale: we assume

7It is misleading to claim that inflation solves any of these problems. A tremendous reduction of
the possible initial conditions is already in place when considering homogeneous spacetimes (and
perturbations around them). This problem is beautifully stated and explained by Penrose in many of
his books, see for example [51]
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that during its rolling down the potential, the zero modes of the Higgs interacts

with the granularity at the Planck scale and diffuses energy into the modes with

physical wavenumber k/a. More precisely, we add a Langevin-type friction term to

the equation for the homogeneous scalar mode to account for this interaction(6.71).

We then obtain a balance equation linking the energy lost by the Higgs rolling down

its potential to the work necessary to produce the fluctuations (6.73).

We can then carry on to compute the power spectrum of the scalar perturbations (6.89).

Moreover we can compute the spectral index ns (6.90). We see that the spectrum is

compatible with observations for a friction coefficient γ∼ 10−10.

Furthermore, in Section 6.4,we also show that if we assume that part of these fluctu-

ations collapse to form primordial black holes, these black holes do not get diluted

by the inflationary phase, and the model produces the amount of cold dark matter

required by observations (6.95).

In Section 6.5 we discuss the differences between our propose model of structure

formation and the standard account based on vacuum fluctuations.

A key difference between our proposed mechanism of structure formation and the

standard account is that our model admits a semiclassical interpretation correspond-

ing to the linearized version of the semiclassical Einstein field equations

Gab = 8πG 〈Ψ|Tab |Ψ〉 (1.12)

In our model fluctuations are born at horizon crossing and hence differs from the

standard account where the initial conditions are given by the Bunch-Davies vacuum

which is defined asymptotically in the past, giving rise to the trans-Planckian problem.
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2 An Apology to Unimodular Gravity

Unimodular Gravity will be a reoccurring theme throughout this work. Here I will

present a brief description of Unimodular Gravity and its unique conceptual value.

In a nutshell, Unimodular Gravity is a theory of gravity where the cosmological con-

stant, rather as a parameter, appears as a Lagrange multiplier in the gravitational

action.

This slight reformulation harbors a conceptually unique interpretation: the constraint

imposed by the cosmological constant expresses the existence of fundamental ele-

ments of 4-volume[52, 18].

The molecular structure of matter has significant consequences in the macroscopic

description: a giveaway of the presence of discrete constituents is the leak of energy

from the macroscopic degrees of freedom to microscopic degrees of freedom not

accounted for in the long-wavelength description.

For example, we describe macroscopic fluids using Navier-Stokes equations. This is

just an effective description that ignores the molecular degrees of freedom. Neverthe-

less, their presence manifests in the viscosity and friction terms that lead to energy

loss in the system. Energy from macroscopic degrees of freedom leaks into the micro-

scopic molecular chaos. Analogously, if we think the continuous as a emergent feature

in the low energy description, energy should be able to diffuse from the macroscopic

degrees of freedom to the underlying granular structure.

How can this phenomenology be accommodated in gravity? GR’s general covariance

implies that the energy-momentum tensor is conserved. Here Unimodular Gravity

enters the scene: the cosmological constant is a Lagrange multiplier which fixes the

volume element to a constant value thus breaking down general diffeomorphisms

down to volume preserving ones.
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The action of Unimodular Gravity is given by

S =
∫ (p

g R+λ[p
g − v (4)])d x4 +Sm , (2.1)

where Sm denotes the matter action, λ is a Lagrange multiplier and v (4) is a fixed

background 4-volume form

v(4) ≡ v (4)d x0 ∧d x1 ∧d x2 ∧d x3 (2.2)

The background volume element partially breaks diffeomorphisms down to volume-

preserving ones. This allows for violations of energy-momentum conservation. More

explicitly, varying the action (2.1) we obtain the unimodular equations of motion

Rab −
1

4
Rgab = 8πG

(
Tab −

1

4
Tgab

)
(2.3)

which, using Bianchi identities can be rewritten as

Rab −
1

2
Rgab +

[
Λ0 +

∫
`

J

]
︸ ︷︷ ︸

Λ

gab = 8πGTab , (2.4)

where Jb ≡ (8πG)∇aTab is the energy-momentum violating current which stisfies

dJ = 0.

Note that, if J = 0 we recover exactly Einstein field equations1.

What is the role of the background volume structure, and how interpret it? Pure gravity

has no scale: from the gravity point of view, the hydrogen’s Bohr radius is an oddity.

We can shed light on this question by assuming that, as the Navier-Stokes hydrody-

namics description, general relativity is nothing but an effective macroscopic theory

that emerges as the low-energy limit of a more fundamental, discrete description that

comes to aid us.

These fundamental building blocks have to be carved out from four-volume elements

1Even when J 6= 0, we can recast, at the level of the field equations, Unimodular Gravity as the
Einstein field equations with a energy-momentum tensor formed by two interacting components. That
is

Gab = 8πT̃ab , (2.5)

where T̃ab = Tab −
[
Λ0 +

∫
` J

]
gab
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to be compatible with Lorentz invariance. Moreover, these 4-dimensional building

blocks will naturally produce a background fixed structure in the long-wavelength

limit, thus recovering Unimodular gravity (See Part III and [53, 54] for a more detailed

account).

In Part III, we study a possible mechanism where friction with this fundamental

building block in the early universe produces a cosmological constant that relaxes to

the observed values and leaves an observable imprint in the CMB.

Finally, it is important to remark that, while Unimodular Gravity plays a pivotal role in

the conceptual and physical aspects of this thesis (and those of [26, 27, 18]), everything

in this thesis can be reformulated in terms of general relativity (and polymerization

of).

To be more precise, in Part II, unimodular gravity dramatically simplifies the calcu-

lations and the physical interpretation by providing a unique notion of time (the

cosmological time). Nevertheless, the essential ingredients: the presence of different

e-sectors, and the fact that wavefunctions supported on distinct lattices evolve dif-

ferently, are also present in the more standard polymerizations (i.e., in the standard

accounts of LQC). Moreover, as we argue in Section 4.3, the crucial feature in our

proposal (ultraviolet degrees of freedom not accessible to coarse-grained observers)

is present in every polymer model.

Concerning Part III, the situation is similar. While Unimodular Gravity laid the con-

ceptual basis of our analysis, the model could have been realized in general relativity

with interacting fluids as the source.

We think this is an exciting feature of the proposals described in this thesis: the

conceptual ideas they are based on are independent of one’s favorite theory of gravity

and one’s favorite quantum gravity approach. Indeed these scenarios could be realized

in different approaches to quantum gravity.
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3 Black Hole Information Paradox

3.1 Entropy and the Second Law of Thermodynamics

The mathematical models that so far define our successful physical theories are all

reversible in the sense that they can predict the future value of the variables they use

from their initial values, while conversely the past can be uniquely reconstructed from

the values of these variables in the future. The memory of the initial condition is not

lost in the dynamics and their information content remains.

This is true for classical mechanics and field theory, and also true for quantum me-

chanics and quantum field theory as long as we do not invoke the postulate of the

collapse of the wave function (i.e. as long as we do not intervene from the outside via

a measurement 1). In the quantum mechanical setting, this property boils down to

the fact that evolution to the future is given by a unitary operator, which can always

be undone via its adjoint transformation.

This property of our fundamental models has always troubled naive intuition when

faced with situations that appear to be irreversible. For example: what would happen

with these words if the computer collapses at this very moment. What if, after printed,

this paper is burned. Common sense would answer that the information in these

pages (if of any relevance) would be lost. However, the physicist, trained to firmly

believe in the statement of the previous paragraph, would say that the information in

these words is not lost but simply hidden (to the point of becoming unrecoverable)

in the humongous number of microscopic variables that would describe the whole

system.

1This is not the case in modifications of quantum mechanics where the collapse of the wave function
happens spontaneously.

In such theories information is actually destroyed (for a discussion of black hole evaporation in such
contexts see [55, 56, 57]).
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In the case of burning the paper, these words remain ‘written’ (it would be claimed) in

the multiple correlations between the degrees of freedom of the molecules in the gas

of the combustion diffusing in the atmosphere while transferring the information to

even larger and yet pristine portions of the very large phase space of an unbounded

universe.

In the case where the computer collapses, a similar story can be told involving the

dissipation of the bits into the environment. Of course the physicist cannot prove this;

however, it is a consistent story in view of the strongly cherished principle of unitarity.

Such effective irreversibility is clearly captured in the second law of thermodynamics,

stating that (for suitable situations involving a large number of degrees of freedom)

entropy can only increase.

At the classical level this clashes, at first sight, with the Liouville theorem stating that

the phase space volume of the support of a distribution in phase space is preserved by

dynamical evolution.

However, nothing restricts the shape of this volume to evolve into highly intricate

forms that a macroscopic observer might be unable to resolve. More precisely, suit-

able initial conditions that the observer agent regards as special (for instance, the

macroscopic configurations of ink particles defining words in this paper before the

fire reached them) come with an uncertainty according to the observers’ limited mea-

surement capabilities. This is idealized by a distribution in phase space occupying an

initial phase space-volume of a regular shape (this ensemble of points represents the

system in what follows).

Now as time goes, the apparent phase space volume (not the real volume which re-

mains constant) would seem to grow to the agent just because of its intrinsic inability

to separate the points in phase space that the systems occupies from the close neigh-

bouring ones where the system is not. In this sense the arrow of time is only emergent

macroscopically due to the special initial conditions, and the intrinsic coarse graining

introduced by a macroscopic observer with its limitations.

We will argue that the general lines of this story remain the same when black hole

evaporation is considered.

3.2 Information Loss

To be more precise, when considering evaporation spacetimes, there is an apparent

breakdown of retrodictability: having the complete knowledge of the final state after
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the black hole evaporates is not sufficient to retrodict the full details of the initial state.

The initial state contains information (for example, the pages of a book thrown into

the black hole before evaporation) that does not get encoded into the final state. At

the quantum level, this is expressed as a non-unitary evolution between the early and

late states. A pure initial state gets mapped into a mixed state after the black hole

evaporates.

The paradox refers to an unmet expectation: this result is at odds with quantum

mechanics’ unitary (and deterministic) evolution.

There are, though, several caveats to the above conclusion. First, its validity is based

on (sometimes subtle) assumptions that are not always explicit and (more often than

not) depend on the background and prejudices of the physicist making them. A glance

at the vast bibliography about the subject makes this evident.

For example, the string community mainly focuses on models guided by holographic

inputs (EP=EPR [58], Replica wormholes [59, 60, 61], etc.), while physicists working on

canonical approaches to gravity generally consider polymer models [62, 63, 64, 65].

Given this plethora of proposed solutions and bibliography about the subject, this

section will introduce the black hole evaporation paradox, emphasizing those crucial

features to our approach and trying to explicit the assumptions made along the way.

This strategy will help us understand which assumptions are dropped in the different

proposed solutions and the physical implication of those choices.

3.2.1 Classical Black Holes

An astronomical object of big enough mass will undergo an unstoppable gravitational

collapse to form a black hole. The details of this collapse can be very complicated,

depending on the details of the initial matter distribution.

Nevertheless, the singularity theorems, the black hole uniqueness theorems, and the

cosmic censorship conjecture imply that the final configuration of (isolated) gravita-

tional collapse is a stationary black hole characterized by a handful of macroscopic

parameters: its massM , charge Q, and angular momentum J .

In other words, every isolated (dynamical) black hole will eventually settle into a

stationary black hole belonging to the Kerr-Newman family described by three param-

eters: M , Q, and J .

This feature of gravitational collapse is reminiscing of the mechanism in section 3.1:
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an arbitrarily large set of initial conditions are dynamically driven into a final state

described by a finite (and small) number of parameters. This behavior points towards

a first clue unveiling the irreversible character of gravitational collapse. Information

in the initial matter configuration appears to be lost in the final state.

We can draw an analogy with the classical thermodynamic example of expanding gas

in a box. In this case, dynamics drive an infinite set of initial data into a final state (gas

occupying the whole box volume) described by temperature T, pressure P, and volume

V of the gas in an irreversible fashion. During the process, a coarse-grained observed

saw entropy grow due to its limited capabilities.

We will argue in the following sections that the process of gravitational collapse,

forming of a black hole, its eventual evaporation, and the resulting apparent paradox

can be framed and understood under this paradigm.

In the early 70s, Bardeen and Hawking showed that stationary black holes obey laws

analogous to those of thermodynamics. The area A of the black hole’s horizon plays

the role of the entropy S, and the surface gravity κ plays the role of the temperature T .

Identifying the black hole temperature with the surface gravity may seem spurious

at this stage: a classical black hole has strictly absolute zero temperature. Indeed,

classically a black hole does not emit any radiation. However, as we hinted before

and will show in the next section, the situation changes dramatically when quantum

effects are taken into account.

Before considering the effects of quantum fields evolving on black hole spacetimes,

let us address the apparent loss of information we mentioned early this section.

Consider the two Cauchy surfaces in Figure 1: at early times, the Cauchy surface Σ1

is entirely located outside the black hole, while at later times, the Cauchy surface Σ2

has a part inside the horizon and a part outside. Thus, the evolution is not unitary for

outside observers with no access to the information encoded in Σi n
1 .

In other words, pure states on Σ1 evolve into pure states in Σ2, but these become

mixed when degrees of freedom in the black hole’s interior are traced out.

This example in the classical case is evocative of what will happen in the semiclassical

case: evolution between an initial Cauchy surface and a final non-Cauchy surface

(like Σout
2 ) is non-unitary.

Wald [66] shows clearly and explicitly that even within the realms of a fully determinis-

tic theory, a state in a non-Cauchy surface can be entirely determined from a state on
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Figure 3.1 – Penrose diagram of a spherically symmetric collapsing star. Σ1 is a early
times Cauchy surface entirely located outside the horizon. Σ2 is a late times Cauchy
surfaces which has parts inside and outside the horizon (dashed blue line).

a Cauchy surface but not vice-versa. That is, the evolution is deterministic forward in

time, but it is not retrodictable[67].

We only have the right to expect unitary (and deterministic) evolution from one state

on a Cauchy surface to another.

Analogous to the outside observer case discussed before, the evolution of a state

on a Cauchy surface to a state on a non-Cauchy surface carries an apparent loss of

information.

3.2.2 QFT on Black Hole Spacetimes

As hinted in the introduction, Hawking showed that black holes radiate thermally and

that the temperature of this radiation depends linearly on the surface gravity T = κ
2π .
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In a regime where both are expected to be good approximations, general relativity

combined with quantum field theory implies that large isolated black holes behave

like thermodynamical systems in equilibrium. This is because they are objects close

to equilibrium at the Hawking temperature that lose energy extremely slowly via

Hawking radiation.

When perturbed, they come back to equilibrium to a new state, and the process

satisfies the first law of thermodynamics with an entropy equal to 1/4 of the area A of

the black hole horizon in Planck units. Under such perturbation (which in particular

can also be associated to their slow evaporation), the total entropy of the universe can

only increase, namely

δS = δSmatter + δA

4
≥ 0, (3.1)

where δSmat ter represents the entropy of whatever is outside the black hole (including

for instance the emitted radiation).

This result shed new light onto the analogy between the black hole laws and those of

thermodynamics: now we can interpret κ
2π as truly as the physical temperature of the

black hole.

Hawking’s calculation concerns test quantum fields on black hole spacetimes. In

general, techniques of quantum fields on curved spacetimes cannot deal with back-

reaction, and currently, an appropriate framework is lacking. So a dynamical model

of black hole evaporation, including the Hawking radiation’s backreaction on the

spacetime, is presently lacking.

Nevertheless, by considering energy conservation arguments, it can be deduced that

the flux of positive energy towards future null infinity implies that the mass of the

black hole must decrease.

The picture now changes radically: the black hole emits radiation at a temperature T

proportional to the surface gravity, which in turn is inversely proportional to M , the

black hole mass. As the mass of the black hole decreases, the temperature increases,

leading to a more rapid emission rate leading to a runaway process that suggests that

the black hole evaporates in a finite time, resulting in a spacetime as in Figure 3.2.

The point is that the irreversibility captured by (3.1) can once more be associated with

the same ingredients present in the last section’s discussion: the special nature of the

initial conditions due to our biased criterion of macroscopic observers (low curvature
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3.2. Information Loss

and low densities in the past), high curvature and a huge new phase available in

the Planckian regime near what would be the singularity in general relativity (the

would-be-singularity from now on).

As emphasized by Penrose (see for instance [51]), among others, the arrow of time

comes from the fact that we started with a spacetime that was well approximated by a

low curvature one with some dilute matter distribution (gas and dust) that would first

form large stars that one day can collapse to form black holes2.

Before the formation of a black hole, the story of our system exploring larger and larger

portions of the available phase space is the usual one involving molecules, atoms, and

fundamental particles.

The perspective we want to stress here is that the story continues to be the same after

the black hole forms, but now a new and huge new portion of phase space has is

opened by the gravitational collapse: the internal would-be-singularity of the classical

description beyond the event horizon.

Like the lighter setting the paper on fire and allowing for fast chemical reactions that

degrade the ink in these words when burning the paper, the singularity brings the

system in contact with the quantum gravity scale. The gravitational collapse ignites

interactions with the Planckian regime inside the black hole horizon (see Footnote 1),

and that must be (as in the burning paper) the key point for resolving the puzzle of

information in black hole evaporation. This perspective was advocated in [15, 68].

As we pointed out before, the current theories cannot provide a complete, systematic

treatment of the evaporation process. Here is, then, one of the places for assumptions

to come in, leading us (or not, depending on which our assumptions are) to a paradox.

The calculation of Hawking radiation needs quantum field theory on curved space-

times to be valid around the black hole horizon. Indeed, this poses no problem in

the early evaporation phase. As we discussed in the introduction, the QFT on CS

description is thought to break down at the Planck scale. 3.

2To these two specialty conditions one might also have to add one concerning the state of the
hypothetical microscopic constituents at the Planck scale if the view we are advocating here and in
[15, 68] is correct.

3There is a caveat here: when tracing backward from I + a Hawking mode and its partner mode
inside the horizon, we see that the entanglement comes from very short (transplanckian) distances
across the horizon. So, as we discussed above: can QFT on CS be trusted in this regime? The issue
of robustness of Hawking radiation against changes at transplanckian scales has been discussed
lengthily[69, 70, 71, 72, 73, 74]. Although no conclusive answer is available, evidence suggests that
the prediction of Hawking radiation is independent of physics at very short scales. Furthermore, an
argument due to Fredenhagen and Haag, suggest that Hawking radiation arise as a consequence of the
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Chapter 3. Black Hole Information Paradox

What happens, then, close to the singularity and at very late stages of the evaporation,

when the semicalssical description breaks down?4.

I −

I −

Σ1

Σ2

i−

i0

i+

Figure 3.2 – Penrose diagram of a evaporation spacetime. Σ2 is not a Cauchy surface.

3.3 The Paradox

Before answer the question posed above, let me introduce a set of assumptions that

will lead to a first conflict to arise:

• (0): A black hole forms as a result of gravitational collapse

• (1): Quantum fied theory is valid near the black hole horizon

behavior of Hadamard state at (relatively) late times around the black hole horizon[75, 76].
4More precisely, when the curvature at the horizon becomes Planckian, K = Rabcd Rabcd ∼ `−4

Pl
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3.3. The Paradox

• (2): Quantum dynamics is always unitary

Of course, this list of assumptions can be made more explicit or concise depending

on which characteristic one is looking to emphasize5. For example, we could replace

assertion (1) by:

• (1a): Hawking’s radiation results in the decrease of the black hole mass

(1b): Due to Hawking’s radiation the black hole completely evaporates

(1c): If the black hole does not completely evaporate and leaves a Planckian

remnant, then the number of its internal degrees of freedom is bounded by its

mass6

Let me go back to the original set of proposed assumptions. When the first two

conditions, (0) and (1), are satisfied, we are led to the black hole formation and later

evaporation depicted in Figure 3.2. First, due to the gravitational collapse of some

matter distribution, (0) a black hole is formed. Then, since (1) quantum field theory

on curved spacetimes is valid around the horizon, the black hole starts evaporating

until it disappears in finite time . A pure quantum state on the Cauchy surface, Σ1

evolves into a mixed state on the surface ofΣ3. Thus, in contradiction with assumption

(2) the quantum evolution is not unitary.

Wald[80] (and many others[67, 57]) has vehemently argued that this inconsistency

poses no problem to quantum mechanics. The key observation is that Σ3 is not a

Cauchy surface; thus, non-unitary evolution between Σ1 and Σ3 is to be expected. In

Wald’s own words

. . . within the semiclassical framework, the evolution of an initial pure state

to a final mixed state in the process of black hole formation and evaporation

5A minimal set of assertions is presented in [77]:

• (GH) All physical reasonable spacetimes are globally hyperbolic

• (EvST) Some evaporation spacetimes are physically reasonable

The paradox in these assumptions is put forward when invoking the Kodama-Wald Theorem[78, 79]:
No evaporation spacetime is globally hyperbolic.

The majority of solutions we will discuss in this thesis involve rejecting the second assumption. In
these cases, it’s assumed that evaporation spacetimes are not physically reasonable by invoking the
emergence of new physical processes at some scale (usually the Planck scale).

6This one can be replaced by:

– (BHEn) The statistical entropy of a black hole is the same as its Bekenstein-Hawking entropy

31



Chapter 3. Black Hole Information Paradox

can be attributed to the fact that the final time slice fails to be a Cauchy

surface for the spacetime. No violation of any of the local laws of quantum

field theory occurs.[80]

Maudlin also raised this issue in a recent provocative paper[67] in which he gives

a conservative and straightforward solution to the so-called paradox: there is no

paradox.

To restore unitary evolution between an initial and final slice in an evaporation space-

time, one must consider a final Cauchy surface after the evaporation event. This

is possible by extending the definition of Cauchy surfaces to consider disconnected

Cauchy surfaces (see Figure 3). Using this new disconnected family of Cauchy surfaces,

we can foliate the entire evaporation spacetime with Cauchy surfaces: the spacetime

is globally hyperbolic.

Yet, we mentioned earlier the Kodama-Wald theorem, which states that no evaporation

spacetime is globally hyperbolic. What went wrong? The key is one assumption

that goes into the Kodama-Wald theorem (as well as many standard theorems in

General Relativity, in particular the Geroch splitting theorem [81]): the spacetime is a

4-dimensional smooth (Hausdorff, paracompact) Lorentzian manifold.

However, the spacetime depicted in Figure 3 fails to be a manifold at the Evaporation

Event. This is what ultimately allows to foliate the evaporation spacetime into Cauchy

surfaces.

As readily pointed out in [77, 57], the definition of disconnected Cauchy surfaces poses

several technical problems. I will not discuss these issues here7, but I will highlight a

central idea in Maudlin’s paper that resonates with our proposal: Maudlin’s insight

was that, in order to found an appropriate Cauchy foliation, the smooth manifold

structure had to breakdown at the evaporation event.

While in this particular case this breakdown appears to be due to a pathological space-

time, it suggests that the description in terms of a smooth manifold is an emergent

description only adequate at low energies which may not be sufficient to describe the

whole process of evaporation. This is the point of view we adopt in this thesis and will

be crucial in our proposal (see Section 4). A smooth (Lorentzian) manifold is just an

emergent feature from a more fundamental, discrete structure.

In a concrete example, we have seen that one could restore the sought unitarity at the

cost of losing the manifold structure at a point. However, Maudlin’s scenario does not

7See [77, 57]
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3.3. The Paradox

include is any expected effects from quantum gravity at Planckian (or any) scale.

Even when Maudlin’s argument is compelling, it fails to address the crucial lesson of

the problem: the black hole evaporation opens a path to the quantum gravitational

regime. Unavoidably, the system will be in touch with the Planck scale before it

completely evaporates.

Let us go back now to the discussion of (2). As we mentioned before, unitarity is

not to be expected when the final surface is non-Cauchy. Many attempts to restore

unitarity in this scenario seem misguided at best: having a unitary evolution in this

semiclassical approach is not compatible with quantum mechanics!

It has been argued that a non-unitary evolution will raise severe conflicts with energy

conservation at ordinary (laboratory) scales. The most common paper cited to support

this claim is by Banks, Peskin, and Susskind. Later, careful analysis showed that

these claims were not laid on solid grounds and that many possibilities to avoid the

conclusion exist[82].

More concretely, Unruh proposed a model where decoherence can take place without

energy dissipation[83]. We realized this idea in a series of papers [26, 27], showing in a

concrete quantum gravitational toy model that one can have an enormous increase in

entanglement entropy at no energy cost (see Section 4).

Let us now turn the attention briefly to assumption (0): Dropping this assumption

amounts to say that a black hole never forms as a result of gravitational collapse and

is replaced by another structure without an event horizon. Of course, if no black hole

ever forms, there is no black hole information paradox.

I will no comment further about these proposals. Still, they generally imply that gen-

eral relativity and/or quantum field theory should fail drastically in regimes expected

to be a good approximation.

In what follows, we will always suppose that black holes can form due to gravitational

collapse (i.e. that assumption (0) is fulfilled).

Another possibility is to consider stark departures from semiclassicality during evapo-

ration (at early times). These proposals sought to restore unitarity in the final state by

considering deviations from the semiclassical picture so that there is no entanglement

between the degrees of freedom outside and inside the horizon.

As we mentioned before, a non-unitary evolution is a consequence of quantum field

theory; attempting to restore unitarity in this way implies the breakdown of quantum
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Chapter 3. Black Hole Information Paradox

field theory in low curvature regions (the curvature at the black hole’s horizon is

unbounded). In particular, when entanglement between Hawking pairs across the

horizon is erased, the quantum field becomes singular at the horizon, it becomes a

firewall8. This stark deviation from semiclassicality makes this type of proposal quite

radical.

Another possibility presents when quantum gravitational effects enter the picture.

As we argued in the introduction, assumption (1) cannot be trusted close to the

singularity or at late stages of evaporation.

The remnant paradigm assumes that after the black hole evaporated down the Planck

scale, quantum gravitational effects halt the black hole evaporation leaving behind

a remnant where information can be stored. A spacetime with a stable remnant is

depicted in Figure 3.3.

Following Chen et al. we consider the following broad definition for remnant:

Definition: A remnant is a localized late stage of a black hole under Hawk-

ing evaporation, which is either (i) absolutely stable, or (ii) long-lived.[84]

Several avenues exist to realize concrete remnant scenarios: modified quantum me-

chanics (GUP-like scenarios), modified general relativity, quantum gravitational ef-

fects (usually coming from polymer models inspired in LQG), among others. It’s not

our aim to be exhaustive but to highlight the merits and limitations of the general

remnant approach. For a comprehensive account, see [84].

Assuming the natural scale for quantum gravitational effects to become relevant to be

the Planck scale, the remnant’s mass can be estimated to be of the order of Planck’s

mass MPl.

From the perspective of an observer close to future null infinity, the Bondi mass of the

black hole will decrease until it reaches the Planck scale.

Note that the initial mass of the black hole is, in principle, unbounded. In that case,

we see a potential problem: the final remnant has to have an arbitrarily large number

8There is an extra assumption going into the firewall models: (BHEn) The statistical entropy of a
black hole is the same as its Bekenstein-Hawking entropy.

In order words, the number of black hole states to which external degrees of freedom can be entangled
is bounded by N ∼ e A/4. This assumption and the desire of restoring unitarity in a non-unitary process
led to firewalls at the horizon. We will see that discrete approaches to quantum gravity suggest that
(BHEn) is an unphysical assumption.
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Figure 3.3 – Penrose diagram of a remnant scenario. After the black holes evaporates
down to ∼ MPl evaporation halts leaving behind a (stable) Planckian remnant. This is
one of many possible realizations of the remnant scenario, for a lengthy discussion
see [84].

of degrees of freedom to purify an arbitrarily large amount of radiation emitted during

the evaporation phase.

An arbitrarily large number of degrees of freedom have to be accommodated in only

a Planck mass of energy E ∼ MPl. In other words, these degrees of freedom need to

carry arbitrarily small energy.

It has been argued then that, if remnants can be treated as point particles in an

effective field theory with cutoff scale λc >> `Pl, the vacuum should be unstable and

produce a virtually infinite number of Planckian black hole remnants. There are,

however, several caveats in the conclusion that may suggest that this argument is not

entirely correct[84].
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Chapter 3. Black Hole Information Paradox

In particular, it is not evident that remnants can be treated as point particles. Old

black holes have a large interior volume[85], although they appear as point particles

to outside observers.

A significant point we have not addressed yet is the behavior of fields close to the

singularity inside the black hole. The presence of such singularity poses an obvious

problem if we want to retain predictability: matter carrying information hits the

singularity in a finite time and can no longer be accounted for. At the classical level,

this behavior is usually thought to signal the theory’s breakdown at these scales.

The consensus among theorists is that a quantum gravity theory will cure the singu-

larity’s pathological behavior, replacing it with an appropriate quantum gravitational

notion[62], in which transitions across a Planckian curvature region is well defined.

For example, see Figure 3.4.

As we will see in the following chapter, our view is that the singularity formation in

General Relativity is a symptom of the breakdown of an effective low-energy descrip-

tion. This feature is not exclusive of General Relativity, the Navier-Stokes description

being the classic example of this behavior. The hydrodynamic equations have so-

lutions that develop shock waves, singularities in a variety of regimes. This signals

that the theory is no longer a good description of the fluid’s physics in those regimes.

Nevertheless, the more fundamental kinetic theory is thought to still be valid in those

situations.

Analogously, we argue that the breakdown of General Relativity at the singularity is

just an omen of a more fundamental discrete theory, to which General Relativity is

just a low-energy approximation.

Naively unitarity can be readily restored in a spacetime like 3.4. However, this ap-

proach suffers the same issue we discussed in the remnants framework. When quan-

tum gravitational effects become relevant, an arbitrarily large amount of radiation

has been radiated towards future null infinity. It is then not clear how an arbitrarily

large amount of information can be encoded in extremely low energetic degrees of

freedom.

From the perspective of non-perturbative quantum gravity, there is a natural resolu-

tion for this problem: a smooth spacetime is just a coarse-grained notion emerging

from a multitude of microscopic degrees of freedom. In this viewpoint, flat-spacetime

is a low-energy approximation that corresponds to myriads of pre-geometric Planck-

ian states. While several quantum gravity approaches share this image, a concrete

realization of this idea has been used to compute the entropy of a black hole. The
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Figure 3.4 – Quantum gravity spacetime.

basic idea is to count the number of states in the fundamental theory (LQG) compati-

ble with a given macroscopic black hole of mass M. This suggests that every smooth

spacetime is highly degenerate in the fundamental theory.

This idea is crucial in a new paradigm to understand the black hole information

paradox. Starting in [15], and later made concrete in [27, 26] it is proposed that

correlations can be transferred to these Planckian degrees of freedom (which are

degenerate and carry no energy) via interaction with matter degrees of freedom in

high curvature regions. This is the heart of our proposal that we discuss in what

follows.
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4 Hawking’s information puzzle: a solu-
tion from discreteness

This chapter overlaps with [26, 27].

Let us briefly describe our scenario introduced in[26, 27] with the help of Figure 4.1.

The first assumption in the diagram is that there is evolution across the would-be-

singularity (predicted by the classical dynamics) inside the black hole. This assump-

tion is intrinsic in the representation in the figure; however, the scenario still makes

sense if instead a baby universe is formed, i.e., if the would-be-singularity remains

causally disconnected from the outside after evaporation. In that case the correlations

established with the baby universe remain hidden forever to outside observers. The

virtue of the present scenario in such case would be to give an identity to the degrees

of freedom involved. The idea that the spacetime representation of the situation

resembles the one in Figure 4.1 comes from the various results in symmetry reduced

models for both cosmology [86, 87] as well as for black holes [88, 65, 89, 90, 91, 92, 63]

and was first pictured in [62]. In such a context a ‘scattering theory’ representation

(where an in-state evolves into an out-state) is possible even though the result (as we

will argue) cannot be translated into the language of effective quantum field theory.

But what do we mean by a black hole in this evaporating context? In the asymptotically

flat idealization, the black hole region is defined in classical general relativity as the

portion of the spacetime M that is not part of the past of I +. Such definition needs

to be modified in quantum gravity. In order to do that we introduce the notion of

the semiclassical past J−C (I +) of I + as the collection of events in the spacetime

that can be connected to I + by causal curves along which the Kretschmann scalar

K ≡ Rabcd Rabcd ≤ C`−4
Pl for some constant C of order unity. The black hole region can

be defined then as

B ≡M − J−C (I +). (4.1)
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Chapter 4. Hawking’s information puzzle: a solution from discreteness

Its dependence on the constant C is not an important limitation in the discussion

about information. Different C would lead to BH regions that coincide up to Planckian

corrections.

