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Résumé
Les groupes de monodromie itérée relient la dynamique rationnelle et la théorie

géométrique des groupes. Dans cette thèse, nous étendons cette connexion à la dy-
namique transcendante. Nous introduisons les groupes de monodromie itérée pour
les fonctions entières post-singulièrement finies et les étudions comme des groupes
autosimilaires sur des alphabets infinis. En utilisant l’existence d’araignées pério-
diques, nous donnons un modèle combinatoire des groupes de monodromie itérée
en termes d’automates dendroïdes, généralisant la description pour les polynômes
post-singulièrement finis. La classe des applications de la famille exponentielle est dis-
cutée en détail, avec une description explicite en termes des suites de tricotage. Nous
introduisons un critère de moyennabilité pour les groupes générés par des automates
d’activité bornée sur des alphabets infinis, et nous utilisons ce critère pour montrer
que le groupe de monodromie itérée d’une fonction entière post-singulièrement finie
est moyennable si et seulement si son groupe de monodromie l’est.

Mots-clés. Groupe de monodromie itérée, dynamique transcendante, dynamique
holomorphe, automate dendroïde, araignées, moyennabilité.
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Abstract
Iterated monodromy groups link rational dynamics and geometric group theory.

In this thesis we extend this connection to transcendental dynamics. We introduce
iterated monodromy group for post-singularly finite entire functions and study them
as self-similar groups with infinite alphabets. Using the existence of periodic spiders,
we give a combinatorial model of the iterated monodromy groups in terms of dendroid
automata, generalizing the description for post-singularly finite polynomials. We
discuss the class of functions in the exponential family, with an explicit description in
terms of the kneading sequence. We introduce an amenability criterion for groups
generated by bounded activity automata on infinite alphabets, and use the criterion
to show that the iterated monodromy group of a post-singularly finite entire function
is amenable if and only if its monodromy group is.

Keywords. Iterated monodromy group, transcendental dynamics, holomorphic
dynamics, dendroid automaton, spiders, amenability
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Résumé substanciel
Nous donnons un aperçu de la thèse.
Dans le Chapitre 1, nous fournissons des informations de base sur la dynamique

holomorphe, la dynamique de méthodes de recherche des racines d’un polynôme
(en passant), les groupes autosimilaires, les groupes de monodromie itérée et la
moyennabilité.

Dans le Chapitre 2, nous commençons par l’étude des groupes de monodromie
itérée dans la famille exponentielle. Nous commençons par définir les groupes de
monodromie itérée pour les fonctions entières.

Nous montrons que le groupe de monodromie itérée d’une fonction exponentielle
peut être explicitement décrit en termes de suite de tricotage.

Théorème (Résultat structurelle pour la famille exponentielle). Soit f une fonction
exponentielle post-singulièrement finie avec suite de tricotage x1 . . . xk y1 . . . yp ∈ Zω.
Alors l’action monodromie itérée de f est conjuguée à l’action de K (x1 . . . xk , y1 . . . yp )
sur Z∗.

Ici, K (x1 . . . xk , y1 . . . yp ) est le groupe généré par un automate d’activité bornée
K(x1 . . . xk , y1 . . . yp ) défini explicitement en termes de la suite de tricotage en analogie
forte avec les automates pour les polynômes quadratiques construits dans [BN08].

Nous poursuivons avec une discussion générale sur les groupes K (x1 . . . xk , y1 . . . yp )
pour les suites x1 . . . xk , y1 . . . yp ∈ Z∗ avec xk 6= yp . Nous montrons que pour ces
groupes, le graphe de Schreier sur Zω est une forêt d’arbres avec un nombre dé-
nombrable de bouts. En particulier, nous avons une preuve élémentaire que l’action
sur Zω est récurrente.

Nous concluons le chapitre 2 avec le théorème suivant.

Théorème. Les groupes K (x1 . . . xk , y1 . . . yp ) sont moyennables mais ils ne sont pas
sous-exponentiellement moyennables.

Dans le Chapitre 3, nous discutons du cœur de la théorie des groupes de la thèse.
Nous passons aux groupes généraux autosimilaires agissant sur des alphabets infinis
et prouvons notre principal critère de moyennabilité.

Nous voulons montrer la moyennabilité d’une grande classe de groupes générés
par des automates d’activité bornée, en vue des groupes de monodromie itérée de
fonctions entières. Lorsque nous changeons la cardinalité de l’alphabet X de finie
à infinie, le groupe symétrique Sym(X ) passe d’un groupe fini (et donc élémentai-
rement moyennable) à un énorme groupe indénombrable contenant des copies de
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tous les groupes dénombrables via le théorème de Cayley. Nous devons donc imposer
certaines restrictions sur l’action de premier niveau. Nous le faisons en considérant

un groupe moyennable P ⊂ X et le groupe Aut f .s.
B

(X ∗;P ), qui correspondent à des au-
tomates d’activité bornée où l’action de chaque état sur X est dans P . Nous montrons
le théorème suivant.

Théorème (Moyennabilité pour activité bornée sur des alphabets infinis). Soit X un
ensemble infini dénombrable. Soit P un sous-groupe de Sym(X ). Supposons que l’action

de P sur X est récurrente. Alors Aut f .s.
B

(X ∗;P ) est moyennable.

Le critère de la moyennabilité est basé sur le critère de [JNS16]. Une étape clé de

la preuve est de montrer que l’action de Aut f .s.
B

(X ∗;P ) sur les mots infinis Xω est
récurrente.

Dans le Chapitre 4, nous discutons de la structure des groupes de monodromie
itérée pour les fonctions transcendantes entières générales post-singulièrement finies.
Nous étendons la notion d’automates dendroïdes de [Nek09] aux alphabets infinis
et fournissons un résultat de structure sur les groupes de monodromie itérée par le
théorème suivant.

Théorème (Résultat structurelle pour les fonctions entières générales). Soit f une
fonction entière post-singulièrement finie. Alors le groupe de monodromie itérée de f
est un groupe autosimilaire sur un alphabet infini, généré par un automate dendroïde.
En particulier, c’est un groupe autosimilaire d’activité bornée.

Nous montrons ce résultat en utilisant le langage des bisets et des araignées. En
particulier, nous étendons la notion d’un ensemble dendroïde de permutations aux
alphabets infinis également. En faisant cela, nous montrons que les fonctions entières
structurellement finies ont groupes de monodromie élémentairement moyennables.
Afin d’obtenir le théorème, nous devons prouver l’existence d’araignées périodiques.

Nous comparons également le graphe de Schreier d’une fonction entière post-
singulièrement finie avec la notion classique de complexes de lignes (voir [GO08,
Chapitre 7]), afin de montrer que l’action de monodromie est toujours récurrente.
Nous pouvons donc appliquer les résultats du Chapitre 3 pour conclure avec le théo-
rème suivant.

Théorème (Moyennabilité de IMGs de fonctions entières). Soit f une fonction trans-
cendante entière post-singulièrement finie. Alors le groupe de monodromie itérée de f
est moyennable si et seulement si le groupe de monodromie de f est moyennable.

Dans le Chapitre 5, nous concluons cette thèse par une brève perspective sur les
travaux futurs.
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1 Introduction
This thesis connects holomorphic dynamics, in particular the dynamics of entire

transcendental functions, with self-similar groups in the form of iterated monodromy
groups. We investigate iterated monodromy groups of entire functions from a group
theoretic perspective; one of our main results is that the iterated monodromy group
of an entire function is amenable if and only the monodromy group is. In this intro-
duction we briefly describe the background of the thesis: we introduce holomorphic
dynamics in Section 1.1, root finding in Section 1.2, self-similar groups in Section 1.3,
iterated monodromy groups in Section 1.4, and amenability in Section 1.5. We give an
overview about the structure of the thesis and its main results in Section 1.6.

1.1 Holomorphic Dynamics
Holomorphic dynamics is the study of holomorphic functions under iteration. In

one dimension, the four main classes to consider are polynomials p : C→C, rational
maps r : Ĉ→ Ĉ, entire transcendental functions f : C→C and meromorphic functions
g : C→ Ĉ. We will sketch here some of the basic concepts of holomorphic dynam-
ics; see [Mil06] for a general introduction. We focus on entire functions, including
polynomials and entire transcendental functions.

The fundamental sets in the study of the dynamics of a holomorphic function f are
the Fatou set F ( f ) (the set of normality of the family of iterates

{
f , f 2, f 3, . . .

}
), and its

complement, the Julia set J( f ). The Fatou set and the Julia set are both completely
invariant under f , so they give a basic dynamical decomposition of the dynamical
plane. The connected components of the Fatou set, in short Fatou components, can
be classified in terms of their dynamics and is quite easy to understand. However, the
dynamics on the Julia set is more “chaotic”.

Another important set for dynamics of an entire function f is the escaping set I ( f ),
the set of points which escape to infinity, i.e.

I ( f ) =
{

z ∈C| lim
n→∞ f n(z) =∞

}
.

The escaping set is also completely invariant and thus induces another decomposition
C= I ( f )∪̇ (C\ I ( f ). Its advantage is that this decomposition is always non-trivial: I ( f )
is always a non-empty proper subset of C [Erë89] (while the Fatou set may or may not
be empty). The Julia set is always the boundary of the escaping set, so its dynamics
can be studied via the escaping set.
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1 Introduction – 1.1 Holomorphic Dynamics

The topology of the escaping set differs between polynomials and transcendental
entire functions: for polynomials, the escaping set is open and constitues the unique
unbounded connected component of the Fatou set. It is a punctured neighborhood of
∞∈ Ĉ. For transcendental entire functions, the topology of the escaping set is much
more delicate because of the essential singularity at ∞. For general entire functions, it
is possible to have Fatou components, such as Baker domains, that are in the escaping
set. For the entire functions that we will consider in the thesis, the escaping set has no
interior, so the Julia set is equal closure of the escaping set.

The dynamics of I ( f ) can be used as a stepping stone to understand the dynamics
of an entire function on the whole complex plane. For example, if f is a polynomial of
degree d with connected Julia set, then there is a conformal map φ : C\D→ I ( f ) such
that the following diagram commutes:

C\D I ( f )

C\D I ( f )

zd

φ

f

φ

So the dynamics on I ( f ) can be compared with the dynamics of the simpler map
zd . The images under φ of radial lines are called dynamic rays. A basic question for
the dynamics of f is which dynamic rays land, i.e., for which angles α ∈R/Z the limit
limr→1φ(r eα2πi ) exists. A fundamental result is that (pre-)periodic rays always land at
(pre-)periodic points and conversely that every (pre-)periodic point in the Julia set
is the landing point of a dynamical ray. Moreover, if the Julia set of f is connected
and locally connected, then all dynamic rays land, and the landing points depend
continuously on the angles.

Many features of the dynamics of an entire function are controlled by its singular
values. For example, the Julia set of a polynomial is connected if and only if all of the
singular values in C have bounded orbits. So the dynamics of post-singularly finite
maps should be the easiest to understand, and in fact there are many combinatorial
tools to do this. Let f : C→C be an entire function. A critical value is the image of a
critical point, i.e. f (c) where f ′(c) = 0. An asymptotic value is a limit limt→∞ f (γ(t))
where γ : [0,∞) → C is a path with limt→∞γ(t) = ∞. The set of singular values is
defined as

S( f ) = {
critical and asymptotic values

}
and the set of post-singular values is P( f ) =⋃

n≥0 f n(S( f )). The map f is called post-
singularly finite if P( f ) is finite. An example of a post-singularly finite polynomial
is given by the Basilica map z2 −1. Its Julia set is the boundary of the black set in
Figure 1.1.

It is a frequent observation in one-dimensional holomorphic dynamics that most
of the dynamical behavior of f is controlled by the dynamics of the singular values

12



1 Introduction – 1.2 Dynamics of Root finding

Figure 1.1 – The filled Julia set of z2 −1 (the “Basilica”) in black.

of f . For example, the Julia set of a polynomial is connected if and only if all of the
singular values in C have bounded orbits. So the dynamics of post-singularly finite
maps should be the easiest to understand, and in fact there are many combinatorial
tools to do this.

For post-singularly finite polynomials, of special interest is the collection of (possibly
extended) dynamic rays that land in the post-singular set. Choosing a dynamic ray
for each point z ∈ P( f ), one obtains the notion of a dynamical spider: if z is in the
Julia set, then one can take a ray that lands at z, while the construction is a bit more
complicated if z is in the Fatou set. Spiders are a powerful tool for the classification of
polynomials [HS94; BFH92]. Given only simple combinatorial data for the spiders,
such as the external angles of all the rays that constitute a spider, it is enough to
reconstruct a topological model for the polynomial that is sufficient to specify the
actual polynomial uniquely. This is a particular case in which Thurston’s fundamental
theorem [DH93] can be applied particularly successfully, leading to a very explicit
classification of polynomials.

For entire functions of finite order, the escaping set can be also structured via
dynamic rays [Rot+11]. This can be used as a basis for the symbolic dynamics of
these entire functions, see for example [Mih09]. In particular, the theory of spiders for
functions in the exponential family is well developed [SZ03].

It was already observed in [Rot+11] that the topology of connected components
of I ( f ) can be much more complicated than curves that constitue the rays. The
appropriate substitute for dynamic rays are “dreadlocks” [BR20]. For a detailed result
on was what is possible, see [Rem19]. A discussion of landing proprieties of dreadlocks
can be found, for example, in [Pfr19].

1.2 Dynamics of Root finding
A natural source of holomorphic dynamcial systems are root finding algorithms,

which are often iterated holomorphic maps. Some of these are described briefly in
this section, which is independent of the rest of the thesis (but not of the work of its
author).

13



1 Introduction – 1.2 Dynamics of Root finding

A prototypical situation is the problem of root finding of polynomials. Given a
polynomial p ∈C [z], the fundamental theorem of algebra states that p can be factored
as p(z) = λ

∏d
i=1(z −αi ). The theorem of Abel–Ruffini implies that it is not always

possible to find the roots of p in terms of radicals. In practice, iterative methods are
used to find the roots numerically.

One such method is Newton’s method. For a polynomial p, the Newton map Np is
given by z 7→ z −p(z)/p ′(z). The Newton map is then a rational map Np : Ĉ→ Ĉ and
can be studied using the tools of holomorphic dynamics. In the revival of holomorphic
dynamics in the 1980’s, understanding the global dynamics of Newton maps for cubic
polynomials was a motivating problem [Dou86].

Simple roots of the polynomial p become superattracting fixed points of Np , while
multiple roots are attracting fixed points. So Np has local quadratic convergence for
polynomials with only simple roots, and local linear convergence in the general case.
In fact, Newton’s method is a popular way to polish good approximations of roots that
may have been found by other methods.

It was already observed by Smale in the 1980’s that the Newton method admits
attracting cycles of periods 2 or greater, hence open sets of starting points that fail to
converge to roots. Newton’s method became a poster child of a “chaotic” dynamical
system. This motivated the common preconception that one shouldn’t use Newton
to find all roots of polynomials globally. However, using the method of holomorphic
dynamics, it is possible to use a starting set that is guaranteed to find all roots, see
[HSS01] and subsequent refinements.

Other methods, such as the Weierstrass method (also known as Durand–Kerner)
and the Ehrlich–Aberth method, work by trying to find all roots at the same time.
The Ehrlich–Aberth method is the basis of MPSolve, a standard root-finding software
package that has passed the test of time very well.

It was also conjectured by Smale that the Weierstrass method and Ehrlich–Aberth
methods admit attracting cycles, an issue that may seem as natural from the point
of view of dynamical systems as it seems unlikely from the root finding perspective.
Despite the age of the methods, such feature had never been observed numerically,
and a frequent assumption in the numerical analysis community was that they “always
converge unless good reasons exist for the opposite” (such as preserved symmetries).

However, we established recently [RSS20] that for every degree greater or equal to
3, there is an open set of polynomials with an attracting 4-cycle for the Weierstrass
method (in the Jacobi variant).

An interesting dynamical difference of Newton’s method to the Weierstrass and
Ehrlich-Aberth method can be observed at infinity. For the Newton method, ∞∈ Ĉ is
a repelling fixed point. So it is only possible to go to infinity by doing it in finite time,
i.e., landing on a critical point of p and thus a pole of Np . In contrast, we showed that
the Weierstrass method and the Ehrlich–Aberth methods both have orbits that diverge
to infinity but are well defined for all time. See [Rei20b]. This dynamical possibility
seems to not have been anticipated by the numerical analysis community.

These results were obtained by us during the past few years, partly in collaboration,
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1 Introduction – 1.3 Self-Similar groups

but do not form part of our thesis.

1.3 Self-Similar groups
We give a short introduction into self-similar groups motivated from automaton

groups. For a more in-depth discussion see for example [Nek05].
The study of self-similar groups originated from the study of groups generated by

Mealy automata. A Mealy automaton is a finite-state machine that transforms words
in an input alphabet into words in an output alphabet, transforming one letter at a
time. We will only consider Mealy automata with the same input and output alphabet.
A Mealy automaton is then determined by its state set S and its alphabet X and its
transition function τ : S ×X → X ×S. We will always assume that the state set is finite,
while the alphabet might be infinite. We will write τ(q, x) also as (q(x), q|x) and say
that q(x) is the image of x under q and q|x is the section of q at x.

A classical way to visualize a Mealy automaton is by using a Moore diagram. This
diagram has as vertices the set S and for every q ∈ S, x ∈ X , we insert a edge from q to
q|x labeled x|q(x). See for example Figure 1.2 for the Moore diagram of what we will
call the Basilica automaton. It was already studied in [GŻ02].

a b

e

1|0

0|1

0|0

1|1

0,1|0,1

Figure 1.2 – Moore Diagramm of Basilica automaton

The transition function τ : S ×X → X ×S of a Mealy automaton can be recursively
extended to a function τ : S × X ∗ → X ∗ × S. A way to compute this extension for
q ∈ S, v ∈ X ∗ is to start with the concatenation qv and iteratively substitute substrings
of the form q ′x for q ′ ∈ S, x ∈ X with q ′(x)q ′

|x . Each substitution moves the state
symbol one letter to the right, and the resulting string is the concatenation of q(v) and
q|v . See Figure 1.3 for an example.

Each state q ∈ S determines a mapping X ∗ → X ∗ via v 7→ q(v). If these mappings
are bijections for all q ∈ S, we say that the Mealy automaton is a group automaton.
It is straightforward to check that it is enough to verify this on words of length 1: if
x 7→ q(x) is a bijection on X for all q ∈ S, an easy induction argument shows that in
this case also all extended mappings on X ∗ are bijections. We see that the Basilica
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1 Introduction – 1.3 Self-Similar groups

automaton is an example of a group automaton. Here the state e acts as the identity
on X ∗, so it is an identity state. Identity states are also commonly denoted by 1.