The most clear physical picture emerges from the analysis of the Penrose diagram on

the left panel of Figure 4.1 from the point of view of observers at future null infinity

I +.

These observers are assumed to be at the center of mass Bondi frame of the BH

formed via gravitational collapse. We also assume that the Bondi mass of the BH is

initially M À p at some retarded time u on I + representing the time where the BH

has achieved its quasi-equilibrium state and starts evaporating slowly via Hawking

radiation, i.e., the BH is initially macroscopic.

Under such conditions the evaporation is very slow and we can trust the semiclassical

description that tell us that the Bondi mass M(u) will slowly decrease with u from this

initial value M until times u = u0 (see figure) with M(u0)'MPl in a time of the order

of M 3 in Planck units.

From this time on the details depend on a full quantum gravity calculation because the

curvature around the BH horizon has become Planckian. Nevertheless, independently

of such details we can safely say that the spacetime and the matter degrees of freedom

encoded on I + for u > u0 must be in a superposition of states all of which are very

close to flat space-time, as far as their geometry is concerned, with matter excitations

very close to the vacuum because there is only at best an energy of the order of

El ate ≈ MPl to substantiate both. In addition these excitations must be correlated with

the early Hawking radiation with energy Eear l y ≈ M −MPl if unitarity is to hold.

The late degrees of freedom are often referred to as purifying degrees of freedom.

The possibility we put forward is that if smooth spacetime is an emergent notion from

an underlying discrete physics, then the classical geometries of general relativity with

quantum fields living on them would only restrict the fundamental Hilbert space to a

subset containing very large (possibly infinite) number of states.

For instance the Minkowski vacuum unicity in standard quantum field theory would

fail in the sense that the requirement that states look flat for (coarse grained) low

energy observers—which are those for which an effective quantum field theory

description in terms of smooth fields living on a smooth geometry is a suitable

approximation—would still admit highly denegerate ensemble (all with total mass

indistinguishable from zero by these observers).
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Now, such low energy modes cannot be interpreted as the infrared excitations of

fields mentioned in the previous paragraph (say low energy photons) because they

are smooth low energy configurations.

These low energy degrees of freedom would correspond to defects in the Planckian

fabric of quantum gravity which we simply are not sensitive to with our coarse low

energy probes (like the molecular structure that escapes the smooth characterization

of the Navier-Stokes effective theory of fluids).

Why should information be hidden in the UV and not be IR modes as in the remnant

scenario mentioned last section? It is often believed that because the volume inside

the black hole actually becomes very large (according to suitable definitions [85])

then modes that are correlated with the Hawking radiation are redshifted and become

highly IR inside.

Although this is true for spherically symmetric Hawking quanta in the spherically sym-

metric Schwarzshild background—where such modes are indeed infinitely redshifted

as detected by regular observers when they approach the singularity at r = 0—this

conclusion fails when one considers no-spherical modes no matter how small the

deviation from spherical symmetry is 1. Therefore, generically all modes become UV

close to the singularity.

We can draw a formal analogy with the Unruh effect as follows. The Unruh effect

arises from the structure of the vacuum state |0〉 of a quantum field on Minkowski

spacetime when written in terms of the modes corresponding to Rindler accelerated

observers with their intrinsic positive frequency notion.

1 In the Schwarzshild background, the frequency measured by a radially freely falling observer
normal to the r =constant hypersurfaces goes like

ω2(r ) = `2

r 2 + r

2M
E 2 +O

(
r 2

M 2

)
, (4.2)

where E =−k ·ξ and `= k ·ψ are the conserved quantities associated to the massless particle with
wave vector ka and ξa and ψa are the stationarity and rotation killing fields of the background. The
qualitative behaviour approaching r = 0 would be the same for any other observer measuring ω (the
divergence of ω is observer independent). Only exactly spherically symmetric modes with `= 0 would
become IR at the singularity. However, this conclusion is no longer true if the BH rotates or if we
consider that at the fundamental level states with exact spherical symmetry inside the BH are of
measure zero. Notice that such UV divergence in the non-spherically symmetric Hawking partners
implies large deviations from spherical symmetry near the singularity (if their back reaction would
be taken into account). This should be kept in mind when modelling the situation with spherically
symmetric mini-superspace quantum gravity models.
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The vacuum takes the form

|0〉 =∏
k

(∑
n

exp
(
−n

πωk

a

)
|n,k〉R ⊗|n,k〉L

)
, (4.3)

where |n,k〉L and |n,k〉R define the particle modes—as viewed by an accelerated

observer with uniform acceleration a—on the left and the right of the Rindler wedge

[66]. Here we see from the form of the previous expansion that even when we are

dealing with a pure state (if we define the density matrix |0〉〈0|), the reduced density

obtained by tracing over one of the two wedges would produce a thermal state with

T = a/(2π). The statement in the perspective we propose on the purification of

information in BH evaporation can we schematically represented (the following is

certainly not a precise equation) by

U |flat,0〉︸ ︷︷ ︸
quantum geometry

⊗
matter fields︷︸︸︷

|φ〉 =∏
k

(∑
n

exp

(
−β

2
nωk

)
|flat,n〉⊗ |n,k〉

)
, (4.4)

where an initial state of flat quantum geometry |flat,0〉 tensor a state representing

initially diluted matter fields |φ〉 evolves unitarily via U into the formation of a BH

and the subsequent evaporation (Figure 4.1) which after complete evaporation is

written as a superposition of flat quantum geometry states |flat,n〉—which are all

indistinguishable from |flat,0〉 to low energy agents and differ among them by quan-

tum numbers n corresponding to quantities that are only measurable if one probes

the state down to its Planckian structure—tensor product with normal n-particle

excitations of matter fields representing Hawking radiation.

As mentioned above the previous equation is only schematic. Is main inappropriate-

ness is the fact that the reduce density matrix obtained by tracing over the quantum

geometry hidden degrees of freedom would give a thermal state at a fixed temperature

T . This is at odds with the expectation that the Hawking radiation should contain a

superposition of the thermal radiation emitted at different Hawking temperatures

during the long history of the evaporation of the BH. But the point that this equation

and the discussion of the previous paragraph should make clear is that the purification

mechanism proposed here has nothing to do with the point like remnant scenario

with all its problems associated to a long lasting particle-like remnant.

Here, to the future of the would-be-singularity in Figure 4.1, we simply have a quantum

superposition of different quantum geometry states that all look flat to low energy

observers. There are no localized remnant hiding the huge degeneracy inside; there is
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only a large superposition of states that are inequivalent in the fundamental quantum

gravity Hilbert space but seem all the same for low energy agents.

Such degrees of freedom cannot be captured by any effective description in terms of

smooth fields (EQFT) for the simple reason that they are discrete in their fundamental

nature.

Notice that the degrees of freedom where information would be coded after BH evap-

oration do not satisfy the usual Einstein-Planck relationship E = ~ω or equivalently

p = h/λ (for some ‘wavelength’ λ or ‘frequency’ ω) and this might deceive intuition
2 . They are described as Planckian defects nevertheless they do not carry Plankian

energy. The point is that such relationship only applies under suitable conditions

which happen to be meet in many cases but need not be always valid.

One case is the one of degrees of freedom that can be thought of as waves moving on

a preexistent spacetime. This is the case of particle excitations in the Fock space of

quantum field theory or effective quantum field theories which are defined in terms

of a preexistent spacetime geometry.

There is no clear meaning to the above intuitions in the full quantum gravity realm

where the present discussion is framed. Even when such relations (linked to the usual

uncertainty principle of quantum mechanics) should hold in a suitable sense—if the

structure suggested by canonical quantization survives in quantum gravity as it should

to a certain degree—they would apply to phase space variables encoding the true

degrees of freedom of gravity that we expect (from the general covariance of general

relativity) to be completely independent of a preexistent background geometry.

We will see that such degrees of freedom with such peculiar nature actually arise

naturally in the toy model of quantum gravity that we analyze in this article.

2A nice counter example of this intuition is given by the case of a non relativistic charged particle in
a two dimensional infinite perfect conductor in a uniform magnetic field normal to the conducting
plane. The energy eigenvalues are given by the Landau levels En = ~ωB(n+1/2) where ωB = qB/(mc) is
the Bohr magneton frequency, but they are infinitely degenerate. There are canonically conjugated
variables (P,Q) associated to the particle that are cyclic, i.e., do not appear in the Hamiltonian. In this
case one can produce wave packets that are as ‘locallized’ as wanted in the variable Q without changing
the energy of the system.

Interestingly, this is a perfect example of system where one could have an apparent loss of information
of the type we are proposing here (for a more realistic analog gravity model discussing the information
paradox along the lines of the present scenario see [93]). If one scatters a second particle interacting
softly with the charged particle on the plate so that the interaction does not produce a jump between
different Landau levels, then correlations with the cyclic variables would be established without
changing the energy of the system. This is the perfect model to illustrate the possibility of decoherence
without dissipation.
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It is presently hard to prove that such scenario is viable in a quantum theory of gravity

simply because there is no such theoretical framework developed enough for tackling

BH formation and evaporation in detail. However, the application of loop quantum

gravity to quantum cosmology leads to a model with similar features, where evolution

across the classical singularity is well defined [86].

The interior of a spherically symmetry black hole can be described by a homogeneous,

non-isotropic cosmological model given by the Kantowski-Sachs geometry. It is

foliated by spatially homogeneous hypersurfaces with topology R×S2 (For example,

the part of the hypersurface Σ inside the horizon in 3.4).

The literature dealing with the loop quantization of such models is extensive[65, 63,

94, 92, 95]. The resulting quantum theory has the same structure as the homogeneous

and isotropic cosmological models. This characteristic is crucial for us and justifies

the use of homogeneous cosmological models: the Planckian degrees of freedom

central in our argument are also present in the polymer models of black hole interior.

Incidentally, this highlights another feature of our proposal: one of the main assump-

tions - the presence of extra degrees of freedom at the Planck scale - is a natural

assumption, ubiquitous in various approaches to quantum gravity. In particular, every

polymer model inspired by canonical quantization techniques shares this feature.

The results in the rest of the chapter can be described briefly by making reference

to the Figure 4.2 which should be compared with Figure 4.1. We will show that the

evolution in loop quantum cosmology from a universe in an initially contracting

state in the past of the would-be-singularity to an expanding universe in its future is

perfectly unitary in the fundamental description.

Nevertheless, states in the Hilbert space of loop quantum cosmology contain quantum

degrees of freedom which are hidden to low energy coarse grained observers. If these

degrees of freedom are traced out of the initial density matrix then we will see that pure

states (in the sense of the reduced density matrix) generically evolve into mixed states

across the would-be-singularity. Information is lost into correlations with degrees of

freedom that are Planckian and thus inaccessible to macroscopic observers.

These correlations are established in an inevitable way during the strong curvature

phase of evolution across the big bang (just as expected in the BH scenario described

above). As energy is conserved (energy is a delicate notion in cosmology but happens

to be well defined in our model as we will see) the defects that purify the final state do

not enter in the energy balance which realizes another crucial necessary ingredient of

the general scenario (decoherence happens with negligible dissipation [83]).
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Let us finish this introduction with a very brief description of the organization of the

rest of the sections. The discussion is basically separated in two parts. In the first

part we show that the scenario we have described is realized in unimodular quan-

tum cosmology following the standard quantization prescription of loop quantum

cosmology.

The model of this section corresponds exactly with the type of models in the standard

literature [96]. In the second part of the paper we observe that there is natural exten-

sion of loop quantum cosmology based on the regularization ambiguity associated

with the quantization of the Hamiltonian. This extension opens a new chanel for

information to flow.

Although this second option is not necessary to illustrate our point (already realized

in the standard theory in the first part) it gives a different identity to the defects which

could lead to independent and thus useful insights.

4.1 Unimodular Cosmology

Unimodular Gravity is nearly as old as General Relativity itself, it was introduced by

Einstein in 1919 [97] as an attempt to describe nuclear structure geometrically. In

this work Einstein identifies also an appealing feature of the theory which is the fact

that the cosmological constant arises as a dynamical constant of motion that needs to

be added to the initial values of the theory. In unimodular gravity the cosmological

constant is a constant of integration and not a universal or fundamental constant of

nature. Interest in the theory was regained in the late 80’s with the observation of

Weinberg [98] that, for the above reason, semiclassical unimodular gravity provides a

trivial resolution of the cosmological constant problem as vacuum energy simply does

not gravitate. Unimodular gravity is the natural low energy description that emerges

from the formal thermodynamical ideas of Jacobson [54] and represents the expected

low energy regime of the causal set approach [53].

Another property of unimodular gravity (specially important for us here) is that it

completely resolves the problem of time [99] in the cosmological FLRW context. More

precisely, the theory comes with a preferred time evolution and a preferred Hamil-

tonian (the energy of the universe is well defined and directly linked with the value

of the cosmological constant). The quantum theory is described by a Schroedinger

like equation where states of the universe are evolved by a unitary evolution operator.

Therefore, unlike the general situation in quantum gravity, the notion of unitarity is

unambiguously defined in unimodular quantum cosmology. This is the main reason

why unimodular gravity provides the perfect framework for the discussion of the
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Chapter 4. Hawking’s information puzzle: a solution from discreteness

central point of this work.

Here we specialize to homogeneous and isotropic cosmologies that are spatially flat

(k=0), i.e., the spatial manifold Σ is topologically R3. What follows is the standard

construction. For a detailed account of the Hamiltonian analysis in the cosmological

framework see [100] . The FLRW metric is

d s2 =−N (t )2d t 2 +a(t )2 (d x2 +d y2 +d z2)︸ ︷︷ ︸
q̊ab

, (4.5)

where q̊ab denotes the fiducial spacial metric. Since Σ is non-compact some integrals

are infrared divergent and are regularized by restricting to a fixed fiducial cell V of

fiducial volume V0 with respect to the fiducial spacial metric

q̊ab = e̊ i
a e̊ j

b δi j , (4.6)

where e̊ i
a denotes a fiducial triad and the physical metric is given by qab = a2(t)q̊ab .

The action of unimodular gravity in the FLRW minisuperspace setup is given by

S[a, ȧ,λ] = 3

8πG

∫
R

(
V0aȧ2

N
+λV0(N a3 −1)

)
d t , (4.7)

where λ is a Lagrange multiplier imposing the unimodular constraint N = a−3 (i.e.√|g | = 1), and the first term is the Einstein-Hilbert action restricted to the FLRW

geometries 3. In order to use loop quantum cosmology techniques (for a discussion

of the quantization in the full loop quantum gravity context see [101, 102]) one intro-

duces the new canonical variables c and p via the basic Ashtekar-Barbero connection

variables Ai
a and E a

i , namely

E a
i = p

(
e̊a

i V −2/3
0

)
, Ai

a = c
(
ω̊i

aV −1/3
0

)
, (4.8)

where ω̊i
a is a fiducial reference connection. These variables are related to those in

3There is an overall minus sign the definition action with respect to standard treatments. This is
done so that the the pure-geometry Hamiltonian is positive definite.
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(4.7) via the equations

|p| =V 2/3
0 a2, c =V 1/3

0
γȧ

N
. (4.9)

The action becomes

S[c, p,λ] = 3

8πG

∫
R
γ−1cṗ −Nγ−2

√|p|c2 +λ(N |p| 3
2 −V0)d t , (4.10)

and c and p are canonically conjugated in the sense that

{c, p} = 8πGγ

3
. (4.11)

The unimodular condition N = a−3 fixes the lapse to N =V0/|p|3/2 and the unimodular

Hamiltonian becomes

H = 3V0

8πG

c2

γ2|p| . (4.12)

The proportionality of the Hamiltonian with V0, and the fact that the four volume

bounded by V0 at two different times is given by v (4) =V0∆t , implies that time evolution

can be parametrized in terms the four volume elapsed from some reference initial

slice. The associated Hamiltonian (conjugated to v (4)/(8πG)) is

Λ= 3c2

γ2|p| , (4.13)

and corresponds to the cosmological constant.

4.2 Quantization

The loop quantum cosmology quantization uses a non standard representation of

the canonical variables where the variable c does not exist as a quantum operator,

and the definition of the Hamiltonian requires a special regularization procedure

known as the µ̄-scheme [96]. The quantization prescription is greatly simplified by

the introduction of new canonically conjugated dynamical variables b and ν defined

as [103]

b ≡ c

|p| 1
2

ν≡ sign(p)
|p| 3

2

2γπ`2
Pl

, (4.14)
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with Poisson brackets 4

{b,ν} = 2~−1. (4.15)

The variable ν corresponds to the physical volume of the fiducial cell divided by `2
Pl;

it has units of distance. The variable b is simply its conjugate momentum. In terms

of these variables the gravitational (unimodular) Hamiltonian (4.12) integrated in a

fiducial cell V becomes

H = 3V0

8πGγ2
b2 (4.16)

Note the extreme simplicity of the previous expression: the unimodular hamiltonian

is just the analog of that of a free particle in one dimension with mass parameter

m = 4πγ2/(3V0) and momentum b. In the absence of matter, the Hamiltonian can be

quantized in the Wheeler-DeWitt representation where the evolution in unimodular

time is unitary and there is no singularity (the classical solutions correspond to De-

Sitter geometries with arbitrary but positive cosmological constants). The singularity

in the classical theory becomes real when matter is introduced.

In the loop quantum cosmology polymer representation, just as for c , there is no oper-

ator corresponding to b but only the operators corresponding to finite ν translations

[87]; from here on referred to as shift operators

exp(i 2kb).Ψ(ν) =Ψ(ν−4k). (4.17)

For k = q
p
∆`Pl and q ∈N, states that diagonalize the previous shift operators, denoted

|b0;Γε∆〉, are labelled by a real value b0 and by a graph Γε∆. The graph is a 1d lattice of

points in the real line of the form ν= 4n
p
∆`Pl +ε with ε ∈ [0,4

p
∆`Pl) and n ∈N. The

corresponding wave function is given byΨb0 (ν) ≡ 〈ν|b0;Γε∆〉 = exp(−i b0ν
2 )δΓε

∆
where

the symbol δΓε
∆

means that the wavefunction vanishes when ν ∉ Γε∆. It follows from

(4.17) that

exp(i 2kb). |b0;Γε∆〉 = exp(i 2kb0) |b0;Γε∆〉 . (4.18)

The states |b;Γε∆〉 are eigenstates of the shift operators that preserve the lattice Γε∆.

Notice, that the eigenvalues are independent of the parameter ε. i.e. they are infinitely

degenerate and span a non separable subspace of the quantum cosmology Hilbert

space Hl qg .

4The factor ~−1 appears on the right hand side of the Poisson brackets due to the introduction of ~
(via `2

Pl) in the definition of the new variable ν. This is done to match standard definitions [96].
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A scale µ̄ is needed in order to define a regularization of (4.16) representing the Hamil-

tonian in Hl qc . The reason is that there is no operators associated to b but only

approximants constructed via the shift operators (4.17). The so-called µ̄-scheme [96]

introduces a dynamical length scale µ̄ defined as

µ2 =
`2

p∆

|p| , (4.19)

where ∆ represents the so-called ‘area-gap’ which plays the role of a UV regulator. It is

normally associated to the smallest non-vanishing area quantum in the full theory

of loop quantum gravity. For the moment (as in the standard treatement) this is

just a fixed parameter5. When translated into the variables (4.14) µ corresponds to

considering approximants to b constructed out of shift operators (4.17) with fixed k ≡p
∆`Pl. In terms of these one obtains the following regularization of the Hamiltonian

(4.16) which is a well defined self-adjoint operator6 acting on Hl qg

H∆ ≡ 3V0

8πGγ2

1

∆`2
Pl

sin2
(
∆

1
2`Pl b

)
, (4.21)

which coincides with (4.16) to leading (zero) order in `2
Pl. From (4.13) we obtain an

operator associated to the (here dynamical) cosmological constant, namely

Λ∆ ≡ 3

γ2

sin2
(
∆

1
2`Pl b

)
∆`2

Pl

. (4.22)

In the pure gravity case, the cosmological constant is positive definite and bounded

from above by the maximum value λmax = 1/(γ2`2
Pl∆). Negative cosmological constant

solutions are possible when matter is added. The states (4.18) with k = k∆ ≡p
∆`Pl

5In Section 4.7, we will turn this quantity into a quantum operator acting on the microscopic sector
of the Hilbert space that will be introduced.

6The Hamiltonian Ĥ0 (4.21) is symmetric, that is 〈Ψ1, Ĥ0Ψ2〉 = 〈Ĥ0Ψ1,Ψ2〉, with respect to the inner
product 〈Ψ1,Ψ2〉 =∑

νΨ1(ν)Ψ2(ν). The action of the Hamiltonian onΨ(ν) is given by:

Ĥ0Ψ(ν) =−3(2γ2∆s`
2
Pl)

−1 (Ψ(ν+2λ)−2Ψ(ν)+Ψ(ν−2λ)) , (4.20)

with λ = 2
p
∆s`Pl. The key property is 〈Ψ1(ν),Ψ2(ν+2λ)〉 = 〈Ψ1(ν−2λ),Ψ2(ν)〉 where ν is in

the support of both Ψ1(ν) and Ψ2(ν). This is the statement of the unitarity of the shift operators
〈e−i 2λbΨ1,Ψ2〉 = 〈Ψ1,e i 2λbΨ2〉. The symmetric nature of the shift operators appearing in H0 implies
the result.
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diagonalize the Hamiltonian, i.e.

H∆. |b0;Γε∆〉 = E∆(b0) |b0;Γε∆〉 , (4.23)

with energy eigenvalues

E∆(b0) = 3V0

8πGγ2

1

∆`2
Pl

sin2
(
∆

1
2`Pl b0

)
. (4.24)

States |b0;Γε∆〉 are also eigenstates of the cosmological constant with eigenvalue

λ∆(b0) = (8πG)E∆(b0)/V0. Notice that the energy eigenvalues do not depend on ε ∈
[0,4

p
∆`Pl). Thus, the energy levels are infinitely degenerate with energy eigenspaces

that are non-separable. This is not something peculiar of our model but a general

property of the non-standard representation of the canonical commutation relations

used in loop quantum cosmology.

4.3 On the interpretation of the ε-sectors.

It is customary in the loop quantum cosmology literature to restrict to a fixed value of

ε in concrete cosmological models, as the dynamical evolution does not mix different

ε sectors. The terminology ‘superselected sectors’ is used in a loose way in discussions.

However, these sectors are not superselected in the strict sense of the term because

they are not preserved by the action of all the possible observables in the model, i.e.

there are non trivial Dirac observables mapping states from one sector to another.

The explicit construction of such observables might be very involved in general (as it

is the usual case with Dirac observables); nevertheless, it is possible to exhibit them

directly at least in one simple situation: the pure gravity case. In that case the shift

operator (4.17) with shift parameter δ commutes with the pure gravity Hamiltonian

(the Hamiltonian constraint if we were in standard loop quantum cosmology) and

maps the ε sector to the ε−4δ sector. The analogous Dirac observables in a generic

matter model can be formally described with techniques of the type used for the

definition of evolving constants of motion [104]. No matter how complicated this

might be in practise, the point is well illustrated by our explicit example in the matter

free case 7.

Thus, different ε sectors are not superselected and therefore the infinite degeneracy

of the energy eigenvalues of the Hamiltonian (which again we exhibit explicitly in

7This point was independently communicated to us in the context of Dirac observables for isotropic
LQC with a free matter scalar field [105].
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the previous discussion only in the vacuum case) must be taken at face value. How

can we understand this large degeneracy from the fact that there would be only a two

fold one (associated with a contracting or expanding universe) if we had quantized

the model using the standard Schroedinger representation or, in other words, the

standard Wheeler-DeWitt quantization? The answer is to be found, we claim, in the

notion of coarse graining: low energy observers only distinguish a two fold degeneracy

for energy (or cosmological constant) eigenvalues: one the universe has a given

cosmological constant, and two it is expanding or contracting. These are by the way

the quantum numbers in the Wheeler-DeWitt quantization which plays the role in

our context of the low energy effective quantum field theory formulation. Such coarse

observers are declared to be insensitive to the huge additional degeneracy of energy

eigenstates encoded in the quantum number ε. All these infinitely many states in

the quantum cosmology representation must be considered as equivalent up to the

two-fold degeneracy mentioned above.

In what follows, and for concreteness, we will consider combinations of states with

two different values for ε only, i.e. on two different lattices. The idea of the previous

paragraph will naturally produce a notion of coarse graining entropy associated to the

intrinsic statistical uncertainty due to the inability for a low energy agent to distinguish

these microscopically orthogonal states. Arbitrary superposition with N different ε-

sectors would lead to similar results (the entropy capacity growing with the usual

log(N )). The N = 2 case treated here makes some explicit calculations straightforward.

4.4 Matter couplings and a model capturing its essen-

tial features.

Here we discuss two simple matter models in order isolate the generic features of

the influence of matter. At the end of the section we will define a simple and trivially

solvable model capturing these features.

Perhaps the simplest matter model that would serve our purposes is the minimal and

isotropic coupling to a Dirac Fermion defined in [106]. After symmetry reduction the

action for matter is

SF(η, η̄) =V0

∫
R

dτ
[ i

2
a(τ)3 (

η̄γ0η̇− ˙̄ηγ0η
)−mN (τ)a(τ)3η̄η

]
, (4.25)

from which we read the Fermionic contribution to the Hamiltonian
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HF = mN (τ)η̄η=−mN (τ)pηγ0η

= m

a3
pηγ0η, (4.26)

where (pη,η) are the Fermionic canonical variables pη ≡ (V0a)3/2ψ† and η≡ (V0a)3/2ψ

[36], and in the second line we use the unimodular condition N = a−3.

In the quantum theory the non trivial anticommutator is {η, pη} = 1 with the rest equal

to zero.

This is achieved by writingη=∑
s

(
asuse−i mt +b†

s v se i mt
)

with non trivial anti-commutation

relations for the creation and annihilation opetrators {ar , a†
s } = δr s = {br ,b†

s }, and

use−i mt and vse i mt a complete basis of solutions of the Dirac equation for positive

and negative frequency respectively [107]. In our model we can have either the vac-

uum state, one or two Fermions which saturates the Pauli exclusion principle.

If we assume normal ordering the contribution to the unimodular energy is

HF = mn

a3
. (4.27)

where n = 0,1,2 is the occupation number for the Fermion. If instead of the con-

dition N = a−3 we had used N = 1 (where time is comoving time) then the energy

contribution would have been just m for which we have a clear physical intuition: a

single fermion homogeneously distributed in the universe contributes to the Hamilto-

nian with its total mass. The factor 1/a3 in the previous expression comes from the

unimodular condition.

In the case of Wheeler-de-Witt quantization the contribution of the fermion becomes

singular at the big-bang a = 0. In loop quantum cosmology such a quantity remains

bounded above due to loop quantum gravity discreteness. Indeed, using the inverse

volume quantization given in reference [96] one has

ĤF. |ψ〉 =−m
∑
ν

|ν〉hF(ν;
p
∆`Pl)Ψ(ν,η), (4.28)

where

hF(ν;λ) ≡ 1

4λ2

(
|ν+2λ| 1

2 −|ν−2λ| 1
2

)2
. (4.29)
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We notice that hF(ν;
p
∆`Pl) < 1 and decays like 1/ν for ν→∞8. One could in principle

add this term to the free Hamiltonian and solve the unimodular time independent

Schroedinger equation

(Ĥ0 + ĤF). |ψ〉 = E |ψ〉 . (4.30)

Solutions can be interpreted in the sense of scattering theory starting with free wave

packets for large ν picked around some value of the cosmological constant (4.22) or

energy (4.24).

The case of a the coupling with a scalar field is formally very similar, specially in

the simplified case where we assume it to be massless. Following [96] and using the

unimodular condition N = a−3 we get

Hφ =−
p2
φ

8π2γ2`4
Plν

2
. (4.31)

This leads to

Ĥφ. |ψ〉 =−m
∑
ν

|ν〉hφ(ν;
p
∆`Pl)Ψ(ν,φ), (4.32)

where

hφ(ν;λ) ≡
p2
φ

16λ4

(
|ν+2λ| 1

2 −|ν−2λ| 1
2

)4
. (4.33)

The momentum pφ commutes with the Hamiltonian and thus it is a constant of

motion. If we consider an eigenstate of pφ then the problem reduces again to a

scattering problem with a potential decaying like 1/ν2 when we consider solving the

time independent Schroedinger equation

(Ĥ0 + Ĥφ). |ψ〉 = E |ψ〉 . (4.34)

Therefore, both the Fermion as well as the scalar field models (which are closer to a

possibly realistic scenario) seem tractable with a slight generalization of the standard

scattering theory to the discrete loop quantum cosmology setting. However, the main

objective in this section is to illustrate an idea in terms of a concrete and simple toy

model. With this idea in mind we will modify the structure suggested by the Fermion

8There is a great degree of ambiguity in writing the inverse volume operators. Perhaps the simplest
is the one introduced in [108] that we will actually used in the concrete computations of the section 4.7.
For more discussion on this see [109] and references therein.
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coupling and the scalar field coupling and simply add an interaction term where the

‘long distance interaction’ term represented by the function F (ν;λ) is replaced by a

short range analog F (ν;λ) ∝ δν,0.

The qualitative properties of the scattering will be the same and the model becomes

sufficiently trivial for straightforward analytic computations.

For that we consider an interaction that kicks in at ν= 0:

Ĥ = Ĥ0 +µĤint, (4.35)

where µ is a dimensionless coupling, Ĥ0 is the pure gravitational Hamiltonian, and

Ĥint is

Ĥint. |ψ〉 ≡∑
ν

(
`−4

p
V0p
∆

)
|ν〉 δν,0p

∆
Ψ(0). (4.36)

We have added by hand an interaction Hamiltonian that switches on only when the

universe evolves through the would-be-singularity at the zero volume state. The key

feature of the Ĥint is that—as its more realistic relatives matter Hamiltonians (4.28)

and (4.32)—it breaks translational invariance and thus it leads to different dynamical

evolution for different ε-sectors.

4.5 Solutions as a scattering problem

The scattering problem is very similar to the standard one in one-dimensional quan-

tum mechanics; however, one needs to take into account the existence of the peculiar

degeneracy of energy eigenvalues contained in the ε sectors; see Sections 4.2 and 4.3.

We will consider, for simplicity, the superposition of only two states supported on

two lattices respectively: the lattice Γε∆ with ε= 0 for the first one and the one with

ε= 2
p
∆`Pl for the second one. The degenerate eigenstates of the shift operators (4.18)

with eigenvalues exp(i 2kb) will be denoted

|b,1〉 ≡ |b;Γ0
∆〉 , and |b,2〉 ≡ |b;Γ2

p
∆`Pl

∆ 〉 , (4.37)

respectively, while we will denote by Γ1 and Γ2 the corresponding underlying lattices.

The immediate observation is that states supported on Γ2 (superpositions of |b,2〉)
will propagate freely because they are supported on a lattice that does not contain the
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point ν= 0 where the interaction is non trivial. On the other hand, states supported on

Γ1 (superpositions of |b,1〉) will be affected by the interaction at the big bang. Before

and after the big bang the universe’s evolution of the second type of states is well

described by the eigenstates of the free Hamiltonian described in Section 4.2. Such

asymmetry of the interaction on different ε-sectors is not an artifact of the simplicity

of the interaction Hamiltonian. This is just a consequence of the necessary breaking

of the shift invariance for any realistic matter interaction as we argued in the previous

section.

Therefore, the non trivial scattering problem concerns only states on the lattice Γ1 =
{ν = 2n

p
∆`Pl | n ∈ Z} that is preserved by the Hamiltonian and contains the point

ν= 0. In order to solve the scattering problem we consider an in-state of the form

|ψk〉 = |ν〉
e−i k

2 ν+ A(k)e i k
2 ν (ν≥ 0)

B(k)e−i k
2 ν (ν≤ 0),

. (4.38)

where ν ∈ Γ1, and A(k) and B(k) are coefficients depending on k. For suitable coeffi-

cients, such states are eigenstates of the full Hamiltonian (4.35). Arbitrary solutions

(wave packets) can then be constructed in terms of appropriate superpositions of

these ‘plane-wave’ states.

We can compute the scattering coefficients A(k) and B(k) from the discrete (finite

difference) time-independent Schrodinger equation

(
Ĥ0 + Ĥint

)
. |ψ〉 = E |ψ〉 (4.39)

which amounts to the following finite difference equation in the ν basis:

∑
ν

(
− 3V0

8πGγ2

1

2∆`2
Pl

[
Ψ(ν−4

p
∆`Pl)+Ψ(ν+4

p
∆`Pl)−2Ψ(ν)

]
+ V0µ

∆`4
Pl

δν,0Ψ(0)−E(k)Ψ(ν)
)
|ν〉 = 0. (4.40)
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The matching conditions on ν= 0 are given by:

1+ A(k) = B(k)

− 3

16πGγ2∆`2
Pl

[
Ψ(−4

p
∆`Pl)+Ψ(4

p
∆`Pl)−2Ψ(0)

]
+ µ

∆`4
Pl

Ψ(0) = E(k)

V0
Ψ(0),

(4.41)

where the first equation comes from continuity at ν= 0, the second equation from the

time independent Shroedinger equation. The solution of the previous equations is

A(k) = −iΘ(k)

1+ iΘ(k)

B(k) = 1

1+ iΘ(k)
. (4.42)

where

Θ(k) ≡ 16πγ2

3

µ

sin(2k
p
∆`Pl)

. (4.43)

We consider an in-state of the form (valid for early times)

|ψi n , t〉 = πp
2∆`Pl

∫
db

(
ψ(b;b0,ν0) |b,1〉+ψ(b;b0,ν0) |b,2〉)e−i E∆(b)t , (4.44)

where ψ(b;b0,ν0) is a wave function picked at some b = b0 value and ν = ν0. No-

tice that we are superimposing two wave packets supported on lattices Γ1 and Γ2

respectively.

We can now write the pure in-density matrix

ρin(t ) = π2

2∆`2
p

∫
db db′ e i [E∆(b)−E∆(b′)]t (4.45)

×
[
|b′,1〉ψ(b′;b0,ν0)+|b′,2〉ψ(b′;b0,ν0)

][
〈b ,1|ψ(b;b0,ν0)+〈b ,2|ψ(b;b0,ν0)

]
.

which scatters into the out-density matrix
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ρout(t ) = π2

∆`2
p

∫
db db′ e i [E∆(b)−E∆(b′)]t (4.46)

×
[
〈b ,1|ψ(−b;b0,ν0)A(−b)+〈b ,1|ψ(b;b0,ν0)B(b)+〈b ,2|ψ(b;b0,ν0)

]
×

[
|b′,1〉ψ(−b′)e−i b′νA(−b′)+|b′,1〉ψ(b′)e i b′νB(b′)+|b′,2〉ψ(b′;b0,ν0)

]
.

Let us assume that ψ(b) is highly picked at some b0 so that we can substitute the

integration variables b and b′ by b0 and have a finite dimensional representation of

the reduced density matrix after the scattering (this step is rather formal, it involves an

approximation but it helps visualising the result). In the relevant 4×4 sector (with basis

elements ordered as {|1,b0〉 , |1,−b0〉 , |2,b0〉 , |2,−b0〉}) we get the matrix representation

ρi n =


1
2 0 1

2 0

0 0 0 0
1
2 0 1

2 0

0 0 0 0

 → ρout = 1

2


|B(b0)|2 A(−b0)B(b0) B(b0) 0

A(−b0)B(b0) |A(−b0)|2 A(−b0) 0

B(b0) A(−b0) 1 0

0 0 0 0

 .

(4.47)

4.6 Matter coupling produces a coarse-graining entropy

jump at the big-bang

A reduced density matrix encoding the notion of coarse graining associated with the

low energy equivalence of the ε-sectors is defined by tracing over the discrete degree

of freedom labelling the component of the state in either the Γ1 or the Γ2 lattices.

In other words, tracing over the two (macroscopically indistinguishable) ε-sectors,

namely

〈b|ρR |b′〉 ≡
2∑

i=1
〈b, i |ρ |b′, i 〉 . (4.48)

In other words, the subspace of the Hilbert space we are working with is the one

supported on two different epsilon sectors H (Γ1)⊕H (Γ2) ⊂Hlqc which, as the two

terms are isomorphic H (Γ1) ≈H (Γ2) ≈H0, H (Γ1)⊕H (Γ2) ⊂Hlqc can be written

as

H0 ⊗C2 ⊂Hlqc. (4.49)
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The coarse graining is defined by tracing over the C2 factor. This implies that from

the previous 4×4 matrix we obtain the 2×2 reduced density matrices. The reduced

density matrix ρR
i n remains pure, explicitly

ρR
i n = 1

2

(
1 1

1 1

)
. (4.50)

Nevertheless, the reduced density matrix ρR
out is now mixed, namely

ρR
out =

1

2

(
1+|B(b0)|2 A(−b0)B(b0)

A(−b0)B(b0) |A(−b0)|2
)

. (4.51)

We can now compute the entanglement entropy. To first order in the cosmological

constant the result is

δS = log(2)− 3∆Λ`Pl
2

128π2γ2µ2
+O(Λ2`4

Pl) (4.52)

The behaviour as a function of b is shown in Figure 4.4.

4.7 Quantum cosmology on a superposition of backgrounds.

In the first part of the paper we have seen how the fact that the Hilbert space of loop

quantum cosmology is vastly larger than the standard Schroedinger representation

implies (via coarse graining) that the coarse graining entropy would go up generically

through the evolution across the big-bang would-be-singularity. In this section we

explore another closely related feature that leads to an apparent non-unitary evolution

when dynamics is probed by a low energy agent. This new key property of the funda-

mental quantum dynamics in loop quantum cosmology is tight to the fact that the

Hamiltonian defining evolution can only be defined if an area-gap ∆ is provided (see

Section 4.2). The quantization of the Hamiltonian reviewed in 4.2 needs an input from

a UV background structure. We will see here that the loop quantum cosmology model

can be extended naturally to admit superpositions of such microscopic structures and

that such extension generically leads to the dynamical development of correlations

between the macroscopic and the microscopic degrees of freedom. If the microscopic

degrees of freedom are assumed to remain hidden to low energy observers, then such

correlations lead to an apparent violation of unitarity in the low energy description

where pure states evolve into mixed states.
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4.8 The UV input in quantum cosmology: revisiting the

µ scheme.

The µ̄ scheme was designed to avoid an inconsistency of an early model of loop

quantum cosmology with the low energy limit (or large universe limit) of loop quan-

tum cosmology [110]. The problem arises from the effective compatification of the

connection variable c due to the polymer regularization of the Hamiltonian with a

fixed fiducial scale µ which implies that c and c +4π/µ are dynamically identified.

This leads to anomalous deviations from classical behaviour in situations where the

variable c is classically expected to be unbounded for large universes. This can be

seen clearly in the present situation where the unimodular Hamiltonian (4.16) is given,

in (c, p) variables, by

H = 3V0

8πG

c2

γ2|p| . (4.53)

For non-vanishing energies (or equivalently non-vanishing cosmological constant)

the conservation of the Hamiltonian implies that c grows as |p| ∝ a2, i.e., c grows

without limits as the universe expands so that no matter how small µ is, anomalous

effects due to the compactification of the c become relevant at macroscopic scales

[111]. As no quantum gravity effects seem acceptable in the large universe regime for a

model with finitely many degrees of freedom, this anomaly is seen as an inconsistency

of the model.

The µ̄ scheme solves this inconsistency by ‘renormalizing’ the regulating scale µ as

the universe grows (recall equation (4.19)). The interesting thing is that such renor-

malization is justified by quantum geometry arguments that link the mini superspace

model of loop quantum cosmology to the geometry of a microscopic background state

in the full theory. The argument uses explicitly the idea that the low energy degrees

of freedom (dynamical variable of loop quantum cosmology) arise from the coarse

graining of the fundamental ones in loop quantum gravity.

Here we review the construction of the µ̄ scheme as described in [96]. Consider a

fundamental quantum geometry state |s〉 in the Hilbert space of loop quantum gravity,

representing a microscopic state on top of which the quantum cosmological coarse

grained dynamics will eventually be defined. Such underlying fundamental state

will have to be approximately homogeneous and isotropic up to some scale L > `Pl

with respect to the preferred foliation defining the co-moving FLRW observers at low

energies. If that is the case then such space slices can be divided into (approximately)

cubic 3-cells of physical side length L which all have approximately equivalent quan-

tum geometries. The area of a face of such cubic cells in Planck units will be denoted
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∆s so that L2 = `2
p∆s . Note that ∆s is a property of the underlying microstate: an area

eigenstate if the microstate is an eigenstate, or an area expectation value if the state

is sufficiently peaked on a quantum geometry and has small fluctuations around it.

A simple realization is the one where ∆s is an area eigenvalue, and the important

assumption is that ∆s is the same for all cells (this encodes the homogeneity of the

microsocopic state). Consider the area of a large two dimensional surface (the face of

a fiducial cell V ) whose area is measured by the low energy (coarse grained) quantity

p used as configuration variable in loop quantum cosmology. We naturally would

expect that |p|À `2
Pl or alternatively that

N`2
p∆s = |p|, (4.54)

where N denotes the number of microscopic cells contained in the coarse grained

surface (a face of V ), and N À 1. The fiducial cell has fiducial coordinate volume V0

and hence fiducial side coordinate length V 1/3
0 . Therefore, the fiducial coordinate

length µ̄ of the microscopic homogeneity cells is given by the relation

N (µ̄V 1/3
0 )2 =V 2/3

0 . (4.55)

Combining the previous two equations one recovers equation (4.19), namely

µ̄2
s ≡ µ̄2 =

`2
p∆s

|p| , (4.56)

i.e., the fiducial scale µ̄ is dynamical: as the universe grows (and |p| becomes large),

the underlying fiducial length scale decreases. The fiducial regularization scale (4.55)

depends on the fundamental state |s〉 via the quantity∆s , hence we denote it µ̄s . When

such dynamical scale is used in the regularization of the quantum cosmology Hamil-

tonian the effective compactification scale for c grows like |p| and the inconsistency

previously discussed is avoided. This is transparent in terms of the new canonical

pair (b, v). From equation (4.14) we have that b = cµ̄s/(
p
∆s`Pl), in contrast with c (see

(4.53)), remains constant (see (4.16)) in the De Sitter universe. The quantization of

the Hamiltonian presented in Section 4.2 introduces an effective compatification of

the variable b whose dynamical effect is now only relevant when the cosmological

constant approaches one in Planck units. This can be seen from (4.21). The cosmolog-

ical constant is bounded from above by its natural value in Planck units due to the

underlying quantum geometry structure while the anomalous IR behaviour is avoided

(the problems exhibited in the model studied in [110] are also resolved).

The previous is the standard account of the motivation of the µ̄ scheme of [87] with
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the little twist (which is very important for us here) that∆s need not be the lowest area

eigenvalue of loop quantum gravity. In the usual argument the microscopic state is

thought to be built from a special homogeneous spin network (geometry eigenstate)

with all spins equal to the fundamental representation. This implies that, in the above

construction, ∆s =∆1/2 ≡ 2πγ
p

3. The observation here is that ∆s can take different

values according to the microscopic properties of the underlying quantum geometry

state. One could take for instance all spins equal to the vector representation and then

have ∆s = ∆1 ≡ 4πγ
p

2 instead, or take j arbitrary and use ∆s = ∆ j . It is important

to point out that such possibility can arise naturally in quantum cosmology models

obtained in the group field theory framework [112, 113, 114].

As we have seen in Section 4.8, the field strength regularization, and hence the Hamil-

tonian, depend on the value ∆s of the background (approximately homogeneous)

spin network state |s〉 through the dynamical scale µ̄s .

In this way, the dynamics of loop quantum cosmology establishes correlations with the

a microscopic degree of freedom in the underlying loop quantum gravity fundamental

state.

As such degree of freedom (the area eigenvalue ∆s of the minimal homogeneity cells)

is quantum, it is natural to model the system by a tensor product Hilbert space

H ≡Hm ⊗Hlqc where Hm is the Hilbert space representing the microscopic degree

of freedom encoded in the minimal homogeneous cell operator (whose eigenvalues

we denote ∆s), and Hlqc the standard kinematical Hilbert space of loop quantum

cosmology.

General states in H can be expressed as linear combinations of product states |s〉⊗ψ
in the respective factor Hilbert spaces. The quantum Hamiltonian has a natural

definition on such states and therefore on the whole of H , namely

Ĥ .
(|s〉⊗ψ)= |s〉⊗ Ĥ∆s .ψ, (4.57)

where Ĥ∆s is the usual loop quantum cosmology Hamiltonian in the µ̄s scheme, which

in our particular case is defined in equation (4.21) with regulator ∆=∆s .

Notice that the previous extension of the standard loop quantum cosmology frame-

work to the larger Hilbert space H is also natural from the perspective of the full

theory. Indeed the generally accepted regularization procedure of the Hamiltonian

constraint in loop quantum gravity (first introduced by Thiemann [115] and further de-

velopped in recent analysis—see Varadarajan and Ladda [116] and references therein)

is state dependent in that the loops defining the regulated curvature of the connection
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are added on specific nodes of the state where the Hamiltonian is acting upon. This

feature finds its analog in the action (4.57) where the regulating scale ∆s depends on

the state |s〉 ∈Hm .

In order to simplify the following discussion we will restrict states in Hm even further

and consider a subspace h=C2 ⊂Hm , i.e. we will model the situation where the un-

derlying microscopic state is an arbitrary superposition of only two fixed microscopic

homogeneous spin-network states. For example we take

h≡ span
[
|+〉 , |−〉

]
, (4.58)

where |±〉 ∈Hm are two suitable orthogonal background states (these two states will

be conveniently picked below). From the infinitely dimensional Hilbert space Hm we

are now selecting a single q-bit subspace C2. The Hilbert space of our model is

H = h⊗Hlqc. (4.59)

The factor h represents additional microscopic (hidden to low energy observers) UV

degrees of freedom, while Hlqc encodes the data that under suitable circumstances

(e.g. when the universe is large) represent the low energy cosmological degrees of

freedom.

In this way we see that in addition to the intrinsic degeneracy of energy eigenvalues

analyzed in the first part of this paper, there is another candidate for microscopic

degree of freedom associated to the regularization of the Hamiltonian action via the

µ̄-scheme. Both mechanisms are proper of the present loop quantum cosmology toy

model but reflect generic properties of the full theory of loop quantum gravity. More

generally, we expect similar features to be present in any quantum gravity approach

where smooth geometry is only emergent from a discrete fundamental theory.

From now on we adopt the convenient notation |s〉 with s =± for such prefered basis

elements of h. With this notation, and using (4.21), the Hamiltonian (4.57) becomes

Ĥ0.
(|s〉⊗ |ψ〉)= 3V0

8πGγ2

1

∆s`
2
Pl

(
sin(

√
∆s`Pl b)

)2
. |s〉⊗ |ψ〉 (4.60)

=− 3V0

8πGγ2

∑
ν

1

2∆s`
2
Pl

|s〉⊗ |ν〉
[
Ψ(ν−4

√
∆s`Pl)+Ψ(ν+4

√
∆s`Pl)−2Ψ(ν)

]
,

whereΨ(ν) ≡ 〈ν|ψ〉.
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Now, the only special feature of the basis |±〉 is that it is preferred from the perspective

of the regularization of the effective (unimodular) loop quantum cosmology Hamilto-

nian. Consequently, a natural question to the quantum theory is how the dynamics

would look if the initial state is arbitrary in the factor h? More precisely, what if we

consider the linear combination of two background spin networks 1p
2

(|+〉+ |−〉) ∈ h
times some loop quantum cosmology wave function as depicted in Figure 4.5? To

answer this question we consider a special initial state where correlations between

the low energy and the UV degrees of freedom are not present. This will lead to a

reduced density matrix—tracing out the microscopic space h in (4.59)—that is pure

initially, the form of such state is illustrated in Figure 4.5. At the same time we want

to be able to diagonalize the Hamiltonian with such uncorrelated initial states; more

precisely this boils down to diagonalizing both H∆+ and H∆− in Hlqc. This implies

that the factor ψ(ν) ∈Hlqc, in Figure 4.5, must be supported on a lattice Γε∆ that is left

invariant by the action of both H∆+ and H∆− (left invariant in the sense that the shift

operators in the definition of the Hamiltonian only relate points of Γε∆ and never map

points out). This can be achieved by assuming that
p
∆+ = m

p
∆− for some natural

number m. For simplicity we will take m = 2 from now on 9. The parameter ε will be

taken so that the lattice Γε∆ contains the point ν= 0. This is a standard choice. With all

this the invariant lattice, denoted Γ∆− , is

Γ∆− ≡ Γε=0
k=2

p
∆−`Pl

. (4.61)

Note that in the notation described below (4.37) we have that Γ∆− = Γ1 ∪Γ2.

The choices made above are not mandatory. One could have chosen a different

initial state. The previous choice is particularly interesting here because it would

lead to a reduced initial density matrix that is pure and hence and initially vanishing

entanglement entropy. Other states would involve correlations and would therefore

carry a non vanishing entropy load from the beginning. For the discussion that

interests us here and for the analogy with black hole evaporation it is more transparent

to set the entropy to zero initially.

An arbitrary (unimodular) loop quantum cosmology state associated to such choice

9One might be worried that is hard to achieve if one sticks to the form of the area spectrum of loop
quantum gravity. This is however simply a model and the link with the full theory (remember) must be
taken at the heuristic level. Nevertheless, solutions do exist for instance m = 4 for j+ = 3 and j− = 1/2.
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of background state can be expressed as:

Ψin(ν, t ) = 〈ν| 1p
2

∑
s
|s〉⊗ |Ψin(t )〉

= 1p
2

∑
s
|s〉⊗

[
δΓ∆− (ν)

πp
∆−`Pl∫
0

dk ψ(k;b0,ν0)exp
(
− i Es(k)t

)]
(4.62)

where ψ(k;b0,ν0) is a properly normalized function peaked at k = b0 and ν= ν0.

The initial state in the momentum representation is given by:

Ψin(b, t ) = ∑
ν∈Γ0

∆−

〈b,1∪2|ν〉〈ν|Ψin(t )〉 (4.63)

= πp
∆−`Pl

∑
s
|s〉⊗ψ(b;b0,ν0)e−i Es (b)t

where in the first line we used the natural extension of the notation introduced in

(4.37) where |b,1∪2〉 means an eigenstate of the corresponding shift operators (4.18)

supported on the lattice Γ∆− = Γ1 ∪Γ2. Notice that we can also write

|b,1∪2〉 = |b,1〉+ |b,2〉 , (4.64)

keeping in mind that terms on the r.h.s. are individually eigenstates of the shift

operators with twice the lattice spacing of Γ∆− .

We also used

∑
ν∈Γ0

∆−

exp

(
i

b −k

2
ν

)
= πp

∆−`Pl
δ(b −k). (4.65)

We can write then

Ψin(t ) =∑
s

∫
Db |s〉⊗ |b,1∪2〉ψ(b;b0,ν0)e−i Es (b)t , (4.66)

where
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Db ≡ πp
2∆−`Pl

db, (4.67)

is the Haar measure on the circle of circumference π/
p

2∆−`Pl. We notice from (4.66)

that even when our initial state contains no correlations between the low energy

degrees of freedom represented by b and the microscopic degrees of freedom encoded

in |s〉 at t = 0, quantum correlations between the two will develop with time due to

the non trivial dependence of the energy spectrum with s.

Even when this is quite clear from (4.66) one can state this fact in an equivalent way by

analysing the (pure) density matrix ρin(t ) ≡ |Ψin(t )〉〈Ψin(t )|, whose matrix elements

in the b basis are:

ρin(t ) ≡∑
s,s′

∫
Db Db′

(
ψ(b;b0,ν0)ψ(b′;b0,ν0) e i [Es (b)−Es′ (b′)]t

)
×|b′,1∪2〉 |s′〉〈b ,1∪2| 〈s | . (4.68)

As coarse grained observers are assumed to be insensitive to the microscopic structure

that is here encoded in the ‘spin’ quantum number s, low energy physical information

is encoded in the reduced density matrix

ρR
in(t ) ≡∑

s

∫
Db Db′

(
ψ(b;b0,ν0)ψ(b′;b0,ν0) e i [Es (b)−Es (b′)]t

)
(4.69)

×|b′,1∪2〉 |s′〉〈b ,1∪2| 〈s | , (4.70)

which can be simply be written as

ρR
in(t ) = 1

2

∑
s
|Ψs(t )〉〈Ψs(t )| . (4.71)

where

|Ψs(t )〉 ≡
∫

Db ψ(b;b0,ν0) e−i Es (b)t |b,1∪2〉 (4.72)

Notice that (4.71) is only pure at t = 0 and becomes mixed due to the correlations

evoked above as time passes. One can compute the entanglement entropy S(t) ≡
−Tr

[
ρR

in(t ) log(ρR
in(t ))

]
which turns out to be given by the simple analytic expression
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S(t ) =− log

(
1− δ

2

)
− δ

2
log

(
δ

1− δ
2

)
, (4.73)

where

δ(t ) ≡ 1−
∣∣∣∣∫ Dbψ(b;b0,ν0)ψ(b;b0,ν0)e i [E+(b)−E−(b)]t

∣∣∣∣ . (4.74)

For generic wave packets ψs(b) the entanglement entropy is a monotonic growing

function of time which grows asymptotically to the maximally mixed situation Smax =
log(2) (see an example in Figure 4.6).

A more intuitive picture can be obtained from a suitable expansion of the energy

eigenvalues (4.24) in powers of the label b`Pl

Es(b) = 3V0

8πGγ2

1

∆s`
2
Pl

(
sin(

√
∆s`Plb)

)2 = 3V0

8πGγ2
b2 − V0

8πGγ2
∆s`

2
Plb

4 +b2O(`4
Plb

4).

(4.75)

Such expansion makes sense in that it allows for the identification of the low energy

effective Hamiltonian (the one that one would define in a purely Wheeler-DeWitt

quantization) plus corrections that involve interactions with the underlying discrete

structure of LQG here represented by the spin s degree of freedom.

Namely, we can read from the previous expansion

Heff ≡ H 0
eff(b)+∆H(b, s), (4.76)

where Ĥ 0
eff(b̂) ≡ 6

γ2 b̂2 is the Wheeler-DeWitt Hamiltonian and the additional term an

interaction with the environment represented by the underlying discrete structure

represented by the dependence on S1 (a hidden degree of freedom from the low energy

continuum perspective).

Of course the hats in the previous equation denote operators in a different representa-

tion (the continuum Schroedinger representation) that is not unitarily equivalent to

the ‘fundamental’ polymer representation introduced in Section 4.2 and used in the

LQC setup (recall for instance that the operator b̂ does not even exist in the polymer

representation).

The lack of purity for t > 0 of the reduced density matrix (4.71) is due to correlations

that develop between the low energy degree of freedom b and the hidden microscopic
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degree of freedom s via this non trivial interaction Hamiltonian. This means that

generically (i.e. for arbitrary initial states ψs(b)) the fundamental evolution would

seem to violate unitarity, from the perspective of low energy observers, due to the

decoherence with the microscopic quantum geometric structure. Notice however that

for states ψs(b) picked at sufficiently small k̄, i.e., k̄
p
∆s`Pl ¿ 1, we have from (4.22)

that

Λ(b) ≈ 3γ−2b2 (4.77)

and the density matrix (4.71) is pure for all times.

More precisely, we can translate the criterion for the absence of decoherence with the

underlying microscopic discrete structure in terms of the value of the cosmological

constant of the given state. For an eigenstate of the Hamiltonian the relation is given

byΛ≡ Es(b). Therefore the criterion for the absence of decoherence in terms of the

cosmological constant is

∆s`
2
Plγ

2Λ≈ `2
pΛ¿ 1 (4.78)

Interestingly for states with low values of the cosmological constant in natural units—

equivalent semi-classically to the scalar curvature R in our matter free model—define

a decoherence free subspace. When the cosmological constant does not satisfy the

condition (4.78) decoherence with the microscopic structure is turned on and maxi-

mized forΛ of order one in Planck units: notice incidentally that due to the polymer

quantization the cosmological constant is bounded by

Λmax = 3

γ2∆ 1
2
`2

Pl

. (4.79)

For low values ofΛ unitarity is recovered in the effective description that ignores the

microscopic structure.

Decoherence takes place here due to an interaction between the low energy coarse

degrees of freedom and the microscopic discreteness in the underlying quantum

geometry background but in way (in our simple model) that the energy and (hence

the cosmological constant) is conserved. However, the presence of decoherence

suggest the possibility for a natural deviation of this idealized absence of dissipation:

generically decoherence and dissipation often come together. Therefore, a surprising

and unexpected consequence of our analysis is the suggestion of a natural channel

for the relaxation of a large cosmological constant due to the possibility of dissipative
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effects associated to the decoherence pointed out here.

Incidentally, all this shows it is only in the limit of low values of E (small cosmological

constant) that the coarse graining that leads from the full theory of loop quantum

gravity to the minisuperspace description of loop quantum cosmology is well defined.

This is not surprising and only confirms the usual intuition that drives the construction

of models of loop quantum cosmology. However, it opens the door for a qualitative

understanding of the necessity of decoherence effects in more general situations.

For instance, the standard µ̄s construction suggests that coarse graining is weaker at

the big bang where the Hamiltonian evolution (4.60) takes the universe through the

ν= 0 states. During this high (spacial) curvature phase it is natural to expect that the

higher corrections in (4.75) (describing the interaction with the microscopic Planckian

structure) can no longer be neglected.

Interestingly, there is another way to make decoherence go away. This is due to the

asymptotic behaviour of the separation of area eigenvalues in loop quantum gravity

which imply that for large ∆s there are states such that ∆s −∆s′ ≈∆s exp(−πp2∆s/3)

[117]. Therefore, in the continuum limit ∆s −∆s′ ¿ 1 the dynamical entanglement

growth of our model can be made as small as wanted.

4.9 Matter coupling produces entanglement entropy jump

at the big-bang

In the pure gravity case we can make decoherence be as small as wanted by choosing

states with a cosmological constant that is sufficiently small. Here we show that this

is no longer possible once matter is added and that there is a generic development

of correlations with the UV degrees of freedom in the evolution across the would-

be-singularity: an initially pure state (reduced low energy density matrix) evolves

generically into a mixed state (reduced low energy density matrix) after the big-bang.

In order to see this in more detail we just need to write the matter Hamiltonians acting

in the Hilbert space (4.59). One needs the natural generalization of the expressions

written in Section 4.4 to the present context. For instance for the scalar field coupling

equation (4.32) becomes

Ĥφ.
(|s〉⊗ |ψ〉)=−m

∑
ν∈Γ

|s〉⊗ |ν〉hφ(ν;
√
∆s`Pl)Ψ(ν,φ), (4.80)
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where

hφ(ν;λ) ≡
p2
φ

16λ4

(
|ν+2λ| 1

2 −|ν−2λ| 1
2

)4
. (4.81)

The momentum pφ commutes with the Hamiltonian and thus is its a constant of

motion. As before, if we consider an eigenstate of pφ then the problem reduces again

to a scattering problem with a potential decaying like 1/ν2 when solving the time

independent Schroedinger equation

Ĥ0 + Ĥφ.
(|s〉⊗ |ψ〉)= E

(|s〉⊗ |ψ〉) . (4.82)

From the discussion of 4.4 we can capture the basic qualitative effect of matter in-

teraction by considering a simple solvable model where the matter contribution is

concentrated at a single event a the big-bang. Non of the qualitative conclusions that

follow depend on this simplification, and the more realistic free scalar field model

can be dealt with (some results are shown in Section 4.7). With some extra effort one

could actually analyze the a more realistic model (say the one defined by (4.80)) but

the conclusion will remain the same. Therefore we consider

Ĥ = Ĥ0 +µĤint, (4.83)

whereµ is a dimensionless coupling, Ĥ0 is given in (4.60), and Ĥint is the generalization

of (4.36)

Ĥint.
(|s〉⊗ |ψ〉)≡∑

ν

Ô |s〉⊗ |ν〉 δν,0p
∆s
Ψ(0) (4.84)

where Ô is a self adjoint operator in h=C2.

A natural and simple model for this operator is to choose

Ô ≡ `−4
p

V0p
∆s

. (4.85)

This choice is formulated in the notation introduced below (4.60) and inspired by

the analogy with a spin system. We have added by hand an interaction Hamiltonian

that switches on only when the universe evolves through the would-be-singularity

at the zero volume state. This encodes the idea of the intrinsic uncertainty of the

peculiar construction of the mini-superspace model of loop quantum cosmology that

we discussed in Section 4.8. The discrete local degrees of freedom must be important
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close to the big bang and symmetry reduction must fail in some way that can only

be correctly described if a full quantum gravity theory is available. Here we model

such unknown dynamics in the simplest fashion available to us here, which consists

of including the possibility for the background state |s〉 (representing in spirit the

underlying quantum geometry) to be modified by the dynamics via Ĥint.

Here we proceed as in Section 4.5 while keeping in mind that, in the present case, there

are two distinct cases at hand given by the two possible values ∆±. Let us consider an

in-state of the form

|k, s〉 = |s〉⊗ |ν〉
e−i k

2 ν+ As(k)e i k
2 ν (ν≥ 0)

Bs(k)e−i k
2 ν (ν≤ 0),

. (4.86)

where As(k) and Bs(k) are coefficients depending on k and (in contrast with the

case in Section 4.5) now also on s =±1 (with |±〉 the eigenstates of Ŝz). For suitable

coefficients, such states are eigenstates of the Hamiltonian H0 as well as the full

Hamiltonian (4.35). Arbitrary solutions (wave packets) can then be constructed in

terms of appropriate superpositions of these ‘plane-wave’ states.

As(k) = −iΘs(k)

1+ iΘs(k)

Bs(k) = 1

1+ iΘs(k)
. (4.87)

where

Θs(k) ≡ 16πγ2

3

µ

sin(2k
p
∆s`Pl)

. (4.88)

One can superimpose the previous eigenstates to produce wave packets (semiclassical

states) for the wave function of the universe that are picked at some value ν0 of

the rescaled volume (see footnote 4). Wave packets will evolve in time according

to the Schroedinger equation which in our case is just a discrete analog of the one

corresponding to a free particle in quantum mechanics with an interaction term at the

‘origin’ ν= 0. If we start with a state that is sufficiently picked around ν0 for νÀ `Pl

initially, then the state can be described in terms of the supperposition (4.66) where

the explicit values of the coefficients As(b) and Bs(b) does not appear. Equation (4.44)

is generalized to
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4.10. Entropy associated with the entanglement with the UV degrees of freedom

Ψin(t ¿ 0) =
∫

Db
(|b,1〉ψ(b;b0,ν0)+|b,2〉ψ(b;b0,ν0)

)
e−i E−(b)t (4.89)

+
∫

Db
(|b,1〉ψ(b;b0,ν0)+|b,2〉ψ(b;b0,ν0)

)
e−i E+(b)t .

The coefficients (4.87) enter the expression of the scattered wave packet at late times

which becomes

Ψout(t À 0) = (4.90)∫
Db |−〉⊗ |b,1∪2〉

[
ψ(−b;b0,ν0)A−(−b)+ψ(b;b0,ν0)B−(b)

]
e−i E−(b)t+∫

Db |+〉⊗
[
|b,1〉(ψ(−b;b0,ν0)A+(−b)+ψ(b;b0,ν0)B+(b)

)+|b,2〉ψ(b;b0,ν0)
]

e−i E+(b)t .

Note that the solution of the scattering problem for the E+(b) eigenvalues is asymmet-

ric with respect to the components of the in state supported on Γ1 and Γ2. Indeed the

states |b,2〉 are eigenstates of the Hamiltonian directly because they are not supported

on ν= 0 and hence they do not ‘see’ the interaction: this is capture by trivial scattering

coefficients for this component.