The mappings on X ∗ given by a state of a Mealy automaton satisfy an additional
property, they are prefix-preserving: if v ∈ X ∗ is a prefix of w ∈ X ∗, then q(v) is a prefix
of q(w). We can formalize this structure using the standard X -regular tree. Its vertices
are words in X ∗, and for every v ∈ X ∗, x ∈ X we have an edge from v to v x. The empty
word ; is the root of the tree. It is custom to also use X ∗ as a notation for this tree.
Now for v ∈ X ∗, the set of descendents of v is v X ∗, the set of words that have v as a
prefix. Note that the map w 7→ v w gives a natural identification of X ∗ and v X ∗.

We denote the set of rooted tree automorphisms by Aut(X ∗). In this setting, every
state of a group automaton determines an element of Aut(X ∗).

Let g ∈ Aut(X ∗) be a rooted tree automorphism of X ∗. For every v ∈ X ∗, the auto-
morphism g restricts to an isomorphism between v X ∗ and g (v)X ∗. Composing the

isomorphisms X ∗ ∼= v X ∗ g−→ g (v)X ∗ ∼= X ∗ we obtain an automorphism g |v ∈ Aut(X ∗)
uniquely determined by g (v w) = g (v)g |v (w) for all w ∈ X ∗. We call g |v the section of g
at v . A automorphism g ∈ Aut(X ∗) is completely determined by its first level sections(
g |x

)
x∈X and the action on the first level x 7→ g (x). This is classically recorded in the

wreath recursion Aut(X ∗) ∼= (∏
x∈X Aut(X ∗)

oSym(X ). We record here classical cocycle
formulas for sections:

(g |v )|w = g |v w

(g h)|v = g |h(v)h|v
(g−1)|v = (g |g−1(v))

We say that S ⊂ Aut(X ∗) is self-similar if it is closed under taking sections. A self-
similar group is a subgroup of Aut(X ∗) that is self-similar. From the cocycle formulas,
it is easy to see that the group generated by a self-similar set is also self-similar. An
automorphism g ∈ Aut(X ∗) is called a finite state automorphism if the set of sections
{g |v : v ∈ X ∗} is finite. From the cocycle formulas, we also see that the set of finite state
automorphisms form a group Aut f .s.(X ∗).

For a group automaton given by τ : S×X → X ×S, letΦ : S → Aut(X ∗) be the map that
associates to every state q ∈ S its mapping v 7→ q(v). Then Φ(S) is a self-similar set,
more precisely, we have Φ(q|v ) = (Φ(q))|v , so the two notions of sections agree. Since
we assume that the state set S is finite, we have that the image Φ(S) is in Aut f .s.(X ∗).
Conversely, given a finite state automorphism g ∈ Aut f .s.(X ∗), it is possible to construct
a group automaton with the set of states equal to the set of sections of g , such that
g is the associated automorphism of a state of the group automaton. So finite state
automorphisms are precisely the automorphisms that can be described by group
automata with finitely many states.

There is an additional stratification of Aut f .s.(X ∗) due to Sidki [Sid00] based on
activity growth. We give an overview for finite alphabets X here, see Chapter 2 for
the necessary adjustments for infinite alphabets. For g ∈ Aut f .s.(X ∗), let αn(g ) ∈ N
be the number of words v of length n for which the section g |v is non-trivial. From
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an automaton representation of g , it follows that αn either grows exponentially or
polynomially. The finite state automorphisms that have activity growth bounded by a

degree n form a subgroup of Aut f .s.(X ∗). We are particularly interested in Aut f .s.
B

(X ∗),
the group of automorphisms of bounded activity growth.

a0011 → 1b011 → 10a11 → 100e1 → 1101e

Figure 1.3 – Computation of τ(a,0011) = (1001,e) for the Basilica automaton.

Groups generated by automata have often exotic properties in the perspective of
geometric group theory. In particular, the first example of a group of intermediate
word growth was the Grigorchuk group [Gri83], an automaton group on a binary
alphabet. Our focus will be on amenability, see Section 1.5.

1.4 Iterated Monodromy Groups
Iterated monodromy groups connect holomorphic dynamics and self-similar groups.

We discuss here the construction for post-singularly finite polynomials.
Before we discuss iterated monodromy groups, let us recall monodromy groups. For

a polynomial f of degree at least two, it is a classical fact from the theory of Riemann
surfaces that f restricts to an unbranched covering f : C\ f −1(S( f )) →C\ S( f ). For a
base point t ∈ C \ S( f ), the fundamental group π1(C \ S( f ), t) acts on f −1(t) by path
lifting. This is the monodromy action.

If f is post-singularly finite, then the singular set of every iterate is contained in the
post-singular set P( f ) of f . In particular, every iterate f n restricts to an unbranched
covering f : C\ f −n(P( f )) →C\ P( f ). So for a base point t ∈C\ P( f ) the fundamental
group π1(C\ S( f ), t ) acts on all points in the backwards orbit of t at the same time. It
is convenient to organize the backwards orbit of t into the dynamical preimage tree
T . Its vertex set is the disjoint union

⊔
n≥0 f −n(t) such that for a vertex w ∈ f −n(t),

its parent is its image f (w) ∈ f −n(t ). The action of π1(C\ P( f ), t ) is called the iterated
monodromy action, and the resulting permutation group the iterated monodromy
group.

For a post-singularly finite polynomial of degree d , the dynamical preimage tree is a
rooted regular tree of degree d . If we pick a suitable labeling of T , i.e., an identification
of T with a standard regular tree X ∗ for some alphabet X of cardinality d , we can
realize the iterated monodromy group of f as a self-similar group of X ∗.

There are two major ways to introduce a labeling on T . The first method is to use
a dynamical partition and label based on the itinerary with respect to the partition.
For example, if f = z2 + c is quadratic polynomial such that the critical value c is
strictly preperiodic, then J ( f )\{0} has two connected components. We use as alphabet
X = {L,R}. For a base point t ∈ J (F ) \ P( f ), we inductively define a labeling as follows:
we identify t with the empty word ; and if w ∈ f −n(t ) is labeled via v ∈ X n , we label
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1 Introduction – 1.4 Iterated Monodromy Groups

the preimage of w that is in the same connected component as c in J( f ) \ {0} by vL
and the other one by vR.

This labeling for strictly preperiodic quadratic polynomials is a special case of the
construction in [BN08]. There the construction is based on spiders. This allows to also
compute the iterated monodromy action and to show that the iterated monodromy
action can be computed from the kneading sequence of quadratic polynomials.

Another labeling method is based on bisets. Let f be a post-singularly finite polyno-
mial and t ∈C\ P( f ). The biset M f is the set of homotopy classes of paths in C\ P( f )
from t to a preimage of t . The biset M f has commuting π1(C\ P( f ), t) left and right
actions, see Figure 1.4 for illustration. For a path p : [0,1] →C\ P( f ) from t to a preim-
age w of t , and g a loop at t , there is a unique lift g w of g that is a path from w to
a preimage w ′ (potentially equal to w) of t . The left action of g on p is given by the
concatenation of g w p, now a path from t to w ′. We should note that we concatenate
paths in the same way as functions, i.e., “from right to left”. The right action of g on p
is simply the concatenation pg , this is again a path from t to w ′.

t

w w ′

g

p

g w

t

w

g

p

p · g

t

w w ′

p

g w

g ·p

Figure 1.4 – Action on biset

The the action of π1(C \ P( f ), t) on the right of M f is free, with right orbits corre-
sponding to preimages of t . So the biset M f is a permutational bimodule in the sense
of [Nek05], and there is a general algebraic machinery to produce a self-similar group.
The construction is based on choosing a basis X , i.e., a representative system of the
right action, so for every preimage w a choice of a path from t to w .

We sketch the construction of the labeling based on the choice of the basis. If X is
a basis of M f consisting of paths (px)x∈X , we construct a labeling on T as follows.
The root t is identified with the root ; of X ∗. For w ∈ f −n(t) and x ∈ X , the lift of px

under f n starting at w is a path pw
x from w to a point w ′ ∈ f −n−1(t ). If w is labeled by

v ∈ X n , then we label w ′ by xv . Note that we appended x at the beginning of v . In
general, w ′ is not a preimage of w . One can show inductively that this defines a valid
labeling: if u ∈ f −n−1(t) is identified with v y for some y ∈ X , then u is a preimage of
w , and so pu

x is a preimage of pw
x . So the point labeled xv y is a preimage of the point

labeled xv .
Under this labeling, the iterated monodromy action can be completely recovered

from the biset.
Based on spiders, [Nek09] shows that every polynomial has an iterate whose iterated

monodromy action can be described in terms of dendroid automata. In particular,
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iterated monodromy groups of polynomials are always isomorphic to self-similar
groups generated by bounded automata.

Many classical automata groups arise as iterated monodromy groups of polyno-
mials: the Basilica automaton [GŻ02] is associated to the basilica z2 − 1, and the
Fabrykowski–Gupta [FG91] group is associated to a dendroid polynomial of degree 3.

1.5 Amenability
We give a short overview about amenable groups and amenable actions. We will

only consider discrete groups. For a general discussion of amenability for locally
compact groups see [Pat88; Pie84].

Definition 1.5.1. Let G be a group acting on a set X . We call the action amenable if
there is an invariant mean, i.e. a linear functional m : l∞(X ) →R such that

— m(1) = 1;
— m( f ) ≥ 0 for all f ∈ l∞(X ), f ≥ 0;
— m( f · g ) = m( f ) where ( f · g )(x) = f (g (x)) for all f ∈ l∞(X ), g ∈G .

We say that the group G is amenable if its regular action on itself is amenable.

Amenable groups are closed under taking extensions, subgroups, quotients and
direct limits. In particular, a group is amenable if and only if its finitely generated
subgroups are amenable.

An amenability criterion that is often used are Følner sequences: for a group G and
a finite subset S ⊂G , a Følner sequence for S is a sequence (Fn)n∈N of finite subsets of
G such that limn→∞ |Fn SδFn |

|Fn | = 0. Here FN SδFn is the symmetric difference between

FnS = {
g s : g ∈ Fn , s ∈ S

}
and Fn . A group is amenable if and only it admits a Følner

sequence for every subset S ⊂ G . If G is finitely generated, it is enough to admit a
Følner sequence for some generating set S of G . For countable amenable groups,
there is a sequence (Fn)n∈N of finite subsets of G that is a Følner sequence for all finite
subsets S ⊂G at the same time.

Finite groups are amenable, as the (normalized) counting measure is an invariant
mean. For group Z, it is easy to see that Fn = {−n,−n +1, . . .n −1,n} is a Følner se-
quence. So Z is amenable. Using the closure properties of amenability, it follows that
every abelian group is amenable.

Finite groups and abelian groups are the basic building blocks of elementary amenable
groups. The class of elementary amenable groups is the smallest class of groups that
contains finite and abelian groups and is closed under taking extensions, subgroups,
quotients and direct limits. In fact, every elementary amenable group can by con-
structed from finite and abelian groups only by taking extensions and direct limits.

Groups of intermediate growth, such as the Grigorchuk group [Gri83], are amenable
but not elementary amenable. Similarly to elementary amenable groups we can
consider the class of elementary subexponentially amenable groups that are obtained
from groups of subexponential growth via extensions and direct limits.
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The most prominent example of non-amenable groups are non-abelian free groups
and hence all groups containing non-abelian free groups. The basilica group is one of
the first examples of a group that is amenable [BV05] but not elementary subexpo-
nentially amenable [GŻ02].

For groups acting on topological spaces, a powerful amenability criterion is given in
[JNS16]. It allows for a recursive proof of amenability for groups of homeomorphisms
based on a reduction to a simpler group of germs that is known to be amenable. A
key assumption is that every group element has only finitely many germs not in the
simpler group of germs, and the orbits of the points with exceptional germs have
a recurrent simple random walk on their orbital Schreier graph. The recurrence
condition has been replaced by the crystallized notion of extensive amenability in
[Jus+16].

The criterion is particularly applicable to the groups generated by automata with
polynomial activity growth with recurrent simple random walks on their orbital
Schreier graph. For example, the results of [BKN10] that groups generated by bounded
automata on finite alphabets, in particular iterated monodromy groups of polynomi-
als, are amenable, have been put in a unified setting.

1.6 Overview over the thesis
The main results of this thesis are presented in three independent chapters that are

written as separately publishable papers, and that are already available in preprint
form [Rei20c; Rei20a; Reib].

1.6.1 Chapter 1: Introduction
This is the introduction of the thesis where we provide some background.

1.6.2 Chapter 2: Iterated Monodromy Groups of Exponential
Maps

In Chapter 2 we start with the study of iterated monodromy groups in the exponen-
tial family. We start by defining iterated monodromy groups for entire functions.

For the exponential family, there is a strong analogy to quadratic polynomials, based
on the combinatorics of dynamic rays. We will use the dynamically defined labeling
on the preimage tree. A key difference between the exponential family and general
entire functions is the fact that the monodromy of the exponential function isZ and in
particular abelian. So the dynamical pre-image tree carries an additional Z-symmetry
that is given by translations by 2πi . We formalize this extra symmetry into the notion
of a regular Z-tree. The resulting self-similar groups are then ZC groups in the sense
of [OS10]. We show that the iterated monodromy group of an exponential function
can be explicitly described in terms of the kneading sequence.
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Theorem (Structure result for the exponential family). Let f be a post-singularly finite
exponential function with kneading sequence x1 . . . xk y1 . . . yp ∈Zω. Then the iterated
monodromy action of f is conjugate to the action of K (x1 . . . xk , y1 . . . yp ) on Z∗.

Here K (x1 . . . xk , y1 . . . yp ) is the group generated by a bounded activity automaton
K(x1 . . . xk , y1 . . . yp ) defined explicitly in terms of the kneading sequence, in strong
analogue to the automata for quadratic polynomials constructed in [BN08].

We continue with a general discussion of the groups K (x1 . . . xk , y1 . . . yp ) for se-
quences x1 . . . xk , y1 . . . yp ∈ Z∗ with xk 6= yp . We show that for these groups, the
Schreier graph on Zω is a forest of trees with countably many ends. In particular,
we have an elementary proof that the action on Zω is recurrent.

We conclude Chapter 2 with the following theorem.

Theorem. The groups K (x1 . . . xk , y1 . . . yp ) are amenable but not elementary subexpo-
nentially amenable.

We use the amenability criterion of Chapter 3 to show amenability and the technique
of [Jus18] to conclude that the groups are not elementary subexpoentially amenable.

1.6.3 Chapter 3: Amenability of Bounded Automata Groups on
Infinite Alphabets

In Chapter 3 the group theoretical core of the thesis is discussed. We move to gen-
eral self-similar groups acting on infinite alphabets and prove our main amenability
criterion.

We want to show amenability for a large class of groups generated by bounded
activity automata, having iterated monodromy groups of entire functions in mind.
When we change the cardinality of the alphabet X from finite to countably infinite, the
symmetric group Sym(X ) moves from a finite group (and thus elementary amenable)
to an enormous uncountable group containing copies of all countable groups via
Cayley’s theorem. So we have to impose some restrictions on the first level action. We

do this by considering an amenable group P ⊂ X and the group Aut f .s.
B

(X ∗;P ), which
correspond to bounded activity automata where the action of every state on X is in P .
We show the following theorem.

Theorem (Amenability for bounded activity on infinite alphabets). Let X be a count-
ably infinite set. Let P be an amenable subgroup of Sym(X ). Suppose that the action of

P on X is recurrent. Then Aut f .s.
B

(X ∗;P ) is amenable.

The amenability criterion is based on the work of [JNS16]. A key step in the proof is

to show that the action fo Aut f .s.
B

(X ∗;P ) on the right infinite words Xω is extensively
amenable in the sense of [Jus+16]. For this it suffices to show that the random walk on
every orbital Schreier graphs is recurrent. We show that we can promote recurrence
on the first level to the orbital Schreier graphs of groups generated by bounded activity
automorphisms. For this we need to use shortenings where we contract infinite
subgraphs to points.
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1.6.4 Chapter 4: Iterated Monodromy Groups of Entire Maps
and Dendroid Automata

In Chapter 4 we discuss the structure of iterated monodromy groups for general
post-singularly finite entire transcendental functions. We extend the notion of den-
droid automata from [Nek09] to infinite alphabets and provide a structure result about
iterated monodromy groups by the following theorem.

Theorem (Structure result for general entire functions). Let f be a post-singularly
finite entire function. Then the iterated monodromy group of f is a self-similar group
on an infinite alphabet, generated by a dendroid automaton. In particular, it is a
self-similar group of bounded activity growth.

We show this result using the language of bisets and spiders. In particular, we extend
the notion of a dendroid set of permutations to infinite alphabets as well. By doing
this, we show that structurally finite entire functions have elementary amenenable
monodromy groups. In order to obtain the theorem, we have to prove the existence
of periodic spiders. Since we are working with spiders only up to isotopy, we forgo
the construction of dynamical partitions that are set-wise periodic. This greatly sim-
plifies our construction. An alternative approach would use dynamical partitions as
developed in [Mih09] based on dynamic rays, or more generally dynamical partitions
based on dreadlocks as in [Pfr19].

We also compare the Schreier graph of a post-singularly finite entire function with
the classical notion of line complexes (see [GO08, Chapter 7]), in order to show that
the monodromy action is always recurrent. So we can apply the results of Chapter 3 to
conclude with the following theorem.

Theorem (Amenability of IMGs of entire functions). Let f be a post-singularly finite
entire transcendental function. Then the iterated monodromy group of f is amenable if
and only if the monodromy group of f is amenable.

1.6.5 Chapter 5: Outlook
We conclude this thesis with a brief outlook on further work / applications / research

plans.
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2 Iterated Monodromy Groups of
Exponential Maps

2.1 Introduction
In the iteration theory of rational maps, iterated monodromy groups are self-similar

groups associated to post-singularly finite dynamical systems. These groups encode
the Julia set of a rational function from the point of view of symbolic dynamics [Nek05].
Conversely, many classical examples of self-similar groups with exotic geometric
properties, such as the Fabrykowski-Gupta [FG91] and the Basillica group [GŻ02],
arise in a natural way as iterated monodromy groups of rational maps.

Much of the study of symbolic dynamics of quadratic polynomials has been done
in terms of dynamic rays, as well as in terms of kneading sequences [BS02; MT88;
Thu09], before Iterated Monodromy Groups were introduced as a new and powerful
tool [Nek05; BN06]. The relationships between these groups and kneading sequences
were developed in [BN08].