4.10 Entropy associated with the entanglement with the

UV degrees of freedom

From the previous initial state we can calculate (by tracing over the factor h, see (4.59))

the initial reduced density matrix

ρR
in(t ) =

∫
Db Db′ e i [E+(b)−E+(b′)]t (4.91)

×
[
|b′,1〉ψ(b′;b0,ν0)+|b′,2〉ψ(b′;b0,ν0)

][
〈b ,1|ψ(b;b0,ν0)+〈b ,2|ψ(b;b0,ν0)

]
+

∫
Db Db′ e i [E−(b)−E−(b′)]t

×
[
|b′,1〉ψ(b′;b0,ν0)+|b′,2〉ψ(b′;b0,ν0)

][
〈b ,1|ψ(b;b0,ν0)+〈b ,2|ψ(b;b0,ν0)

]
.
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Chapter 4. Hawking’s information puzzle: a solution from discreteness

The reduced density matrix after the big bang is

ρR
out(t ) =

∫
Db Db′ e i [E+(b)−E+(b′)]t (4.92)[

〈b,1|
(
ψ(−b;b0,ν0)A+(−b)+ψ(b;b0,ν0)B+(b)

)
+〈b,2|ψ(b;b0,ν0)

]
[
|b,1〉(ψ(−b′;b0,ν0)A+(−b′)+ψ(b′;b0,ν0)B+(b′)

)+|b,2〉ψ(b′;b0,ν0)
]
+

e i [E−(b)−E−(b′)]t
[
|b′,1∪2〉ψ(−b′;b0,ν0)A−(−b′)+|b′,1∪2〉ψ(b′;b0,ν0)B−(b′)

]
×

[
〈b,1∪2|ψ(−b;b0,ν0)A−(−b)+〈b,1∪2|ψ(b;b0,ν0)B−(b)

]
,

where α+ = 1/4 and α− = 1 and δs+ is unity when s =+ and vanishes when s =−.

Then the non vanishing entries of the reduced density matrix are

ρR 11
out (b0,b0) = 1

4

(|B+(b0)|2 +|B−(b0)|2)
ρ22

out (b0,b0) = 1

4

(
1+|B−(b0)|2)

ρR 12
out (b0,b0) = 1

4

(
B+(b0)+|B−(b0)|2)= ρR 21

out (b0,b0)

ρR 11
out (−b0,−b0) = 1

4

(|A+(−b0)|2 +|A−(−b0)|2)
ρR 22

out (−b0,−b0) = 1

4

(|A−(−b0)|2)
ρR 12

out (−11b0,−b0) = 1

4

(|A−(−b0)|2)= ρR 21
out (−b0,−b0)

ρR 11
out (b0,−b0) = 1

4

(
A+(−b0)B+(b0)+ A−(−b0)B−(b0)

)
= ρR 11

out (−b0,b0)

ρR 22
out (b0,−b0) = 1

4

(
A−(−b0)B−(b0)

)
= ρR 22

out (−b0,b0)

ρR 21
out (b0,−b0) = 1

4

(
A+(−b0)+ A−(−b0)B−(b0)

)
= ρR 12

out (−b0,b0)

ρR 12
out (b0,−b0) = 1

4

(
A−(−b0)B−(b0)

)
= ρR 21

out (−b0,b0). (4.93)

The matrix ρR
out is positive definite, Tr[ρR

out ] = 1 and ρR
out = ρR†

out . In the case b0`Pl ¿ 1

we have

Θs(b0) ≈ 8πγ2µ

3

1

b0
p
∆s`Pl

. (4.94)

We can now compute the entanglement entropy jump δS to first leading order in

b0`Pl/µ. The result (expressed in terms of the cosmological constant in this regime,
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namely (4.77)) is

δS = δ0S − 3∆−`2
Pl log(3)

128π2γ2µ2
Λ+O(Λ2`4

Pl), (4.95)

where δ0S = 2log(2)− 3
4 log(3).

The previous equation shows that the entropy jump is non trivial at crossing the

big-bang would-be-singularity, even in the low cosmological (low energy limit) where

(according to the analysis of the previous section) decoherence with the microscopic

Planckian structure can be neglected during the time the universe is large. Information

is unavoidably degraded (it seems lost for low energy observers) during the singularity

crossing.

The general entropy jump for arbitrary (not necessarily small Λ) can be computed

explicitly. Its value is bounded by log(2) in our model. Finally, the energy is conserved

through the big bang and during all the dynamical evolution for arbitrary values of b0.

The decoherence and entanglement which can be interpreted as an information loss

happens without energy spending as required by the scheme put forward in [15].

4.11 Discussion

We have seen that one can precisely realize the scenario put forward in [15] for the

resolution of Hawking’s information loss paradox in quantum gravity in the context

of loop quantum comology. The key feature making this possible is the existence of

additional degrees of freedom with no macroscopic interpretation which unavoidably

entangle with the macroscopic degrees of freedom during the dynamical evolution

and lead to a reduce density matrix whose entropy grows. The fundamental de-

scription is unitary but the effective description—that does not take the microscopic

degrees of freedom into account and hence is analogous to the QFT description of

BH evaporation—evolves pure states into mixed states. The microscopic degrees of

freedom in the toy model are not introduced by hand, their existence is intimately

related to the peculiar choice of representation of the fundamental phase space vari-

ables that leads to singularity resolution [86]. Moreover, such representation mimics

the one used in the full theory of loop quantum gravity [118] where also one expects

such extra residual and microscopic degrees of freedom to exist and remain hidden to

low energy coarse grained observers describing physics in terms of an effective QFT.

From a more general perspective we expect this scenario to transcend the framework

of loop quantum gravity: in any approach to quantum gravity, where spacetime
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geometry is emergent 10 from more fundamental discrete degrees of freedom, the

effect (precisely illustrated here by our toy model) would generically occur.

These results extrapolated to the context of black hole formation and evaporation

suggest a simple resolution of the information paradox that avoids the pathological

features of other proposals. For instance the possible development of firewalls [121,

122] or the risks of information cloning that holographic type of scenarios must deal

with [123] are completely absent here. As decoherence in our model takes place

without diffusion [83], the usual difficulties [124] with energy conservation in the

purification process are avoided along the lines of [82, 83], yet in a concrete quantum

gravity framework (hence without the problems faced by the QFT approach [125, 126]).

We notice that the possibility of decoherence illustrated in the present model also

suggest the possibility of diffusion into the underlying Planckian structure, such

diffusion might have, in suitable situations, important consequences at large scales as

argued in a series of recent papers [25, 127, 128]. The present model is very simplistic

and realizes an example where such diffusion is not possible due to (unimodular)

energy conservation and the fact that the microscopic degrees of freedom do not

contribute independently to the Hamiltonian. Nevertheless, one could generalize

these models easily in order to include diffusion. This possibility is under current

investigation and we plan to report the results elsewhere.

10For instance in the causal sets approach [53], or in the context of Jacobson’s ideas about emergence
[54] (where, incidentally, in both cases unimodular gravity is the natural emergent structure), in causal
dynamical triangulations [119], group field theory [120], etc.
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FIG. 3: The solid line with an arrow represents the world-line of an observer restricted to lie in

region I. While these observers must eventually accelerate to reach I+, if they are sufficiently far

away, they can move along an asymptotic time translation for a long time. The dotted continuation

of the world line represents an observer who is not restricted to lie in region I. These observers can

follow an asymptotic time translation all the way to i+.

Although the full quantum state is ‘pure’, there is no contradiction because these observers

look at only part I of the system and trace over the rest which includes a purely quantum

part. In effect, for them space-time has a future boundary where information is lost. Since

the black hole is assumed to be initially large, the evaporation time is long (about 1070 years

for a solar mass black hole). Suppose we were to work with an approximation that the black

hole takes infinite time to evaporate. Then, the space-time diagram will be figure 4 because

the horizon area would shrink to zero only at i+. In this case, there would be an event

horizon and information would be genuinely lost for any observer in the initial space-time;

it would go to a second asymptotic region which is inaccessible to observers in the initial

space-time. Of course this does not happen because the black hole evaporates only in a

finite time.

v) ‘Recovery’ of the ‘apparently lost’ information: Since the black hole evaporates only

in a finite amount of time, the point at which the black hole shrinks to zero (or Planck)

size is not i+ and the space-time diagram looks like figure 3 rather than figure 4. Now,
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Figure 4.1 – Penrose diagram illustrating (effectively) the natural scenario, suggested
by the fundamental features of LQG, for the resolution of the information puzzle in
black hole evaporation [15]. The shaded region represents the would-be-singularity
where high fluctuations in geometry and fields are present and where the low energy
degrees of freedom of the Hawking pairs are forced to interact with the fundamental
Planckian degrees of freedom.
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Figure 4.2 – Diagram illustrating (effectively) the natural scenario, suggested by the
fundamental features of LQG, for the resolution of the information puzzle in black
hole evaporation [15]. As in Figure 4.1, one should keep in mind the limitations of
such spacetime representation of a process that is fundamentally quantum and hence
only understandable in terms of superpositions of different spacetime geometries.
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Figure 4.3 – The function hφ(ν;λ) evaluated on an epsilon sector containing ν= 0 for
pφ = 10 in natural units and λ= 1/2 is plotted using two different ranges. On the left
we see that the function is finite near ν= 0. On the right we can see that it behaves like
−ν−2 for large values of ν. This fucntion can be seen as the effective potential where an
asymptotically free state of the universe (pure gravity with cosmological constant state
or asymptotically DeSitter state) scatters. If the cosmological constant is negative there
are bound states whose superposition can be used to define semiclassical universes
oscillating in an endless series of big-bangs and big-crunches.
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Figure 4.4 – The curve represented by a thin line is the entropy jump δS as a function of
b in Planck units for γ=µ=∆= 1. The small b`Pl behaviour in (4.95) is apparent. The
entropy is periodic for b`Pl ∈ [0,π] as expected from (4.88). The dotted line represents
the maximum possible entropy which is log[2] in our model.
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IV. QUANTUM COSMOLOGY ON A SUPERPOSITION OF BACKGROUND MICROSCOPIC STATES.

As we have seen in Sections ?? and III, the field strength regularization, and hence the Hamiltonian, depend on
the minimal area eigenvalue �s of the background (approximately homogeneous) spin network state |si through the
dynamical scale µ̄s. In this way, the physical states of loop quantum cosmology or (in the present situation) the
states of unimodular loop quantum cosmology carry a label that link them to a microscopic degree of freedom in the
underlying loop quantum gravity fundamental state. As such degree of freedom (the area eigenvalue �s of the minimal
homogeneity cells) is quantum, it is natural to model the system by a tensor product Hilbert space H ⌘ Hm ⌦Hlqc

where Hm is the Hilbert space representing the microscopic degree of freedom encoded in the minimal homogeneous
cell operator (whose eigenvalues we denote �s), and Hlqc the standard kinematical Hilbert space of loop quantum
cosmology. General states in H can be expressed as linear combinations of product states |si ⌦  in the respective
factor Hilbert spaces. The quantum Hamiltonian has a natural definition on such states and therefore on the whole
of H , namely

Ĥ . (|si ⌦  ) = |si ⌦ Ĥ�s
.  , (25)

where Ĥ�s
is the usual loop quantum cosmology Hamiltonian in the µ̄s scheme, which in our particular case is defined

in equation (18) with a regulating minimal area �s.
Notice that the previous extension of the standard loop quantum cosmology framework to the larger Hilbert space

H is also natural from the perspective of the full theory for dynamical reasons. Indeed the generally accepted
regularization procedure of the Hamiltonian constraint in loop quantum gravity (first introduced by Thiemann [16]
and further developped in recent analysis—see Varadarajan and Ladda [17] and references therein) is state dependent
in that the loops defining the regulated curvature of the connection is added on specific nodes of the state where the
Hamiltonian is acting upon. This feature finds its analog in the action (25) where the regulating scale �s depends on
the state |si 2 Hm which can be seen as a truncation of the full kinematical Hilbert space of quantum gravity.

In order to simplify the following discussion we will restrict states in Hm even further and consider the situation
where we concentrate on a subspace h = C2 ⇢ Hm, i.e. we will model the situation where the underlying microscopic
state is an arbitrary superposition of only two fixed microscopic homogeneous spin-network states. For example we
take

h ⌘ span [|+i , |�i] , (26)

where |±i 2 Hm are two orthogonal but otherwise arbitrary background states corresponding to two alternative
definitions of the µ̄-scheme. From the infinitely dimensional Hilbert space Hm we are nowselecting a single q-bit
subspace C2. From now on we adopt the convenient |si with s = ± for such prefered basis elements of h. With this
notation, and using (18), the Hamiltonian (25) becomes (in the ⌫-basis for the LQC state)

Ĥ0 . (|si ⌦ | i) =
3V0

8⇡G�2

1

�s`2p

⇣
sin(

p
�s`p b)
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(27)

where  (⌫) ⌘ h⌫| i.
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Figure 2. Schematic representation of the state of interest. There are two di↵erent UV structures with dynamical implications
via the µ̄-scheme.

Now, the only special feature of the basis |±i is that it is preferred from the perspective of the regularization of
the e↵ective (unimodular) loop quantum cosmology Hamiltonian. Consequently, a natural question to the quantum
theory is how the dynamics would look if the initial state is an arbitrary element of h? Using the formal correspondence
with a q�bit we can think of the basis elements |±i as formal eigenstates of a spin degree of freedom or operator

Ŝz in some abstract z-direction. Using this language, we can now consider an initial background state as the “up”

Figure 4.5 – Schematic representation of the state of interest. There are two different
UV structures with dynamical implications via the µ̄-scheme. The state represented
here has trivial correlations with the microscopic structure and would lead to a zero
initial entanglement entropy state as defined by the reduced density matrix where the
background state is traced out.
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on such states and therefore on the whole of H , namely

Ĥ . (|si ⌦  ) = |si ⌦ Ĥ�s .  , (52)

where Ĥ�s is the usual loop quantum cosmology Hamiltonian in the µ̄s scheme, which in

our particular case is defined in equation (19) with a regulating minimal area � = �s.

Notice that the previous extension of the standard loop quantum cosmology framework to

the larger Hilbert space H is also natural from the perspective of the full theory. Indeed the

generally accepted regularization procedure of the Hamiltonian constraint in loop quantum

gravity (first introduced by Thiemann [25] and further developped in recent analysis—see

Varadarajan and Ladda [26] and references therein) is state dependent in that the loops

defining the regulated curvature of the connection are added on specific nodes of the state

where the Hamiltonian is acting upon. This feature finds its analog in the action (52) where

the regulating scale �s depends on the state |si 2 Hm.

In order to simplify the following discussion we will restrict states in Hm even further and

consider a subspace h = C2 ⇢ Hm, i.e. we will model the situation where the underlying

microscopic state is an arbitrary superposition of only two fixed microscopic homogeneous

spin-network states. For example we take

h ⌘ span [|+i , |�i] , (53)

where |±i 2 Hm are two suitable orthogonal background states. From the infinitely dimen-

sional Hilbert space Hm we are now selecting a single q-bit subspace C2. The Hilbert space

of our model is

H = h ⌦ Hlqc. (54)

The factor h represents the microscopic (hidden to low energy observers) UV degrees of

freedom, while Hlqc encodes the data that under suitable circumstances (e.g. when the

universe is large) represent the low energy cosmological degrees of freedom.

From now on we adopt the convenient notation |si with s = ± for such prefered basis

elements of h. With this notation, and using (19), the Hamiltonian (52) becomes

Ĥ0 . (|si ⌦ | i) =
3V0

8⇡G�2

1

�s`2p

⇣
sin(

p
�s`p b)

⌘2

. |si ⌦ | i

= � 3V0

8⇡G�2

X

⌫

1

2�s`2p
|si ⌦ |⌫i

h
 (⌫ � 4

p
�s`p) +  (⌫ + 4

p
�s`p) � 2 (⌫)

i
,

(55)
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Figure 4.6 – Here we plot S(t ) as a function of time for a gaussian wave packet centred
at b = 2.5 10−2, b = 5 10−2, b = 7 10−2, and b = 10−1 with width σ = b respectively.
Numerical integration plus the approximation (4.75) was used with the assumption
2(∆+−∆−)/γ2 = 1, all in Planck units. As b grows the scalar curvature (the cosmological
constant) grows and the rate at which entropy increases grows as well. For b ¿ 1 an
effective unitary evolution is recovered.
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Figure 4.7 – The entropy jump δS as a function of b in Planck units for γ=µ=∆− = 1.
The small b`Pl behaviour in (4.95) is apparent. The entropy is periodic for b`Pl ∈ [0,π]
as expected from (4.88).
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5 Inflation and Structure Formation

The stardard Big Bang picture of cosmology (the ΛCDM model. See, for example

[129, 130]) explain all the pieces of observational data to this date. Given the right

set of parameters and initial data, all the observations at the cosmological scale are

explained by the stardard model of cosmology. Despite its great success, the standard

Big Bang picture has unsettling issues regarding initial conditions. The observed

large-scale homogeneity and flatness seem to require very special, fine-tuned initial

conditions at the very early Universe. These problems are usually captured1 in the

so-called flatness problem and the horizon problem, or its modern version which

questions the origin of superhorizon correlations2.

The flatness problem problem can be stated, in a rough way, as the question why the

spatial curvature of the Universe is so small. In the standard hot big bang picture

the curvature parameter Ωk grows towards the present and, if extrapolating to the

past, the initial value of the curvature parameter had to be even smaller. Inflation

thus provide a dynamical origin for the vaningshily small initial value of the curvature

parameter. To be more precise, in terms of the critical density ρcrit = 3MPlH
2 the

curvature parameter is given by

Ωk = ρcrit −ρ
ρcrit

= (a0H0)2

(aH)2
Ω0

k (5.1)

CMB observations give an upper bound for the curvature parameter today |Ω0
k | <

0.005[134]. Ignoring the late dar matter domination, we can compute the Hubble

1Early works in the inflationary paradigm by Guth [131] were also motivated by the monopole
problem: certain grand unified theories predict, if the temperature is high enough, the production
of heavy, stable magnetic monopoles that have not been observed in nature. If produced during an
inflationary phase, the monopole density would dilute by many orders of magnitude thus dissolving
the tension with observations.

2For an introduction to the paradigm of comological inflation, see [132, 133]
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radius during the standard cosmology model (radiation+matter)

Ωk = Ω0
k

Ω0
m

a2

a +aeq
(5.2)

Using that at matter-radiation equality aeq = (1+ zeq)−1 = 1
3400 we have that, at matter-

radiation domination

∣∣Ωk
(
teq

)∣∣= ∣∣Ω0
k

∣∣
Ω0

m

aeq

2
/ 10−6 (5.3)

At early times, the dynamics of the Universe was dominated by radiation and doing a

similar calculation we can see that

|Ωk (tBBN)| < 10−16 (5.4)

at big bang nucleosynthesis and

|Ωk (tEW)| < 10−30 (5.5)

at the electroweak transition .

We see that if extrapolated at even earlier times, the curvature parameter is even

smaller.

During an inflationary epoch, the Huble radius shrinks, and thus any initial curvature

will decrease. Thus, for a sufficiently long inflationary period the flatness problem

is solved. In particular, during a pure de Sitter phase the Hubble radius shrinks

exponentially in comoving time and thus we have that Ωk ∼ e−2H t , where H is the

(constant) Hubble rate during the de Sitter phase.

The horizon problem and the problem of superhorizon perturbations can be stated,

in a nutshell, as the fact that in the standard hot big bang picture, most of the universe

appears to not have been in casual contact and thus there is no dynamical mechanism

possible that can explain the observed homogeneity and the presence of correlations

between patchs of the universe that were never, a priori, in causal contact. To put

some numbers on this, let us do a quick back-of-the-enveloppe estimate. Let us
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consider the comoving particle horizon at time t3:

dh(η) =
∫ t

tbb

dt

a(t )
=

∫ a

ai

da

aȧ
=

∫ ln a

ln ai

(aH)−1 dln a (5.6)

where ai = a(tbb) = 0 corresponds to the Big Bang singularity. Notice that in the last

term of (5.6) appears, via a simple change of variables, the comoving Hubble radius,

Rh = (aH)−1, which we already saw it plays an important role in the flatness problem.

Then, we see that the dynamics of the Hubble radius determine the causal structure

of the spacetime via (5.6).

In the standard hot big bang picture (and in general for ordinary matter sources) the

comoving Hubble radius is a monotonically incresing function of comoving time t—

e.g. for a dust-dominated universe (aH )−1 ∼ t 1/3— and thus the integral is dominated

by the late-time contributions. This already is suggesting the horizon problem, the

amount of conformal time between the initial singularity and the CMB release (around

z = 1000) was much smaller than the present conformal age of the universe. Then the

problem becomes evident: how two distant patches of the universe have the same

temperature if they didn’t have time to enter into causal contact before the expansion

of the universe separated them forever? In fact, in the standard ΛC DM model the

CMB consist of ∼ 40000 causally-disconnected patches. We can make this argument

more precise by a quick back-of-the-enveloppe calculation[132, 133]. The value of

the comoving horizon at CMB release can be shown to be dh
(
ηrec

)≈ 265Mpc (where

rec stands for recombination). Comparing this with the comoving distance to the

last-scattering surface dA
(
ηrec

)= 15.1Gpc we see that

θ = 2dh
(
ηrec

)
dA

(
ηrec

) = 0.036rad =⇒ θ ∼ 2.0◦ (5.7)

or in other words, regions separated more than 2.0◦ in the sky whad to causal contact

at the time the CMB was released.

A more nuanced version of the horizon problem is the fact that, even if we accept

perfect homogeneity and flatness as a plausible initial state of the universe, the night

sky is full of fluctuations that exhibit correlations over, a priori, acausal distances.

Figure 5.1 illustrates this problem. Since in the standard cosmological models the

Hubble radius (aH)−1 is always incresing, any fluctuation of wavelenght λ that we

see now inside the Hubble radius was, at early times, outside the Hubble radius. For

ordinary matter, the Hubble radius is approximately equal to the particle horizon[136].

3For a detailed account of the different notions of horizon appearing in cosmology see [135]
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CMB today

(aH)−1

superhorizon subhorizon λ

time

scales

Big Bang

Singularity

Figure 5.1 – A fluctuation of fixed (comoving) wavelenght λ that is today inside the
horizon, at sufficiently early times it can be found outside the horizon in a universe
described by the standard model of cosmology.

We saw that the particle horizon at CMB release was ∼ 265Mpc, and thus scales larger

than this would have been outside the horizon before recombination. But nevertheless

we observe correlation all over the sky. This adds an extra layer to the horizon problem:

not only the CMB is homogeneous at acausal scales, but it exhibits subtle correlations

between fluctuations on these scales.

In this case the shrinking Hubble radius also alleviates the superhorizon correlation

problem: it provides a mechanism which which puts into causal contact regions of

the universe that were, in the standard hot big bang model, apparently separated by

superhorizon scales.

In the Figure 5.2 we see how the picture is now modified: if the inflationary phase

lasted long enough, the scales that we now observe inside th horizon, at sufficiently
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early times during the inflationary epoch they were inside the horizon and thus causal

processes were able to establish nontrivial correlations.

(aH)−1

subhorizon superhorizon subhorizon
λ

CMB today

time

scales

Inflation Standard Cosmology

Figure 5.2 – A fluctuation of fixed (comoving) wavelenght λ in a universe that under-
goes an inflationary phase at early times. Fluctuations at a scale we observe today
inside the Hubble radius were, at sufficiently early times, inside the Hubble radius
and exited the horizon during the inflationary epoch.

Is important to note that the apparent problems of the hot big bang model assume

that we can extrapolate general relativity into the trans-Planckian regime. For instance,

when computing (5.6) or when we compute the conformal time elapsed between the

initial singularity and later times we included in the integral early times arbitrarily

close to the initial singularity

∆η=
∫ ε

0

dt̃

a
(
t̃
) +∫ t

ε

dt̃

a
(
t̃
) . (5.8)
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Chapter 5. Inflation and Structure Formation

When we derived that the conformal time between the initial singularity and the

release of the CMB was finite and small we assumed that the first integral on the

LHS of (5.8), which involves regimes in which where general relativity cannot be

trusted, does not lead to large contribution to the total conformal time. Notice that

this early-times integral involve regimes where even a classical notion of spacetime

may be ill-defined. An easy way out of these so-called problems is to postulate that

they will be solved in a complete theory of quantum gravity and thus we should not

worry about them. Whereas this is a reasonable (and possible correct) approach, an

early inflationary phase provides a simple apparent solution to these problems and,

moreover, it is interesting to investigate if such an inflationary phase can arise as

an effective description of quantum-gravitational phenomena at early times when

the classical description breaks down. In fact, such an approach is taken in the

following sections, where we show how an inflationary phase fueled by decay of the

cosmological constant (thought of as an effective description of a quantum gravity

phenomenon) provides not only the solution to the problems we mentioned in this

section but also the seeds of structure formation.

Before finishing the section, let me disgress about the exceptional features of the early

universe. Although the inflationary paradigm provides a solution to the apparent

problems with the standard model of cosmology it does not address one of the most

tantalizing and conceptually deep issues in physics: how our universe happened to

start in an extraordinarily special initial state (the Big Bang), which had an extraordi-

narily low entropy with respect to its gravitational degrees of freedom but maximum

entropy in every other respect[51, 137, 138]4. The CMB give us a surprising feature

of the early universe: the radiation coming from the CMB not only is extremely ho-

mogeneous but it is the best-measured black-body in nature [139, 140]. From the

side of the matter degrees of freedom, this is telling us that the CMB is in thermal

equilibrium. In other words, the matter degrees of freedom are in state of maximum

entropy5. In the gravitational degrees of freedom the situation is the inverse. The

gravitational influence at this time was extremely low6 due to the uniformity in the

matter distribution. This provided an enormous potential for entropy growth when

the gravitational influence starts playing a role.

The model we present in the next section, while does not address these issues (nor

4The extremely low entropy of the big bang, its possible dynamical explanation and its consequences
are explored—among other things—in a marvelous way in [138]

5When we intrepret entropy as arising from a (macroscopic) coarse-graning of microstates[26, 137,
51], ‘thermal equilibrium’ corresponds to the largest—by far—collection of microstates.

6This initial supression of gravitational degrees of freedom is captured in the so called Weyl conjec-
ture, which roughly proposes that the Weyl curvature Cabcd vanishes at any initial singularity[141, 142,
143].

86



does inflation) it does attempts to incorporate quantum-gravitational features of

the early universe in an effective manner. These quantum-graviational effects fuel a

inflationary phase at early times and provide a mechanism of structure formation that

avoid the pitfalls of the standard treatment[47].
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6 Inflation from the relaxation of the
cosmological constant

This chapter overlaps with [18].

We propose a model of inflation driven by the relaxation of an initially Planckian cos-

mological constant due to diffusion. The model generates a (approximately) scale in-

variant spectrum of (adiabatic) primordial perturbations with the correct amplitudes

and red tilt without an inflaton. The inhomogeneities observable in the CMB arise

from those associated to the fundamental Planckian granularity that are imprinted

into the standard model Higgs scalar fluctuations during the inflationary phase. The

process admits a semiclassical interpretation and avoids the trans-Planckian prob-

lem of standard inflationary scenarios based on the role of vacuum fluctuations.

The deviations from scale invariance observed in the CMB are controlled by the self

coupling constant of the Higgs scalar the standard model of particle physics. The

thermal production of primordial black holes can produce the amount of cold dark

matter required by observations. Remarkably, for natural initial conditions set at the

Planck scale the amplitude and tilt of the power spectrum of perturbations observed

at the CMB depend only on known parameters of the standard model such as the self

coupling of the Higgs scalar and its mass.

6.1 Introduction

Planck mass square, M 2
Pl, is the natural order of magnitude of the cosmological con-

stant, yet its observed value is about 10−120 times that theoretical expectation. Such

huge discrepancy, referred to as the cosmological constant problem, is perhaps the

most severe hierarchy problem of modern physics. The cosmological constant prob-

lem is often separated into two (possibly independent) questions: first why is the

cosmological constant essentially vanishing, and second why does it have that special
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Chapter 6. Inflation from the relaxation of the cosmological constant

value. A related natural question that could connect the two is whether dark energy

(the cosmological ‘constant’) could actually change during the evolution of the uni-

verse. Namely, would it be possible to start with a large cosmological constant that

dynamically evolves to its present value? If one writes the energy momentum tensor of

regular matter and includes the dark energy component as TTOTAL
ab = Tab + gabΛ/(8πG)

then one has that Einstein’s equation imply that

∇bΛ=−(8πG)∇aTab . (6.1)

In other words, the only possibility (compatible with general relativity) of having Λ

change is the existence of diffusion of energy between the standard matter fields and

dark energy. One could postulate such diffusion at a purely phenomenological level

(for different proposals along these lines see [144] and references therein). However,

being dark energy a property associated with the gravitational properties of vacuum-

spacetime it is appealing to search for a more fundamental description that would

presumably involve quantum gravity.

In this respect, it is important to point out that equation (6.1) arises naturally in

the context of unimodular gravity in a way that, we believe, has some additional

conceptual value in view of the previous discussion. Thus let us explore it in some

detail as the perpective it suggests will strongly motivate the model that we introduce

below. The action of unimodular gravity is

S =
∫ (p

g R+λ[p
g − v (4)])d x4 +Sm , (6.2)

where Sm denotes the action of matter fields,

v(4) ≡ v (4)d x0 ∧d x1 ∧d x2 ∧d x3 (6.3)

is a background four-volume form, and λ is a Lagrange multiplier imposing that

the metric volume density equals the background one. Due to the presence of the

four-volume background structure the diffeomorphism symmetry of general rela-

tivity is broken down to volume-preserving diffeomorphisms, whose generators are

represented by the vector fields ξa with vanishing expansion, namely

∇aξ
a = 0 . (6.4)

Such infinitesimal generators of volume preserving diffeomorphism are completely

characterized by arbitrary 2-foms ωab via the relation ξa = εabdc∇bωcd .

Invariance of the matter action under the thus reduced symmetry group relaxes the
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6.1. Introduction

usual constraints on the divergence of the energy momentum tensor. Recall that full

diffeomorphism invariance of the matter action implies energy momentum conserva-

tion (see for instance [145]). Therefore, in order to find the new constraints on energy

conservation one must set to zero the variation of the matter action under volume

preserving diffeomorphisms under the assumption that the matter field equations

hold. Namely, the new condition reads

0 = δSm =
∫

M

p−g Tab∇aξbd x4

= −
∫

M

p−g∇aTabξ
bd x4 =

∫
M

p−g∇c (∇aTabε
bcde )ωde d x4 (6.5)

where we integrated by parts twice and we have assumed that fields vanish at infinity.

If we define

Jb ≡ (8πG)∇aTab , (6.6)

the previous condition, which should be valid for arbitrary ωab , implies

dJ = 0, (6.7)

or locally

Ja =∇aQ. (6.8)

Therefore, the background volume structure—that partially breaks diffeomorphims

(down to volume preserving ones)—allows for violations of energy momentum con-

servation demanding only that the energy-momentum violation current Jb be closed.

The gravitational field equations that follow from the previous action are simply the

trace-free part of Einstein’s equations, namely

Rab −
1

4
Rgab = 8πG

(
Tab −

1

4
Tgab

)
, (6.9)

which, using the integrability condition (6.7) and the Bianchi identities, can be rewrit-

ten as [25]

Rab −
1

2
Rgab +

[
Λ0 +

∫
`

J

]
︸ ︷︷ ︸

Λ

gab = 8πGTab , (6.10)

where Λ0 is a constant of integration, and ` is a one-dimensional path from some

reference event to the spacetime point where the equation is evaluated. Thus, if not

vanishing, the energy-violation current J is the source of a term in Einstein’s equations

satisfying the dark energy equation of state; while if J = 0 we simply recover the field

equations of general relativity with a cosmological constant Λ0 (a property aready

pointed out by Einstein [97] as indicating the possibly non-fundamental nature of
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Chapter 6. Inflation from the relaxation of the cosmological constant

the cosmological constant). In relation to this, another very appealing feature of

unimodular gravity is that quantum field theoretic vacuum energy does not gravitate

[98, 146], for vacuum fluctuations only contribute to the trace part of Tab not entering

into the field equations (6.9). Finally, and highly remarkably, aside from new physics

in the dark matter sector, unimodular gravity is completely equivalent to general

relativity [147], and passes all the known tests of Einstein’s theory. Unimodular gravity

is, therefore, a very conservative modification of general relativity.

What is the role of the background four volume structure? Why should one accept

such weakening of the principle of general covariance (breaking diffeomorphism

down to volume-preserving diffeomorphisms)? We are guided on this issue by the per-

spective that the smooth classical field description of general relativity and quantum

field theory is an approximation (an effective description) of a fundamental physics

expected to be discrete at the Planck scale. Compatibility with Lorentz symmetry

suggests that such discreteness would have to be realized by the existence of some

sort of four-volume elementary building blocks. These basic spacetime elements

would naturally produce a background 4-volume structure in the long wave-length

effective description and justify the use of unimodular gravity for low energies. At the

more fundamental level (i.e., in terms of the quantum gravity physics describing the

dynamics of such elementary notions) no background structures should be preferred,

à priori, and full covariance would be reestablished.

Indications of this physical hypothesis come from different indirect sources that we

now mention.

First, let us come back to the discussion of the symmetries of unimodular gravity and

recall that under general diffemorphisms the metric changes as δgab = 2∇(aξb) where

∇(aξb) = θ
4 gab +σab when decomposed in its trace and trace-free parts. Unimodular

gravity remains invariant under the smaller group of volume-preserving diffeomor-

phisms which are characterized infinitesimally by vector fields ξa for which θ = 0.

Thus, the broken diffeomorphisms in unimodular gravity are those that send the

metric gab → (1+ θ
4 )gab which coincide with infinitesimal conformal transformations

gab →Ω2gab as far as the metric is concerned. Therefore, when the field equations

hold, conformal transformations and the broken symmetries of unimodular gravity

are the same in the matter sector. Thus, one would expect unimodular gravity to

emerge as the natural effective description of gravity in situations where scale invari-

ance is broken by the microscopic discreteness scale associated to quantum gravity

scale and those of the fundamental probing matter 1.

1There is a remarkable paper by Anderson and Finkelstein [52] were a very similar conceptual path
leads to unimodular gravity from the assumption of the existence of a fundamental scale breaking
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This is precisely what the structure of quantum field theory on curved spacetimes sug-

gests in the way the UV (potentially divergent) contributions to the renormalization

of the energy-momentum tensor break scale invariance: consideration of the ambigu-

ities associated with the definition of the expectation value of the energy momentum

tensor in quantum field theory and their (anomalous) breaking of scale invariance

[66] can be argued to indicate the preferred role of unimodular gravity in semiclassical

considerations.

The previous discussion based on purely symmetry considerations can be made

very concrete. Still in the context of the renormalization of the (expectation value of

the) energy momentum tensor in quantum field theory on curved spacetimes, the

existence of a well defined regularization can be shown via the Hadamard subtraction

prescription where (for the simple case of a Klein-Gordon fieldφ(x)) one defines 〈Tab〉
by considering the coincidence limit x → y of a suitable expression depending on the

two-point distribution

F (x, y) = 〈φ(x)φ(y)〉−H(x, y), (6.11)

where H (x, y) is a Hadamard bi-distribution constructed such that F (x, y) is smooth in

the coincidence limit, and such that it satisfies the field equations in its first argument.

Obstructions to get H (x, y) to satisfy the field equations in the second argument imply

that

∇a 〈Tab(x)〉 =∇bQ (6.12)

for Q dependent on the local curvature but not on the state of the quantum field.

Therefore, the simple regularization of the UV divergences leads to the violation of

energy momentum conservation of the form compatible with the symmetries of

unimodular gravity (6.8).

In order to make the formalism compatible with the usual semiclassical equations

one performs an additional step ‘by hand’ [66] and defines

〈Tab(x)〉ren ≡ 〈Tab(x)〉−Q gab , (6.13)

which, in the case of conformal quantum fields, introduces an anomalous trace (see

for instance [148, 66], and [149] for a very detailed presentation in 2-dimensions). Our

previous discussion shows that this anomaly is more naturally interpreted as a viola-

tion of energy-momentum conservation (6.6) satisfying the unimodular restriction

conformal invariance. Although in their analysis they do not discuss the possibility of diffusion that is
one of the key features of our approach. We were not aware of this paper and thank T. Jacobson for
pointing it out to us.
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(6.7).

Interestingly, the semiclassical gravity dynamics defined using the trace free Einsteins

equations of unimodular gravity with sources given by 〈Tab〉 (violating conserva-

tion as in (6.12)), and the one implied by the standard Einstein’s equations with

sources defined by (6.13) coincide. In this sense, the trace anomaly is equivalent to

a diffeomorphism anomaly where diffeomorphisms are broken—by QFT vacuum

fluctuations—down to volume preserving diffeomorphism. Quantum fields and their

fluctuations around a preferred (‘vacuum’) state are sensitive, in this sense, to an

underlying four-volume structure. Finally it is worth pointing out that—even though

there are ambiguities in the definition of 〈Tab〉 encoded in the possibility of adding a

locally conserved tensor tab constructed from the metric variation of a Lagrangian

constructed out of R2 and RabRab [66]—the relevant ‘diffusion’ term ∇bQ is, to our

knowledge, unambiguously defined in the present context. All this strengthen the view

that unimodular gravity—with the non trivial diffusion (6.8) effects that it offers—is a

natural effective description emergent from the underlying UV structure of spacetime

and matter expected to be described by quantum gravity 2.

Discreteness at the Planck scale (or, more precisely, the existence of microscopic

degrees of freedom not accounted for in an effective field theory description) is sug-

gested also by the physics of black holes in the semiclassical regime [68]. Black holes

behave like thermodynamical systems in quasi-thermal equilibrium with an entropy

given by

SB H = A

4`2
Pl

, (6.14)

where A is the corresponding black hole horizon area. This formula suggests the

existence of microscopic degrees of freedom at the Planck scale, `Pl, responsible for

such huge entropy. Arguments that take these microstates as fundamental and derive

from them an effective description of gravity (as an equation of state [54]) lead—not

to Einstein’s equations as it is often improperly stated, but rather—to the trace free

Einstein’s equation (6.9) of unimodular gravity.

Unimodular gravity also arises naturally from quantum gravity approaches where

spacetime is emergent from 4-dimensional discrete building blocks (which are re-

sponsible for the existence of a preferred background four-volume (6.3)). A concrete

example of this is the role of unimodular gravity as the effective description of gravity

in the causal set approach [53]. Noisy interaction with four volume events appears

2The possibility of a relaxation mechanism of a positive cosmological constant via the back reaction
of infrared graviton modes (IR effects) was put forward by Tsamis and Woodard in [150] and further
explored in the case of scalar contributions by Brandenberger [151].
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as the natural relativistic generalization of spontaneous localization models [152]

that modify quantum mechanics by introducing dynamical collapse [153, 154]. This

perspective was very important in motivating the use of unimodular gravity in [25]

where observational bounds on the free parameters of some of such models where

constrained by cosmological observations. It is possible that these, apparently inde-

pendent directions, could be connected at a more fundamental level. We will not

pursue this idea here, for further reading and applications to cosmology see [155] and

references therein.

The existence of microscopic degrees of freedom which are not captured in our smooth

field theoretic approximations conveys the idea that diffusive effects could be present

which, in unimodular gravity, can be accounted for phenomenologically in terms of a

non vanishing current Jb (as long as (6.7) are satisfied) 3. This perspective, which is the

one we follow in this work, was already taken in [128, 127] where (with the assumption

that the initial cosmological constantΛ0 in (6.10) is vanishing in the early universe)

a cosmological constant emerges from the noisy diffusion of energy from the low

energy matter sector into the Planckian regime during the electroweak transition.

Remarkably, the model reproduces the observed value of the cosmological constant

today without fine tuning 4.

6.1.1 Background implications: Relaxation of the cosmological con-

stant

Building on this, here we explore the possibility that the perspective offered by uni-

modular gravity (as an effective description emerging from fundamental discreteness)

could help addressing the first part of the cosmological constant problem. We would

like to investigate the cosmological implications of having an initial cosmological

constant that starts with its natural Planckian value Λ0 ≈ M 2
Pl, and then relaxes to zero

via diffusion into the matter sector mediated by the hypothetical granular structure at

3If these hidden degrees of freedom can interact with the low energy ones appearing in our effective
field theory formulations then quantum correlations can be established via such interactions. This
is particularly relevant in the context of black hole formation and evaporation where low energy
excitations falling into the black hole are forced by the gravitational field to interact with the Planck
scale a finite proper time after horizon crossing (as implied by the singularity theorems). This is
particularly important in any discussion of the fate of information in black hole evaporation and offers
a natural channel for purification of the Hawking radiation [15] (for a toy models in quantum cosmology
illustrating the mechanism see [26, 27]).

4The model links the two mysteriously small scales in fundamental physics—the EW scale mew and
the cosmological constant—with the gravity scale MPl: the small number (mew/MPl)

7 ≈ 10−120 emerges
from the calculation as a result of the diffusive physics involved [128, 127]. The results of the present
paper reinforces the relationship between dark energy physics and electroweak physics due to the key
role that the Higgs scalar will play in what follows.
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Chapter 6. Inflation from the relaxation of the cosmological constant

the Planck scale associated with the emergence of the preferred four volume structure

of unimodular gravity at low energies.

The analogy with usual dissipative systems suggests a natural model where Λ relaxes

exponentially in time. Even if time is an elusive notion in general relativity, when it

comes to applying the theory to cosmology the situation is drastically different in

unimodular gravity (for a more general discussion see [99, 101]). This is so thanks to

the existence of the preferred 4-volume structure that singles out a preferred (up to

rescaling by a constant) notion of time: 4-volume time. Such time variable can be put

in direct correspondence with a dimensionless notion associated with the counting of

elementary Planckian volume elements ‘created’ during the cosmological evolution.

All this provides a natural time notion emerging from the hypothesis of discreteness

in terms of which the relaxation ofΛwill be defined.

To make the previous statement precise we now focus our attention to (spatially

flat) Friedmann-Lemaître-Robinson-Walker (FLRW) cosmology (homogeneous and

isotropic cosmology). The assumption of spacial flatness simplifies the discussion

that follows yet it is probably not essential. Thus the spacetime metric is given by

d s2 =−dτ2 +a2(τ)d~x2, (6.15)

where τ is the proper time of co-moving observers. The rationale dictating that the

diffusion is sourced by the 4-volumetric granularity of spacetime suggests the natural

time for the diffusion process (and associated relaxation of Λ) to be proportional

to the number of spacetime grains encountered or ‘created’ during the evolution of

the universe identified with the elapsed four volume. More precisely, consider an

initial fiducial cell of co-moving coordinate volume `3
Pl expanding while the universe

expands. The four volume of its world tube—divided by a reference volume scale `3
U

in order to get time units—is given by

tp = `3
Pl

`3
U

∫
a3dτ. (6.16)

If we also take `U = `Pl one gets the so-called unimodular time variable t defined as

d t = a3dτ, (6.17)

which turns the metric (6.15) into d s2 =−a−6d t 2+a2d~x2. This time choice is imposed

to us in unimodular gravity by the constraint det |g | = 1 derived from the variations of

the action (6.2) with respect to the Lagrange multiplier λ in natural coordinates where

v (4) = 1.
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The question we explore in this paper is what is the natural phenomenology that

follows from the assumption thatΛ decays exponentially in this (number of Planck

four volume elements) time, thus we postulate that

Λ(t ) =Λ0 exp(−βMPlt ) (6.18)

with β a dimensionless constant and Λ0 ∼ M 2
Pl. Note that np ≡ MPlt in the previous

expression can be interpreted as the number of Planckian 4-volume elements ‘created’

during the cosmological expansion out of the primordial initial cell. Note also that

the time variable as defined in (6.16) is not unique as can be modified by rescaling

`Pl → λ`Pl. The phenomenology of this paper remains the same if simultaneously

we rescale β→ β/λ3 in (6.18). This freedom can be encoded in the choice of `U in

(6.16). We will see that the parameter β will basically control the number of e-folds

of inflation before reheating. The only requirement we will find, when comparing

predictions of the model with observations, is that β has to be sufficiently small.

However, its precise value does not affect the type of observable features we explore in

the model. A possibility of identifying a fundamental mechanism fixing this freedom

and, simultaneously, rendering the value ofβmore natural will be discussed in Section

6.6.

Note that (6.18) implies, due to the non trivial relation between the (four volume) time

t and co-moving time τ encoded in equation (6.17), that the universe undergoes a

phase of exponential expansion in cosmic time τ lasting as long as βMPlt < 1 (a quasi

De Sitter inflationary phase). For sufficiently small β this inflationary phase can be

long enough to resolve both the horizon and the flatness problems independently of

the initial conditions5 for matter fields and the energy injection encoded in equation

(6.1). We will discuss this in more detail in Section 6.2.

6.1.2 Perturbation implications: Inhomogeneities sourced by Planck-

ian granularity

The conceptual framework of unimodular gravity naturally suggests the possibility for

a form of diffusion between the matter degrees of freedom and the dark energy sector

(representing an evolving cosmological constant ). The rational behing all this is the

5The independence of initial conditions should be taken with the same grain of salt as when one
reads similar statements in the inflationary literature. More precisely, one can only make a statement
of this sort once one assumes that the FLRW approximation is a good one to describe the observable
universe. This is clearly a severe restriction of the phase space of general relativity as it is often
emphazized by Penrose [137], and of course a very important problem that we will leave aside of the
present discussion.
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Chapter 6. Inflation from the relaxation of the cosmological constant

existence of hidden Planckian degrees of freedom which, in the effective low energy

description of unimodular gravity, are capable of storing energy in the form of dark

energy to be eventually released into the degrees of freedom of matter (a mechanism

driven by quantum gravity and here assumed as a phenomenological hypothesis

to lead to the relaxation of Λ as in (6.18)). However, as this dark energy is freed by

Plankian grains of spacetime, we can envisage the possibility that inhomogeneities

would arise in the matter sector at around the fundamental scale which, during

the inflationary period, is close (as shown in Section 6.2) to the Hubble rate. At

present one cannot describe this process from fundamental principles. Thus we will

represent by a Brownian type of process, i.e a stochastic process generating small

perturbations of certain background fields with a probability distribution satisfying

the only requirement of homogeneity.

This view offers an interesting possibility for a mechanism of structure formation

where the nearly scale invariant scalar density fluctuations observed in the CMB

will be shown to arise from the steady injection of energy from the Brownian-like

diffusion of fundamental Planckian granularity into the perturbations at the Hubble

scale during the De Sitter phase. We will see that the semiclassical description of

such diffusion leads to stochastic inhomogeneities compatible with cosmological

observations. Scale invariance follows from the self similarity of the diffusion process

that is granted by the exponential expansion of the background during the De Sitter

phase (due to the slow relaxation ofΛ as in (6.18)).

Thus the mechanism producing inhomogeneities presented here is fundamentally

different from the standard account that associates inhomogeneities to quantum

fluctuations of the inflaton. Here we propose an active mechanism where the fun-

damental quantum granularity induces semiclassical inhomogeneities in the mean

field value of the Higgs scalar. Why the Higgs scalar instead of any other field in the

standard model of particle physics (which we assume to be valid up to close to the

Planck scale)? To answer this question first note that inhomogeneities are expected

to be intrinsically present at the Planck scale according to several approaches to the

fundamental theory. However, compatibility with Lorentz invariance implies that

such hypothetical granularity cannot be seen as an underlying lattice-like structure

selecting a preferred frame [156]. Instead, discreteness at the Planck scale must have

physical manifestations when suitable massive (hence scale invariance breaking)

degrees of freedom interact with the quantum geometry (massless fields cannot be

sensitive to granularity as their light-like excitations cannot define a frame, their own

rest frame, with respect to which the notion of Planck scale would be meaningful).

At high enough energies, the only scale invariant breaking degree of freedom in the

standard model of particle physics is the Higgs scalar and this is the reason why the
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Higgs is the right degree of freedom that can carry the imprints of granularity. A

natural order parameter of the magnitude of the strength of this effect is naturally

given by

γH = mH

MPl
≈ 10−17, (6.19)

where mH is the Higgs mass.

Thus in our model the fundamental inhomogeneities leave their imprint on the ex-

pectation value of the Higgs scalar (assume to have, as the cosmological constant,

Planckian initial value): as a consequence the Higgs scalar is not in a homogeneous

and isotropic vacuum state but rather in an inhomogeneous excited semiclassical

state. The De Sitter exponential expansion during the inflationary phase dilutes stan-

dard forms of matter; however, this is not the case for the zero mode of a scalar field

and the inhomogeneities produced on it (long wavelength modes in the scalar field

are frozen by the rapid expansion). During the inflationary phase the UV Planckian

inhomogeneities are expanded to the large cosmological scales where they become

the seed for the formation of structure observable in the power spectrum of pertur-

bations on the CMB. There is no symmetry breaking of the FLRW symmetries, no

need for quantum to classical transition, inhomogeneities are present from the be-

ginning in the microscopic quantum gravitational structure of spacetime and matter.

The decaying cosmological constant and its inflationary effect, bring these up to our

scales.

In our view, at the conceptual level, the new perspective is an improvement of the

standard picture in two ways: On the one hand it resolves the so-called trans-Planckian

problem because no assumption about the validity of standard quantum field theory

as well as linearized gravity are necessary at length scales below the Planck scale are

necessary (perturbations treated with such tools are born here at longer scales). On

the other hand our approach eliminates the conceptual difficulties [47] associated

with thinking of the perturbations as originating in vacuum fluctuations of the inflaton

in relation to the measurement problem in quantum mechanics and applications of

its Copenhagen interpretation applied to the universe as a whole.

Finally we study the possibility that primordial black holes could be created thermally

at the end of the inflationary era during the reheating phase that in our model raises

the temperature to close to the Planck temperature. A key assumption here is that

there are stable primordial black holes with masses close to the Planck mass. Note

that even when this is suggested by general quantum gravity considerations in various

contexts, it is a very natural possibility in a quantum gravity theory where the Planck

energy is the fundamental scale. We show that one can natural estimates based on

dimensional analysis lead to the correct order of magnitude densities necessary to
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Chapter 6. Inflation from the relaxation of the cosmological constant

account for dark matter today without fine tuning. We explain this in detail in Section

6.4.

The paper is organized as follows. In the Section 6.2 we describe the dynamics of

the background geometry driven by the relaxing cosmological constant (6.18). In

Section 6.3 we present the proposed mechanism for the generation of nearly scale

invariant scalar density fluctuations. We confront the predictions of the minimalistic

model (that assumes the validity of the standard model of particle physics all the way

to the Planck scale) with the relevant observational data coming from the CMB. In

section 6.4 we analyze the possibility that primordial black holes (generated during

the diffusion process or via thermal fluctuations at reheating) could account for the

dark energy content of the universe. We conclude the paper with a discussion Section

6.7. Appendix A contains a proof of the so-called Weinberg theorem showing the

existence of adiabatic solutions of the perturbation equations. This theorem is key

in understanding the link between perturbations generated during inflation and the

CMB observations. In our context the theorem is a handy shortcut specially adapted

to the dynamical description of the relevant consequences our stochastic process for

the generation of inhomogeneities equivalent of the (more generally used) Mukhanov-

Sasaki formalism in the description of standard inflationary theory of perturbations.

We believe that our proof of the Weinberg theorem (even when the same in spirit as

the one found in [157] or in his well known textbook [129]) is more direct and could

be helpful for interested readers. In Section 6.5 we compare our mechanism for the

generation of inhomogeneities with the standard paradigm. Some of the various

issues opened by our perspective are considered in Section 6.6.

6.2 Background dynamics

In this section we study the dynamics of the homogeneous and isotropic FLRW geom-

etry (6.15) and homogeneous and isotropic matter components evolving on it. The

primordial cosmological constant (or dark energy component) relaxes according to

(6.18) and, we assume, that the energy released feeds (as implied by equation (6.1))

a radiation component—represented by a homogeneous and isotropic perfect fluid

with equation of state ρ = 3P—whose initial value is ρ0. Equation (6.1) will take the

form of a continuity equation with non trivial interactions between the radiation

and dark energy fluid components. Naturalness of initial conditions at the Planckian

regime suggests ρ0 ∼ M 4
Pl. In addition we have the Higgs scalar field that is assumed

to start off in a semiclassical state with expectation value φ0(0) ∼ MPl. However, the

Higgs in such high energy initial state decays into particles of the standard model

producing further interaction terms in the continuity equation (now between the
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Higgs energy-momentum tensor and the radiation). We will see that these interactions

are weak in the regime of interest and that a semiclassical description is available.

Thus, in spite of the apparent complexity of the situation one can actually use analytic

methods to get a quantitative picture of the relevant features of the dynamics of the

background fields which fits well the numerical simulations (whose results we report

in Figure 6.1). We show in this section that, initially, the dynamics is dominated by

the decaying cosmological constant—in a way that is independent of the other matter

components and their initial conditions—producing an inflationary era of the De

Sitter type that can last a sufficient number of e-folds to resolve the standard prob-

lems that the standard inflationary models resolve [158]. The e-folds of inflation are

controlled by the parameter β, CMB observations require this number to be larger

than a minimum value but they do not constrain it otherwise. Thus the free parameter

β is degenerate in this sense.

6.2.1 Quasi De Sitter phase from the relaxingΛ

We assume that the matter content of the universe is well represented by a perfect

fluid,

Tab = ρuaub +P (gab +uaub), (6.20)

where ua is the 4-velocity of co-moving observers, and ρ and P are the energy density

and pressure in the co-moving frame. In terms of 4-volume (unimodular) time t (see

equation (6.17)) the Friemann equations become

a4(a′)2 = 8πG

3
ρ+ Λ(t )

3
, (6.21)

where ′ denotes derivatives with respect to unimodular time t , andΛ(t ) =Λ0e−βMPlt

is the decaying cosmological constant depending on the free parameter β, and from

now on we normalize the scale factor so that a(0) = 1. The Raychaudhuri equation is

a2 d

d t

(
a3a′)=−4πG

3
(ρ+3P )+ Λ(t )

3
, (6.22)

and the continuity equation derived from (6.1) is

ρ′+3
a′

a
(ρ+P ) =−Λ

′(t )

8πG
. (6.23)

Note that equation (6.23) encodes the diffusion of energy between the dark sector and

the energy density of matter (this is the symmetry reduced form of (6.1)). The only
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assumption in the previous equation is that the diffusion process does not disrupt the

homogeneity and isotropy6 of the background matter and geometry configurations to

leading order (perturbations will be considered but they will be small in comparison

with average densities). As stated before, we assume that the relevant channel into

whichΛ decays is massless fields so that ρrad = 3Prad (this justifies the subindex ‘rad’

in our notation, ρ and P denoting the total energy density and pressure that will have

contributions coming from the Higgs scalar).

Figure 6.1 – Solution of (6.24) with β= 10−80, we plot the cosmological constantΛ (in
linear scale, note that the positive vertical axis is linear scale) and the radiation energy
density ρ (in log scale) in terms of the number of e-folds log(a). Λ behaves effectively
as a constant until about when condition (6.27) is satisfied and abruptly decays to zero
thereafter. The radiation density decays exponentially from its initial Planckian value
until the energy injection from the relaxation ofΛ starts winning over the expansion.
By the end of inflation radiation density grows back to about Planckian density again.
During the inflationary phase the Hubble sphere shrinks ∼ 10−28, solving the horizon
problem.

6Thermal equilibrium for the radiation is not a necessarily valid. We are used to this to be true in
the high energy/density regime of the primordial universe. However, this is not clearly possible as we
approach Planck scales and if we take seriously an extrapolation from particle physics at those scales.
The reason is that the condition for thermal equilibrium Γ> H on the interaction rate Γ (where Γ≡ nσ
where n ∼ T 3 is the number density andσ the cross section for interactions) cannot be maintained close
to Tp = MPl because σ∼ 1/T 2 for high energy processes and thus Γ∼ T . As T would drop dramatically
if the initial ρ0 was in thermal equilibrium, while H ∼ MPl > T , all species decouple in the inflationary
past and the radiation injection via the decayingΛ cannot achieve thermal equilibrium until later when
H eventually trops below T .
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In such case equations (6.21) and (6.22) can be combined to obtain

a′′+4
a′2

a
= 2

3a5
Λ(t ), (6.24)

which directly relates the dynamical behaviour ofΛ(t ) and the scale factor.

If the initial cosmological constant (6.18) starts at its natural Planckian valueΛ(0) =
Λ0 ∼ M 2

Pl, the initial conditions for the matter density are not important. Indeed, the

dynamics of the initial phase of the cosmic evolution is basically insensitive to the

value of ρ(0) in the range 0 ≤ ρ(0) ≤ M 4
Pl (this is a standard aspect of the the usually

emphasized robustness of inflation: matter density decays exponentially during the

De Sitter phase and becomes rapidly irrelevant for the background evolution).As we

show below, our model shares this property with standard inflation as long as β is

sufficiently small.

Notice that the Hubble rate in terms of 4-volume time is

H ≡ ȧ

a
= a3a′

a
= 1

3

d a3

d t
, (6.25)

(the symbol · denotes derivatives with respect to comoving time τ).

During the initial phase of expansion defined by the condition βMPlt < 1 the universe

behaves approximately as a de Sitter universe with Hubble rate H = H0 =
p
Λ0/3.

During that initial phase we can integrate the previous equation (with the initial

condition a(0) = 1) and find that a3 ≈ 3H0t + 1. Equivalently, during such period

equation (6.18) can be rewritten as

Λ(a) ≈Λ0 exp(− MPl

3H0
β(a3 −1)), (6.26)

which yields and extremely flat curve for

βa3 < 3
H0

MPl
, (6.27)

with a sharp descent for βa3 ≈ 3H0/MPl (assuming β¿ 1).

This implies that for sufficiently small β the background evolution will be very similar

to that of standard inflationary cosmology.

For instance one can get the inflationary phase to last for about 60 e-folds, Nend ≡
log(aend) ∼ 60, and thus solve the horizon and flatness problems if β is constrained by
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the condition

β≤ 3H0

MPl
10−80. (6.28)

These estimates are confirmed by the numerical solution of the previous equations

illustrated in Figure 6.1.

6.2.2 Higgs Dynamics during the De Sitter phase

In the model that we are presenting the background dynamics is dominated by the

relaxing cosmological constant. In such framework there is no need for the inflaton

field of standard inflationary scenarios. Nevertheless, a (single) scalar field degree

of freedom is still necessary for the mechanism of structure formation proposed

here to work in its simplest form: this allows for the use certain conservation laws

for super-Hubble modes allowing to predict the amplitude of perturbations at the

CMB from initial condition during inflation (this is sometimes referred to as the

Weinberg theorem [129] whose proof we revisit in the Appendix A). In addition—as

the source of structure will be the hypothetical fundamental Planckian granularity,

and, as mentioned in the introduction—the degree of freedom interacting with such

fundamental inhomogeneities at the Planck scale must be scale-invariance-breaking

in nature. Therefore, the Higgs field is the natural carrier of the inhomogeneities as,

on the one hand, it is the single scalar degree of freedom in the standard model of

particle physics, and, on the other hand it is the mediator of the breaking of scale

invariance. Even when it is quite possible that a different realization of our scenario

might exist, we will concentrate here on such minimalistic model where only the

physics of the standard model enters into consideration as far as the description of

matter is concerned. It is also important to point out that the necessity of a scalar field

degree of freedom is rooted only in its role in the mechanism of structure formation

(described in detail in the following section) as the Higgs here plays no important

role in the dynamics of the background. For that reason, our model should not be

confused with models of Higgs inflation [50, 159, 160].

However, the dynamics of the Higgs during the inflationary era will be central in the

model so we review it in detail here. The Higgs field equation in the FLRW background

is

φ̈0 +3H0φ̇0 +ΓPlanckφ̇0 + dV (φ0)

dφ
= 0. (6.29)

where the term ΓPlanckφ̇0 is a friction term associated to the energy loss caused the

production of inhomogeneities mechanism that we will introduce in Section 6.3.

There we will see that ΓPlanck ¿ H0 and thus this term can be safely neglected from
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the previous equation when analyzing the dynamics of the zero mode of the Higgs7.

We assume that φ0 is in the usual ‘terminal velocity’ configuration where 3H0φ̇0 =
−∂φV [φ0] which, from V ≈ (λ/2)φ4 (whereλ is the self-coupling constant of the Higgs)

implies8

φ̇0 ≈−2λ
φ3

0

3H0
. (6.30)

Here we are using that ΓPlanck/H0 ¿ 1 (as mentioned, this assumption will be shown

to be valid later when we derive equation (6.89)). We will assume that the Higgs starts

with a large expectation value

φ0(0) ≈ MPl. (6.31)

From (6.30) we get |φ̇0|¿ H 2
0 as long as |λ|¿ 1. The requirement that the universe is

dominated by the cosmological constant, namely |V [φ0]| = (|λ|/2)φ4
0 ¿Λm2

p /(8π) =
H 2

0 M 2
Pl/(8π) is automatically satisfied if |λ|¿ 1. For these reasons, one can neglect the

effects of the potential in the dynamics of the background geometry in the De Sitter

phase studied in Section 6.2.1. Finally, in the terminal velocity regime we have (from

the time derivative of (6.30)) that

φ̈0 ≈ 12

9
λ2H 3

0 , (6.32)

which will be neglected as a higherλ correction in the perturbation theory calculations

that follow. The picture in Figure 6.1 will have to be modified whenΛ(t ) ≈V [φ0]/M 2
Pl.

This happens after the end of inflation, and thus away from the region where the seed

of structure formation are produced as discussed in Section 6.3.

From (6.30) one finds solutions

7Strictly speaking, another term Γφφ̇0 encoding a standard form of diffusion representing the
particles generated via the interactions of the Higgs with the rest of the fields in the standard model
should be added to equation (6.29). The quantity Γφ is determined by the known interactions of the
standard model (which we are assuming here to make sense all the way to close to the Planck scale). It
follows from the interaction structure of the standard model that the decay rate Γφ must be quadratic
in the relevant couplings times some energy scale. Taking this energy scale to be in the natural scale, i.e.
H0, we get Γφ ≈αH0 for some dimensionless constant [161]. It can be argued that α¿ 1 and thus this
term is negligible in our case.

8One can explore this numerically and for initial ‘velocities’ away from (6.30) there is a transition
time where (as expected) the terminal velocity approximation is not valid. However, even when
starting from the (large) natural Planckian value dictated by dimensional analysis φ̇0 ≈−M 2

Pl the scale
factor enters into the terminal velocity regime after a few e-folds when the Higgs scalar starts rolling
back towards the Planck scale. We are assuming that the Higgs quartic term dominates the potential
for values mH ¿ φ0 . H0 ≈ MPl. We also treat the Higgs as a single scalar field (for presentation
simplicity) ignoring in our equations its su(2) internal indices. Our expressions make sense in a polar
decomposition φA =φv A with v A ∈ su(2) and v A v A = 1.
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φ0(τ) = MPl√
1+ 4

3
M 2

Pl
H0
λτ

or φ0(a) = MPl√
1+ 4

3
M 2

Pl

H 2
0
λ log(a)

. (6.33)

Note that during the first e-folds, say N = log(a) ∼ 11 (which approximately corre-

spond to the period during which the fluctuations visible in the CMB are produced

in our model), and for λ≈−10−2 (which is the correct order of magnitude value in

the standard model close to the Planckian scale [162]) the Higgs changes slowly for

H0 ≈ MPl as assumed, namely
∆φ0

φ0
. 10−1. (6.34)

6.2.3 Radiation generated by the decayingΛ

The analysis of the background dynamics, given in Section 6.2.1, relies on neglecting

the effect of the radiation emitted as Λ decays in matter field modes. In addition,

there is the question of how the initial conditions for radiation affect the conclusion

of Section 6.2.1. Here we show that non of these neglected aspects have an important

influence and that results of the previous simplified analysis remain correct to the level

of approximation considered. The physical reason is that the cosmological constant

term dominates the Friedmann equation due to its slow decay in a while the radiation

dilutes as a−4 as the energy injection (6.23) for β¿ 1 is negligible at first. Eventually,

energy injection becomes comparable with the dilution rate and radiation density ρrad

starts growing again. One can understand these features—which where first exibited

by the numerical solution of the equations as plotted in Figure 6.1—semi-analytically

giving a closer look at equation (6.23) which for diffusion into radiation becomes

dρrad

d a
+ 4

a
ρrad =− Λ′(t )

8πGa′ . (6.35)

Using that H =p
Λ/3 = a2a′ ≈ H0 =

p
Λ0/3 and also ȧ ≈ H0a—recall equation (6.25)—

we get
dρrad

d a
+ 4

a
ρrad ≈ 3βa2

8π
M 4

Pl, (6.36)

where we have used equation (6.30) and the fact that φ0 ≈φ0(0) ≈ H0 ∼ MPl. Integrat-

ing (6.36) we obtain

ρrad ≈ ρ0

a4
+ 3βa3

56π
M 4

Pl. (6.37)

Therefore, our first approximation (6.23) turns out to be fine. Thus, we simply ignore

that last constant contribution to the radiation density in the previous equation in

order to simplify the presentation. However, a similar constant density contribution
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coming from diffusion will play a key role in the discussion of Section 6.4. Notice that

the minimum in the radiation density observed in Figure 6.1 can be estimated from

the condition dρrad/d a = 0 and gives

a7
min ≈ 224πρ0

9βM 4
Pl

ρmin ≈ 7ρ0

3a4
min

(6.38)

—amin ≈ e27 and log(ρmin/M 4
Pl) ≈−107 for the parameters in Figure 6.1. With a bit of

abuse of the approximation we can estimate the radiation at the end of the inflationary

period when βa3
end = 3H0/MPl, as implied by (6.26). One gets

ρend ≈ 9M 4
Pl

56π
≡ T 4

end. (6.39)

We see that the previous semi-analytic argument reproduces well the qualitative

features of the numerical solution in Figure 6.1. Notice that the final ‘reheating

temperature’ ≈ ρ1/4
end is independent of the initial conditions and of the order of Planck

temperature.