This paper is a first in a series of papers that study of iterated monodromy groups
of entire functions. Here we focus on a particularly fundamental class of functions,
the exponential family, motivated by the well known strong analogy between the
combinatorics of quadratic polynomials and exponential maps (see e.g. [Bod+00]).
Like polynomials, exponential maps have so far only been studied in terms of rays and
kneading sequences (see e.g. [SZ03]) resulting in a complete classification in [LSV08],
based on [HSS09].

In this paper, we introduce iterated monodromy groups for exponential maps
and compare them to self-similar groups defined just in terms of formal kneading
sequences. For an exponential map f , we show that the iterated monodromy action
of f is conjugate to the self-similar group action defined by the kneading sequence
of f . For all kneading sequences, we show that the obtained group is a left-orderable
amenable group that is residually solvable, but not residually finite.

We give a short background in holomorphic dynamics in section 2, with a special
focus on the exponential family. Next in section 3 we provide the algebraic and graph
theoretic background to define the iterated monodromy group of a post-singularly
finite entire function. We give an explicit description of the iterated monodromy group
in terms of kneading automata in section 4, see Theorem 2.B. The structure of the
orbital Schreier graphs is investigated in section 5, where we show in Theorem 2.C that
every component of the (reduced) orbital Schreier graph is a tree with countably many
ends. This result together with the work in [Rei20a] is then used in section 6, where we
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Maps

collect group theoretic properties of the iterated monodromy groups of exponential
functions, in particular amenability (see Theorem 2.D).

2.2 Dynamics of Exponential Maps

2.2.1 General entire dynamics
We give a very short introduction into transcendental dynamics relevant to our

needs, see [Sch10] for a survey. We start with the definition of a post-singularly finite
entire function.

Definition 2.2.1. Let f : C→C be an entire function. A critical value is the image of a
critical point, i.e. f (c) where f ′(c) = 0. An asymptotic value is a limit limt→∞ f (γ(t))
where γ : [0,∞) → C is a path with limt→∞γ(t) = ∞. The set of singular values is
defined as

S( f ) = {
critical and asymptotic values

}
and the set of post-singular values is P( f ) =⋃

n≥0 f n(S( f )). The map f is called post-
singularly finite if P( f ) is finite.

The following lemma is the basis of our consideration:

Lemma 2.2.2 ([Sch10, Theorem 1.13]). Let f be an entire function. Then f restricts to
an unbranched covering from C\ f −1(S( f )) to C\ S( f ). 4

In fact, an alternative definition of S( f ) is that S( f ) is the smallest closed subset
S such that f restricts to an unbranched covering over C \ S. As P( f ) is a closed
and contains S( f ), we see that that f also restricts to an unbranched covering from
C\ f −1(P( f )) to C\ P( f ). As P( f ) is forward invariant, we have that P( f ) ⊂ f −1(P( f )) ⊂
f −2(P( f )) ⊂ . . . is an increasing chain of closed subsets. From this we can show by
induction that f n restricts to an unbranched covering from C\ f −n(P( f )) →C\ P( f ),
using the fact that compositions of coverings of manifolds are again coverings.

The escaping set I( f ) is the set of points which escape to infinity under the iteration
of f , i.e.

I( f ) = {z : lim
n→∞ f n(z) =∞}.

Definition 2.2.3. A dynamic ray is a maximal injective curve γ : (0,∞) → I( f ) with
γ(t ) →∞ as t →∞.

We say that γ lands at a if γ(t ) → a for t → 0.

We should note that this definition is not the precise standard definition given in
[Sch10], however, it is appropriate in the study of post-singularly finite exponential
maps as done in [LSV08]. We will only use dynamic rays for exponential maps, so this
is not an issue for us.
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2.2.2 Combinatorics of exponential maps
The exponential family is the family of functions Eλ(z) =λexp(z) forλ ∈C∗ :=C\{0}.

The only singular value of λexp(z) is 0. It is the limiting value along the negative real
axis. It is also an omitted value, so for the exponential family, Lemma 2.2.2 specialized
to the well-known fact that every function in the exponential family is a covering from
C to C∗.

This is in fact a universal covering, and the group of deck transformations are given
by translations of 2πi . In the following, we will often consider collections which
form a free orbit under translations with multiplies of 2πi . A prime example is the
set of preimages E−1

λ
(z) of any point z ∈ C∗. As S(Eλ(z)) = {0}, we have P(Eλ(z)) ={

E n
λ

(0) : n ≥ 0
}= {0,λ,Eλ(λ), . . . }.

In this subsection, f will always denote a post-singularly finite function in the
exponential family. In this setting, 0 is a strictly preperiodic point, as it is an omitted
value and has finite forward orbit. We denote the preperiod of 0 as k and the period of
0 as p, so P( f ) = {0, f (0), . . . f k+p−1(0)} with f k+p (0) = f k (0).

The dynamics of post-singularly finite exponential maps can be studied via dynam-
ical rays, as seen in the following theorem:

Theorem 2.A ([SZ03]). Let f (z) = λexp(z) be a post-singularly finite function in the
exponential family. Then there is a dynamic ray landing at 0 which is preperiodic. 4

We collect some facts about dynamic rays of exponential maps that are all discussed
in [SZ03; LSV08].

Fact 2.2.4. 1. Two different dynamic rays do not intersect, but they might land at
the same point.

2. The preimage of a dynamic ray is a family of dynamic rays forming a free orbit
under translations with multiplies of 2πi .

3. If γ lands at a, then for every b ∈ f −1(a) there is a unique preimage component
of γ landing at b.

4. If γ lands at 0, then all preimage components separate the plane, the connected
components of C\ f −1(a) also form a free orbit under translations with multiples
of 2πi .

4
Definition 2.2.5. A ray spider is a family S= (γa)a∈P( f ) such that γa is a dynamic ray
landing at a for each a ∈ P( f ).

Remark 2.2.6. In this definition, we do not require any invariance properties.
Our notion of a ray spider is a special case of the general notion of spiders given in

[SZ03]. By Theorem 2.A, there exists a ray spider: if γ is a dynamic ray landing at 0,
then γ f i (0) = f i (γ),0 ≤ i < k +p is a ray spider. This spider is not necessarily forward

invariant, as it might happen that f k (γ) 6= f k+p (γ) (the period of the rays may be a
multiple of the period of the landing point). This is not an issue in our construction as
we will consider the family of pullbacks of a given spider.
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Definition 2.2.7. Let S= (γa)a∈P( f ) be a ray spider. The pullback of S is the ray spider
(γ̃a) where γ̃a is the unique preimage of γ f (a) landing at a.

The dynamical partition associated to S is the partition of C\ f −1(γ0) into its con-
nected components. We denote the connected component of 0 by U0 and define
Un =U0 +2πi n. Note that the dynamical partition only depends on the ray landing at
0.

The kneading sequence of f is the sequence (kn)n∈N so that f n(0) ∈Ukn . The knead-
ing sequence is in fact independent of S, see [LSV08] for a more detailed discussion.

Example 2.2.8. Let k ∈ Z \ 0, and consider f (z) = 2kπi exp(z). For this map, 0 is
mapped to 2kπi , which is a fixed point of f . Hence f is post-singularly finite with
P( f ) = {0,2kπi }. Let γ0 be a dynamic ray landing at 0, and let U be the associated
dynamical partition. Then 0 ∈U0 by definition of U0 and 2kπi ∈Uk =U0 +2kπi , so
the kneading sequence of f is 0k.

2.3 Iterated Monodromy Groups

2.3.1 The dynamical preimage tree T

Let f be a post-singularly finite entire function and t ∈C\ P( f ).

Definition 2.3.1. Choose a base point t ∈C\ P( f ). Let Ln := f −n(t ) be the preimage of
t under the n-th iterate of f .

The dynamical preimage tree T is a rooted tree with vertex set
⊔

n≥0 Ln (where
⊔

denotes disjoint union) and edges w → f (w) for w ∈ Ln+1, f (w) ∈ Ln . Its root is t .

The dynamical preimage tree is always a regular rooted tree, i.e. all vertices have the
same number of children. For polynomials, this number is the degree of the polyno-
mial. For transcendental entire functions, every vertex has countably infinite many
children. We will show in subsection 2.3.3 that for postsingularly finite exponential
maps, the dynamical preimage tree has an extra regularity based on the periodicity of
the exponential map.

t = L0

f −1(t ) = L1

f −2(t ) = L2

Figure 2.1 – Dynamical preimage tree

26



2 Iterated Monodromy Groups of Exponential Maps – 2.3 Iterated Monodromy
Groups

2.3.2 Iterated Monodromy Action
Each level of T is the preimage of t under a covering map, namely f n : C\ f −n(P( f )) →

C\ P( f ). Hence π1(C\ P( f ), t ) acts on Ln via path lifting: if γ : [0,1] →C\ P( f ) is a loop
based on t and v ∈ Ln is a n-th preimage of t , then there is a unique lift γv making the
following diagram commute: (

C\ f −n(P( f )), v
)

([0,1] ,0)
(
C\ P( f ), t

)f n

γ

γv

So γv (0) = v , and γv (1) ∈ Ln might be another n-th preimage. We define [γ](v) := γv (1).
Using the homotopy lifting properties of coverings, we can see that this defines an
action of π1(C\ P( f ), t) on Ln . If w ∈ Ln+1 is a child of v , then the following diagram
commutes (by uniqueness of lifts): (

C\ f −n−1(P( f )), w
)

(
C\ f −n(P( f )), v

)
([0,1] ,0)

(
C\ P( f ), t

)

f n

f n

γ

γw

γv

By commutativity of the diagram f (γw (1)) = γv (1) so [γ](w) is also a child of [γ](v).
This means that actions on the levels are compatible and give rise to an action of
π1(C\ P( f )) on T . This is the iterated monodromy action.

Definition 2.3.2. Let f be a post-singularly finite entire function, t ∈ C \ P( f ). Let
φ : π1(C \ P( f ), t) → Aut(T ) be the group homomorphism induced by the iterated
monodromy action. The iterated monodromy group of f with base point t is the
image of φ. By the first factor theorem we have

IMG( f ) ∼=π1(C\ P( f ), t )�kerφ

This definition depends a priori on the base point t ∈C\ P( f ). For a different base
point t ′, every path from t to t ′ gives rise to an isomorphism of preimage trees over t
and over t ′, so we can identify the groups up to inner automorphisms. See [Nek05,
Proposition 5.1.2] for a detailed discussion in the rational case.
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2.3.3 Z-regular rooted trees
We use the following definition of rooted trees:

Definition 2.3.3. A rooted tree is a tuple T = (V ,E ,r ) such that (V ,E ) forms a tree (with
vertex set V and edge set E) and r ∈V , which we call the root of T . We endow T with
the unique orientation so that all vertices are reachable from the root, i.e. for every
vertex v , there is directed path from the root to v .

If (v, w) is a directed edge for this orientation, we say that w is a child of v and v is
the parent of w . If v has no children, we call it a leaf.

If w is reachable form v , we say that w is a descendant of v and v is an ancestor
of w . We denote by Tv the rooted tree which is the induced subgraph on the set
of descendants of v together with v as the new root. An end of a rooted tree T is a
sequence vn so that v0 is the root of T and vn+1 is a child of vn . We denote by ∂T the
set of ends of T .

We will mainly consider countable infinite trees without leaves.
In fact, ∂T can be defined without fixing a root of T , one way is by considering

equivalence classes of geodesic rays, where two geodesic rays are equivalent if they
have a common tail. Given a root r and a geodesic ray γ, there is always a unique
geodesic ray starting at r equivalent to γ. Also, ∂T is a totally disconnected Hausdorff
space with clopen subset ∂Tv ⊂ ∂T . The topology is also independent of the root. If T
is a locally finite tree without leaves, then ∂T is compact.

Definition 2.3.4. A Z-regular rooted tree T is a tuple (V ,E ,r,η), where (V ,E ,r ) is a
rooted tree and η is a right Z-action η : V \ {r }×Z→ V \ {r } such that for all vertices
v ∈V , the set of its children forms a free orbit under the action.

Note that this implies that the root is fixed by the action, as it is the only vertex
without a parent. Also the tree has no leaves, as the empty set is not a free orbit under
a Z-action.

An isomorphism between Z-regular rooted trees is a tree isomorphism which pre-
serves the root and commutes with the additional right Z-actions. We denote by
AutZ(T ) the group of automorphisms of T as a Z-regular rooted tree. Every element
of AutZ(T ) preserves the root of T and acts by a translation on the first level. We
denote by ρ : AutZ(T ) →Z the group homomorphism given by the first level action.
The kernel of ρ is the stabilizer of the first level, as every element of AutZ(T ) acts by
translation, this is also the stabilizer of any vertex on the first level. For a vertex v ∈V
and a subgroup G ⊂ AutZ(T ) we denote the stabilizer of v in G by StabG (v). We denote
the stabilizer of the first level as StabG .

Note that AutZ(T ) also acts on ∂T . This action is an fact faithful, as every vertex is
part of a sequence defining an end.

Example 2.3.5. The standard Z-regular tree has as vertex set Z∗, the set of finite
words in Z. Its root is the empty word ;. Its edges are all pairs of the form (v, vn) for
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v ∈Z∗,n ∈Z (here vn denotes the word v concatenated with the letter n). So for each
vertex v , the set of it children are all words obtained by concatenating one letter to it.
Also, the set of ends can be identified with the set of right-infinite words, which we
denote by Zω.

The right action is given by

η(vn,m) = v(n +m).

So the action is by translation on the last letter. By abuse of notation, we will denote
the standard Z-regular tree also by Z∗.

The subgroups of AutZ(Z∗) were studied in [OS10] under the name of ZC-groups.
Note that if T is aZ-regular rooted tree and v is a vertex of T , then Tv is also aZ-regular
rooted tree. However, in general we have no canonical choice of an isomorphism
between T and Tv . This is different for the standard Z-regular tree:

Definition 2.3.6. For g ∈ AutZ(Z∗), v ∈Z∗ let g |v denote the unique element in AutZ(Z∗)
such that g (v w) = g (v)g |v (w). We say that g |v is the section of g at v .

We will use the following set of easily verifiable cocycle equations:

(g |v )|w = g |v w (2.3.1)

(g h)|v = g |h(v)h|v (2.3.2)

We say that g ∈ AutZ(Z∗) is of finite activity on level n if the set {v ∈Zn : g |v 6= 1} is
finite. We define autZ(Z∗) as the group of automorphisms which have finite activity
on every level. We will mainly work with subgroups of autZ(Z∗). As we work with an
infinite alphabet, we have to take care for the wreath recursion.

The wreath recursion for AutZ(Z∗) is

AutZ(Z∗) ∼=
(∏

x∈Z
AutZ(Z∗)

)
oZ

g 7→ (x 7→ g |x ,ρ(g ))

Since an automorphism in autZ(Z∗) has only finitely many nontrivial sections on the
first level, the wreath recursion for autZ(Z∗) is given by

autZ(Z) ∼=
(⊕

x∈Z
autZ(Z∗)

)
oZ

g 7→ (x 7→ g |x ,ρ(g ))

So we take the direct sum for autZ(Z∗) in the wreath recursion instead of the direct
product as for AutZ(Z∗).
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We say a subgroup G ⊂ AutZ(Z∗) is self-similar if g |v ∈ G for all g ∈ G and v ∈ Z∗.
A subgroup G ⊂ AutZ(Z∗) is self-replicating if for all v ∈Z∗ and g ∈G there exists an
h ∈G with h|v = g . It is easy to see that is is enough to check this on the first level.

Lemma 2.3.7. Let f be a post-singularly finite exponential function, t ∈C\ P( f ). Then
the dynamical preimage tree of f with base point t is a Z-regular tree and IMG( f ) is a
subgroup of AutZ(T )

Proof. The Z-regular structure is given by translation by multiples of 2πi . As two
complex numbers have the same value under the exponential map if and only if they
differ by a multiple of 2πi , it is clear that this really defines a Z-regular structure. Also,
if w is an n-th preimage of t , and γ is a loop on t , for the lift γw , the 2πi translate
of γw is also a lift of γ by the 2πi periodicity of f n . This shows that the iterated
monodromy action commutes which the Z action given by the Z-regular structure, so
IMG( f ) ⊂ AutZ(T ).

2.4 Combinatorial description

2.4.1 Automata
Definition 2.4.1. An automaton A is a map τ : Q ×X → X ×Q. We call Q the state set
and X the alphabet. We will write the components of τ(a, x) often as (a(x), a|x). Here
a(x) ∈ X is called the image of x under a, and a|x is the restriction of a at x.

A group automaton is an automaton such that for all a ∈Q, the map x 7→ a(x) is a
bijection on Q. If the alphabet is Z, that automaton is a Z-automaton if for all a ∈Q,
the map x 7→ a(x) is a translation on Z, i.e. equal to the map x 7→ x +n for some n ∈Z.

We will only consider automata which have a distinguished identity state 1, i.e.
a state such that τ(1, x) = (x,1) for all x ∈ X . We can draw automata using Moore
diagram. As vertices we take the state set Q, and if τ(a, x) = (y,b), we draw an edge
from a to b labeled x|y . Here is an example of a Moore diagram, of the so-called binary
adding machine.

a 1
0|1

1|0 0,1|0,1

Definition 2.4.2. Let A be an automaton given by τ : Q ×X → X ×Q. We extend τ to a
map Q ×X ∗ → X ∗×Q recursively via

τ(a, xv) = (a(x)a|x(v), a|x|v)

If A is a group automaton, then for each a ∈ A, the extended map X ∗ → X ∗ induces
a tree automorphism of the regular X -tree. If A is aZ-automaton, it is a automorphism
preserving the regular Z-tree structure.
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2.4.2 Kneading automata
Definition 2.4.3. Given two words x1 . . . xk , y1 . . . yp ∈Z∗ with xk 6= yp the automaton
K(x1 . . . xk , y1 . . . yp ) has alphabet Z and states a1 . . . ak ,b1 . . .bp (and the identity state
1) and the following transition function:

τ(a1, z) = (z +1,1)

τ(ai+1, xi ) = (xi , ai )

τ(b1, xk ) = (xk , ak )

τ(b1, yp ) = (yp ,bp )

τ(bi+1, yi ) = (yi ,bi )

τ(q, z) = (z,1) for all other cases.

We note that K(x1 . . . xk , y1 . . . yp ) is a Z-automaton, indeed a1 acts on Z by the
translation by one, and all other states act on Z as the identity. Figure 2.2 shows a
reduced Moore diagram of K(x1 . . . xk , y1 . . . yp ), where labels with only one letter z are
abbreviations for the label z|z and all trivial arrows ending in the identity state have
been omitted.

Example 2.4.4. The automaton K(0,k) with k ∈Z\{0} has the following (non-reduced)
Moore diagram:

1 a

b

n|n n|n +1

0|0

k|k
z|z

Here n stands for any element of Z, and z for any element of Z\ {0,k}.

Remark 2.4.5. We see that every non-trivial state has exactly one edge ending in it, so
for every non-trivial state there is a unique left-infinite path ending in it. This implies
that K(x1 . . . xk , y1 . . . yp ) is a bounded activity automaton in the sense of [Sid04]: For
any length m, there are n +k paths of length m ending in a non-trivial state in the
Moore diagram, so for any q , the set

{
v ∈Zm : q |v 6= 1

}
has cardinality bounded by

n +k.

We denote by K (x1 . . . xk , y1 . . . yp ) the group of automorphisms of Z∗ generated by
K(x1 . . . xk , y1 . . . yp ).

Theorem 2.B. Let f be a post-singularly finite exponential function with kneading
sequence x1 . . . xk y1 . . . yp ∈Zω. Then the iterated monodromy action of f is conjugate
to the action of K (x1 . . . xk , y1 . . . yp ) on Z∗.
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1 a1 · · · ak b1

b2

...

bp

n|n +1 x1 xk−1 xk

y1 y2

yn−1yn

Figure 2.2 – Moore diagram of kneading automata

In particular, for functions of the form 2πi k exp(z) with k ∈ Z \ {0}, the iterated
monodromy action is conjugate to the action of the automata group K (0,k) discussed
in Example 2.4.4.

Proof. We choose a ray spider S0 for f and consider the sequence Sn , where Sn+1

is the pullback of Sn . We denote by γz,n the ray in Sn landing at z, also let U∗,n be
the dynamical partition induced by Sn . Choose a base point t ∈ C \

⋃
z∈P( f )γz,0. We

recursively define an isomorphism between the dynamical preimage tree T and the
standard Z-tree Z∗. We send the root t to the empty word ;. Suppose we already
defined the bijection on Ln ⊂ T , and let w ∈ Ln be mapped to v ∈Zn . Then for the
dynamical partition U∗,n , there is exactly one child of w in each component. We send
the child lying in Um,n to vm.

By construction, this defines an isomorphism of Z-trees.
The complement of each ray spider is a simply connected domain. For two points

w1, w2 ∈C\
⋃

z∈P( f )γz,n let gn(w1, w2) be a path from w1 to w2 crossing no ray of Sn

and let gz,n(w1, w2) be a path from w1 to w2 crossing only the ray of γz,n once in a
positive sense (so that gn(w1, w2) composed with gz,n(w1, w2) has winding number
1 around z) and no other ray of Sn . The homotopy classes of gn are well defined
in the fundamental groupoid Π1(C \ P( f )). Let us investigate the lifting behavior of
these homotopy classes: let w, w ′ ∈C \

⋃
z∈P( f )γz,n and let v ∈ f −1(w). Let g v

n (w, w ′)
(or g v

z,n(w, w ′)) denote the lift of gn(w, w ′) (respectively gz,n(w, w ′)). Then g v
n (w, w ′)

is a path in Cmeeting no preimage of γz,n for z ∈ P( f ). Let v ′ be the preimage of w ′ in
the same component of U∗,n as v . Then g v

n (w, w ′) must be homotopic to gn+1(v, v ′).
Similarly, g v

0,n(w, w) is a path which doesn’t cross any ray ofSn+1, and as g0,n(w, w) has
winding number 1 around 0, the lift g v

0,n(w, w) must end in v+2πi . Hence g v
0,n(w, w) ∼=

gn+1(v, v +1) and by composition g v
0,n(w, w ′) ∼= gn+1(v, v ′+1). Let z ∈ P( f ) \ 0. Then

g v
z,n(w, w ′) crosses no boundary of U∗,n , so it must end in w ′. If z̃, the preimage of z

in the same component of U∗,n is in P( f ), then g v
z,n(w, w ′) ∼= g z̃,n+1(v, v ′), otherwise

g v
z,n(w, w ′) ∼= gn+1(v, v ′).
Now π1(C \ P( f ), t) is freely generated by (gz,0(t , t))z∈P( f )). Numerate P( f ) by z1 =
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0, zi+1 = f (zi ),1 ≤ i ≤ n +k −1. We claim that the group homomorphism given by

gzi ,0(t , t ) 7→ ai ,1 ≤ i ≤ k (2.4.1)

gzi ,0(t , t ) 7→ bi−k k +1 ≤ i ≤ n +k (2.4.2)

conjugates the iterated monodromy action of f to the action of K (x1 . . . xk , y1 . . . yp ).
This follows from the pullback behavior.

2.5 Schreier Graphs
For this section, we fix x1 . . . xk , y1 . . . yp with xk 6= yp . We will give a combina-

torial description of the action of K (x1 . . . xk , y1 . . . yp ) on the standard Z-tree Z∗.
We will work in this section with the generating set S := {

a1, . . . , ak ,b1, . . . ,bp
}

of
K (x1 . . . xk , y1 . . . yp ).

Definition 2.5.1. Let n ∈N. The n-th level Schreier graph has vertex set Zn and edges
v → s(v) for v ∈Zn , s ∈ S. The orbital Schreier graph Γω has the ends of the standard
Z-tree as vertex set (which can be identified with Zω) and also has edges v → s(v) for
v ∈Zω, s ∈ S.

The reduced Schreier graph Γn and reduced orbital Schreier graph Γω are obtained
by deleting all loops of Γn respectively Γω.

Let wm ∈Zm be the reverse of the length m prefix of x1 . . . xk y1 . . . yp . In the Moore
diagram in Figure 2.2, we see that wm is the concatenation of the labels of the unique
path p of length m ending in a1. Let cm be the starting state of p (so cm = am for
m ≤ k, and cm = bm′ for appropriate m′ otherwise). Then cm |wm = a1 and s|v 6= a1 for
all other pairs of a state s and v ∈Zm . As a1 is the only state which acts non-trivially
on the first level, we have

cm |wm(i ) = i +1

s|v(i ) = i for other pairs.

Since additionally a1 only restricts to the identity state, we also have that if s(v) = w
with v 6= w ∈Zm for some state s, then s(vi ) = wi for all i ∈Z. In fact v and w must
differ in exactly one position.

This discussion can be summarized in the following lemma:

Lemma 2.5.2. The Schreier graph Γm+1 can be obtained from Γm in the following
way: take as vertex set v x where v ∈ Zm , x ∈ Z. For edges we have the following two
construction rules:

— v → v ′ edge in Γm

⇒ vi → v ′i is an edge in Γm+1 for all i ∈Z.
— wmi → wm(i +1) for all i ∈Z.
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· · · wm0 wm1 wm2 · · ·

Γm0 Γm1 Γm2

...
...

...

...
...

...

cm cm cm cm

Figure 2.3 – Inductive construction of Schreier graphs

See Figure 2.3 for a visualization of the construction rules.

Example 2.5.3. We can use this construction to produce the first few Γm for the group
K (0,1). As in Example 2.4.4, we name the generators a and b instead of a1 and b1.
Note that a acts by translation on the first level, and b acts trivially on the first level,
so Γ1 is just a bi-infinite line. To use the construction rule, we note that w1 = 0, so we
obtain Γ2 as a comb in Figure 2.4. The loops at 1,0 and 1,1 are of course not present
in the reduced Schreier graph, but we did include them here for they are the loops
which “split up” in the further generations: as b restricts to a at 1,0, we obtain Γ3 by
connecting Zmany copies of Γ2 by an bi-infinite line going through the copies of 1,0.

With this inductive description we can prove the following:

Lemma 2.5.4. For all m ∈N, the reduced Schreier graph Γm is a tree with countably (or
finitely) many ends.

Proof. We do induction over m. For m = 1, the Schreier graph Γ1 is a bi-infinite line,
so it is in particular a tree with finitely many ends. Now by Lemma 2.5.2, Γm+1 is the
union of countably many copies of Γm and a bi-infinite line intersecting each copy in
one point. So it is again a tree. We claim that have the following inductive description
of the space of ends:

∂Γm+1
∼=Z×∂Γm ∪ {−∞,+∞} (2.5.1)

Here the right hand space is a compactification ofZ×∂Γm , where−∞has the open sets
U<n := {z ∈Z : z < n}×∂Γm ∪ {−∞} as neighborhood basis, and similarly +∞ has the
open sets U>n := {z ∈Z : z > n}×∂Γm∪{+∞} as neighborhood basis. The identification
in (2.5.1) works as follows: we take wm as our root of Γm and wm0 as the root of ∂Γm+1.
Then we have the following identifications:

— We send −∞ to the end (wm(−i ))i∈N, i.e. we walk the bi-infinite line in the
negative direction.

— We send +∞ to the end (wm(+i ))i∈N, i.e. we walk the bi-infinite line in the
positive direction.
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Figure 2.4 – Second-level Schreier-Graph of K (0,1) (where 1 =−1 for notational con-
venience)

— Given a pair (z, v) ∈ Z×∂Γm , we identify it with the end which is given by the
concatenation of the path from wm0 to wm z together with the sequence vnm.
This means that first walk to the root of the copy of Γm labeled by z, and then go
the end defined by the sequence v in this copy.

Using Lemma 2.5.2, it is easy to check that this indeed defines a homeomorphism as
given in (2.5.1). Now is a Z×∂Γm ∪ {−∞,+∞} is countable union of countable set, so
∂Γm+1 is countable.

Let us fix some notation related to the orbital Schreier graph Γω. For u ∈ Zω, let
Tm(u) be the induced subgraph of Γω on the set

{
u′ ∈Zω : ui = u′

i for all i > m
}
. We

denote the union
⋃

m∈NTm(u) by T (u).

Theorem 2.C. The connected component of u in Γω is T (u). It is a tree with countably
many ends.

Proof. The projection to the prefix of length m is a bijection from the vertex set of
Tm(u) to Zm . It gives rise to graph isomorphism from Tm(u) to Γm , as the generating
set acts by changing at most one letter at once. So T (u) is an increasing union of trees,
hence it is also a tree.
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2 Iterated Monodromy Groups of Exponential Maps – 2.6 Group theoretic properties

Each end of T (u) either stays in some Tm(u) or leaves all Tm(u). The first kind is a
countable union of countable sets, hence we only need to consider ends leaving all
Tm(u). Let Em be the set of edges in T (u) leaving Tm(u). We have a map Em → Em−1

which sends an edge e leaving Tm(u) to the unique edge leaving Tm−1(u) on the
geodesic from u to e. It is possible that an edge is send to itself, if it leaves multiple
subtrees at once. Now the set of ends leaving all Tm(u) is isomorphic to lim←−−Em . Now
the sets Em have uniform bounded cardinality. This can be seen as follows: Let w
be the m-suffix of u. Then an edge in Em corresponds to a pair v ∈ Zm , q ∈ S ∪S−1

with q|v(w) 6= w , in particular the restriction q|v is not trivial. But K(x1 . . . xk , y1 . . . yp )
is a bounded activity automaton, so the number of pairs (v, q) ∈Zm × (

S ∪S−1
)

with
q|v 6= 1 is uniformly bounded, and so are the sets Em . Hence the inverse limit has
finite cardinality, so in total we have countably many ends.

2.6 Group theoretic properties
The groups K (x1 . . . xk , y1 . . . yp ) are examples of ZC-groups defined as [OS10]. In

particular, they are left-orderable residually solvable groups.
In this section, we will always work with a fixed pair of sequences x1 . . . xk , y1 . . . yp

and we will just write K instead of K (x1 . . . xk , y1 . . . yp ). We still use S := {
a1, . . . , ak ,b1, . . . ,bp

}
as our generating set.

Lemma 2.6.1. The abelianization of K (x1 . . . xk , y1 . . . yp ) is the free abelian group on
x1, . . . xk , y1 . . . yp .

Proof. We have a family of group homomorphisms

ρn : autZ(Z∗) → Z

g 7→ ∑
v∈Zn

ρ(g |v )

Note that the sum is defined as g |v is trivial for almost all v , so almost all summands
are 0. By the cocycle equations 2.3.2 we see that ρn is indeed a group homomorphism,
and for all g ∈ autZ(Z∗), we have ρn+1(g ) = ∑

v∈Zρn(g |v ). The transition functions
given in the Definition 2.4.3 translate to

ρ0(a1) = 1

ρ0(s) = 0 for all s ∈ S \ (a0)

ρn+1(ai+1) = ρn(ai )

ρn+1(b1) = ρn(ak )+ρn(bp )

ρn+1(b j+1) = ρn(a j )
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If we collect ρ0, . . .ρk+p−1 to a group homomorphism ρ : autZ(Z∗) → Zk+p , we can

show row by row that
(
ρ(a1), . . . ,ρ(ak ),ρ(b1), . . . ,ρ(bk )

) ∈ Z(k+p)×(k+p) is the identity
matrix. So ρ induces an isomorphism between the abelianization of K and Zk+p .

Lemma 2.6.2. K surjects onto the restricted wreath product Z oZ. In particular, K is
of exponential growth.

Proof. The action on Z2 gives a map to Z oZ. We see that a1 and a2 respectively b1 if
k = 1 are mapped to the standard generating set of Z oZ, so we have a surjection. As
Z oZ has exponential growth (see [Par92; BT17] for a detailed discussion), K also has
exponential growth.

Lemma 2.6.3. The group K (x1 . . . xk , y1 . . . yp ) is level-transitive and self-replicating.
For the derived subgroup K ′ ⊂ StabK we have the following: under the map StabK ,→⊕

x∈ZK induced by the wreath recursion, the image of K ′ contains
⊕

x∈ZK ′ and the
composition

K ′ ,→ StabK ,→ ⊕
x∈Z

K →K (2.6.1)

is surjective, where the last map is the projection map to any summand.

Proof. Note that a := a1 acts just by translations on the first level, and every generator
is the section of another generator. This already implies level-transitive and self-
replicating. To show that the composition (2.6.1) is surjective, it is easy to see that every
generator of K is a section of a commutator of a generator and a sufficiently large
power of a1. So it is easy to see that K ′ surjects geometrically onto K . As a1 is just
the first level shift, and K ′ is a normal subgroup of K , to show that

⊕
x∈ZK ′ ⊂K ′,

it is enough to show that K ′@0 ⊂ K ′. Since K is self-replicating, it is enough to
show that [s, t ]@0 ∈K ′ for every commutator of two generators s, t ∈ S Now if c and d
are the generators which have s and t as sections at z and w , then a straight forward
calculation shows [a−zcaz , a−w d aw ] = [s, t ]@0.

Lemma 2.6.4. The groups K (x1 . . . xk , y1 . . . yp ) are not residually finite.

Proof. By the previous lemma, StabK surjects onto K , and since K is not abelian
(it surjects onto an non-abelian group), neither is StabK . Let x, y ∈ StabK be a non-
commuting pair. Suppose K is residually finite, then there exists a group homomor-
phism φ : K → F to a finite group F such that φ([x, y]) is non-trivial. But F is finite, so
φ(a1) has finite order. So there is a n > 0 With φ(amn

1 ) = 1 for all m. Then φ([x, y]) =
φ([a−mn

1 xamn
1 , y]). Now under the wreath recursion, x and y have finite support in

the direct sum
⊕
ZautZ(Z), so for m large enough, the support of a−mn

1 xamn
1 and y

will be disjoint, hence they commute. So φ([x, y]) =φ([a−mn
1 xamn

1 , y]) is trivial, so we
arrive at an contradiction.

Theorem 2.D. The groups K (x1 . . . xk , y1 . . . yp ) are amenable but not elementary subex-
ponentially amenable.

37
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Proof. We invoke Theorem 3.B to show that the groups K (x1 . . . xk , y1 . . . yp ) are amenable.
We already observed in Remark 2.4.5 that the groups are generated by bounded ac-

tivity automata. Hence they are subgroups of Aut f .s.
B

(Z∗;Z). As the left action of Z on

itself is recurrent, by Theorem 3.B the group Aut f .s.
B

(Z∗;Z) is amenable, and so are the
subgroups K (x1 . . . xk , y1 . . . yp ).

The groups have exponential growth by Lemma 2.6.2. Lemma 2.6.3 together with
Corollary 3 of [Jus18] imply that the groups are not elementary subexponentially
amenable.

We should note that [Jus18] only deals with finite alphabets. The proof can be easily
modified to deal with subgroups of autZ(Z∗).
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2 Iterated Monodromy Groups of Exponential Maps – 2.7 Outlook

2.7 Outlook
This paper is the beginning of our study of iterated monodromy groups for entire

transcendental maps and a stepping stone towards a more general discussion. The
regularity of the monodromy of the exponential map simplifies the discussion and
has consequences that are special to the exponential case. In particular, the left-
order on the dynamical preimage tree heavily uses this regularity. For other entire
transcendental functions, we should expect torsion elements in the monodromy
group and torsion elements for some iterated monodromy groups of functions in that
parameter space.

In an upcoming paper [Reib] we discuss the general structure of iterated mon-
odromy groups of entire maps. In particular, we also apply the results of [Rei20a] to
show that the iterated monodromy groups of entire functions are amenable if and only
their monodromy group is. For polynomials and the exponential family, the condition
is trivially satisfied, as finite groups and abelian groups are amenable. However, there
are entire maps with virtually free monodromy groups, so we have to impose this
condition.

Moreover, we can also try to generalize from entire functions to meromorphic
functions. Here a good starting family would be the functions of the form M ◦exp
including tangent, where M is a Möbius transform. We should think of this as the
analogy to the family of bicritical rational maps, see also Appendix D of [Mil00]. In this
case, we can also define iterated monodromy group for post-singularly finite maps and
show that they are ZC-groups. So the class of ZC-groups, in particular subgroups of
autZ(Z∗) has many examples of self-similar groups coming from complex dynamics.
This warrants a further general investigation of ZC-groups.

Outside of this family M ◦exp, we should not expect to have the left-orderability of
all IMGs in one parameter space, as it might be a special phenomenon due to the very
rigid monodromy groups of exponential maps.
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3 Amenability of Bounded Automata
Groups on Infinite Alphabets

3.1 Introduction
Self-similar groups provide many examples of “exotic” amenable groups. The

Grigorchuk group [Gri83] was the first example of a group of intermediate growth.
Groups of intermediate growth are always amenable, but not elementary amenable
(see [Cho80]). The basilica group is amenable [BV05], but not elementary subexpo-
nentially amenable [GŻ02].

Both the Grigorchuk group and the basilica group are examples of automata groups
on a two-letter alphabet of bounded activity growth. They fit into the hierarchy
of polynomial activity growth introduced in [Sid00], where both finite and infinite
alphabets are considered. Under certain assumptions (which are always satisfied for
finite alphabets), these groups do not contain free subgroups (see [Sid04]). This raises
the question whether groups by generated by polynomial activity growth automata
are in fact amenable.

For finite alphabets, it is shown in [BKN10] that every group generated by a bounded
activity automata is amenable.