6.2.4 Estimate of the lifetime ofΛafter the inflationary era and num-

ber of e-folds

The numerical evolution shows that soon after we reach the end of inflation the

universe becomes quickly dominated by radiation with an initial radiation density

which is estimated from (6.37). The end of inflation is characterised here by the

condition

βa3
end ≈ 3

H0

MPl
, (6.40)

which follows from equation (6.26). The Friedmann equation (6.21) in the radiation

dominated domain becomes

a4a′ =
√

8πρend

3M 2
Pl

a2
end (6.41)

Integrating and multiplying by βMPl we get

1

5

√
3M 4

Pl

8πρend
βa3

end

((
a

aend

)5

−1

)
=βMPl∆t . (6.42)
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Neglecting the −1 inside the parenthesis, using (6.40) to eliminate the β dependence,

replacing for ρend using (6.39), and assuming that a/aend ≈ Tend/T , we obtain the

following expression for the dependence ofΛ on temperature after inflation

Λ=Λ0 exp
(−βMPl∆t

)≈Λ0 exp

[
−
p

21

5

(
9

56π

) 5
4
(

H0

MPl

) 5
2
(

MPl

T

)5
]

(6.43)

which implies that the cosmological constant becomes negligible in comparison to the

present valueΛtoday = 10−120M 2
Pl extremely quickly by the time when the temperature

of the universe is still close to Planckian. The important point here is that this is well

before the electro weak transition temperature Tew ≈ 10−17MPl so that the essentially

vanishing cosmological constant can grow again via the mechanism presented in

[128, 127] to the present observed value.

The parameter β chosen in the Figure 6.1 corresponds to an illustrative value. Here

we analyze in more details observational constraints on this value. An important

feature of our model is the generation of inhomogeneities in an approximately scale

invariant fashion as observed on the CMB during the quasi De Sitter phase. The scale

of these fluctuations range from Lmin = 10−2Mpc to Lmax = 103Mpc today. Even when

the mechanism for structure formation will be different from the inflaton ‘vacuum

fluctuations’ of the standard paradigm, the De Sitter regime of inflation will still play a

key role. In particular, one needs the scales of fluctuations visible today to correspond

to the Hubble scale H ≈ H0 ∼ MPl at the time of inflation. This demands a minimum

number of e-folds from the beginning of inflation to today

N
start→today

min = log(H0Lmax) = log

(
H0

MPl

)
+ log(MPlLmax) = log

(
H0

MPl

)
+138. (6.44)

On the other hand the number of e-folds since the end of inflation N end→today
min is

N
end→today

min = log(TendT −1
0 ) ≈ 1

4
log

(
9H 2

0

56m2
pπ

)
+74, (6.45)

from which we get necessary minimum number of inflationary e-folds

N start→end
min ≈ 1

2
log

(
H0

MPl

)
+65. (6.46)
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6.3 Structure formation

As described in previous sections, the cosmological constant decays spontaneously

due to diffusion into radiation degrees of freedom exponentially in unimodular time

as a result of quantum gravity instability associated to the fundamental granularity. We

have shown that this produces a quasi De Sitter dynamical evolution for the universe.

We have also assumed that the Higgs potential starts in a homogeneous configuration

with a natural expectation value φ0 ∼ MPl and have shown how φ0 is expected to

evolve. Even when negligible in such a dynamics (as it will be shown at posteriory)

we included a friction term controlled by ΓPlanck in (6.29). This term is produced,

we argue, by the interaction of the Higgs scalar with the Physics at the fundamental

scale: the Planckian granularity. This interaction of the homogeneous Higgs φ0 and

the inhomogeneous granular structure at the Planck scale—mediated by the scale-

invariance-breaking of the Higgs—will generate (or excite) inhomogeneities in φ that

are born at the Planck scale via a stochastic process described in detail in Section

6.3.1).

During the initial De Sitter phase the scalar curvature is close to Planckian so that

the scale of discreteness could naturally catalyse the emergence of inhomogeneities.

As argued here, and in [128], the discreteness scale should play a role in those field

theoretical degrees of freedom which are not scale invariant. These are the degrees of

freedom that, from a relational perspective, carry a ‘ruler’ or ‘reference frame’ with

respect to which the fundamental quantum gravity scale `Pl can become meaningful.

In this sense it is natural to accept that as a result of such interaction inhomogeneities

should be created in the Higgs scalar (which is the degree of freedom that introduces

the breaking of scale invariance in the standard model). The energy flow involved

in this can be parametrized (phenomenologically) as an Ohmian diffusion term in

the equation of motion of φ0 (assuming the back reaction process is stochastic with a

probability distribution that is homogeneous and isotropic). As this effect is assumed

to have a quantum geometry origin, and as the only relevant geometric scale around

is the Hubble rate, dimensional analysis suggests the diffusion to be characterized by

a dimensionless coefficient γ is a dimensionless coefficient as follows

ΓPlanckφ̇
2
0 = γH 5, (6.47)

where the previous is the diffusion term in (6.29) and we assume γ¿ 1 (this assump-

tion will be confirmed by the analysis that follows). Such friction term induces an

additional steady contribution to the divergence of the Higgs energy momentum

tensor component which will be absorbed by the generated inhomogeneities (quanti-

tatively this will be described by suitable continuity equations written below). We will
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see below that, such steady injection of energy into the fluctuations (via the mecha-

nism evoked in this paragraph but made mathematically precise below) produces a

spectrum of scalar perturbations in the Higgs that is adiabatic and approximately scale

invariant. We will also show that—using the Weinberg theorem to analyze the effect

of these at CMB times—the the magnitude of the parameter γ needs to be fixed to

γ≈ 10−16 which is, remarkably, of the same order of magnitude as the dimensionless

number γH ≈ 10−17 charaterizing the breaking of scale invariance by the Higgs, recall

(6.19).

Note that from the semiclassical perspective of quantum field theory on curved space-

times we must also note that there are no ambiguities in the notion of particles for

conformal invariant quantum fields as the FLRW background is conformally flat. As

a result there is no real particle creation for such modes if thought of as test fields

on the cosmological conformally flat background [148] 9. For degrees of freedom

breaking scale invariance the situation is the same as long as we concentrate on scales

well within the Hubble radius. However, the notion of particle (and their number)

becomes ambiguous as soon as we consider modes with super Hubble wave length.

The mechanism of excitation of inhomogeneities discussed above is producing par-

ticles at around the scale where the notion of particles become ambiguous. By this

we are not saying that a complete semiclassical description is at all possible (as any

fundamental explanation of the role of discreteness would need to appeal to quantum

gravity). Nevertheless, we are arguing here that the excitation of inhomogeneities that

we postulate is taking place just exactly at around the scale where the semiclassical

account allows for something peculiar to happen.

The peculiar physical aspect that we are evoking is rooted in the UV structure of our

physical description of matter and geometry. In this respect it is important to recall

the discussion of the renormalization of the energy momentum tensor in quantum

field theory on curved spacetimes, and the fact that UV contributions lead to an

9The natural state for conformally invariant fields in the De Sitter phase is the Bunch-Davies vacuum
(any deviations from it are exponentially diluted during inflation). This state coincides with the
Gibbons-Hawking state that is perceived as a thermal state with temperature Tgh = H0/(2π) by any
freely falling observer [163]. However, such thermal bath should be regarded as the analog of the
Unruh particles in flat spacetime. They are there but have an elusive physical reality as can be clearly
seem by considering the examples of a spacetime that is initially flat, then De Sitter spacetime in
an intermediate region, and finally flat again. If one starts with the Poincare vacuum state then the
state will evolve into something well approximated by the Bunch-Davies vacuum in the intermediate
phase (with Gibbons-Hawking temperature Tgh). However, the state will emerge in the final state
as the poincare vacuum again. No real particles are created by the De Sitter phase. Therefore, such
‘thermal excitations’ due to the presence of the De Sitter horizon in the initial phase of evolution in our
model, cannot be responsible for the real fluctuations that we need to find in the future stage where
the universe has gone out of the De Sitter phase and the horizon has become virtually infinite (like in
Minkowski).
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(anomalous from the pure quantum field theory perspective) violation of energy

momentum conservation (equation (6.12)). We will see that in the case of the Higgs

scalar such anomaly could be interpreted as the source of the term ΓPlanckφ̇0 in (6.29)

(or its possible semiclassical description). We will come back to this in the discussion

section once the implications of the present perspective are spelled out.

Figure 6.2 – Perturbation modes born at the Planck scale are carried to super-Hubble
scales by the exponential inflation of the Universe.

6.3.1 Phenomenological analysis

Let us start from the study of the dynamical equation for the scalar field inhomo-

geneities. In standard treatments these perturbations are quantized and assumed

to be in some (preferred) vacuum state (say the Bunch-Davies vacuum). The inho-

mogeneities that we see today in the CMB are assumed to arise from the quantum

fluctuations which somehow become classical by the time that they leave their imprint

on the visible sky. Although such perspective is largely adopted in the community, it

suffers from several conceptual drawbacks ranging from the transplanckian problem
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to interpretational problems associated with quantum mechanics of a close system

and the measurement problem (see [47] for a discussion of these issues and further

references).

In contrast, inhomogeneities in the model that we propose here arise from an actual

physical interaction that actively produces inhomogeneities on the background Higgs

valueφ0. Even when these fluctuations and the background field configurations are in-

trinsically quantum, we will represent them by semiclassical states whose expectation

values are assumed to be well approximated by classical field equations.

Consequently, we define perturbations of the zero mode δφk with wave number k for

which the following field equation holds

δφ̈k +3H0δφ̇k +
k2

a2
δφk +

d 2V (φ0)

dφ2
δφk = 0. (6.48)

The last term in (6.48) is smaller that the third term when k = aH0 (i.e. at horizon

crossing) and it is in general suppressed by the Higgs self coupling so we will treat its

influence in perturbation theory below. This follows from

d 2V (φ0)

dφ2
= 6λφ2

0 ¿ H 2
0 , (6.49)

which would automatically hold for φ0 ∼ H0 as λ¿ 1 in this large field regime. Given

these assumptions, and according to (6.48), super-Hubble modes (for which k ¿ aH0)

satisfy (to zeroth order in λ)

δφ̈k +3H0δφ̇k ≈ 0 or equivalently
d(a3δ̇φk )

d t
≈ 0, (6.50)

which implies

δφk (τ) = qk
e−3H0τ

3H0
+δφk or equivalently δφk (τ) = δφk +O(a−3) δφ̇k =O(a−3),

(6.51)

for some qk . Super-horizon modes freeze out and their time derivative δφ̇k decays

exponential in co-moving time or as a−3 in terms of the scale factor 10.

10If we keep the contribution of the potential in equation (6.48) then one gets instead that

δφ̇k (∞)

δφk (∞)
=−3

2

(
1−

√
1− 8

3
λ

)
≈−2λ. (6.52)

The fact that λ is negative (Higgs instability) introduces a growing mode that goes like ≈ exp(−4λH0τ).
However, for λ≈−10−2 this growth is sufficiently slow to grant the validity of perturbation theory until
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Energy fluctuations and the power spectrum

The effect of the Planckian granularity will be modelled by a Brownian diffusion

process that injects energy in the Higgs scalar by leaving an imprint of the fundamental

scale as inhomogeneities in the background value. More precisely, we consider a

stochastic process generating density fluctuations by excitation of the Higgs scalar

modes at the Planck scale which is assumed to coincide with the curvature scale

H0 ≈ MPl. As in the description of the Brownian motion, the process stochasticity is

an assumption that allows for a statistical effective description of the effect of a large

number of underlying independent microscopic degrees of freedom whose individual

dynamics can be understood only in terms of a (more fundamental) quantum gravity

analysis.

The caracterization of the stochastic process requires the analysis of the energy cost

of generating the inhomogeneities in the Higgs. For that purpose let us first write

the Higgs scalar as φ(x) =φ0 +δφ(x) so that the first order perturbation of the energy

density (up to second order) is

δρ ≡ δT00((xµ)) = 1

2
δφ̇2 + 1

2a2
δ~∇φ2 +δV (φ) (6.53)

≈ φ̇0δφ̇(xµ)+ dV (φ0)

dφ
δφ(xµ)+ 1

2
δφ̇(xµ)2 + 1

2a2
(~∇δφ(xµ))2 + 1

2

d 2V (φ0)

dφ2
δφ(xµ)2.

At this point, it is important to point out two important features of the previous

expression. First the perturbation of the energy momentum tensor in equation (6.53)

is obtained by assuming that the Higgs is a test field (i.e. metric perturbations are

excluded here). Second, we have expanded up to second order in perturbation while

in the usual cosmological perturbation theory one only needs to go up to first order.

We will see below that in all dynamical considerations involving gravity we will restrict

to linear perturbations. Very importantly, during the De Sitter phase, scalar metric

perturbations turn out to be trivial (see equation (6.80) below) which implies that

(at least during that period) the test field energy momentum tensor and the full

linearized energy momentum tensor actually coincide. This is not the case for the

second order perturbations. However, the later will only be used as an interpretational

devise that offers the means to talk about energy flows involved in the creation of the

perturbations by the stochastic process that describes the interaction between the

discreteness scale and the Higgs scale 11.

the end of inflation H0τ≈ 60.
11This is analogous to the discussion of energy flow in Hawking black hole radiation where back

reaction is neglected and the field degrees of freedom are considered those of a test field. However,
reliable physical information is captured by such notion allowing for the clear understanding of the
physical consequence of particle creation ranging form negative energy flows across the horizon, to the
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We now assume that δφ(xµ) is a stochastic variable with a probability distribution

such that the associated linear momentum vanishes, namely

〈δφ(xµ)〉 = 0, (6.54)

where from now on 〈 〉 denote ensemble averages. It follows that

〈δT00(xµ)〉 ≈ 1

2
〈δφ̇(xµ)2〉+ 1

2a2
〈(~∇δφ(xµ))2〉+ 1

2

d 2V (φ0)

dφ2
〈δφ(xµ)2〉 , (6.55)

where the approximate sign comes from the fact that we have truncated the expansion

of V (φ) to second order in δφ(xµ). The previous equation implies that the (ensemble)

average energy contribution to the field perturbations in the stochastic process is

controlled by the second order terms in the expansion (to leading order). We can

relate the second moments of the probability distribution to the Power spectrum of

perturbations if we decompose the field in Fourier components

δφ(t ,~x) = 1

(2π)
3
2

∫
dk3δφ~k (t )exp(i~k ·~x) (6.56)

with reality conditions

δφ~k = δφ−~k . (6.57)

The standard definition of the 2-point correlation function (see for instance [136, 164])

is defined by

ξφ(~r ) ≡ 〈δφ(~x)δφ(~x +~r )〉
= 1

(2π)3

∫
dk3d q3 〈δφ~kδφ~q〉exp(i (~k +~q) ·~x) (6.58)

where the second line has been expressed in terms of Fourier modes. Due to the

background symmetries the stochastic process creating the perturbations the 2-point

correlation function must be homogeneous (independent of~x) and isotropic. In terms

of Fourier modes this implies that

〈δφ~kδφ~q〉 = Pδφ(k)δ(3)(~k +~q), (6.59)

where Pδφ(k) is the power spectrum of the perturbations δφ. The previous equation

implies the key relationship between the power spectrum and the expectation value

of the square of the perturbation at the same point δφ(~x), namely

violations of the classical area law, and the energy loss via evaporation at infinity.
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〈δφ(~x)δφ(~x)〉 = 1

(2π)3

∫
dk3Pδφ(k). (6.60)

This relation allows, as we shall show below, to express the ensemble average of the

energy momentum tensor of the perturbations in terms of their power spectra.

Energy momentum conservation (continuity equations)

In this section we study the equation of state of the Higgs perturbations when averaged

in the ensemble representing the probability distribution of the stochastic process,

whose general properties were introduced in the previous section. This equation of

state will play a role in the continuity equations for the perturbations which will allow

us to interpret the energetics of the generation of inhomogeneities. Repeating the

exercise that led to (6.55), but now for the full energy momentum tensor, we obtain

〈Tab〉 = −ΛM 2
Pl

8π
gab +〈∇a(φ0 +δφ)∇b(φ0 +δφ)− 1

2
gab

(∇c (φ0 +δφ)∇c (φ0 +δφ)+2V ((φ0 +δφ))
)〉

= T (0)
ab +〈∇aδφ∇bδφ〉−

1

2
gab

(
〈∇αδφ∇αδφ〉+ d 2V (φ0)

dφ2
〈δφ2〉

)
︸ ︷︷ ︸

〈δTab〉

, (6.61)

where we have expanded to second order in the perturbation and the first order terms

are gone due to (6.54). The second order terms are (as the zeroth order ones) of the

perfect fluid form due to the (assumed) isotropy of the stochastic process generating

the perturbations. Therefore, we have 〈Tab〉 = ρhuaub +Phhab with

ρh = φ̇2
0

2
+V (φ0)+〈δρ(2)〉 ,

Ph = φ̇2
0

2
−V (φ0)+〈δP (2)〉 , (6.62)

where Ph and ρh denote the pressure and density contributions of the Higgs scalar,

and the supra index (2) expresses the fact that these come from quadratic terms in the

field perturbations. In order to get the explicit form of 〈δρ(2)〉 and 〈δP (2)〉 we observe

that

〈∇aδφ∇bδφ〉 = 〈δφ̇2〉uaub +
1

3a2
〈~∇δφ ·~∇δφ〉hab (6.63)

from which we get
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〈δTab〉 = 〈∇aδφ∇bδφ〉−
1

2
gab

(
〈∇αδφ∇αδφ〉+ d 2V (φ0)

dφ2
〈δφ2〉

)
(6.64)

=
〈δφ̇2〉+ 1

a2 〈(~∇δφ)2〉+ d 2V (φ0)
dφ2 〈δφ2〉

2
uaub +

〈δφ̇2〉− 1
3a2 〈(~∇δφ)2〉− d 2V (φ0)

dφ2 〈δφ2〉
2

hab

thus

〈δρ(2)〉 =
〈δφ̇2〉+ 1

a2 〈(~∇δφ)2〉+ d 2V (φ0)
dφ2 〈δφ2〉

2
≈ 1

2a2
〈(~∇δφ)2〉+ 1

2

d 2V (φ0)

dφ2
〈δφ2〉(6.65)

〈δP (2)〉 =
〈δφ̇2〉− 1

3a2 〈(~∇δφ)2〉− d 2V (φ0)
dφ2 〈δφ2〉

2
≈− 1

6a2
〈(~∇δφ)2〉− 1

2

d 2V (φ0)

dφ2
〈δφ2〉 ,

where we neglected the δφ̇, as justified by (6.51) in the k ¿ aH0 regime (which is

the regime where all these equations will be used). With the previous equations at

hand we can write the continuity equation that describes the amount of work that is

necessary for the stochastic interaction with the granular structure to generate the

perturbations. Denoting this work W pert we get

dW pert.

d a
≡ 1

ȧ

(〈δρ̇(2)〉+3H0
(〈δρ(2)〉+〈δP (2)〉))

= d 〈δρ(2)〉
d a

+ 3

a

(〈δρ(2)〉+〈δP (2)〉) , (6.66)

where in the second line we are using the scale factor a as time parameter. Replacing

(6.65) and (6.66) the previous equation becomes

dW pert.

d a
≡ d 〈δρ(2)〉

d a
+ 2

a
〈δρ(2)〉− 1

a

d 2V (φ0)

dφ2
〈δφ2〉 . (6.67)

The assumption is that in its rolling the zero mode φ0 interacts with the granularity

scale and diffuses energy to the modes with (physical) wave number k/a via the

discrete scale which initially (during the De Sitter phase) is close to the Planck scale

H0 ≈ MPl. More precisely we assume that this work is extracted from the zero mode

φ0 while evolving in the Higgs potential in a stochastically Ohmian way so that its

dynamical equation (6.29) gets a friction termΓPlanckφ̇0
12. For convenience we rewrite

(6.29) here

12As a simple particular situation illustrating of a rational behind this modification consider a Klein-
Gordon scalar field as an example. The field equation ∇a∇aφ−m2φ2 = 0 is explicitly given by

1√|g |∂µ
(√|g |gµν∂νφ

)
−m2φ2 = 0. (6.68)
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φ̈0 +3H0φ̇0 + dV (φ0)

dφ
+ΓPlanckφ̇0 = 0. (6.71)

Using the definition (6.67), and including the radiation generated by the decaying

of the cosmological constant and the Higgs decay in other particles of the standard

model, the continuity equation (6.1) becomes

d
(
ρΛ+ρrad +ρh +〈δρ(2)〉)

dτ
+3H0

(
ρΛ+ρrad +ρh +〈δρ(2)〉+PΛ+Prad +Ph +〈δP (2)〉)= 0

Λ̇M 2
Pl

8π
+ (
ρ̇rad +4H0ρrad

)+Ẇ pert. + φ̇0
(
φ̈0 +V ′(φ0)+3H0φ̇0

)= 0

Λ̇M 2
Pl

8π
+ (
ρ̇rad +4H0ρrad

)
︸ ︷︷ ︸

=0

+
=0︷ ︸︸ ︷

Ẇ pert. −γH 5 = 0, (6.72)

where in going from the second to the last line we used the Higgs background equation

(6.29), and we rearranged the terms corresponding to the continuity equation for the

perturbations replacing in addition (6.47). The idea encoded in the previous equation

is that the relaxation of the cosmological constant heats up radiation (which in the

initial De Sitter phase dilutes exponentially and hence has negligible effect on the

background dynamics) while the Brownian stochastic interaction of the Higgs rolling

down the potential produces fluctuations according the balance equation (6.47),

namely

Ẇ pert. −γH 5 = 0. (6.73)

The coefficient of friction γ will be determined later from an Einstein-like detailed

balance condition that links the dissipation encoded in γ with the amplitude of the

observed power spectrum of fluctuations observed the CMB 13. To leading order, such

Thus we see from the previous equation that if the background is fluctuating then the equation will get
a ‘Brownian’ modification as follows

∇a∇aφ−m2φ2 = ξa∇aφ, (6.69)

where ξa is the contribution from the background fluctuations

ξν ≡−∆
(

1√|g |∂µ(
√|g |gµν)

)
(6.70)

in the FLRW context the only non vanishing component of ξa allowed by the symmetry is ξ0 = 3∆H—
that we called ξ0 = ΓPlanck—is the only possible non trivial component from which the analog of
equation (6.71) follows.

13Before calculating the power spectrum generated from the ‘detailed balance’ equation (6.73) we
would like to comment on the fact that first order perturbations do not contribute to the ensemble
average that led to our continuity equation (6.72). What we have used (as first stated in (6.54)) is
that, first order contributions to Tµν—while non-vanishing in a particular realization of the stochastic
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steady injection of energy in the inhomogeneities is at the heart of the scale invariant

nature of power spectrum of density perturbations produced by this means. This is

what we do in the next section.

The power spectrum from diffusion

Equation (6.60) shows that the stochastic ensemble expectation value of the product

of scalar field fluctuations at a single point is directly related to the power spectrum of

the fluctuations. This provides a simple relation between the expectation value of the

energy momentum tensor and the power spectrum of the scalar field perturbations.

For instance, using (6.65), an algebraic manipulation analogous to the one leading to

(6.59) implies

〈δρ(2)〉 ≡ 〈δT00〉 = 1

2π2

∫
dkk2

(
1

2
Pδφ̇+

[
k2

2a2
+ 1

2

d 2V (φ0)

dφ2

]
Pδφ

)
≈ 1

2π2

∫
dkk2

(
k2

2a2
+ 1

2

d 2V (φ0)

dφ2

)
Pδφ (6.75)

where Pδφ̇ is defined via the analog of equation (6.59) but for the fluctuations 〈δφ̇~kδφ̇~q〉,
we assume that the stochastic process is isotropic (so that dk3 → 4πk2dk), and we

neglected Pδφ̇ = O(a−6) due to (6.51). According to our previous discussion, we as-

sume that the perturbations are created at horizon crossing k = aH0 ∼ aMPl, namely

Pδφ(k) = 0 for k > aH0. Thus, including this in the integration boundaries of (6.75) we

obtain

〈δρ(2)〉 ≡ 〈δT00〉 ≈ 1

2π2

∫ aMPl

µ
dkk2

(
k2

2a2
+ 1

2

d 2V (φ0)

dφ2

)
Pδφ(k), (6.76)

where µ is an infrared cut-off that will not have any effect in the equations describ-

ing the regime of interest. Changing time variables from τ to a(τ), equation (6.73)

process (representing the particular state of our universe)—average to zero when considering an
ensemble of realizations (ensemble of universes). But how can that be relevant for our own particular
universe that is one among the members of the ensemble? The answer invokes an analogy with the
ergodic hypothesis: the condition 〈δφ(x)〉 = 0 is to be interpreted on a single realization (via this
ergodicity assumption) as implying that, at a given time, the space average∫

R δφ(~x, t )d x3

VR
= 0, (6.74)

for a sufficiently large region R (here VR is the co-moving volume of the region). In this way, the local
contribution of fluctuations to Tµν is not vanishing in a given realization. Nevertheless, they average to
zero in such the mean field sense. Similar interpretational questions arise for the ensemble average of
the quadratic contributions to Tµν when translated to our (single realization) universe. However, these
are familiar issues common to conventional situations (see for instance [136]).
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becomes

dW pert.

d a
≡ d 〈δρ(2)〉

d a
+ 2

a
〈δρ(2)〉− 1

a

d 2V (φ0)

dφ2
〈δφ2〉 = γ

H 4

a
. (6.77)

To leading order in λ, the previous equation tell us that the amount of energy that we

are extracting from the Higgs zero mode to produce inhomogeneities is done in a way

that is not sensitive to the size of the universe. More precisely dW pert. = W0(d a/a)

with W0 = γH 4 is a self-similar process (invariant under rescaling a →αa) to leading

order in λ (recall (6.33)).

Using equation (6.76) and (6.33) one can substitute the ansatz Pδφ(k) = P0/k3(1+
O(λ)) into (6.77) and check that it produces a solution of the detail balance condition

to leading order in λ. Thus, in the present model the Harrison-Zeldovitch spectrum of

inhomogeneities in the scalar field can be simply related to a self-similar injection of

energy during the quasi-inflationary era H0 ≈ constant without the need to invoke the

uncertainty principle and (most importantly) the pre-existence of vacuum fluctua-

tions as described by the extrapolation of quantum field theory to trans-Planckian

scales. The solution is

Pδφ(k) = P0

k3
(6.78)

with

P0 = 4π2γ
H 3

0

MPl
(1−6λ) ≈ 4π2γ

H 3
0

MPl
, (6.79)

where the next to leading order correction is not relevant when comparing with obser-

vations because it does not depend on k; hence, we drop it for simplicity. However,

we will see in the following section that the λ corrections will affect scale invariance

when one instead analyses the effects of these perturbations in the gravitational field

(which are directly related to the observed fluctuations in the CMB). In fact, the red tilt

of the CMB power spectrum is linked (in this model) to the self-interaction strength of

the Higgs field λ.

The Weinberg theorem and the power spectrum of density fluctuations at the CMB

The following equations concern long wavelength modes k < aH0 (those added up in

(6.76)). Weinberg proved a beautiful and very powerful statement concerning such

modes based on the universality of free-fall. This result is know as Weinberg’s theorem

[129]; the proof of which is revisited and simplified in the Appendix A. One has in

particular that the gravitational potential for these super Hubble modes is given by

(see (A.27))
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Φk =Ψk =Rk

(
−1+ H(τ)

a(τ)

∫ τ

T
a

(
τ′

)
dτ′

)
≈ 0, (6.80)

where Rk are constants, and the right hand side approximation is valid during the

De Sitter phase. This implies that scalar perturbations do not generate scalar metric

perturbations during the inflationary era (they decouple gravitationally to leading

order perturbation theory inλwhere one has an almost exact the De Sitter phase). This

justifies the omission (for presentation simplicity) of the scalar metric perturbations

in the expression of the linear expansion to the energy momentum tensor (6.53). The

form of the scalar density fluctuations including the gravitational potential are given

below in (6.85).

Weinberg’s theorem also implies the existence of adiabatic scalar perturbations as

solutions of linearized gravity, namely

δρ(1)
k

ρ̇0
=− Rk

a(τ)

∫ τ

T
a

(
τ′

)
dτ′ ≈−Rk

H0
, (6.81)

where these are adiabatic in that the previous relation for each species contributing to

the perturbations individually (see (A.29)). The previous two equations correspond to

equations (5.4.4) and (5.4.5) in [129] and will be discussed and recovered in Appendix

A. In the present context they allow us to compute Rk for super-Hubble scales k < aH0

as

Rk =−H0
δρ(1)

k

ρ̇0
(6.82)

We have that (recall (6.62))

ρ0 =
ΛM 2

Pl

8π
+ φ̇2

0

2
+V (φ0)+ρrad, (6.83)

Assuming thatΛ≈ constant during the De Sitter phase, and using the field equations

(6.29) and the equation of state of the radiation component, the time derivative of ρ0

gives

ρ̇0 = φ̇0φ̈0 + dV (φ0)

dφ0
φ̇0 −4H0ρrad

= −φ̇0(3H0φ̇0 + dV (φ0)

dφ
+ΓPlanckφ̇0)+ dV (φ0)

dφ0
φ̇0 −4H0ρrad

≈ −H0
[
3φ̇2

0 +4ρrad
]

≈ − 4

3H0
λ2φ6

0. (6.84)

where in the last line we use that ΓPlanck ¿ H0 (to be confirmed below), and that
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ρrad ¿ λφ4
0 (this requirement can be met if one is in the initial range of of De Sitter

evolution where radiation is exponentially diluted, see Figure 6.1). From the general

expression of the energy-momentum tensor we get (including the metric perturbation

term)

δρ(1)
k = φ̇0δφ̇k (xµ)+V ′(φ0)δφk (xµ)−Ψkφ̇

2
0

= V ′(φ0)

(
−δφ̇(xµ)

3H0
+δφ(xµ)

)
−Ψkφ̇

2
0

≈ 2λφ3
0δφk (xµ), (6.85)

where we neglect the δφ̇k term as it quickly dies off for super-Hubble modes according

to (6.50), and we used that the long wavelength adiabatic scalar metric perturbations

vanish in the De Sitter phase according to (6.80). Replacing (6.85) and (6.84) in (6.82)

we get

Rk = 3H 2
0

2λφ3
0

δφk

= 3

2λε3
φH0

[
1+2λ log

(
k

H0

)]
δφk , (6.86)

where we have used the expression on the right of (6.33) and used that the modes k

are generated at horizon crossing when a = k/H0. Squaring the previous relationship

and computing its ensemble average in our stochastic process one obtains, from the

definition (6.59), an equation linking the power spectrum PR of the Rk and that of

the scalar perturbations. Explicitly, using (6.79), we get

PR = 9

4λ2H 2
0

P0

k3

[
1+4λ log

(
k

k0

)
−4λ log

(
H0

k0

)]
= 9π2γ

k3λ2

[
1+4λ log

(
k

k0

)
−4λ log

(
H0

k0

)]
. (6.87)

If we take H0/k0 = 1 which boils down to normalizing a = 1 at the moment the most

IR mode in the CMB leaves the horizon we arrive at the final expression for the power

spectrum of scalar perturbations (for H0 ≈ MPl) we get

PR ≈ 9π2γ

k3λ2

(
1+4λ log

(
k

k0

))
. (6.88)

Using the customary notation where PR ≡ N 2/k3, comparison with CMB observations

(see for instance [129]) fixes the normalization factor N 2 to
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N 2 ≈ 9π2γ

λ2
≈ 1.9×10−10. (6.89)

Using thatλ≈−10−2 at our energy scale one needs to fix γ≈ 10−16 which is remarkably

close to the estimate γH given in (6.19) based on the natural measure of deviation

from conformal invariance put forward in the introduction expected to control the

Brownian diffusion mechanism. Deviation from scale invariance are encoded in

the spectral index of scalar perturbations ns. They are controlled by the Higgs self

coupling as it follows from (6.88). The result to first order in λ is

ns −1 ≡ d log(k3PR)

d logk
≈ 4λ+O

[
λ2 log

(
kmax

k0

)]
. (6.90)

Observations constraint it to

1−ns = 0.04±0.004, (6.91)

which implies λ≈−10−2 which is compatible with the he standard model expected

value of λ = −(1.3 ± 0.7) × 10−2 at these high field values—see [162]. Notice that

in our framework the spectral index is itself k dependent. Notice that the linear

approximation used remains consistent inspite of the log(kmax/k0) in the error term

as for λ = −10−2 and kmax = 105k0 one has λ2 log(kmax/k0) ≈ 10−3 which is smaller

than the present observational error in 1−ns [165]. In the same paper the deviations

from a constant spectral index are reported to be given by

dns

d logk
=−0.0045±0.0067. (6.92)

One can repeat the previous analysis starting from equation (6.76) and keeping terms

up to order λ2. With this improved approximation it is possible to compute the

previous quantity and the result is

dns

d logk
=−0.0005+O(λ3). (6.93)

The previous is a prediction of our scheme, potentially verifiable in the future if

observational data reduce the error by about 10%.