A large family of such groups are iterated monodromy groups of post-critically finite
polynomials [Nek09]. Furthermore, in [AAV13] it is shown that automata groups on
finite alphabets of linear activity growths are amenable. The techniques of [BKN10]
and [AAV13] have been conceptualized in [JNS16].

In this paper and the forthcoming paper [Reib], we study the iterated monodromy
groups of post-singularly finite entire transcendental functions. We expect many
similarities of these groups to their polynomial counterparts, so one question in
particular is amenability. We can not expect all iterated monodromy groups of post-
singularly finite entire functions to be amenable, as there are entire functions with
monodromy group given by the free product C2 ∗C2 ∗C2. Our main result is the
following theorem.

Theorem 3.A (Amenability of transcendental IMGs). Let f be a post-singularly finite
entire transcendental function. Then the iterated monodromy group of f is amenable if
and only if the monodromy group of f is amenable.

In this paper we provide the main group theoretic part of the proof of this theorem.
We show the following:
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3 Amenability of Bounded Automata Groups on Infinite Alphabets – 3.2 Regular trees

Theorem 3.B (Main theorem). Let X be a countably infinite set. Let P be an amenable

subgroup of Sym(X ). Suppose that the action of P on X is recurrent. Then Aut f .s.
B

(X ∗;P )
is amenable.

In the forthcoming paper [Reib], we show that iterated monodromy groups of
post-singularly finite entire transcendental functions are given by bounded activity
automata on countably infinite alphabets, so that we can apply Theorem 3.B to deduce
Theorem 3.A.

See Section 2 for a precise definition of Aut f .s.
B

(X ∗;P ); it is roughly the group of
bounded activity automata were every first level action is in P .

We note that Theorem 3.A is our main motivation for Theorem 3.B, but this paper
does not logically depend on [Reib].

Overview. In Section 2, we start by introducing self-similar groups on infinite alpha-
bets and related concepts, such as the space of ends. We continue in Section 3 with a
discussion of recurrent random walks and how to pass from a recurrent action on the
alphabet to a recurrent action of a bounded activity group on the space of ends. This
will be a key ingredient to invoke the amenability criterion of [JNS16] in Section 4 to
prove Theorem 3.B. In Section 5, we briefly discuss the forthcoming paper and further
related open questions.

3.2 Regular trees
In this section we introduce of self-similar groups and other relevant concepts and

fix the notation. We mostly follow the notation of [Nek05]. See also [Sid00; Sid04] for
self-similar groups on infinite alphabets.

Definition 3.2.1. Let X be a countably infinite set. The standard X -regular tree has as
vertex set X ∗, the set of finite words in X . Its root is the empty word ;. Its edges are all
pairs (v, v x) for v ∈ X ∗, x ∈ X . By abuse of notation, we denote the standard X -regular
tree also as X ∗, and we denote by Aut(X ∗) the group of rooted tree automorphisms of
X ∗. We denote the identity of Aut(X ∗) by 1.

For v ∈ X ∗, let v X ∗ be the subtree of all descendants of v . If g ∈ Aut(X ∗), v ∈ X ∗,
there is a unique g |v ∈ Aut(X ∗) given by g (v w) = g (v)g |v (w). This is called the section
of g along v .

A set S ⊂ Aut(X ∗) is called self-similar if it is closed under taking sections, i.e. g |v ∈ S
for all g ∈ S, v ∈ X ∗. We are mainly interested in self-similar groups, i.e. subgroups
G ⊂ Aut(X ∗) that are self-similar as sets.

For g ∈ Aut(X ∗), we denote by αn(g ) ∈N∪∞ the number of words v of length n for
which the section g |v is not trivial. We denote by Autfin.(X ∗) the set of automorphisms
with finitely many nontrivial sections on every level, i.e., the set of automorphisms
g ∈ Aut(X ∗) with αn(g ) ∈N for all n ∈N. If g ∈ Autfin.(X ∗) has a n so that g |v = 1 for all
v ∈ X n , we say that that g is finitary. If g ∈ Autfin.(X ∗) has a c ∈N so that αn(g ) ≤ c for
all n, we say that g has bounded activity.
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We denote by AutB(X ∗) the set of automorphisms with bounded activity, and by
AutF (X ∗) the set of finitary automorphisms.

We also have maps ρn : Aut(X ∗) → Sym(X n), which are induced by the action of
Aut(X ∗) on the n-th level of X ∗. Let P be a subgroup of Sym(X ). Let Aut(X ∗;P )
denote the set of automorphisms such that ρ1(g |v ) ∈ P for all v ∈ X ∗. We denote by
Autfin.(X ∗;P ),AutB(X ∗;P ),AutF (X ∗;P ) the intersections of Autfin.(X ∗),AutB(X ∗),AutF (X ∗)
with Aut(X ∗;P ), respectively.

Since we consider infinite alphabets, let us fix notations for the two versions of
wreath products.

Notation 3.2.2. Let A and B be groups, L be a set with an A-left action. The unrestricted
wreath product

(∏
l∈L B

)
o A is denoted by B WrL A, the restricted wreath product(⊕

l∈L B
)
o A is denoted B oL A.

We will mainly work with the restricted wreath product. We denote the right factor
embedding A → B oL A by ι, and by b@l the image of b under the embedding of B into
the component indexed by l ∈ L.

If additionally M is a set with a B-left action, we will consider the action of B WrL A
on L×M given by ((bl )l∈L , a)(l ,m) = (a(l ),bl (m)).

For a subgroup P of Sym(X ), we denote the n-th iterated restricted wreath product
(along X ) by Pn . So P1 = P and Pn+1 = Pn oX P . Note that if P is amenable, then all Pn

are amenable. With this in mind we have the following lemma.

Lemma 3.2.3.

Aut(X ∗;P ) → Aut(X ∗;P )WrX P

g 7→ (x 7→ g |x ,ρ1(g ))

is an isomorphism of groups. It restricts to isomorphisms

Autfin.(X ∗;P ) ∼= Autfin.(X ∗;P ) oX P

AutB(X ∗;P ) ∼= AutB(X ∗;P ) oX P

AutF (X ∗;P ) ∼= AutF (X ∗;P ) oX P

4
For the first line, see for example [Sid00]. By iteration, we also get isomorphisms

Autfin.(X ∗;P ) → Autfin.(X ∗;P ) oX n Pn

g 7→ (v 7→ g |v ,ρn(g ))

and Autfin.(X ∗;P ) ∼= Autfin.(X n∗;Pn).
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3.2.1 Action on the space of ends X ω

We will also use the action of Aut(X ∗) on the space of ends of X ∗. The set of ends of
X ∗ can be identified with Xω, the set of right infinite words in X . For a word v ∈ X n ,
the open cylinder set C (v) = {

v w : w ∈ Xω
}

is the set of right infinite words that have v
as a prefix. The open cylinder sets form a basis of the end topology on Xω. Since X
is countably infinite, Xω is homeomorphic to the Baire spaceNN, in particular Xω is
Hausdorff, but not locally compact. The action of Aut(X ∗) on Xω is faithful, so we can
also think of elements of Aut(X ∗) as homeomorphisms on Xω.

We will use the language of germs: these are equivalence classes of pairs (g , w) ∈
Aut(X ∗)×Xω, where (g , w) ∼ (h, w ′) if w = w ′ and g and h agree on a neighborhood
of w . Since we only consider germs of Aut(X ∗), and

{
C (v) : v is a prefix of w

}
forms a

neighborhood basis of w , (g , w) ∼ (h, w ′) if and only if w = w ′, g (w) = h(w) and g |v =
h|v for some prefix v of w . Given a subgroup of G of Aut(X ∗), its associated groupoid
of germs G has as morphisms germs represented by pairs (g , w) ∈G ×Xω, going from
w to g (w), with composition [(g , w)] ◦ [(h, w ′)] = (g h, w ′) under the condition that
h(w ′) = w . The groupoid of germs has as object set Xω. For an end w ∈ Xω, we will be
particularly interested in the isotropy group Gw , the group of germs going from w to
itself. We denote by T the groupoid of germs of tail equivalences, that is germs of the
form (g , w) with g |v trivial for some prefix v of w . Given a groupoid of germs H , we
denote by [[H ]] the set of homeomorphisms of Xω whose germs belong all to H .

If w ∈ Xω can be factored as w = vu with v ∈ X n ,u ∈ Xω, we say that u is the n-tail
of w . If w, w ′ ∈ Xω have the same n-tail, we say that w and w ′ are n-tail equivalent.
We say that w and w ′ are tail equivalent (or cofinal) if they are n-tail equivalent for
some n. The n-tail equivalence class of w is denoted by Tn(w) and T (w) =⋃

n∈NTn(w)
is the cofinality class of w .

Lemma 3.2.4. Let g ∈ AutB(X ∗). There are only finitely many w such that the germ
(g , w) is not in T . Moreover g ∈ AutF (X ∗) if and only if g ∈ [[T ]]. If (g , w) is in T ,
then w and g (w) are cofinal.

Proof. The ends where the germ of g is not in T are those where the sections along all
prefixes are nontrivial. So they can be identified with the projective limit lim←−−

{
v ∈ X n : g |v 6= 1

}
.

Since g ∈ AutB(X ∗), the sets in the limit construction have uniformly bounded cardi-
nality. Hence the projective limit is also finite. This proves the first claim.

For the second claim, we already observed that AutF (X ∗) ⊂∈ [[T ]]. In the other
direction, if g is also in [[T ]], then the projective limit must be empty. As all sets in the
limit construction are finite, by Kőnig’s lemma one of the sets in the limit construction
must be empty. So g is also in AutF (X ∗). This proves the first claim. For the last claim,
if (g , w) is in T then w factors as vu with g |v trivial, so g (w) = g (vu) = g (v)g |v (u) =
g (v)u, so w and g (w) are cofinal.

In particular, we have shown that AutB(X ∗)∩ [[T ]] = AutF (X ∗). In fact, the proof
shows Autfin.(X ∗)∩ [[T ]] = AutF (X ∗), as we only need finiteness of every set in the
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limit construction.

3.2.2 Bounded Automata
Definition 3.2.5. An automorphism g ∈ Aut(X ∗) is called a finite state automorphism
if the set of sections {g |v : v ∈ X ∗} is finite.

We denote by Aut f .s.
B

(X ∗;P ) the subgroups of finite state automorphisms in AutB(X ∗;P ).
Note that every g ∈ AutF (X ∗) is a finite state automorphism.

A nontrivial automorphism g ∈ Autfin.(X ∗) is called directed if there is a word v ∈ X n

with g |v = g and g |u ∈ AutF (X ∗) for all u ∈ X n ,u 6= v .

Remark 3.2.6. Finite state automorphisms are exactly the automorphisms that can
be defined via a finite state automaton, see the discussion in [Sid04, Section 2.2] for
infinite alphabets.

A directed automorphism has bounded activity growth. We will use the following
structural result about finite state automata of bounded activity growth, see [Sid00,
Lemma 17] or [Nek05, Proposition 3.9.11] for finite alphabets, and [Sid04, Section 2.2]
for the extension to infinite alphabets.

Lemma 3.2.7. Let g ∈ Aut f .s.
B

(X ∗) be a finite state automorphism. Then there exists a
level n such that for all v ∈ X n , g |v is either directed or finitary. 4

3.3 Random walks

3.3.1 Potential theoretic background
We will use the potential-theoretic setting as in [Woe00, Section I.2]: There are many

ways to define networks, it will be convenient for us to start from a conductance
function, as we will work mostly in that language:

Definition 3.3.1. Let X be a countably infinite set, let a : X×X → [0,∞) be a symmetric
function such that the sum m(x) := ∑

y∈X a(x, y) is positive and finite for all x ∈ X .
Let E ⊂ X × X be the support of a, i.e., (x, y) ∈ E if and only if a(x, y) > 0. We think
of (X ,E) as a simply undirected graph with possible loops. Consider the function
r : E → (0,∞) given by r (e) = 1/a(e). If the graph (X ,E) is connected, then we call the
triple N := (X ,E ,r ) the associated network to X and a. We call r (e) the resistance
of e, a(e) the conductance of e and m(x) the total conductance at x. The associated
Markov chain on X has transition probabilities p(x, y) = a(x, y)/m(x). We say that N

is recurrent if the associated Markov chain is recurrent for all starting points x ∈ X .

Notation 3.3.2. Let (X ,E ,r ) is a network and Y be a subset of X . We denote by
χY : X → {0,1} the characteristic function of Y . Moreover, the edge boundary ∂e Y is
given by set the of edges between Y and X \ Y , and the vertex boundary ∂v Y is the set
of vertices in X \ Y that share an edge with an element of Y .
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Example 3.3.3. If G is a group acting transitively on X , and λ is a finitely supported
symmetric finite measure on X , such that the support of λ generates G , then we can
define a network on X with conductances

a(x, y) = ∑
g (x)=y

λ(g ).

In this case the total conductance at every point is equal to the total mass of λ.
In particular, if S is a finite symmetric generating set of G , we can take λ to be the

counting measure on S and obtain as the network the Schreier graph Γ(G ,S, X ). In
the Schreier graph there is an edge from x to y if and only if there is an s ∈ S with
s(x) = y . Note that by following the convention of [Woe00], Γ(G ,S, X ) can have loops,
but no parallel edges, but if there are multiple generators sending x to y , then the edge
(x, y) will have the appropriate higher conductance. By the uniform random walk on
Schreier graphs we mean the random walk arising from this construction.

It will be also convenient to consider the reduced Schreier graph Γ̃(G ,S, X ) that is
obtained from Γ(G ,S, X ) by removing all loops, and assigning constant conductance
to each edge. The resulting random walk is the simple random walk on the reduced
Schreier graph. As S is finite, it follows from [Woe00, Corollary I.3.5] that the uniform
random walk is recurrent if and only if the simple random walk is. While the uniform
random walk is closer connected to random walks induced by group actions, the
simple random walk will have its use in shorting.

If the action of G on X is not transitive, for x ∈ X the orbital Schreier graph of x is
the Schreier graph on the orbit of x.

We are mostly interested in the space D(N ) of functions f : X → R with finite
Dirichlet energy D( f ) = ∑

e∈E a(e)
(

f (e+)− f (e−)
)2. For any choice of base point o,

D(N ) is a Hilbert space with norm
∥∥ f

∥∥2
D,o = D( f )+∥∥ f (o)

∥∥2. All choices of o give
equivalent norms, so there is a well-defined topology on D(N ), so that fn converges
to f if and only if limn D( fn − f ) = 0 and fn converges to f point-wise.

Let D0(N ) be the closure of functions with finite support in D(N ). By [Woe00,
Theorem I.2.12], the random walk on N is recurrent if and only if χX ∈D0(N ). We
also use D0(N ) to get the following shorting criterion.

Lemma 3.3.4 ([Woe00, Theorem I.2.19]). Let X =⋃
i∈I Xi be a partition of X such that

χXi ∈ D0(N ) for all i ∈ I . Consider the shorted network N ′ with vertex set I and
conductivity a′(i , j ) =∑

x∈Xi ,y∈X j
a(x, y) for i 6= j , a′(i , i ) = 0. If N ′ is recurrent then so

is N . 4
As a special case we want to mention the Nash-Williams criterion [Nas59]:

Lemma 3.3.5. Let Y0 ⊂ Y1 ⊂ . . . be an increasing chain of subsets of X with Yi ∈D0(N ),
such that ∂v Yi ⊂ Yi+1, and

⋃
Yi = X . Let a′

i := ∑
e∈∂e Yi

a(e). If
∑ 1

a′
i
= ∞ then N is

recurrent.
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Proof. Let X0 = Y0, Xn+1 = Yn+1 \ Yn . Then also the characteristic functions of the Xi

are in D0(N ), so we can apply the previous lemma to shorten. The resulting shorted
network is the nearest neighbor walk on N with conductances a′

i , so by [Woe00,
Paragraph I.2.16], the shorted network is recurrent, hence N is also recurrent.

We will also use the following lemma.

Lemma 3.3.6. Let N = (X ,E ,r ) be a network, Y ⊂ X with ∂e Y finite. Suppose N ′ =
(Y ,E ′,r ′) is a network on Y obtained from N by restricting to Y and adding and
removing finitely many edges and changing finitely many resistances.

Suppose N ′ is a recurrent network. Then χY is in D0(N ).

Proof. Since N ′ is recurrent, χY is in D0(N ′). So there is a sequence fn : Y →R such
that limn DN ′( fn −χY ) = 0 and fn → 1 point-wise on Y .

We extend fn to X by 0. Then DN ′( fn −χY ) and DN ( fn −χY ) differ in only finitely
many summands, and these go to 0 by point-wise convergence of the sequence fn . So
we have limn DN ( fn −χY ) = 0 and thus χY ∈D0(N ).

3.3.2 Recurrence on orbital Schreier graphs
Definition 3.3.7. Let A be a group, L a left A-set. We say that the action of A on L is
recurrent if for all finitely supported symmetric measures λ on A, the random walk on
L induced by λ is recurrent for all starting points l0 ∈ L.

Remark 3.3.8. If A is finitely generated, it is enough to show this for one finitely
supported symmetric measure whose support generates A. If S is a finite symmetric
generating set of A, it is enough to consider the uniform random walk on the Schreier
graph Γ(A,S,L) or the simple random walk on Γ̃(A,S,L). See for example [JNS16,
Lemma 6] . With this definition it is also clear that recurrent actions are closed under
taking subgroups.

Lemma 3.3.9. Let A,B are groups. Suppose that L a left A-set and M a left B-set such
that the actions are both recurrent. Then the action of B oL A on L×M is also recurrent.

Proof. Let us first reduce to the case where A and B are both finitely generated and
both actions are transitive:

Let (l ,m) ∈ L×M ,λ a symmetric finitely supported measure on B oL A. Then there
are finitely generated subgroups A′ ⊂ A,B ′ ⊂ B such that supp(λ) ⊂ B ′ oL A′. So without
loss of generality let A and B be finitely generated. Let L′ be the orbit of l under A.
Then we have a quotient map π : B oL A → B oL′ A and we can replace λ by π∗(λ) to
assume without loss of generality that the action of A on L is transitive. We can easily
replace M with the orbit of m under B .

We can now assume that S and T are finite symmetric generating sets of A and
B , respectively, and both actions are transitive. Instead of showing recurrence for
arbitrary λ, we can now fix a preferred generating set of B oL A and show recurrence of
the simple random walk on the associated reduced Schreier graph .
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Fix any base point l0 ∈ L. We take as our generating set of B oL A the union of ι(S) and
T @l0 = {t@l0 : t ∈ T }, let N be the resulting network on the reduced Schreier graph
with constant resistance. The generating set acts now as follows:

ι(s)(l ,m) = (s(l ),m)

t@l0(l0,m) = (l0, t (m))

t@l0(l ′,m) = (l ′,m) for l ′ 6= l0.