Tensor modes

So far we focused on the description of a mechanism for the generation of inho-

mogeneities in scalar modes only. The question of whether tensor modes are also
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6.4. Planckian black hole remnants as dark matter

produced is a very important one in view of future constraints on the scalar-to-tensor

ratio r from CMB observations. In our model fundamental discreteness is the un-

derlying mechanism for the active generation of the inhomogeneities. As argued in

the introduction, see also [128, 127] for further discussion, such discreteness should

primarily affect degrees of freedom breaking scale invariance. In the present case,

with the assumption of the validity of the standard model, the breaking of scale in-

variance is mediated by the Higgs scalar mass. Gravitons being massless should not

interact with the Planckian discrete structure according to the dimensional analysis

type of rational behind our model. More precisely, as it is well known, an infinitesimal

conformal transformation δgab = δωgab—here regarded as a field variation—leads

to the trace-part of Einsteins equations (R −8πGT ) = 0. This clearly implies that the

trace part the field equations encode conformal-invariant-breaking interactions that

mediate the stochastic production of inhomogeneities in our model. Thus the Planck-

ian granularity—imposed by the consistency with the low energy Lorentz invariance

[156, 127]—cannot generate tensor modes whose sources are encoded in the tensor

traceless components of the energy momentum tensor. Therefore, the expected value

of the tensor-to-scalar ratio predicted by our model is basically r ≈ 0.

6.4 Planckian black hole remnants as dark matter

The fundamental nature of dark matter remains and open question. Here we would

like to stress that, if the reheating temperature at the end of inflation gets close to

the Planck temperature, a model of dark matter where it is made of quantum gravity

Planck mass particles (as described from our low energy perspective) that only interact

gravitationally is very natural.

Little is known about the fundamental theory of quantum gravity besides the fact

that it has to reproduce general relativity with massless gravitons a low energies. As

emphasized in the introduction several approaches to quantum gravity propose that

the smooth geometry of general relativity would be emergent from an underlying

fundamental discrete structure at the Planck scale. In these approaches the funda-

mental energy scale MPl plays a central role. A point we would like to stress here is

that, in addition to motivating the mechanism for generation of structure studied in

this paper, such perspective naturally leads to the possibility that defect-like objects

in the discrete fabric spacetime could survive the continuum limit. If so it seems likely

that these would behave like particles with a mass with the natural mass scale MPl and

would interact only gravitationally. Such defects could be thermally excited if Planck-

ian temperatures were achieved during reheating. It is unclear how to picture such

particles from our low energy perspective, for the lack of a better name we could think
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of them as Planckian stable primordial black holes. Unstability of tiny black holes

due to Hawking radiation is often evoked to rule out such dark matter candidates.

However, lacking a full quantum gravity theory, it is clear that little is certain about the

properties of black holes (or such Planckian defects) of that scale. It is even unclear

in what sense such objects qualify as black holes when the very notion of geometry

is expected no to be available so close to the fundamental scale. The only thing that

is certain in fact is that absolutely all the assumptions behind Hawkings calculation

simply fail: thus the simple invocation of Hawking radiation is not a serious argument

to rule out their hypothetical role in cosmology.

The possibility that dark matter is made of primordial Planckian black hole remnants

(or more humbly, Planck mass purely gravitationally interacting particles) has been

evoked in the literature before [166, 167, 168, 169]. Here we show that the dark matter

energy density required by observations can indeed emerge naturally in a Planck scale

reheating scenario as the one produced by our model. Such type of dark matter will

basically behave like a dust fluid interacting with the rest of matter gravitationally only.

It would be extremely hard to detect via other manifestations. Their presence would

remain hard to notice locally as the Planckian size of these particles will make their

gravitational cross section in interactions with usual matter extremely small (however,

this form of dark matter might be directly detectable via its gravitational interaction

[170]).

At the end of the inflationary era reheating raises the temperature to close to the

the Planck temperature and Planck mass remnants could be created via thermal

fluctuations if thermal equilibrium density is achieved. In order for this to happen one

needs the remnant interaction rate Γpbh > H , where the interaction rate is given by

Γ= nσv with n the number density, σ the interaction cross section, and v the velocity.

For remnants of mass mpbh the interaction cross section σpbh ≈ m2
pbh/M 4

Pl whith their

density n ≈ T 3 while in thermal equilibrium. Using that in the radiation dominated

era H ≈ (T /MPl)T , we conclude that remnants decouple from thermal equilibrium

when

T .
m2

p

m2
pbh

MPl ≡ TD. (6.94)

If thermal equilibrium can hold up to TD. Tend then the thermal remnant abundance

of dark matter today can be estimated to be about (see equation 4.38 in [136])

ρthermal
pbh (TD)

M 4
Pl

≈
(

mpbh

MPl

)4 (
Ttoday

TD

)3 (
TD

mpbh

) 3
2

e
−mpbh

TD . (6.95)
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One can easily check that it is possible to obtain a remnant density compatible with

dark energy density today—which would correspond to evaluating the previous line

to about 10−120—with a mpbh slightly larger than but of the order of MPl. This shows

that the framework provided by our model could also fit dark energy genesis from

the production of stable PBHs via thermal fluctuations at the end of the De Sitter

phase without extreme fine tuning where the necessary suppression is brought by the

standard Gibbs factor.

6.5 What is the difference with the standard paradigm

where inhomogeneities arise from vacuum fluctua-

tions?

Here we discuss in more detail the difference of our model with the more standard (by

now textbook) account where the vacuum fluctuations in the quantum state of the

inflaton are the source of inhomogeneities. After all even when there is no inflaton

field driving inflation, our model still has a scalar field degree of freedom which if

set (asymptotically in the far past) in the Bunch-Davies vacuum would have vacuum

fluctuations analogous to that of the inflaton (indeed this is the idea in models of

Higgs inflation).

Some of the conceptual difficulties in interpreting such a paradigm has been discussed

in [129]. Here we will simply state that, in the absence of a theory of quantum gravity,

the naturally available tool is that of semiclassical gravity where one replaces Eintein’s

equations by

Rab −
1

2
Rgab = 8πG 〈ψ|Tab |ψ〉 (6.96)

for some quantum state |ψ〉 of the matter living on a classical geometry. One sees

immediately that this approach would immediately lead (in the standard account)

to no gravitational effects of vacuum fluctuations. More precisely, as cosmological

perturbation theory is based on linearized gravity around the FLRW background

〈ψ|δTab |ψ〉 = 0. For that reason one is not simply doing semiclassical gravity in the

standard account. There is a region of conceptual shadow around this point for which

people tend to develop their own views which (not surprisingly) are intimately related

to the interpretation of quantum theory in the particularly thorny context of the

universe as a whole.

The first key difference introduced by our model is that in our case fluctuations

are generated in the state of the Higgs itself via the interaction of the (assumed)

Planckian granularity and the scalar degrees of freedom. In our case the fluctuations
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are present in the semiclassical state of the Higgs |ψ〉 in the sense that 〈ψ|δφab |ψ〉 6= 0

and consequently

〈ψ|δTab |ψ〉 6= 0. (6.97)

Thus, our model admits a semiclassical account corresponding to the linearized ver-

sion of (6.96). The state of the Higgs (via its interactions with the Planckian granularity)

breaks the FLRW symmetry in contrast with the Bunch-Davies vacuum. In our case,

inhomogeneities are inherent of the Planckian substratum and simply transmitted to

the scalar degree of freedom during inflation.

One can ignore the previous point and compare the predictions of the two models

for the power spectrum of scalar perturbations: by following our proposal, or by,

instead, assuming that the Higgs is assymototically in the far past in the Bunch-Davies

vacuum. In the second case (the standard approach) the result for the amplitude

of the power spectrum (here we follow Chapter 10.3 in [129] which agrees with the

standard treatment, for instance see [164])

N 2
vac =

1

4π2|ε|
H 2

0

M 2
Pl

≈ 9

64π3

1

λ2
(6.98)

and the spectral index

1−nS = 2δ+4ε≈ 8

3
λ+O(λ2) (6.99)

where we have used the standard definitions of the slow roll parameters (evaluated in

our model)

ε=− Ḣ

H 2
≈ 16π

9
λ2 and δ= Ḧ

2H Ḣ
≈ 4

3
λ. (6.100)

One easily sees that the previous results are incompatible with observations in the

CMB. This puts clearly the important difference between the two different initial states

for the scalar field.

In our model the perturbations of the Higgs are born at horizon crossing and hence

the state differs from the Bunch-Davies vacuum state: the ‘order parameter’ revealing

this difference is the expectation value 〈ψ|δφab |ψ〉 which vanishes in the Bunch-

Davies vacuum but not in the present case. In the standard formulation the state

of the inflaton perturbations is assumed to be given by the Bunch-Davies vacuum

which is defined asymptotically in the far past introducing in this fashion the so-

called trans-Planckian problem where initial conditions for the modes are given when

their wavelength is well below the Planck scale. In our case the properties of the

semiclassical state are defined at horizon crossing as discussed in Section 6.3. Our

state would become singular in the asymptotic past if freely evolved backwards due to

the De Sitter expansion. This thought exercise shows clearly the sharp difference with
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the standard Bunch-Davies state (a Hadamard state).

6.6 Some open questions

In this section we mention and discuss a few points that deserve further attention.

We rise several questions here and propose possible tentative solutions. These open

issues represent possible lines for future improvement of the ideas in this paper that

we hope could be developed in the future.

On the decay of the cosmological constant after the EW transition

Among the few free dimensionless parameters entering our model there is β which

needs to be extremely small (< 10−80) to produce a sufficiently long period of inflation.

Such important fine tuning is not, by itself, necessarily problematic in an effective

description of a phenomenon that is emergent from the collective behaviour of tiny

microscopic building blocks whose precise physics is not taken into account. Lack-

ing such a fundamental description one can find tentative guidance in dimensional

analysis. For instance one could first simply rewrite (and this is only a reparametriza-

tion) the relaxation process in terms of the rescaled time variable tp —introduced in

(6.16)—by setting the length scale `U À `Pl.

Notice that this is quite reasonable as, in addition to Planck scale, there is another

natural scale in the application of the cosmological principle to the region of interest

of the universe which is precisely an IR scale `U representing the extent of the ‘patch’

of the universe that is well approximated by the ansatz geometry (6.15) with homo-

geneous and isotropic background fields living on it. In terms of a time variable tp

defined by (6.16) with that IR scale, the relaxation is controlled by the ‘bare’ value β0

given by

β=β0

(
`Pl

`U

)3

. (6.101)

Such reparametrization does not resolve the fine tuning problem and only shifts the

issue of the smallness of β into that of the largeness of `U. However, it offers a new

perspective pointing at the possibility of a physical mechanism where the size of the

FLRW patch `U would stabilize the cosmological constant in essence by reducing

diffusion. Such perspective suggests long range quantum coherence mechanism (like

for the collective behaviour in a Bose-Einstein condensates in relation to superfluidity)

and offers a prospect for future analysis.

If such would be the role of `U this would also help resolving another question that nec-
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essarily arises when considering the instability of the cosmological constant present

in the late universe. That is: why is it that the present cosmological constant has not

decayed yet by a similar relaxation? One key feature of our model is that it answers the

question of why is the cosmological constant can start at about its natural value and be

basically zero quickly after the end of inflation. The remaining issue is how can it grow

back to the value that is compatible with present observations. In [128, 127] a model

was proposed (motivated by the same theoretical ideas as in this work) where the

cosmological constant of the correct order of magnitude is generated due to diffusion

during the electroweak transition. If the two proposals are to be consistent with each

other then one would need a mechanism granting that the relaxation of the newly

generated cosmological constant does not completely decay away by the present time.

We notice that the phenomenological proposal (6.101), characterizing the long scale

coherence, would reconcile the two from the fact that the new IR (stabilizing) scale

`ew
U = aew`U has expanded by the time of the electroweak transition for sufficiently

large `U. This follows from the fact that the change in unimodular time ∆t from the

EW transition to today goes like ∆t ≈ H−1
todaya3

tod ay (recall a0 = 1 at the Planck initial

time). A cosmological constant created at the electroweak time will last until today if

β0

(
`Pl

`U

)3 (
atoday

aew

)3 MPl

Htoday
< 1, (6.102)

i.e., we would be in a new inflationary regime for the new relaxing Λ. Taking β0 ≈ 1,

the previous condition would require the initial coherence IR distance to be `U ≥
1035`Pl = 1m. This appears as a huge initial region for our original bubble inflating

to the present universe; at the same time we know and it has been often emphasised

on various grounds that our universe requires extremely special initial conditions to

accommodate its most basic features [137].

Even when the previous scenario is simple and thus appealing to us, their could be

other reasons for the relaxation process to change after the electroweak scale, rooted

in some unknown quantum gravity mechanism that is no longer operational at such

low energies. Such physics could be related to the role of the Higgs scalar in the whole

picture. We notice that when the cosmological constant has relaxed to zero during

the inflationary epoch, the Higgs scalar will settle to its V (φ) = 0 configuration which

certainly changes the coupling of this field with four volume in the effective action.

Other possibilities seem available in order to explain a possible ‘phase transition’ that

would make the relaxation stop after the electroweak scale. This is an important open

question in our proposal where, we hope, future investigations can shed light.
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The instability of the Higgs potential and quantum gravity

In the present model the universe starts in a special state where the cosmological

constant is of the order M 2
Pl and the Higgs field is around the Hubble rate which itself

is of the order of MPl. At such high values of φ0 the quartic coupling λ is negative

and—as we have seen in Section 6.3.1—this is exactly what is needed to explain the

red tilt of the power spectrum of scalar perturbations. However, this also implies that

the Higgs field find itself exactly in the instability region and is rolling towards higher

values on the way to the Planck scale and beyond.

Note that the run-away behaviour is very slow during the inflationary phase as the

Hubble friction is very important due to the effect of a large cosmological constant

(recall equation (6.34)). When inflation ends the Hubble rate starts decaying and the

instability becomes an issue. However, such conclusion only applies if one assumes

that the standard model holds true beyond the Planck scale which is of course unrea-

sonable. Deviations from the standard model should eventually become important as

the Higgs field approaches MPl, and—even when it is hard to know what exactly that

new physics would be in such regime (notice that even the standard QFT formulation

on a curved background is expected to fail there)—it seems reasonable to accept that

whatever that new physics is it would prevent the Higgs to roll to arbitrary high values.

There are various models in the literature that try to render such conclusion more

concrete (all sharing the limitation of the necessary reliable inputs from a quantum

gravity theory). For instance, a non minimal coupling of the Higgs with the geometry—

which are necessary in models of Higgs inflation (see [171] for a review)—is shown to

help stabilizing the Higgs up to about the Planck scale [172]. Other models predict

stability at around the Planck scale [173] by making assumptions on possible new

physics. As an example, a repulsive barrier at the Planck scale can arrise via φ6 and φ8

corrections of the Higgs potential motivated by grand-unified scenarios at MPl [174].

Such repulsive barrier at the Planck scale would only stop the Higgs scalar from rolling

to arbitrary high transplankian scales. However, this by itself would not explain how

the Higgs would eventually exit from that Planckian state and evolve towards the

electro-weak minimum that produces the phenomenology of the standard model in

accordance with the world we see around us. This problem resonates in some respects

with the ‘gracefull exit’ problem in models of Higgs inflation [159, 50]. Yet it is also

different as, on the one hand, in our model inflation is not driven by the Higgs, and,

on the other hand, the diffusion of energy from the decaying cosmological constant

raises the temperature of radiation back to close to the Planck temperature at the end

of the inflationary era (recall Figure 6.1 and the discussion in Section 6.2.2, equation

(6.39)). When temperature reaches Planckian values, at the onset of the radiation
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domination (recall Figure 6.1), the Higgs can thermalize and thermal fluctuations

could populate the EW region of the Higgs phase space away from the instability scale.

As the temperature drops with the expansion the probability that the Higgs ends in

the EW stability region and produces a universe like ours should be non vanishing

(such possibility is explored in related scenarios in [172, 175]).

On the validity of the semiclassical analysis

The mechanism of generation of structure in our model is based on the interaction

of the Planckian granularity of quantum gravity with the low energy degrees of free-

dom encoded in the Higgs scalar field of the standard model. The analysis has been

performed using the classical field equations for the scalar field evolving in a clas-

sical background. This is what one can do at the moment given the limitations of

present quantum gravity theories to provide reliable calculation tools in such an ex-

treme regime. The validity of semiclassical methods is an assumption of our analysis.

Nevertheless, one must keep in mind that this limitation is common and possibly

more severe in standard approaches where strong assumptions about trans–Planckian

physics are customarily made. Note that in contrast there is no trans Planckian issue

here. In our model, perturbations are born at the length scale H−1
0 which can (as the

estimates show, recall Section 6.4, and also the discussion of Section 6.5) be a few

orders of magnitude longer that the Planck length `Pl, and within the regime where

the semiclassical treatment could already be a reliable approximation. No assumption

about the nature at shorter scale is necessary.

On a similar ground there is another issue that tis common to various approaches

and it is also shared by ours. This issue is sourced in the use of stochastic methods in

conjunction with Einsteins equations and the difference between stochastic averages

(satisfying some form of continuity equation compatible with the Bianchi identities

or with the integrability conditions of unimodular gravity in our case) and the fact

that individual realisations are not subjected in any clear fashion to such constraints.

This implies that a single element of our stochastic ensemble does not follow the field

equations of general relativity. This problem is often overlooked but it is present even

in the standard paradigm of structure formation in inflation where quantum vacuum

fluctuations are interpreted as classical stochastic fluctuations of an ensemble of

realisations. In our model the behaviour of the individual realisation that represents

our universe follows a dynamics with should be describable via a more fundamental

theory. Our mean field description is only effective and the possible conflict with the

structure of Einstein’s equations at the level of an individual element of the ensemble

is to be resolved by quantum gravity.
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On the possibility of a remnant spacial curvatureΩk 6= 0

One of the predictions of standard inflationary cosmology is that spacial curvature

Ωk ¿ 1. There are however some indications suggesting that observational data

could favour Ωtoday
k ≈O(10−2). If this would be confirmed then it would constraint

the duration of the inflationary period. Such constraints also apply to the present

model and could in principle invalidate it due to the possible tension with the (here

proposed) new mechanism of generation of inhomogeneities. The reason is that later

imposes a minimum number of inflationary e-folds as discussed in Section 6.2.4.

Such minimum number could be at odds with a possible remnant spacial curvature

today. More precisely, in accordance with the naturalness of the initial value of the

cosmological constant at around M 2
Pl we could set the initial spacial curvature K = m2

p .

Which gives an natural initial spacial curvature

Ω0
k ≈ 1. (6.103)

The evolution ofΩk as a function of the scale factor is

Ωk = K

H 2a2
. (6.104)

The previous equation implies (ignoring the late recentΛ domination) that, ifΩtoday
k ≈

O(10−2), the spacial curvature at the time of the CMB isΩcmb
k ≈O(10−5). Using that

the reheating temperature in our model is about Tend ≈ MPl we get that the spacial

curvature at the end of inflation is

Ωend
k ≈Ωcmb

k

(
Tcmb

Tend

)2

≈ 10−59. (6.105)

From the initial condition (6.103) during the inflationary phaseΩk ≈ a−2 so it would

reach the previous value at the end of inflation if

N = 1

2
log(1059) ≈ 68. (6.106)

The previous value is compatible with the minimum value calculated in (6.46); how-

ever, it could run into conflict with (6.102) which would imply the universe to be

basically spatially flat today. For standard inflationary models reheating involves

diffusion from an oscillating inflaton which constraints the reheating temperature

to Tend ≈ 1010GeV [158, 136]. The number of e-folds necessary forΩtoday
k ≈O(10−2) is

then given by just N ≈ 47.
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Chapter 6. Inflation from the relaxation of the cosmological constant

6.7 Discussion

We have proposed a model where the cosmological constant Λ0 starts off with its

natural Planckian value and later relaxes via diffusion into the matter degrees of

freedom while driving an inflationary era. We assumed that the cosmological constant

decays exponentially in unimodular time which leads to the necessary number of e-

folds if the parameterβ is sufficiently small. However, all the observational predictions

of the model are independent of the precise value of β as long as it is sufficiently small.

The validity of our analysis requires only that the cosmological constant remains

Planckian for a minimum number of e-folds (Section 6.2.4). The standard model of

particles physics is assumed to be valid all the way to close to the Planck scale and

the Higgs scalar also assumed to start with a large semiclassical value φ0 close to the

Planck scale. The initial conditions of the other matter components do not affect

the dynamics in any important manner as long as the radiation density is not ultra-

Planckian (as in standard inflation [158], the cosmological constant dominates and

the expansion dilutes away any memory of these initial conditions). The relaxation

mechanism is associated with the hypothesis of discreteness of quantum gravity at

the Planck scale. This suggest a natural time variable proportional to the number of

Planckian four volume elements created by the dynamical evolution and in terms of

which the relaxation is exponential. We argue that the same underlying discreteness

at about the Hubble scale H0 should stimulate the generation of inhomogeneities in

the Higgs amplitude at that very scale, and show that a stochastic model where the

steady injection of energy at the Hubble scale produces (to leading order in the Higgs

self coupling λ) a scale invariant spectrum of density perturbations with an amplitude

that is compatible in order of magnitude with CMB observations.

More precisely, once the initial values of the Higgs background and the cosmological

constant are fixed to the natural scale MPl the model is controlled by two parameters:

the parameter βwhich defines the decay rate of the cosmological constant in unimod-

ular time, and the parameter γ parametrizing the Ohmian friction term—stemming

from the interaction with discreteness exciting inhomogeneities—in the field equa-

tions for the zero model of the Higgs. As mentioned above, the parameter β needs

only to be sufficiently small in order to achieve a sufficient number of e-folds that

makes the model compatible with observations (fixing β amount to fixing the number

of e-folds of inflation). The parameter γ is a dimesionless coupling representing noisy

interaction of the Higgs with the granular structure at the Planck scale which in turn is

expected to be possible thanks to the breaking of scale invariance of the Higgs scalar.

The natural order parameter for such breaking is γH ≡ mH/MPl. It is a remarkable fact

that agreement with the observation of the perturbations at the CMB necessitates a

γ≈ 10−16 which coincides (in order of magnitude) with γH.
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6.7. Discussion

Deviations from scale invariance are brought by the evolution of the Higgs on the

Higgs potential and depend on λ. Remarkably, standard model physics (encoded inΛ)

produces a red tilt of the spectrum that is in agreement with the data extracted from

the CMB observations: the spectral nS coincided with observations for λ ≈ −10−2

which is compatible with the expected value of λ at high energies in the standard

model. Moreover, the model predicts a variation of the spectral index with scale that

is inside the limits obtained from the analysis of latest data [165]. This correspond to

a proper prediction of our analysis which could be tested in the future if observational

errors are reduced by an order of magnitude.

Given the above mentioned initial conditions, Planckian temperature reheating is

a robust (β-independent) prediction of our model. We observe that such feature

could naturally account for the present abundance of dark matter via the thermal

production of Planck mass defects if such stable particles are part of the spectrum

of quantum gravity. As in the case of the so-called WIMP miracle, we notice that

the decoupling temperature and mass of such hypothetical purely gravitationally

interacting particles (natural objects from the perspective of quantum gravity) fall in

the right range to represent a possible dark matter candidate.

We are aware of the strong assumptions in our model which stretches well established

physics into the uncertain and unknown territory of quantum gravity. The speculative

nature of such an enterprise is certainly very risky. Our model links naturally some of

the key cosmological observations with aspects of that new physics of quantum gravity

that we strive to better understand. This by itself seems to justify our adventures. We

hope that these initial ideas could lead to helpful insights in the future.
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Part IVConclusions and Outlook
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In this thesis, we studied possible implications of the discrete nature of spacetime at

the Planck scale. Starting from the hypothesis that spacetime is granular at the Planck

scale we studied the implications in the context of black hole physics and cosmology

while remaining agnostic about the precise version of the quantum theory.

Discreteness at the Planck scale is a common feature of different incarnations of

quantum gravity and our approach, while inspired by Loop Quantum Gravity, does

not assume a particular theory of quantum gravity. Since currently we do not have a

complete theory of quantum gravity, the study of phenomenological models based on

general features of the theory’s expected behaviour deep in the quantum gravitational

regime, provides a guide in the search of a more fundamental theory.

In the first part of this thesis we show that, by taking into account the expected

discrete nature of spacetime at the Planck scale, the black hole’s information loss

paradox has a natural resolution. The account of the black hole formation, subsequent

evaporation, and the apparent information loss in [26, 27] and Section 3 can be

thought in the same lines as the burning of a piece of paper: the system is initially in

a highly special state adapted to the devices of coarse-grained observers insensitive

to microscopic degrees of freedom: molecular degrees of freedom in the case of the

burning paper and Planckian-quantum gravitational degrees of freedom in the black

hole case. The initially special state is driven into a high-entropy final state by physical

processes that open up new regions of phase space for the system to explore. The

physical process is the contact of the paper with a flame or, in the black hole case, the

unavoidable curvature singularity that forms due to gravitational collapse makes the

interaction with Planckian degrees of freedom available.. If we assume that a more

fundamental theory will be singularity-free, the high-curvature region around the

would-be-singularity ignites correlations between low-energy and Planckian degrees

of freedom. For a coarse-grained observer with limited resolution, entropy grows in

both cases.

This idea is made concrete in Section 4. In this Section we propose a fully quantum-

gravitational model where these ideas are realized. Precisely, in the context of Loop

quantum gravity, we identify the UV degrees of freedom, related to the so-called ε-

sectors. We then show that, for low-energy observed (observers that, as in the Wheeler-

de Witt quantum cosmology, givenΛ, only distinguish between an expanding and a

contracting universe) the universe evolves from a low-entropy state to a high-entropy

state. Moreover, the entropy grows dramatically when the system goes through the

bounce because correlations are establish during the high-curvature phase. More

precisely, the presence of a matter degree of freedom breaks traslational invariance

and different ε-sectors evolve differently establishing correlations between them.
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Furthermore, the correlations are developped at no energy cost (decoherence without

dissipation [83]), thus solving the usual problems associated with energy conservation

in the late stages of the purification process.

The model is realized in a homogeneous isotropic Loop Quantum Cosmology instead

in a Polymer Black Hole model for several reasons: the key ingredients for the entropy

grow mechanism are present in both models. The interior of black holes are described

via a homogeneous, non-isotropic cosmological model, the Kantowski-Sachs space-

time. While the polymerization of the non-isotropic model is technically identical

to the isotropic’s one, the presence of an extra degree of freedom results in technical

difficulties that are still being explored. By working in isotropic and homogeneous

LQC we avoid technical and conceptual difficulties present in all polymer black hole

models. The realization of these ideas in a black hole polymer model will be reported

elsewhere[28].

The broad scenario leading to this model [15] (detailed in Chapter 4 and Chapter 3 of

Part II) can be realized in different approaches of Quantum Gravity and this imple-

mentation is important and interesting for several reason: the precise identification of

the purifying degrees of freedom in each approach (the equivalent of the ε-sectors in

te polymer models of Part II) and the precise nature of the coarse-grained observers

together with their physical interpretation not only shed light on the evaporation

process itself but also on the physical interpretation of the Quantum Theory itself (as

we saw in the Loop Quantum Cosmology case, the coarse-grain defined in Section

4.6 leads to the mesoscopic Wheeler-de Witt description when observers insensitive

to the ε-sectors are introduced). It would be also interesting to see which traits are

shared across the realizations of the scenario in the different theories.

Our approach also highlights the role of polymer models as ideal testbeds for issues

such as the continuum limit, coarse-graining and the UV structure of quantum gravity

between others. Although in some cases, due to the symmetry reduced procedure, it is

difficult to extract physical predictions 14 the features present in the polymer models

that are expected to remain in the full quantum gravity theory, e.g. the presence

of extra microscopic degrees of freedom related to discreteness, make these type of

models a playground for the discussion of certain conceptual and qualitative issues in

quantum gravity[176].

In the second part we show that the origin of the structures that we currently observe

in the Universe can be linked to the discrete structure of the spacetime at the Planck

scale.

14See [176], the definition of the quantum theory in the case of polymer models involves several
arbitrary choices that affect the physical predictions of the theory
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In particular we described two types of phenomenons associated with the Planckian

discrete structure of spacetime: First, if one postulates that the cosmological constant

can diffuse towards other degrees of freedom due to friction with elements of 4-

volume, as described in Section 6.1, one obtains an inflationary phase fueled by the

decaying cosmological constant (see Figure 6.1). If the cosmological constant starts at

its natural value Λ0 ∼ M 2
Pl then after the decay one obtains a value compatible with

current observations.

On the other hand, we proposed a mechanism which produces the right amplitude

and tilt of the CMB power spectrum. That is, from quantum gravitational we obtain an

amplitude N and tilt nS compatible with observations (see (6.89)), with only one free

parameter γ. The tilt nS depends on λ, the Higgs self-coupling, and thus completely

fixed by the physics of the Standard Model of Particles.

The key insight of the model is the proposal that interactions between the homo-

geneoous Higgs and the inhomogeneous discrite background structure will excite

inhomogeneities in the Higgs that are born and the Planck scale and are modulated

by the dimensionless parameter γ. This is contained in equation (6.73).

This proposal provides a framework in which study the consequences of discreteness:

one can explore different ways to realize the mechanism. For example one can study

this model of structure formation but with a different mechanism of an early inflation-

ary phase: modified gravity[177], non-constantΛ [178, 179], Effective Field Theories

[180] among others. One can even think of an early inflationary phase driven by an

inflaton, as in the standard account of inflation, but where the primordial seeds of

structure are created by the interaction with a discrete background.

This feature of our model makes the creation of the seeds of structure rather indepen-

dent of the precise nature of background dynamics.

Another issue left for future exploration involves the microscopic description of the

decay of the cosmological constant. In the first part of this thesis we explicitly show a

model where Planckian degrees of freedom (corresponding to the same macroscopic

cosmological constant) were responsible for apparent growth of entropy as measured

by coarse-grained observers. A similar mechanism allowing the exchange of energy

with these microscopic degrees of freedom can provide a model of a decaying cosmo-

logical constant from a model of quantum gravity. This idea could also be reproduced

in others approaches to quantum gravity.

The possibility of diffusion towards microscopic degrees of freedom can too provide a

clue on the future of a black hole after the high-curvature Planckian region (the region
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marked QG in Figure 3.4): if energy is allowed to flow towards Planckian degrees of

freedom, will the bounce observed in several polymer black holes models[181, 182,

183] remain? In other terms, if a one-degree of freedom egg is dropped from some

height it will bounce since the simplified description does not permit another type of

behavior. Something similar is happening in the bounce scenarios? If the interaction

between low-energy and ultraviolet degrees of freedom is taken into account will the

final state be a highly non-trivial, degenerate state containing a myriad of Planckian

defects but indistinguishable from flat spacetime for low-energy observers instead of

undergoing a highly symmetrical bounce?

All this these factors point out to the paramount importance of the inclusion of the

putative discrete, Planckian degrees of freedom when discussing the physics at the

Planck scale.
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A Revisiting the Weinberg theorem

This is a short review of cosmological perturbation theory and the proof of Weinberg

conservation theorem. We follow the notation of [129]. The proof presented here is,

we believe, more direct than the one in the textbook we include it for completeness.

The metric is split in the usual way as

gµν = g (0)
µν +hµν (A.1)

where ḡµν is the unperturbed, K = 0 metric and hµν is a perturbation. In this section

d s2
0 =−dτ2 +a(τ)2δi j d xi d x j (A.2)

The metric perturbation hµν can be decomposed as

h00 =−E

hi 0 = a

[
∂F

∂xi
+Gi

]
hi j = a2

[
Aδi j + ∂2B

∂xi∂x j
+ ∂Ci

∂x j
+ ∂C j

∂xi
+Di j

] (A.3)

where (A,B ,E ,F ), (Gi ,Ci ) and Di j are scalar, vector and tensor degrees of freedom

respectively and

∂Ci

∂xi
= ∂Gi

∂xi
= 0,

∂Di j

∂xi
= 0, Di i = 0 (A.4)

In the same way we consider first order perturbations to the energy momentum tensor
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Appendix A. Revisiting the Weinberg theorem

δTi j = p̄hi j +a2
[
δi jδp +∂i∂ jπ

S +∂iπ
V
j +∂ jπ

V
i +πT

i j

]
δTi 0 = p̄hi 0 − (ρ̄+ p̄)

(
∂iδu +δuV

i

)
δT00 =−ρ̄h00 +δρ

(A.5)

where

∂iπ
V
i = ∂iδuV

i = 0, ∂iπ
T
i j = 0, πT

i i = 0. (A.6)

Due to the symmetries of the background it is possible to write the linearised field

equations as a set of decoupled equations for scalar, vector and tensor modes. For

argument we will only need the equations for scalar and tensor modes.

Scalar Modes

−4πGa2 [
δρ−δp −∇2πS]=1

2
aȧĖ + (

2ȧ2 +aä
)

E + 1

2
∇2 A− 1

2
a2 Ä

−3aȧ Ȧ− 1

2
aȧ∇2Ḃ + ȧ∇2F

(A.7)

∂ j∂k
[
16πGa2πS +E + A−a2B̈ −3aȧḂ +2aḞ +4ȧF

]= 0 (A.8)

8πGa(ρ̄+ p̄)∂ jδu =−ȧ∂ j E +a∂ j Ȧ (A.9)

−4πG
(
δρ+3δp +∇2πS)=− 1

2a2
∇2E − 3ȧ

2a
Ė − 1

a
∇2Ḟ − ȧ

a2
∇2F

+3

2
Ä+ 3ȧ

a
Ȧ− 3ä

a
E + 1

2
∇2B̈ + ȧ

a
∇2Ḃ

(A.10)

The momentum conservation equations are given by

∂ j

[
δp +∇2πS +∂0[(ρ̄+ p̄)δu]+ 3ȧ

a
(ρ̄+ p̄)δu + 1

2
(ρ̄+ p̄)E

]
= 0 (A.11)

δρ̇+ 3ȧ

a
(δρ+δp)+∇2

[
−a−1(ρ̄+ p̄)F +a−2(ρ̄+ p̄)δu + ȧ

a
πS

]
+1

2
(ρ̄+ p̄)∂0

[
3A+∇2B

]= 0

(A.12)
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Tensor ModesFor tensor modes we have only one equation

−16πGa2πT
i j =∇2Di j −a2D̈i j −3aȧḊi j (A.13)

A gauge transformation generated by an arbitrary vector field εµ(x)

xµ→ xµ+εµ(x), (A.14)

induces a transformation on the metric perturbation given by

∆hi j =− ∂εi

∂x j
− ∂ε j

∂xi
+2aȧδi jε0

∆hi 0 =−ε̇i − ∂ε0

∂xi
+2

ȧ

a
εi

∆h00 =−2ε̇0

(A.15)

One can decompose the spatial part of the vector field εµ into a scalar part and a

divergenceless vector :

εi = ∂iε
S +εV

i , ∂iε
V
i = 0. (A.16)

Then the quantities defined in (A.3) transform as

∆A = 2ȧ

a
ε0, ∆B =− 2

a2
εS

∆Ci =− 1

a2
εV

i , ∆Di j = 0, ∆E = 2ε̇0

∆F = 1

a

(
−ε0 − ε̇S + 2ȧ

a
εS

)
, ∆Gi = 1

a

(
−ε̇V

i + 2ȧ

a
εV

i

) (A.17)

A.0.1 The theorem

To begin, let us concentrate on the scalar mode equations only. The Newtonian gauge

is defined by setting F = B = 0. However, we will keep the F contributions as we will

actually mode away from the condition F = 0 in what follows. However, we will change

F in a way that does not alter the scalar equations (this is the key of the proof). One

renames fields according to

E ≡ 2Φ, A ≡−2Ψ (A.18)
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Appendix A. Revisiting the Weinberg theorem

The scalar field equations in the Newtonian gauge become (when πs = 0)

−4πGa2 (
δρ−δp

)= aȧΦ̇+ (
4ȧ2 +2aä

)
Φ−∇2(Ψ− ȧF )+a2Ψ̈+6aȧΨ̇ (A.19)

−8∂i∂ j [Φ−Ψ+aḞ +2ȧF ] = 0 (A.20)

4πGa(ρ̄+ p̄)∂iδu =−ȧ∂iΦ−a∂i Ψ̇ (A.21)

4πG
(
δρ+3δp

)= 1

a2
∇2(Φ+aḞ + ȧF )+ 3ȧ

a
Φ̇+3Ψ̈+ 6ȧ

a
Ψ̇+ 6ä

a
Φ (A.22)

We first do a gauge transformation εµ = (ε0(xµ),0,0,0) on the background geometry

(i.e., we have hµν = 0 to begin with). This gauge transformation—a simple time

reparametrization—maintains the Newtonian gauge condition B = 0 while it produces

sends F = 0 → F =−ε0/a. We have that

F = −ε0

a
Φ = ε̇0

Ψ = − ȧ

a
ε0

B = 0 (A.23)

This implies thatΦ+aḞ + ȧF = 0 andΨ− ȧF = 0. Therefore, aside from the equation

(A.20) where F remains, the form of the other equations is unchanged from Newtonian

gauge perturbation equations. There is a way that makes equation (A.20) look like

the newtonian gauge equation: it will eventually lead to a further transformation on

the Ψ field that, while keeping now all the equations in the Newtonian gauge form,

will not be a gauge transformation. This is how a physical solution will emerge from

the process. One starts by demanding that the combination (appearing in (A.20))

a∆Ḟ +2ȧ∆F =R for some time independent quantity R. This imposes the following

condition on ε0

a
d

dτ

(ε0

a

)
+2

ȧ

a
ε0 =−R. (A.24)

The time independent quantity R can now be absorbed in a redefinition of the poten-

tial

Ψ=− ȧ

a
ε0 →Ψ=− ȧ

a
ε0 −R. (A.25)

Equation (A.21) is identically satisfied due to the Raychaudhuri equation fro the

background before demanding that ∂i R = 0 (this is obvious because only the time

derivative of Ψ enters this equations). The requiring that R is also independent

of xi comes from (A.19) in order for R not to contribute in the Laplacian in (A.19).
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Notice that the shift does not modify any other equation as the potentialΨ appears

everywhere else inside time-derivatives. The shift ofΨ by a constant does not change

the form of the Newtonian gauge perturbation equations. Notice that such shift of Ψ

is not a gauge transformation. Equation A.24 is solved by

ε0(τ) =−R

∫ τ
T a(τ′)dτ′

a(τ)
(A.26)

We obtain for free the equality betweenΨ andΦ that is imposed by equation (A.20)

for general modes in the absence of stresses (πS = 0), namely

Φ=Ψ=−R

(
1−H

∫ τ
T a(τ′)dτ′

a(τ)

)
. (A.27)

Notice that we did not need to impose the physicality constraintΦ−Ψ= 0 imposed

in [129]. Here, it just follows from the consistency of the initial gauge transformation

plus the shift in the definition ofΨ. For δu one has

δu0 =−ε0 =R

∫ τ
T a(τ′)dτ′

a(τ)
, (A.28)

and for the matter perturbations we get

δρα = ρ̇0
αε0 =−ρ̇0

αR

∫ τ
T a(τ′)dτ′

a(τ)
(A.29)

for any species α. Indeed for any scalar quantity the solution would look the same.

The adiabatic property follows from fact that the change have been found via a spe-

cial gauge transformation ε0 (in fact it can be interpreted as an infinitesimal time

reparametrization for scalars and hence it affects all in the same universal way. This

is of course a form of equivalence principle at play). We modified the fields in two

steps: first a the previous gauge transformation, and second the shift by a constant

of Ψ (which restricts the time dependence of the gauge parameter ε0(τ)). Because

the Newtonian gauge perturbation equations are invariant under the previous action,

(A.27) and (A.28) define a non-trivial1 solution of the cosmological perturbation equa-

tions that is homogeneous. As such it must be a good approximation to solutions for

modes with wavelengths much larger than H−1.

Finally, it is trivial to check that Di j (a traceless constant tensor) is a zero mode

1Very importantly, this transformation is not a gauge transformation because of the constant shift in
Ψ. This is why gauge invariant observables will have non trivial values in this solution.
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Appendix A. Revisiting the Weinberg theorem

solution for tensor modes (A.13)

146



B Polymer Models and Loop Quantum
Cosmology

In this appendix we recall the main ideas and methods of polymer (cosmological)

models. We start by reviewing the classical theory and its Hamiltonian description,

highlighting the similarities and differences between classical GR and unimodular

gravity.

Then we introduce the polymer models and effective dynamics. This section mainly

follow the references [96, 184, 27, 185].

B.1 Classical Hamiltonian Dynamics

The spacetime metric of an isotropic and homogeneous Universe is given by the

FLRW-metric

ds2 =−N (t )2 dt 2 + a(t )2

1−kr 2
dr 2 +a(t )2r 2 dΩ2

2, (B.1)

where N (t) is the lapse, a(t) the scale factor of the Universe and k = −1,0,1 is a

constant controlling the geometry of the hypersurfaces t = constant.

From now on we will set k = 01 and consider only the case where the surfaces t =
constant are topologically R3

1Polymer models have also been studied in the cases k 6= 0[110, 186] and in the case of a homoge-
neous but non-isotropic spacetime[187, 188, 189, 190, 191]
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Appendix B. Polymer Models and Loop Quantum Cosmology

B.1.1 General Relativity

Now we can insert the isotropic and homogeneous metric (B.1) into the Einstein-

Hilbert action with cosmological constantΛ:

SE H = 1

2κ

∫
M

d4x
p−g (R −2Λ) (B.2)

where κ= 8πG . The symmetry-reduced action is then given by

SE H [N , a] =−V0

2κ

∫
dt

6a(t )
(
a(t )N (t )ä(t )−a(t )ȧ(t )Ṅ (t )+N (t )ȧ(t )2

)
N (t )2

−V0Λ

κ

∫
d t N (t )a(t )3

(B.3)

where V0 is the 3-volume of a fiducial cell.

Rewriting the first term on (B.3) as

6a
(
aN a −aṄ Ṅ +N ȧ2

)
N 2

= 6aȧ2

N
− d

dt

(
6a2ȧ

N

)
, (B.4)

integrating by parts and dropping the boundary terms we finally obtain

SEH =−3V0

κ

∫
d t

aȧ2

N
− V0Λ

κ

∫
d t N (t )a(t )3 (B.5)

The action for a minimally coupled (free) scalar field is given by

Sφ =−1

2

∫
M

d4x
p−g gµν

(∇µφ)(∇νφ)=V0

∫
dt

a3φ̇2

2N
(B.6)

The total action of gravity coupled to a free scalar field is then

S =
∫

d t

(
−3V0

κ

aȧ2

N
− V0Λ

κ
N (t )a(t )3 +V0

a3φ̇2

2N

)
︸ ︷︷ ︸

L

(B.7)

where L is the gravitational Lagrangian and we define V =V0a3 the physical volume

of the fiducial cell.

The symmetry-reduction freezes all gravitational degrees of freedom but the zero-
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B.1. Classical Hamiltonian Dynamics

mode describing the overall scale factor of the Universe a. From the Lagrangian L

the standard Hamiltonian analysis can be carried over. The momentum conjugated

to a

pa = ∂L

∂ȧ
=−6V0

κ

aȧ

N
(B.8)

while the momentum conjugated to the scalar field

pφ = ∂Lφ

∂φ̇
= V0a3

N
φ̇ (B.9)

while the momentum conjugated to N vanish pN ≈ 02 as expected for a constrained

system.

The total Hamiltonian is then

H = pa ȧ +pφφ̇+λpN −L

= N

(
− κ

12V0

p2
a

a
+ V0a3

2κ
Λ+

p2
φ

2a3

)
+λpN

(B.10)

Consistency of pN ≈ 0 leads to the secondary constraint

ṗN = {
pN ,H

}=− κ

12V0

p2
a

a
+ V0a3

2κ
Λ+

p2
φ

2a3
=: C !∼ 0 (B.11)

One can check that {C ,H } ≈ 0 and thus the constraint is preserved during evolution

and the Dirac algorithm concludes in this step.

As expected, N can be treated as a Lagrange multiplier whose dynamics is determined

by the arbitrary function λ. This was expected from the behaviour of full GR, the

freedom in choosing λ corresponds to gauge transformations, i.e, change of the time

coordinate.

The phase space of the theory is spanned by the variables
(
ā, pa

)
,
(
φ, pφ

)
whose dy-

2Where ≈ denotes weak equality

149



Appendix B. Polymer Models and Loop Quantum Cosmology

namics is dictated by

H = NC , C =− κ

12V0

p2
a

a
+ V0a3

2κ
Λ+

p2
φ

2a3
≈ 0. (B.12)

The symplectic structure is given by

{
a, pa

}= {
φ, pφ

}= 1 (B.13)

In Loopq Quantum Cosmology is customary to consider different pair of variables

canonically conjugated to
(
ā, pa

)
. For completeness we quote here the two more

common change of variables considered in the literature (See for example [96])

c =V 1/3
0 γ

ȧ

N
p =V 2/3

0 a2,
(B.14)

where γ is the Immirzi parameter.

It is easy to see[96] that c completely characterizes the gravitational spin connection

Ai
a and p, its conjugated, completely characterizes the electric field Aa

i conjugated to

the spin connection.

In these variables the Hamiltonian becomes

C =− 6

κγ2

√|p|c2 + Λ|p|
3/2

2κ
+

p2
φ

2|p|3/2
(B.15)

Usually one can also find in the literature the pais of variables

V =V0a3 = |p|3/2

b =− κγ

6V0

pa

a2
= c

|p|1/2
.

(B.16)

V is the 3-volume of the fiducial cell and b is related (dynamically) to the Hubble rate

H = ȧ
N a
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In these variables the Hamiltonian constraint

C =− 3

2κγ2
b2V + 1

2κ
VΛ+V0

p2
φ

2V
(B.17)

and the symplectic structure is given by

{b,V } = 4πGγ= κγ (B.18)

Now that we have already established the theory’s kinematical structure, we can study

the solutions of the Hamilton equations of motion.

For solving the equations of motion, we have to deal with the arbitrary function N.

One strategy usually employed in the literature is to deparametrize the system using

the scalar field as a physical clock.

Another strategy is to choose the gauge (and hence the physical interpretation of the

time coordinate t), which amounts to determine the functional dependence of N.

This problem will not exist in unimodular cosmology: the constraint fixing a back-

ground volume element provides us with a unique notion of time: the cosmological

time T .

Comoving Gauge N = 1

Λ= 0The constrain becomes:

C 1 =− 3

2κγ2
b2V +V0

p2
φ

2V
, (B.19)

and now we may compute the equations of motion for b and V :

V̇ = {V ,C 1} =−κγ∂C
1

∂b
= 3

γ
bV

ḃ = {b,C 1} = κγ∂C
1

∂V
= κγ

(
− 3

2κγ2
b2 −V0

p2
φ

2V 2

)
.

(B.20)
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Using the constraint we obtain the pair of evolution equations for b and V

V̇ = 3

γ
bV

ḃ = 3

γ
b2.

(B.21)

We can solve for b

b(t ) = γb0

3b0 (t − t0)+γ , (B.22)

and after solve for the volume V (t )

V (t ) =V0
3b0 (t − t0)+γ

γ
, (B.23)

Now we solve for the scalar field3 using the constraint (B.19)

φ(t ) =φ0 +
√

3V0

κγ2

γ

3
log

[
3b0 (t − t0)+γ

γ

]
(B.24)

Everything is well defined as long as 3b0 (t − t0)+γ> 0 =⇒ t > t0 − γ
3b0

. Moreover in

that interval φ is monotonically increasing and singled-valued so we can use it as a

time variable. In particular the volume behaves exponentially respect to φ

V (φ) =V0 exp

[
±

√
κγ2

3V0

3

γ

(
φ−φ0

)]
(B.25)

We thus have that ρ∝ a−3(1+ω) = a−6 and a ∝ t
2

3(1+ω) = t
1
3 =⇒ V ∝ t as we derived in

(B.23).

Λ 6= 0The constraint is given simply by

C 1 =− 3

2κγ2
b2V + 1

2κ
VΛ+V0

p2
φ

2V
, (B.26)

3A free scalar field can be shown to behave as a perfect fluid with equation of state ρ = P , or in
another words ω= 1.
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and then the equation of motion become

V̇ = 3

γ
bV

ḃ =−3

γ
b2 +γΛ

(B.27)

where in the last equation we used the scalar constraint C 1 ≈ 0.

One can solve (B.27) for b(t ) and V (t ) obtaining

b(t ) =−γ
√

|Λ|
3

tan
[√

3|Λ|(t −γb0
)]

ifΛ< 0

b(t ) = γ
√
Λ

3
tanh

[p
3Λ

(
t −γb0

)]
ifΛ> 0.

(B.28)

And respectively 4

V (t ) =V0 cos
[√

3|Λ|(t −γb0
)]

ifΛ< 0

V (t ) =V0 cosh
[p

3Λ
(
t −γb0

)]
ifΛ> 0.

(B.29)

Pure Cosmological ConstantThe scalar constraint becomes simply

C 1 =− 3

2κγ2
b2V + 1

2κ
ΛV , (B.30)

The eom are given by

V̇ = 3

γ
bV

ḃ = 0 =⇒ b(t ) = b0 = γ
√
Λ

3

(B.31)

4When all the matter has already diluted by the expansion the cosmological constant dominates:
if Λ < 0 then it acts in an attractive manner and the models recollapse (for every k), whereas for
Λ> 0 the cosmological constant term act repulsively and makes the universe expand forever (in the
k = 0,−1 case) whereas in the k = 1 case there is a fight between the matter acting attractively and the
cosmological constant term acting repulsively and it depends on the amount of matter which term
wins.
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And then we have that V (t) = V0 exp
(

3
γ

b0t
)
= V0 exp

(
3
√

Λ
3 t

)
and from it we obtain

that a(t ) = exp
(√

Λ
3 t

)
which is, as expected, the de Sitter solution in comoving time.

Notice also that this derivation is only valid forΛ> 0.

Harmonic Gauge N = a3 = V
V0

The scalar constraint becomes

C h =− 3

2V0κγ2
b2V 2 + 1

2V0κ
V 2Λ+

p2
φ

2
, (B.32)

and the eom

dV

d s
= 3

γV0
bV 2

db

d s
=− 3

V0γ
b2V + γ

V0
ΛV

(B.33)

In the case whereΛ= 0 the solution of the system (B.33) is given by:

V (s) = c1

c2
e

3c1s
γV0

b(s) = c2e
− 3c1s
γV0

(B.34)

Using the scalar constraint we can see that:

C h ≈ 0 =⇒
(

dφ

d s

)2

= 3

V0κγ2
b2V 2 (B.35)

The, using (B.34)

dφ

d s
=

√
3

V0κγ2
c1 =⇒ φ(s) =±

√
3

V0κγ2
c1s +φ0 (B.36)
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Figure B.1 – Classical and effective evolution of V (φ). We see that the Universe in
the effective dynamics undergoes a bounce at some minimal volume value and it
coincides with the classical solution for large V , far from the bounce.

And finally we re-obtain the deparametrized curvee

φ(V ) =
√

V0

3κ
log

(
c2

c1
V

)
+φ0 (B.37)

Unimodular Gauge

Let us look now at the case when N = a−3, i.e. the unimodular gauge

C u =− 3V0

2κγ2
b2 + V0

2κ
Λ, (B.38)
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In this case the eom of motion become

dV

dτ
= 3V0

γ
b

db

dτ
= 0 =⇒ b(τ) = b0 = γ

√
Λ

3

(B.39)

And thus we can solve for V (t ) obtaining

V (τ) = 3V0

√
Λ

3
(τ−τ0) =⇒ a(τ) ∝ (τ−τ0)1/3 , (B.40)

where τ is the Unimodular time.

B.1.2 Unimodular Gravity

The Einstein-Hilbert action supplemented with the unimodular constraint become

Su = κ
∫ p−g R +λ(

p−g −1) =−κV0

∫ (
6

aȧ2

N
−λ(N a3 −1)

)
d t , (B.41)

where as in (B.7) total derivative terms have been eliminated, and the 3-volume V0 of

a fiducial cell has been introduced.

Resolving the unimodular constraint fixes the lapse N = 1/a3 and thus the unimodular

action becomes

Su =−κV0

∫
6a4ȧ2d t . (B.42)

In this case, due to the presence of a new constraint N = V0
V , the Hamiltonian do not

longer vanish but it’s a constant. That is, the Hamiltonian is no longer a constraint

and we recover true dynamics in the Unimodular time.

Using the variables introduced in (B.16) the gravitational action then is

Su =−
∫

1

2
mV̇ 2d t . (B.43)

with

m ≡ 4

3V0
κ. (B.44)

Notice this is just (modulo an overall sign) the action for a free particle. This high-
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lights another clear advantage of working with unimodular gravity: when matter is

introduced we will have a problem analogous of a particle in a potential.

Also notice that if we use comoving time dτ= N d t with N = 1/a3 we have

p = mV̇ = mNV ′ = 3m
a′

a
, (B.45)

where the prime denotes derivative with respect to the comoving time. We see that the

momentum variable in our parametrization is just proportional to the Hubble rate in

usual comoving variables! Therefore, the action including our simple matter model is

S(V ,φ) =
∫ (

1

2
mV̇ 2 − 1

2
V 2φ̇2 −V0U (φ)

)
d t (B.46)

In this case the Hamiltonian in the (b,V ) is simply given by

H =− 3V0

2κγ2
b2 +V 2

0

p2
φ

2V 2
=−V0

2κ
Λ, (B.47)

We use the Hamiltonian5 H to obtain the equations of motion

dV

dτ
= {V ,H } = 3V0

γ
b

db

dτ
= {b,H } = γV0

Λ

V
− 3V0

γ

b2

V

(B.48)

We can solve for b(τ),V (τ) obtaining

V (τ) = 1

γ

√
3γ2Λ2(τV0 −γc1c2)2 − c1

2

Λ

b(τ) =± γ2Λ3/2(τV0 −γc1c2)√
3γ2Λ2(τV0 −γc1c2)2 − c1

2

(B.49)

5Which now is not a constraint
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Figure B.2 – Unimodular Gauge - V (τ) and b(τ) for V0 = γ=Λ= 1, c1 = 1 c2 = 0

And using (B.48) we can solve for the scalar field

φ(τ) =
√

V0

6κ
tanh−1

(p
3γΛ(τV0 −γc1c2)

c1

)
+φ0 (B.50)

and finally we can write φ=φ(V )

φ(V ) =
√

V0

6κ
tanh−1


√

c2
1 +γ2Λ2V 2

c1

+φ0 (B.51)

Finally, note that the change in Unimodular time ∆t = ∫ τ2
τ1

dτ a(τ)3 (where τ is the

comoving time defined by dτ = a−3d t) can be interpreted as the 4-volume of the

world tube traced by a fiducial cell of initially Planckian volume between (comoving)

time τ1 and τ2.

B.2 Effective Equations

In this section, we will discuss how symmetry-reduced cosmological models can

be quantized motivated by the insight of LQG. We start by studying the classical

effective dynamics. The idea behind it is to modify the Hamiltonian using a so-called
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polymerization scheme that is supposed to encode the dynamics of a semi-classical

state in the quantum theory[192].

In practice, this is achieved by replacing certain variables in the Hamiltonian (e.g. in

(B.17)) by point holonomies. In cosmology a suitable choice is to replace b by

b → e i b . (B.52)

This replacement is based on a rationale borrowed from LQG: the connection is not

represented in the Hilbert space of LQG, but only its holonomies are defined on the

quantum theory. This idea is realized in the symmetry-reduced models by considering

only functions of the type e i b . The, the Hamiltonian is regularized by replacing

b → f (e iλb) (B.53)

where λ ∈ R+ is the regularization parameter and f is an arbitrary function such

that f
(
e iλb

) λb¿1−→ b. This requirement is such that the correct classical behaviour is

recovered in the appropiated limit. The ambiguity in the choice of f can be used to

obtain an arbitrary dynamical behaviour of the scale factor a[176].

In the classical theory the variable b is related to the Hubble rate and thus to the scalar

curvature. It becomes large only in high curvatures regimes. If the regularization

parameter is chosen so that λ∼ `6, the effective theory will depart the classical theory

only in the Planckian regime, where the classical theory is expected to break down.

The usual choice in the literature is to do the following replacement in the Hamiltonian

b → sin(λb)

λ
(B.54)

The effective Hamiltonian is then given by

H eff = NC eff , C eff =− 3

2κγ2

sin(λb)2

λ2
V + 1

2κ
VΛ+V0

p2
φ

2V
. (B.55)

One can now find the equations of motion generated by the effective Hamiltonian

(B.55). This calculation is still classical and its meant to provide a somewhat accurate

description of the dynamics of semi-classical states in the quantum theory. To assess

6In principle λ can be a function of the phase space variables. The case λ= constant is known as the
µ̄-scheme[96].
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whether this description is accurate or not, it is necessary to study the quantum

theory. In [192] (and in [176] for a more general situation), it is shown that the effective

equations are accurate for a particular class of states.

The effective equations of motion in the comoving gauge are given by

v̇ =−v
sin(λb)

λ
cos(λb)

ḃ = 1

2

sin(λb)2

λ2
+

p2
φ

2v2

φ̇= pφ
v

ṗφ = 0 =⇒ pφ = const.

0 =−v

2

sin(λb)2

λ2
+

p2
φ

2v

(B.56)

Using the Hamiltonian constraint one can solve for the volume in comoving time

V (t ) =
√(

±pφ (t − ti )+
√

V 2
i −λ2p2

φ

)2
+λ2p2

φ (B.57)

where V (ti ) =Vi is the initial condition. First, one sees that the volume is bounded by

below by Vmi n =λpφ and thus the singularity is resolved as the curvature is bounded

R ≤ 2
λ2 .

Finally, it can be shown that

v(φ) =λpφ cosh

((
φ−φi

)+cosh−1
(

vi

λpφ

))
(B.58)

The plot of the two classical branches (B.25) and the effective solution (B.58) is given

in Figure B.1.
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C.1 Background Dynamics

The background dynamics of our model is characterised by the continuity equation

ρ̇+3
ȧ

a

(
ρ+P

)=− Λ̇

8πG
(C.1)

which can be written in terms of the number of e-folds N = log(a) as

dρ

dN
+3

(
ρ+P

)=− dΛ

dN

1

8πG
(C.2)

In our paper the cosmological constant is modeled by a decaying exponential in

Unimodular time. We want to show in these notes that the inflation mechanism that

we introduced is independent of the particular details of this decay. In other words,

the mechanism still produces the right amount of inhomogeneities provided that

there is an early inflatonary phase fueled by an almost constant Λ followed by an

abrupt decay of the cosmological constant into the matter sector.

C.1.1 A discontinuous decay

Let us start by looking at a cosmological constant that decays instantaneously at some

arbitrary number of e-folds N0

Λ (a) =
Λ0 N <N0

0 N0 <N
(C.3)

161



Appendix C. DecayingΛmodels

or, equivalently

dΛ

dN
=−Λ0 δ (N −N0) (C.4)

Nend

0

Λ0

Reheating

N

Λ(N)

Figure C.1 – Ultra simplified model for the decay of the cosmological constant. The
phenomenology remains the same as in the model presented in the first sections
of the chapter. The only change is the value of the radiation density right after the
reheating event which remains of the same order of magnitude of that predicted in
Section 6.2. Nend denotes the end of inflation.

In this case we can solve the continuity equation (C.2) for ρ in the two regions N <N0

and N > N0 and match across the discontinuity (as is done for example for the

Schroedinger equation with a delta potential).

We integrate the continuity equation in a interval around N0

∫ N0+ε

N0−ε
dN

dρ

dN
+3(1+ω)

∫ N0+ε

N0−ε
dN ρ = Λ0

8πG

∫ N0+ε

N0−ε
dN δ (N −N0) (C.5)

Taking the limit ε→ 0 and supposing that ρ is piecewise continuos and bounded in
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this interval we obtain

∆ρ ≡ ρ (
N +

0

)−ρ (
N −

0

)= Λ0

8πG
(C.6)

and using that H 2
0 ∼ Λ0

3 we recover the estimate we had in our paper

ρend ∼
9H 2

0 m2
p

56π
(C.7)

C.1.2 A sudden linear decay

For the non-continuos decay model we considered last section the energy density ρ

is non continuous. Let us consider now a scenario where Λ is piecewise smooth and

thus ρ is continuous.

Λ (a) =


Λ0 N <N0

αN +β N0 <N <N0 +∆N

0 N <N0 +∆N <N

(C.8)

The coefficients α and β for a continuousΛ (a) are given by

α=− Λ0

∆N
β=Λ0

(
1+ N0

∆N

)
(C.9)

As before, we solve the equation in the three different regions and we match the

solutions at N0 and N0 +∆N .

By solving the continuity equation we obtain the three solutions

Λ (a) =


ρ−e−3(1+ω)(N −N0) N <N0

ρ0e−3(1+ω)(N −N0) + Λ0M 2
p

8π∆N
1

3(1+ω) N0 <N <N0 +∆N

ρ+e−3(1+ω)(N −N0) N0 +∆N <N

(C.10)

Let us define also ρ∗ = ρ−e3(1+ω)N0 , the value of the energy density at N = 0. The
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matching conditions give us the pair of equations

ρ− = ρ0 +
Λ0M 2

P

8π∆N

1

3(1+ω)

ρ+ = ρ0 +
Λ0M 2

P

8π∆N

e3(1+ω)∆N

3(1+ω)

(C.11)

One can show that the energy density in the decay region can be written as

ρ (N ) =
(
ρ∗e−3(1+ω)N0 − Λ0M 2

P

8π∆N

1

3(1+ω)

)
e−3(1+ω)(N −N0) + Λ0M 2

P

8π∆N

1

3(1+ω)

= ρ∗e−3(1+ω)N + Λ0M 2
P

8π∆N

1

3(1+ω)

(
1−e−3(1+ω)(N −N0)

) (C.12)

It can be shown that ∆ρ ≡ ρ (N0)−N0 +∆N , that is, the change in energy density

duing the decay phase

∆ρ = ρ∗e−3(1+ω)N0
(
1−e−3(1+ω)∆N

)
+ Λ0M 2

P

8π

1

3(1+ω)

1−e−3(1+ω)∆N

∆N
(C.13)

And we see that in the limit ∆N → 0, ∆ρ reduces to the delta decay value, as expected

∆ρ (∆N → 0) = Λ0M 2
P

8π
(C.14)

where we have used that limx→0
1−e−αx

x =α.
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