We use the shorting criterion by partitioning L × M = ⋃
m∈M L ×m. For every m,

we see that the induced subgraph on L ×m is isomorphic to the reduced Schreier
graph Γ̃(A,S,L). Since the action of A on L is recurrent, the simple random walk on
Γ̃(A,S,L) is recurrent. Moreover ∂e (L×m) is a finite collection of edges at (l0,m), so
by Lemma 3.3.6, we obtain χL×m ∈D0(N ). The shorted network with respect to the
partition is isomorphic to the reduced Schreier graph Γ̃(B ,T,L), so it is also recurrent.
By Lemma 3.3.4, the network N is then also recurrent.

Lemma 3.3.10. Let G be a finitely generated subgroup of AutB(X ∗). Assume that the
action of G on every finite level is recurrent. Then the action of G on every component of
the Schreier graph of the action of G on Xω is recurrent.

Proof. Let S be a finite symmetric generating set of G . Let K > 0 be a uniform bound
on αn(s) for all n ∈N, s ∈ S. Let Ω be a component of the Schreier graph on Xω. Let N

the network on associated with the uniform random walk on Ω.
Let E be the set of edges in N which go between different cofinality classes. By

Lemma 3.2.4, E is finite. Since Ω is connected, its vertex set must be contained in
finitely many cofinality classes C1, . . .Cn . Choose representatives wi ∈Ci ∩Ω.

We claim that the conductance of ∂e Tm(wi ) is uniformly bounded by K |S|: in fact, if
u is the m-tail of wi , then ∂e Tm(wi ) (with multiplicities) can be identified with the set{
(s, v) ∈ S ×X m : s|v (u) 6= u

}
. This set is contained in

{
(s, v) ∈ S ×X m : s|v 6= 1

}
, so the

bound is clear.
Since Ω is a connected component of the Schreier graph, the conductance of

∂(Tm(wi )∩Ω) is also uniformly bounded by K |S| and Tm(wi )∩Ω has only finitely
many components. Each such component may be viewed as a subnetwork of the
(recurrent) random walk of G on level m, so the random walk on each component is
recurrent by [Woe00, Corollary I.2.15] , and finally by Lemma 3.3.6, their characteristic
functions are in D0(N ).

Let Ym := ⋃
1≤i≤n Tm(wi ) ∩Ω . Then χYm is the finite sum of the characteristic

functions of components of Tm(wi )∩Ω, so we obtain χYm ∈ D0(N ). Also, ∂e Ym ⊂⋃
1≤i≤n ∂(Tm(wi )∩Ω), so the conductance of ∂e Ym is uniformly bounded by nK |S|.
We can now take a subsequence Ymi such that ∂Ymi is properly contained in Ymi+1 .

By applying Lemma 3.3.5 to the sequence Ymi , the random walk on N is recurrent.
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3.4 Amenability of groups generated by bounded
activity automata

In this section we will prove the Theorem 3.B. We will use the following criterion.

Theorem 3.C (Theorem 11 in [JNS16]). Let G be a finitely generated group of home-
omorphisms of a topological space Y , and G be its groupoid of germs. Let H be a
groupoid of germs of homeomorphisms of Y . Suppose that the following conditions
hold:

1. The group [[H ]]∩G is amenable.

2. For every generator g ∈G the germ of g at y belongs to H for all but finitely many
y ∈ Y . We say that y ∈ Y is singular if there exists g ∈G such that (g , y) ∉H .

3. For every singular point y ∈ Y , the action of G on the orbit of y is recurrent.

4. The groups of germs Gy are amenable for all y ∈ Y .

Then the group G is amenable. 4
Remark 3.4.1. This is almost Theorem 11 in [JNS16], but we weakened the condition
(1) from [[H ]] being amenable to [[H ]]∩G being amenable. In the last step of the
original proof, a certain subgroup K of G is expressed as an extension of a subgroup
of [[H ]] and a direct product of (finitely many) isotropy groups Gy , and it remains to
show that K is amenable. But K ⊂G is in fact an extension of a subgroup of [[H ]]∩G
and a direct product of isotropy groups Gy , so it is amenable also under the weakened
condition (1) together with condition (4). The original proof only used the weaker
condition.

Proof of Theorem 3.B. In order to show amenability of Aut f .s.
B

(X ∗;P ), it is enough to

show amenability of every finitely generated subgroup of Aut f .s.
B

(X ∗;P ). So let G = 〈S〉
be a finitely generated subgroup of Aut f .s.

B
(X ∗;P ). We will use Theorem 3.C with G

acting on Xω, and H being the groupoid of tail equivalences T . We will show that
each condition of Theorem 3.C is satisfied.

1. The group [[T ]]∩G is amenable: In fact [[T ]]∩Aut f .s.
B

(X ∗;P ) = [[T ]]∩AutB(X ∗;P ) =
AutF (X ∗;P ). This follows easily from Lemma 3.2.4. Now AutF (X ∗;P ) is the di-
rect limit of iterated wreath products of P , so it is amenable, hence [[T ]]∩G is
amenable.

2. This follows directly from Lemma 3.2.4.

3. By inductive application of Lemma 3.3.9, we see that the action of the n-th
iterated wreath product of P on X n is recurrent. The image of G under ρn lies
in Pn , hence by Remark 3.3.8, the action of G on every level is recurrent. Since

G ⊂ Aut f .s.
B

(X ∗;P ) ⊂ AutB(X ∗), we get by Lemma 3.3.10 that G acts recurrently
on all orbital Schreier graphs.

4. We encapsulate the proof in the following lemma.
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Lemma 3.4.2. Let P be an amenable subgroup of Sym(X ). Let G be a finitely generated

subgroup of Aut f .s.
B

(X ∗;P ). Then the group of germs Gw is amenable for every w ∈ Xω.

Proof. By replacing X with X N and P with PN for sufficiently large N ∈N and possibly
enlarging the group G itself, we can use Lemma 3.2.7 to assume without loss of
generality the following:

— G has a symmetric generating set S that is self-similar as a set.
— For all s ∈ S and x ∈ X , the section s|x is either finitary or directed.
— For every directed s ∈ S, there is an x ∈ X with s|x = s. For every y 6= x then s|y is

finitary. So every directed generator is directed along a constant path.
See for example [Nek05, Proposition 3.9.11] for more details.

Let Ω= {
w ∈ Xω : w is eventually constant

}
. Then Ω is invariant under the action

of every generator in S, so Xω \Ω is also invariant under the action of G . For every
generator, the germs in Xω \Ω are contained in T , so for w ∈ Xω \Ω, the group of
germs Gw is contained in Tw = 1, so it is trivial.

For an end w ∈Ω, and a group element g ∈G , let vn be the prefix of w of length n
and consider the sequence g |vn . We claim that this sequence is eventually constant,
and if w is eventually constantly equal to the letter x, then for all y ∈ X \{x}, the section
g |vn y is contained in AutF (X ∗;P ) for n large enough.

This is true for the generating set by direct inspection and the statement follows for
every group element g ∈G by induction over the word length of g .

We show this by induction for every group element g ∈G over the word length of
g . The statement is clear for the identity element. For a generator s ∈ S, either s|vn is
trivial for some n, and then the statement is clear, or w is of the form z(xω), with s|z
directed along x, and the statement also follows.

Now if g ,h ∈ G both satisfy the statement for all ends and w is a end eventually
constantly equal to some letter x, then w ′ := h(w) is inΩ, with v ′

n as the prefix of w ′ of
length n, so that it is eventually constant to some letter x ′, and

(g h)|vn = g |v ′
n

h|vn

is eventually constant, and for every y 6= x, we have that y ′ := h|vn (y) is well defined
and different from x, and so

(g h)|vn y = g |v ′
n y ′h|vn y

is a product of two element of AutF (X ∗;P ), so it is also in AutF (X ∗;P ). This finishes
the inductive step.

In particular, for w ∈ Ω eventually constantly equal to the letter x ∈ X , we get a
group homomorphism
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Gw → AutF (X ∗;P ) oX \{x} Px

g 7→ (y 7→ g |vn y ,ρ1(g |vn )) for n large enough.

Here Px is the stabilizer of x ∈ X for the action of P on X . The group homomorphism
is injective, and the codomain is amenable, so it follows that the group of germs Gw is
amenable as well.

3.5 Outlook
We apply the main result of this paper (Theorem 3.B) to give a sufficient condi-

tion for amenability of iterated monodromy groups of of post-singularly finite entire
functions (Theorem 3.A), see [Reib]. In the proof of Theorem 3.B, we use the version
of Theorem 3.C from [JNS16], which impose a recurrence condition on the random
walk on the orbital Schreier graphs. This recurrence condition was generalized to an
extensive amenability condition in [Jus+16]. It is shown in [Jus+16] that every recurrent
action is also extensive amenable. In our Theorem 3.B, it would be interesting to see
whether we could weaken the recurrence condition to a condition about extensive
amenability. Another direction to generalize is to step up in the hierarchy of automata
with polynomial activity growth. In [AAV13; JNS16], it is shown that the group of
automata of linear activity growth acting on a finite alphabet is amenable. Again, a
crucial ingredient here is the recurrence of the random walk on the orbital Schreier
graphs. It is not clear how this generalizes to infinite alphabets, as it seems that the
estimates given in [AAV13; JNS16] to show recurrence used finiteness of the alphabet
at an important point.
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4 Iterated Monodromy Groups of
Entire Maps and Dendroid
Automata

4.1 Introduction
Iterated Monodromy Groups are well-established and very useful objects in the

dynamics of (post-singularly finite) iterated rational maps, especially polynomials.
They have been successfully used in classification problems of polynomials, such as
the twisted rabbit problem [BN06]. One important tool to describe iterated mon-
odromy groups of polynomials are dendroid automata [Nek09]; in particular, they are
self-similar groups on finite alphabets that act via bounded activity automata in the
sense of [Sid00], so they are amenable by [BKN10].

The goal of this paper is to extend this theory to (post-singularly finite) transcen-
dental entire functions. Our first main result is the following.

Theorem 4.A (Structure result). Let f be a post-singularly finite entire function. Then
the iterated monodromy group of f is a self-similar group on an infinite alphabet,
generated by a dendroid automaton. In particular, it is a self-similar group of bounded
activity growth.

For a precise description of dendroid automata, see Section 5, where we develop
the theory of dendroid automata that act on infinite sets. Another key ingredient are
periodic spiders (Section 6).

Here is our second main result.

Theorem 4.B (Amenability of IMGs of entire functions). Let f be a post-singularly
finite entire transcendental function. Then the iterated monodromy group of f is
amenable if and only if the monodromy group of f is amenable.

We should note that the condition on the monodromy group is clearly necessary, as
the monodromy group is a quotient of the iterated monodromy group. There are in
fact transcendental entire functions with non-amenable monodromy group, such as
the free product C2∗C2∗C2, so the condition is necessary. We show that compositions
of structurally finite entire functions have elementary amenable monodromy groups,
so we have a large class of functions with amenable iterated monodromy groups.
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This paper is a continuation of our work in [Rei20c], where we introduce iterated
monodromy groups for transcendental entire functions in the setting of the exponen-
tial family, as well as [Rei20a], where we prove an amenability criterion for groups
generated by bounded activity automata on infinite alphabets. We use this criterion
to deduce Theorem 4.B from Theorem 4.A.

Structure of the Paper. In Section 2 we provide the necessary function theoretic
background for entire functions. In particular, we introduce Schreier graphs and
spiders and compare them to the classical notion of line complexes. In Section 3 we
extend the notion of dendroid set of permutations to infinite sets. We show that the
monodromy groups of structurally finite entire transcendental maps are elementary
amenable. In Section 4 we introduce the language of bisets for entire functions in a
non-dynamical setting. We define (non-autonomous) dendroid automata in Section 5
and show how we can pullback spiders to understand the bisets of entire functions.
We show in Section 6 how to obtain periodic spiders for entire functions, and we use
this to conclude with the proof of the two main theorems.

Convention. We denote the Riemann sphere by Ĉ. We parametrize paths by closed
intervals I ⊂ [0,∞]. We compose paths in the same fashion as functions, if p : I → Ĉ is
a path from a to b, and q : I → Ĉ is a path from b to c , then qp is the concatenation of
p and q and a path from a to c. An arc is an injective path.

For a subset B ⊂ Ĉ, a path p : I → Ĉ is proper relative to B if p−1(B) consists precisely
of the endpoints of the interval I . A proper homotopy relative to B is a homotopy
H : I × [0,1] → Ĉ such that each path Ht = H(−, t ) is a proper path and the homotopy
is constant on endpoints.

4.2 Line graphs and Schreier graphs of entire
functions in the Speiser class

We develop the function theory of entire functions with finitely many singular
values here. See [BE95] for a more general discussion of singularities of meromorphic
functions.

Definition 4.2.1. Let f : C→C be an entire transcendental function. For z0 ∈C, the
local degree of f at z0 or branch index of f at z0 is minimal positive degree m ≥ 1
appearing in the local power series expansion of f at z0, i.e., f (z) = f (z0)+α(z−z0)m+
(higher order terms). If the local degree is greater than 1, then z0 is a critical point,
and f (z0) is a critical value. Note that z0 is a critical point if and only if f ′(z0) = 0.

An asymptotic value is a limit limt→∞ f (γ(t)) where γ : [0,∞) → C is a path with
limt→∞γ(t ) =∞. The set of finite singular values is defined as

S( f ) = {
critical and asymptotic values

}
.

The value ∞ is also considered as a singular value, but it is not in the set of finite
singular values S( f ). We say that f belongs to the Speiser class S if S( f ) is finite.
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We are mostly interested in the topological behaviour of entire functions in the
Speiser class. The following lemma will be the basis of our discussion.

Lemma 4.2.2 ([Sch10, Theorem 1.13]). Let f be an entire function. Then f restricts to
an unbranched covering from C\ f −1(S( f )) to C\ S( f ).

We will mostly consider functions from the Speiser class.

Definition and Lemma 4.C. Let f be an entire function in the Speiser class. For
z ∈ S( f ), let U ⊂C be a simply connected open neighborhood of z that intersects S( f )
only in z. Let V be a connected component of f −1(U ). Then V is simply connected
and exactly one of the following holds:

— The map f restricts to a biholomorphic map V →U . The unique preimage w of
z in V is called a regular preimage of z.

— The map f has a unique preimage w of z in V and the map f restricts to an
unbranched covering map on V \{w} →U \{u} of degree m > 1 equal to the local
degree of f at w . In this case we say that w is an algebraic singularity over z.

— The map f has no preimage of z in V and restricts to an universal covering
V →U \ {z}. In this case we say that V is a logarithmic tract over z.

If U ′ ⊂U is another simply connected open neighborhood of z, then every compo-
nent of f −1(U ) contains exactly one component of f −1(V ), and the classifications of
preimage components agree. In particular, we can compare the classification for any
two simply connected open neighborhoods of z by going to a simply connected open
neighborhood contained in both of them. A class of compatible logarithmic tracts is
identified with a logarithmic singularity.

Moreover let U ′ ⊂ Ĉ be a simply connected open neighborhood of ∞. Then every
preimage component of U ′ \ {∞} is a logarithmic tract over infinity.

Proof. Note that by the previous lemma, V \ f −1(z) →U \ {z} is always an unbranched
covering. As U \{z} has fundamental groupZ, the classification in three different cases
follows easily from the classification of connected coverings of U \ {z}. If U ′ ⊂U is
another simply connected open neighborhood of z, then U ′ \ z ,→U \ z is a homotopy
equivalence, and they share the same classification.

For discussion of the preimage f −1(z), see for example [For91, Theorem 5.11] for
algebraic singularities, and [BE95] for logarithmic singularities.

A entire function in the Speiser class is called structurally finite if it only has finitely
many logarithmic singularities and finitely many algebraic singularities. See [Elf34]
for the classification of such maps via their Schwarzian derivative.

Our classification of singularities is simplified as we only consider functions in the
Speiser class. In particular, we use that S( f ) is discrete, and every point in S( f ) has a
simply connected open neighborhood away from the other points in S( f ). See [BE95]
for a more general discussion.

Example 4.2.3. We will use the function f (z) = (1− z)exp z as our running example.
As f ′(z) =−z exp z, the only critical point of f is 0 of local degree 2, so f (0) = 1 is the
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p1

p2

a1(0) a2(1)

a3(∞)

L1

L2L3

α3 α2

α1

Figure 4.1 – Spine Γ′s for f (z) = (1− z)exp(z)

only critical value. The path along the negative real axis shows that 0 is an asymptotic
value. By the Denjoy–Carleman–Ahlfors theorem (see e.g. [Sch10, Theorem 1.17]),
there is exactly one logarithmic singularity over 0 and one logarithmic singularity
over ∞. In particular, the function has as finite singular values only 0 and 1 and is
structurally finite.

We will use the notion of line complex (or Speiser graph) for entire functions. They
can more generally be used for any surface spread with finitely many singular values,
but we restrict our attention to entire functions in the Speiser class. See [GO08,
Chapter 7] for a general introduction of line complexes for meromorphic functions.

Definition 4.2.4. Let f be entire transcendental function in the Speiser class, with n
finite singular values. Let L be an oriented Jordan curve in Ĉ going through all finite
singular values and ∞. Then S( f )∪∞ separates γ into finitely many arcs L1, . . .Ln+1,
where we assume that the Li are cyclically ordered. We label the set S( f )∪∞ with
a1, . . . , an+1 with an+1 =∞ such that Li is the arc from ai to ai+1, with cyclical indices.
The line complex or Speiser graph is defined as follows: L separates the plane in two
componets H1 and H2. Choose points p1 ∈ H1 and p2 ∈ H2. We think of L as a planar
graph with n edges and n vertices and construct the dual graph Γ′s of L by connecting
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...

...

Figure 4.2 – Line complex Γs for f (z) = (1− z)exp(z)

p1 and p2 via arcs α1, . . . ,αn+1 with αi intersecting L only in one point of Li , and the
αi intersecting each other only in p1 and p2. The line complex Γs of f with respect to
L is the preimage of Γ′s under f as a planar graph in C.

Example 4.2.5. In our example f = (1−z)exp z, a possible choice for the Jordan curve
L is given by the extended real line. See Figure 4.1 for the graph Γ′s and see Figure 4.2
for the resulting line complex.

Definition 4.2.6 (Spider, Rose graph). A spider leg is an injective curve γ : [0,∞) →C

with lims→∞γ(s) =∞. It will also be convenient to think of a spider leg as a closed arc
from [0,∞] to Ĉwith γ(∞) =∞. The end point γ(0) is also called the landing point of
γ.

Let A be a finite set of points in C. A spider is a family S= (γa)a∈A such that γa is a
spider leg landing at a such that the γa are disjoint in C. We can think of S as a planar
tree in Ĉ.

Let t be a point in C that is not in the image of any spider leg of S. Taking a dual
graph of Swe obtain a rose graph Γ′. Its only vertex is t , and for every a ∈ A, we have a
loop ga that intersects S only once, namely in the interior γa . If we think of γa as an
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arc from a to ∞, we choose the orientation on ga such that the algebraic intersection
number i (ga ,γa) is positive.

Given a set A ⊂C and two spider legs γ,γ′ landing at the same point in a ∈ A, we say
that they are homotopic relative to A if there are properly homotopic relative to A∪
{∞} ⊂ Ĉ as proper paths in Ĉ. This means that there is a homotopy H : [0,∞]×[0,1] → Ĉ

from γ to γ′ such that H−1(a) = 0× [0,1], H−1(∞) = ∞× [0,1], H−1(A \ {a}) = ;. So
every Ht = H(−, t ) is a path from the common landing point of γ,γ′ to ∞ intersecting
A∪ {∞} at the appropriate endpoints. We are interested in working with spiders up to
homotopy. We will use the following lemma to safely pass from considerations up to
homotopy to considerations up to isotopy.

Lemma 4.2.7 (Epstein-Zieschang). Let B be a finite set of point in Ĉ. Consider (Ĉ,B)
as a compact marked surface. Let γ1, . . . ,γn be a collection of arcs with endpoints in B
such that the following holds:

— The arcs intersect B only at the endpoints.
— The arcs and their inverses are pairwise nonhomotopic as proper paths relative to

B.
— The arcs intersect each other at most at their endpoints.

Let γ′1, . . . ,γ′n be another collection of arcs satisfying the same conditions, such that γi is
homotopic to γ′i relative to B. Then there is a homeomorphism φ isotopic relative to B
to the identity with φ(γi ) = γ′i .

For a proof see [Bus10, Theorem A.5].

Lemma 4.2.8 (Lifting properties of entire functions). Let f be an entire function in
the Speiser class. Let A ⊂ C be a finite set that contains S( f ). We have the following
lifting properties:

— For every path p : I →C\ A, and every preimage w ∈ f −1(p(0)), there is a unique
path pw : I →C\ f −1(A), such that pw (0) = w and f ◦pw = p.

— For every spider leg γ that is completely disjoint from A , and every preimage w of
the landing point of γ, there is a unique lift γw of γ landing at w.

— For every spider leg γ that intersects A only at the landing point of γ, and every
preimage w of the landing point of γ, there as many lifts of γ landing at w as the
local degree of f at w.

— Let γ,γ′ be spider legs that land at the same point of a ∈ A and are homotopic
relative to A via a homotopic H : [0,∞]×[0,1] → Ĉ. Let w be a preimage of a, and
γ̂ a lift of γ landing at w. Then there is a homotopy Ĥ : [0,∞]× [0,1] → Ĉ relative
to f −1(A) of spider legs landing at w from γ̂ to a lift of γ′. .

Proof. The first statement is just the unique path lifting property .
For the second part, the only thing left to show is that limt→∞γw (t) = ∞. Since

limt→∞γ(t) =∞, and f is bounded on every compact subset of C, it follows that γw

has to leave every compact subset of C.
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For the last two statement, let v be the landing point of γ, U be a simply connected
open neighborhood of v that intersects S( f ) only in v . Let V be the preimage compo-
nent of U that contains w . Choose a point on v ′ ∈ γ∩U \ {v}. By Lemma 4.C v ′ has as
many preimages in V as the local degree f at w . By the unique path lifting property
for every subinterval of (0,∞), there is a unique lift on γ′ : (0,∞) →C of γ|(0,∞) passing
through v ′. As before we have limt→∞γ′(t ) =∞. From the local behaviour of f at w ,
we also get limt→0γ

′(0) = 0. So we can extend γ′ to a lift of γ. A similar proof works for
homotopies.

Definition 4.2.9 (Monodromy action). Let f be an entire function in the Speiser
class. Let A be a finite subset of C that contains the singular set of f . Let t be a point
in C \ A. The monodromy action of π1(C \ A, t) on f −1(t) is defined as follows: for
[g ] ∈π1(C\ A, t) and w ∈ f −1(t), the action of [g ] on w is the endpoint of the lift g w .
By the homotopy lifting property, this is a well defined action. The monodromy group
of f is the resulting permutation group on f −1(t ).

One should note that the action of g on f −1(t) only depends on the homotopy
class in π1(C\ S( f ), t ). So the monodromy group of f doesn’t depend on the set A. By
standard considerations, it only depends on t up inner automorphisms.

Lemma 4.2.10 (Schreier graph). Let f be an entire function in the Speiser class. Let A
be a finite set in C that contains the singular set of f . Let S= (γa)a∈A be a spider and
(ga)a∈A the dual generating set with rose graph Γ′ with base point t . Then the preimage
Γ of Γ′ under f is a locally finite planar graph with vertex set f −1(t ) and a topological
realization of the Schreier graph of the monodromy action of π1(C\ A, t ) on f −1(t ) with
generators (ga)a∈A.

Moreover, for every a ∈ A, the finite orbits of ga of the monodromy action are in
bijection to finite preimages of a under f , the infinite orbits are ga are in bijection to
logarithmic singularities over a.

In fact, we have the following classification of faces of Γ:
— Faces with finitely many edges on the boundary contain a unique point w of

f −1(A) and are bounded by a loop x1
g

x1
a−−→ x2

g
x2
a−−→ ·· · g

xk
a−−→ xk = x1 given by lifts of

ga along finite ga orbit for a = f (w).
— Faces with infinitely many edges either contain a logarithmic tract over some

a ∈ A, and are bounded by an infinite ga orbit, or they contain a logarithmic tract
over ∞.

Moreover, faces with infinitely many edges have their boundary as deformation retract.

Recall that for a group G with finite generating set S acting on a set X , the Schreier
graph Γ(G ,S, X ) has vertex set X and edges x → s(x) for every x ∈ X , s ∈ S.

Proof. The fact that the preimage Γ of Γ′ is really the topological realization of the
Schreier graph of the monodromy action of π1(C \ A, t) on f −1(t) with generators
(ga)a∈A is clear from the definition of the monodromy action.
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Every open face of Γ is a component of the preimage of C\Γ′, so it is a component
of the preimage of one of the components of C\Γ′. Now every bounded component
of C \Γ′ is a simply connected open neighborhood of a single point of A bounded
by ga , and the unique unbounded component is of the form U \ {∞} with U ′ ⊂ Ĉ a
simply connected open neighborhood of ∞. So now the classification follows from
Lemma 4.C.

What is left to show that every face with infinitely many edges has their boundary
as a deformation retract. For every a ∈ A, let Ua ⊂C be the component of C\Γ′ that
contains a. Denote by U ′∞ ⊂ Ĉ the component of Ĉ \Γ′ containing ∞. Let V be an
open face of Γ with infinitely many edges on the boundary. By the classification, we
either have f (V ) =Ua \ {a} for some a ∈ A or or f (V ) =U ′∞ \ {∞}.

As ∂V ⊂ Γ = f −1(Γ′), we have f (V ) ⊂ Ua \ {a} or f (V ) ⊂ U ′∞ \ {∞} In both cases
f (V ) ⊂C\ A ⊂C\ S( f ) and since Ua \ {a} deformation retracts onto ∂Ua and U ′∞ \ {∞}
deformation retracts on ∂U ′∞, we can use the homotopy lifting principle to obtain a
deformation retraction of V onto ∂V .

g h
0 t1

...

...

0 t1
f

γ0 γ1

Figure 4.3 – Schreier Graph for (1− z)exp(z).

Example 4.2.11. In our example f = (1− z)exp z, let us take A = S( f ) = {0,1}. As f is
monotonically decreasing on [0,1], let t be the unique fixed point of f in [0,1]. For our
spider legs γ0 and γ1 we take legs that remain in R. For the resulting rose graph and
Schreier graph see Figure 4.3. For ease of notation we called the rose graph generator
corresponding to 0 by g and corresponding to 1 by h. We also colored faces of Γ based
on their images under f .

Remark 4.2.12 (Isotopy dependence). The rose graph dual to S is only well-defined
up to isotopy relative to A∪ {t ,∞}, the classes of ga in π1(X \ A, t ) are well-defined. If
we change S via an isotopy relative to A∪ {t ,∞}, the classes of ga don’t change. If we
change S via an isotopy relative to A∪ {∞}, we get a conjugated generating set of ga .

.

We want to compare random walks on line complexes and Schreier graphs.
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Lemma 4.2.13 (Line complexes are quasi-isometric to Schreier graphs). Let f be a
function in the Speiser class. Let L be a Jordan curve through S( f )∪∞. Then there is a
spider S= (γa)a∈S such that associated line complex Γs to L and the Schreier graph Γ
are quasi-isometric in the following sense:

The vertex set of Γ is a subset of the vertex set of Γs . Every vertex of Γs is either a vertex
of Γ or connected in Γs to a vertex of Γ. For w, w ′ vertices of Γ, we have 2

n dΓ(w, w ′) ≤
dΓs (w, w ′) ≤ 2dΓ(w, w ′), where n is the cardinality of S( f ).

β3

p1

p2

β2β1

hg

a1(0) a2(1)

γ1 γ2

a3(∞)

L1

L2L3

α3 α2

α1

Figure 4.4 – Spine Γ′s and rose graph Γ′ for f (z) = (1− z)exp(z)

Proof. We illustrate the constructions used in the proof in Figure 4.4 and Figure 4.5
for our example function (1− z)exp z. We keep the notation of Definition 4.2.4.
In particular a1, . . . , an+1 are the singular values of f in cyclic order on L, including
an+1 =∞. We introduce a spider that lies completely in H2. As H2 is a Jordan domain,
there is a unique isotopy class of an arc γi for 1 ≤ i ≤ n from ai to ∞ with the interior
of γi in H2. It is possible to realize the isotopy classes via a spider S= (γi )1≤i≤n such
that the γi only meet in ∞. For example, use the hyperbolic metric on H2 and let γa

be the geodesic from ai to ∞.
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...

...

Figure 4.5 – Line complex Γs and Schreier graph Γ for f (z) = (1− z)exp(z)

Similarly, for 1 ≤ i ≤ n+1 it is possible to connect ai to p2 via an arcβi in H2 that does
intersectsΓ′s only in p2. Then the cyclic order of arcs leaving p2 isβ1,α1,β2,α2, . . . ,βn+1,αn+1.
We think of the αi as oriented paths from p1 to p2, so α−1

i is a path from p2 to p1. By
conventionα0 =αn . We recall that we concatenate paths in the same way as functions,
i.e., “from right to left”.

Let gi be the dual generating set to S. Then gi is homotopic to α−1
i−1αi : as the

γ j are homotopic to βnβ j , we see that by the cyclic ordering of the arcs at p2, the
concatenation α−1

i−1αi has a positive transversal intersection in p2 with βn+1βi , and
removable intersections in p2 with βn+1β j for j 6= i . So in fact gi and α−1

i−1αi are
homotopic.

Now let Γ be the Schreier graph with respect to the generators gi . Then Γ has as
vertex set f −1(p1), and the line complex Γs has vertex set f −1(p1)∪ f −1(p2). Every
element of f −1(p2) is connected via an edge to an element of f −1(p1), this proves the
first statement.

For the inequality dΓs (w, w ′) ≤ 2dΓ(w, w ′) for w, w ′ ∈ f −1(p1), let w, w ′ be connected
by a path q in Γ of combinatorial length m. Then q is a lift hw for some h = h1 . . .hm
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with m = dΓ(w, w ′), h j = gi j . For h j let h̃ j be the concatenation α−1
i j−1αi j . Then h̃ j is

homotopic to h j in C\ S( f ), so h̃ = h̃1 . . . h̃m is homotopic to h in C\ S( f ). So h̃w is also
a path from w to w ′. Since h̃w corresponds to a combinatorial path in Γs of length
2m, we have dΓs (w, w ′) ≤ 2m.

For the inequality 2
n dΓ(w, w ′) ≤ dΓs (w, w ′) for w, w ′ ∈ f −1(p1), let w, w ′ be con-

nected by a path q in Γsof combinatorial length m. Then q is a lift hw for some
h = h1 . . .hm with m = dΓs (w, w ′), h j = α

ε j

i j
. As Γs is bipartite, we have ε j = (−1) j

and m even. Let m = 2m′ and h = h′
1 . . .h′

m′ with h′
j = α−1

l j
αk j . By convention, we

use α−1
0 instead of α−1

n . Then h′
j is homotopic to h̃ j = gl j+1gl j+2 . . . gk j if l j yk j , and

h̃ j = (gk j+1gk j+2 . . . gl j )−1 if l j > k j . In particular, every lift of h′
j is a combinatorial path

of length ≤ n in Γ. So h̃ = h̃1 . . . h̃′
m is homotopic to h in C\ S( f ). So h̃w is also a path

from w to w ′. Since h̃w corresponds to a combinatorial path in Γs of length ≤ nm′, we
have dΓ(w, w ′) ≤ nm′. So the inequality 2

n dΓ(w, w ′) ≤ dΓs (w, w ′) follows.

Lemma 4.2.14 (Recurrence of monodromy action). Let f be a function in the Speiser
class. Then the monodromy action of f is recurrent.

Proof. In order to show that the monodromy action of f is recurrent, it is enough to
show that for one generating set of π1(X \ S( f )) the random walk on the associated
Schreier graph is recurrent. Let L be a Jordan curve as in Lemma 4.2.4. Then by the
previous lemma, the associated line complex Γs is quasi-isometric to a Schreier graph
Γ of f . Now Γs and Γ are both regular graphs, so in particular they have bounded
geometry. So we can apply [Woe00, Theorem I.3.10] to see that the simple random
walk on Γ is recurrent if and only if the simple random walk on Γs is recurrent. Now the
fact that the simple random walk on a line complex of an entire function is recurrent
is well-known, see [Doy84; Mer03]. In fact, the random walk on an extended line
complex for an entire function is recurrent, and the line complex is a subnetwork of
the extended line complex, so by [Woe00, Corollary I.2.15], the simple random walk
on Γs is also recurrent.

4.3 Dendroid permutations
We extend the notion of a family of dendroid permutations from [Nek09, Section 2]

to infinite sets.

Definition 4.3.1 (Dendroid permutation). Let X be a set, let ai ∈ Sym(X ), i ∈ I be a
family of permutations. The cycle diagram D((ai )i∈I ) is a 2-dimensional CW-complex
built as follows: The 0-skeleton is the discrete set X . For every x ∈ X , i ∈ I , we insert

a 1-cell x
ai−→ ai (x). So the 1-skeleton is the Schreier graph of (ai )i∈I on X . For every

i ∈ I and every finite orbit x1
ai−→ x2

ai−→ ·· · ai−→ xk+1 = x1 of ai , glue in a 2-cell along the

loop x1
ai−→ ·· · ai−→ x1. We say that the family (ai )i∈I is a dendroid set of permutations if

D((ai )i∈I ) is contractable.
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Lemma 4.3.2. Let X be a set, let ai ∈ Sym(X ), i ∈ I be a family of permutations. We
consider the Schreier graph of X , (ai )i∈I and do the following modification: for every
finite orbit ai , remove exactly one edge in the orbit. Call the resulting graph Γ̂. Then Γ̂
is a deformation retract of the cycle diagram D((ai )i∈I ). In particular Γ̂ is a tree if and
only if family (ai )i∈I is a dendroid set of permutations.

Proof. We can define the deformation retraction cell-wise. For every 2-cell, we nu-

merate the bounding loop x1
ai−→ x2

a1−→ ·· · ai−→ xk+1 = x1 such that we remove the last

edge xk
ai−→ x1 in our construction of Γ̂. So topologically it is equivalent to define a

deformation retraction of D onto a proper closed interval of S1 (or a point in S1 if
k = 1), it is clear that this is possible.

As a graph is a tree if and only if it is contractible, Γ̂ is a tree if and only if it is
contractible. So the statement follows via the homotopy equivalence between Γ̂ and
D((ai )i∈I ).

From the previous lemma we see that orbits in dendroid set of permutations must
either be disjoint or intersect in at most one point, as we otherwise could construct
a cycle in Γ̂. Also, if a dendroid set of permutations fixes a point x ∈ X , then it is an
isolated vertex of Γ̂, so in fact X = {x}.

Lemma 4.3.3. Let ai ∈ Sym(X ), i ∈ I be a dendroid set of permutations. Suppose that
I is finite and for every i ∈ I , ai has only finitely many orbits that are nontrivial, i.e.,
ai has only finitely many orbits that consist of more than one point. Then the group
generated by the ai is elementary amenable.

Proof. Let Xi = X \ Fix(ai ). If X consists of one point then there is nothing to show.
Otherwise we have X =⋃

i∈I Xi . Let J ⊂ I be the subset of indices j ∈ I such that a j has
an infinite orbit. As we assume that every ai has only finitely many nontrivial orbits,
j ∈ J if and only if X j is infinite. For φ : J →Z, let

Hφ :=
{

g ∈ Sym(X ) : for all j ∈ J , g (x) = aφ( j )
j (x) for all but finitely many x ∈ X j

}
.

Then we have the following:
— For φ,ψ : J →Z, we have HφHψ ⊂ Hφ+ψ and (Hφ)−1 = H−φ. This is straightfor-

ward to check.
— For φ 6=ψ : J → Z, we have Hφ∩Hψ = ;. As φ 6=ψ, there is a j ∈ J with φ( j ) 6=

ψ( j ). As a j has an infinite orbit, aφ( j )
j and aψ( j )

j differ on an infinite subset of X j .

So now element g ∈ Sym(X ) cannot cofinally agree to both aφ( j )
j and aψ( j )

j , so Hφ

and Hψ have to be disjoint.
— For i ∈ I \ J , ai ∈ H0, for j ∈ J , a j ∈ Hδ j where δ j is the Kronecker delta on I : For

i , j ∈ I , we have that the intersection of an ai orbit and an a j orbit is at most one
point. As we have only finitely many nontrivial ai orbits and nontrivial a j orbits,
ai moves only finitely many points in X j . From this the statement easily follows.
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Let G be the group generated by the ai . Then the above shows that we have a group
homomorphism Φ : G →ZJ uniquely determined by g ∈ HΦ(g ) for g ∈G . The kernel
is a subgroup of H0. Now every element of H0 has finite support: Every element of
H0 has finite support on X j for j ∈ J . As X = ⋃

i∈I Xi and Xi is finite for i ∈ I \ J , we
obtain finite support on X . In particular kerΦ⊂ H0 is locally finite. So in particular,
G is the extension of an abelian group by a locally finite group. So it is elementary
amenable.

Lemma 4.3.4. Let f be an entire function in the Speiser class. Let A be a finite set in C
that contains the singular set of f . Let S= (γa)a∈A be a spider. Let t be a point in C\S.
Let ga ∈ π1(C \ A, t) be the generating set dual to S. Let Φ : π1(C \ A, t) → Sym( f −1(t))
be the group homomorphism induced by the monodromy action. Then

(
Φ(ga)a∈A

)
is a

dendroid set of permutations.

Proof. We will show that we can obtain D(Φ(ga)a∈A) as a deformation retract of C. As
C is contractible, this will show that D(Φ(ga)a∈A is contractible. Using Lemma 4.2.10,
we see that the Schreier graph Γ together with the faces with finitely many bounding
edges is homeomorphic to D(Φ(ga)a∈A). Also by Lemma 4.2.10, the faces of Γ with
infinitely many bounding edges can be deformation retracted onto their boundary. So
we can contract C onto D(Φ(ga)a∈A).

Our running example is an example of a structurally finite maps. We obtain from
Lemma 4.3.3 and Lemma 4.3.4 the following corollary:

Corollary 4.3.5. Monodromy groups of structurally finite entire maps are elementary
amenable.

From the proof of Lemma 4.3.3 it is also easy to see that monodromy groups of
structurally finite entire maps can be realized as subgroups of Houghton’s family of
groups [Hou79].

4.4 Marked entire maps and Bisets
In this section we introduce the language of bisets used for entire maps. See [Nek05,

Section 2] for a general introduction to bisets in the context of self-similar groups
on finite alphabets, and [BD17] for an introduction for bisets to rational Thurston
theory. We follow the acting convention from [Nek05]. The proof of most statements
in this section are essentially as in the case for polynomials and finite alphabets. We
compare the formalism of bisets to the definition of iterated monodromy groups for
entire functions given in [Rei20c].

4.4.1 Bisets and non-autonomous automata
Let G and H be groups. A G-H-biset GMH is a set M together with a left G-action

and a right H-action such that the actions commute, i.e. we have g · (m ·h) = (g ·m) ·h
for all g ∈G ,m ∈M ,h ∈ H .
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If GMH and HNK are bisets, the tensor product GM ⊗NK is M ×N�∼ where ∼ is
the equivalence relation generated by (m ·h,n) ∼ (m,h ·n). We will denote the element
of M ⊗N represented by (m,n) also as m ⊗n. The tensor product GM ⊗NK is again
a G-K -bisets via g · (m ⊗n) = (g ·m)⊗n and similar for the K -right action.

For a biset GMH , we can consider the set of H-orbits M /H with the induced G-left
action on H-orbits. Given two bisets GMH and HNK , we have a natural map

M ⊗N /K → M /H

m ⊗n ·K 7→ m ·H

We say that the biset GMH is right free if the right action of H is free on M . In this

case, we call a representative system X ⊂M of M�H also a basis of M . A basis X has
then the property that every element m ∈M can be written as x ·h for a unique pair
x ∈ X ,h ∈ H . If the basis X is fixed, we will denote the unique factorization of this form
for g · x as g (x) · g |x . We note that g (x) is then the representative of the H orbit of x.

If GMH is right free with basis X and HNK is right free with basis Y , by [Nek05,
Proposition 2.3.2] we have that GM ⊗NK is again right free with basis X ×Y , in the
sense that every element of M ⊗N can be written as x ⊗ y · k for a unique triple
x ∈ X , y ∈ Y ,k ∈ K .

We will need different notions of comparing bisets. We follow the naming con-
vention of [BD17]: given a pair of group isomorphisms Φ : G → G ′, Ψ : H → H ′, a
Φ-Ψ-congruence between a GMH and G ′NH ′ is a bijection Ξ : GMH → G ′NH ′ with
Ξ(g ·m ·h) = Φ(g ) ·Ξ(m) ·Ψ(h). If G = H ,G ′ = H ′,Ψ = Φ, then we say that Ξ is a
Φ-conjugacy. If G =G ′, H = H ′ and Φ= idG ,Ψ= idH , then we say that Ξ is an isomor-
phism of G-H-bisets.

Definition 4.4.1. For a set A, let A+ be the disjoint union of A together with the
singleton {1}. An (non-autonomous) automaton is a map τ : A+× X → X ×B+ such
that τ(1, x) = (x,1) for all x ∈ X . We call A the input state set, B the output state set and
X the alphabet of A. If τ(a, x) = (y,b), we also write a|x = b, a(x) = y . We say that a
restricts to b at x. If for every a ∈ A, the map x 7→ a(x) is bijective, we call A a group
automaton.

The automata that we consider are non-autonomous in the sense that they have
in general two different state sets. They are also called “time-varying automata” or
“piecewise automata”.

Lemma 4.4.2. Let τ : A+× X → X ×B+ be a group automaton. Let FA and FB be the
free groups on A and B respectively. Then we can associate a biset FAMFB that is right
free with basis X and the action described by τ(a, x) = (y,b) if and only if a ·x = y ·b for
all a ∈ A+,b ∈ B+, x, y ∈ X .

This is standard, we give a proof for completeness.

Proof. We can take as underlying set of FAMFB the set X ×FB . The right action of FB is
given by (x, g ) ·h = (x, g h) for g ,h ∈ FB . For a ∈ A, we define a mapping a ·− : X ×FB →
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X ×FB via a · (x, g ) = (a(x), a|x g ). As x 7→ a(x) is a bijection, it is clear that that a ·− is
a bijection, with inverse given by a−1 · (x, g ) = (a−1(x), (a|a−1(x))

−1g ). By the universal
property of FA, we now have a left action of FA on X ×FB . It is straightforward to see
that the left action of FA commutes with the right action of FB , so we indeed have a
biset FAMFB .

It is clear that the right action is free with X × {1} ∼= X a basis of FAMFB . Moreover, as
a · (x,1) = (a(x), a|x) = (a(x),1) ·a|x , the biset has the described action.

4.4.2 Bisets of marked entire functions
Definition 4.4.3. A marked entire map is a map f : (C, A, s) → (C,B , t) where f is an
entire function (in the Speiser class), A,B ⊂C are finite sets, s ∈C\A, t ∈C\B , f (A) ⊂ B ,
the singular set of f is contained in B .

Definition 4.4.4. Let f : (C, A, s) → (C,B , t ) be a marked entire map. The biset M f of f
is the set of homotopy classes of paths from a to an element of f −1(b) in C \ A. The
group π1(C \ A, s) acts on M f on the right by precomposition of loops, and π1(C\ B , t )
acts on the left via postcomposition with lifts.

Lemma 4.4.5. Let f : (C, A, s) → (C,B , t) be a marked entire map. The biset M of f is
right free, and M/π1(C\ A, s) is a left-π1(C\ B , t ) set isomorphic to the set f −1(t ) with
the monodromy action.

Proof. The proof is analogous to the case for polynomials. See for example [Nek05,
Proposition 5.1.1].

Lemma 4.4.6. Let f : (C, A, s) → (C,B , t) and g : (C,B , t) → (C,C ,u) be marked entire
maps. Then the composition g ◦ f : (C, A, s) → (C,C ,u) is a marked entire map and
the biset of g ◦ f is isomorphic to Mg ⊗ M f , the tensor product of Mg and M f over
the π1(C \ B , t ) action. Moreover the mapping Mg ⊗M f /π1(C\ A, s) → Mg /π1(C\ B , t )
corresponds to the map f on f −1(g−1(u)) to g−1(u).

Proof. The isomorphism is given as follows: an element of Mg is represented by a path
p from t to an element of g−1(u). An element of M f is represented by a path q from s
to an element of f −1(t), say z. Let pz be the lift p with respect to f starting at z. We
send p ⊗q to the concatenation pz ·. It is straightforward to check that this gives an
isomorphism, compare for example [Nek09, Proposition 5.5].

From the construction the second statement also follows.

4.4.3 Self-Similar groups and Iterated Monodromy Actions
We recall definitions surrounding self-similar groups and automata groups on infi-

nite alphabets. See also [Sid00], but we use the language of bisets as our starting point
similar to [Nek09].
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Definition 4.4.7. Let X be a set. The X -regular tree has as vertex set X ∗, the set of finite
words in X . The edges are of the form v → v x, the root of the tree is the empty word.
By abuse of notation, we denote the X -regular tree by X ∗. Let Aut(X ∗) be the set of
automorphisms of X ∗ as a rooted tree. For an element g ∈ Aut(X ∗) and a word v ∈ X ∗,
there is a unique element g |v ∈ Aut(X ∗) with g (v w) = g (v)g |v (w) for all w ∈ X ∗. This is
called the section of g at v . A subgroup G ⊂ Aut(X ∗) is called self-similar if it is closed
under taking sections.

An automorphism g ∈ Aut(X ∗) is a finite state automorphism if the set of sections{
g |v : v ∈ X ∗}

is finite. An automorphism g ∈ Aut(X ∗) has bounded activity if there is a
C > 0 such that for every n ∈N, the cardinality of

{
v ∈ X n : g |v non-trivial

}
is bounded

by n.

Lemma 4.4.8. Let G be a group, and GMG a right-free biset. Let X be a basis of M .
Then X n is a basis of M⊗n and for every g ∈ G, the map v 7→ g (v) is a rooted tree
automorphism of X ∗. There is a group homomorphism Φ : G → Aut(X ∗) compatible
with taking sections in the following sense: Φ(g )|v =Φ(g |v ). In particular, the image is
self-similar.

Proof. This is standard. See for example [Nek05, Proposition 2.3.3].

Definition 4.4.9 (Iterated Monodromy Group). Let f : (C, A, s) → (C, A, s) be a marked
entire map. Choose a basis X of M f . Then X n is a basis of M⊗n

f , and we have a

bijection X n ∼=M⊗n
f /π1(C\ A, s) ∼= f −n(s). For g ∈π1(C\ A, s), the mapping v 7→ g (v)

on X n agrees with the monodromy action of g under f n on ∼= f −n(s). The iterated
monodromy group of f is the image of Φ as in Lemma 4.4.8 for the biset of f .

Lemma 4.4.10. Let f : (C, A, s) → (C, A, s) be a marked entire map. The iterated mon-
odromy group of f and f n are isomorphic for every n ≥ 1.

Proof. The monodromy action of f m determines the monodromy action of f k for
k < m. So The monodromy action of all iterates of f n determine the monodromy
actions of all iterates of f . From this the isomorphism follows.

4.5 Dendroid automata and pullbacks of spiders
In this section we define dendroid automata. This is a generalization of the notion

introduced in [Nek09] to infinite alphabets.

Definition 4.5.1. Let τ : A+×X → X ×B+ be a group automaton. We call it a dendroid
automaton if the conditions are satisfied:

— (x 7→ a(x))a∈A is a dendroid set of permutations.
— For all b ∈ B there are unique a ∈ A, x ∈ X with a|x = b.
— For all a ∈ A, all restrictions of a along a infinite orbit of a are trivial, and for

every finite orbit of a, all restrictions but at most one along the orbit are trivial.
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Example 4.5.2. Let A = {
g ,h

}
and X = Z∪ {∗}. Consider the following mapping

τ : A+×X → X × A+ given by

τ(g , z) = (z +1,1)

τ(g ,∗) = (∗,h)

τ(h,∗) = (0, g )

τ(h,0) = (∗,1)

τ(q, z) = (z,1) for all other cases.

Then τ describes a dendroid automaton. In order to see this, it will be convenient to
consider the dual Moore graph of τ: it has as vertex set X and for every x ∈ X , q ∈ A we
have an edge from x to q(x) labeled by q|x and colored according to q = g or q = h.
See Figure 4.6. In fact, we will see later that the almost the same figure also encodes
the biset of (1− z)exp z.

We can contract the cycle diagram D(g ,h) by first contracting to the infinite g orbit.
So we see that the permutations induced by g and h on X indeed form a dendroid
set of permutations. The other two criteria are also easily checked: g appears as a
restriction only for τ(b,∗) and h appreas as a restriction only for τ(a,∗). Now ∗ is on a
2-orbit for h and a 1-orbit for g , so the third criterion is also satisfied.

∗

...

−1

0

1

...

1

1

1

1

1

1

1

g

h

Figure 4.6 – Dual Moore diagram for Example 4.5.2

Lemma 4.5.3. Let A be a finite set, X be a countably infinite set. Let τA+×X → X × A+
be a dendroid automaton. Then for every a ∈ A, a acts on X ∗ by Lemma 4.4.8 as a finite
state automorphism of bounded activity.

Proof. Every section of a is given by an element of A+, so as A is finite, a is a finite
state automorphism. For every element in b ∈ A and n ∈N, there is a unique word
v ∈ X n and a ∈ A with a|v = b. So for every a ∈ A,

{
v ∈ X n : a|v non-trivial

}
is bounded

by the cardinality of A, so a also acts with bounded actifity.
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Lemma 4.5.4 (Dendroid model of bisets of entire maps). Let f : (C, A, s) → (C,B , t)
be a marked entire map. Let S = (γb)b∈B be a spider for B such that f (s) and t are
not on any spider leg of S. For every a ∈ A, choose a spider leg γ′a that is the lift of
γ f (a) landing at a. We call the resulting spider S′ = (γB )B∈B a pullback spider of S. Let
ΦA : FA →π1(C\ A, s) and ΦB : FB →π1(C\ B , t) be the isomorphisms sending a to g ′

a
and b to gb , respectively. Let X be the set f −1(b).

Then for every x ∈ X ,b ∈ B the lift of the generator gb starting in x intersects the spider
S′ in at most one leg.

Let τ : B+×X → X × A+ given as follows: b(x) is the endpoint of lift of the generator
gb starting in x, and b|x = a if the lift of the generator gb starting at x intersects the
spider leg γ′a . If lift of the generator gb starting at x does not intersect S′, we set b|x = 1.

Then the following holds:
— τ is a dendroid automaton.
— The biset associated to τ is ΦB -ΦA-congruent to the biset associated to f .

Proof. Since we assume that neither f (s) nor t lie on a spider leg of S, it follows that s
and every preimage of t do not lie on a spider leg ofS′. SinceC\S′ is simply connected,
for every x ∈ f −1(t ) there is a unique homotopy class px of a path from s to x that has
a representative that does not intersect S′. So the classes (px)x∈X form a basis of M f .

For b ∈ B , x ∈ X , let us consider gb ·px . This is the path px composed with the lift
g x

b . Now gb intersects S only in one point in the interior of γb . As all legs of S′ are
lifts of legs in S, the lift g x

b intersects the spider S′ in at most one leg. If g x
b does not

intersect a leg of S′, then gb ·px is a path in C\S′ from s to gb(x), so it is homotopic
to pgb (x). Otherwise, let γ′a be the spider leg that intersects g x

b . As the intersection of
gb and γb is positive, so is the intersection of g x

b and γ′a . It follows that gb ·px only
crosses S′ once positively in γ′a , so it is homotopic to pgb (x) · g ′

a .
From this we see that restriction behavior of M f is the same as the description

of τ, so the biset of τ is indeed ΦB -ΦA-congruent to the biset associated to f , via
x ·h 7→ px ·ΦA(h) for x ∈ X ,h ∈ FA.

As the action of π1(C\ B , t ) on M f /π1(C\ A, s) is identified with the monodromy ac-
tion of π1(C\ B , t ) on f −1(t ), we know by Lemma 4.3.4 that the family of permutations
induced by B on X is dendroid.

By Lemma 4.2.10, we have an identification of finite gb orbits with preimages of b
under f , and an identification of infinite gb orbits with logarithmic singularities over
b. We have nontrivial restrictions only along the orbits identified with some a ∈ A,
and there exactly once along the edge that intersects γ′a . This shows that τ is has the
correct restriction behaviour.

Example 4.5.5. We work through this construction for our example f (z) = (1−z)exp(z)
with A = 0,1. We already know that S( f ) = A, and as f (0) = 1, f (1) = 0, we have that A is
forward invariant, in fact A is the post-singular set of f . f is monotonically decreasing
on [0,1], let t be the unique fixed point of f in [0,1]. For our spider legs γ0 and γ1 we
take legs that remain in R. Then γ′1 is the lift of γ0 landing at 1, we see that γ′1 is the
same as γ1 up to parametrization. There are two preimages of γ1 landing at 0. Let γ′0 be
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the preimage that lies in the upper half plane. Note that γ′0 is homotopic to γ0 relative
to A. So we have a fixed generating set for both sides of the biset. Consider Figure 4.7.
We see that we indeed obtain the same dendroid automaton as in Example 4.5.2. .

0 t1

...

...

1

1

1

1

1

1

1

g
h

0 t1
g h

γ′0

γ′1

f

γ0 γ1

Figure 4.7 – Labeled Schreier Graph for (1− z)exp(z).

We can use the pullback of spiders to give a better understanding of the monodromy
group of the composition of two marked entire functions. We use the notion of product
automata:

Definition 4.5.6. Let τ1 : C+×X → X ×B+ and τ2 : B+×Y → Y × A+ be two automata.
The product automaton τ1 ⊗τ2 has input state set C , output state set A and alphabet
X ×Y and transition function

(c, x, y) 7→ (
c(x),c|x(y), (c|x)|y

)
for c ∈C+, x ∈ X , y ∈ Y .

We note that the product of two group automata is again a group automaton, and
it is straightforward to check that the associated biset of a product automaton is
isomorphic to the tensor product of the associated bisets of the two group automata.

Lemma 4.5.7. Let f : (C, A, s) → (C,B , t) and g : (C,B , t) → (C,C ,u) be marked entire
maps. Let S = (γc )c∈C a spider such that neither g ( f (s)), g (t) nor u lie on S. Let
S′ = (γ′b)b∈b be a pullback spider of S under g as in Lemma 4.5.4, with resulting
automaton τ1 : C+×X → X ×B+. Let S′′ = (γ′′a)a∈A be a pullback spider of S′ under f
as in Lemma 4.5.4. with resulting automaton τ2 : B+×Y → Y × A+. Then the biset of
g ◦ f is isomorphic to the biset of the product automaton τ1 ⊗τ2.

Moreover, if the monodromy group of g is P ⊂ Sym(g−1(u)), and the monodromy
group of f is Q ⊂ Sym( f −1(t)), then the monodromy group of g ◦ f is isomorphic to
a subgroup of the restricted wreath product Q oX P. In particular, if the monodromy
groups of f and g are (elementary) amenable, so is the monodromy group of g ◦ f .
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Proof. The first part is a direct consequence from Lemma 4.5.4 and Lemma 4.4.6. For
the second part, it is clear that the monodromy group is isomorphic to a subgroup
of the unrestricted wreath product. By construction of the automaton τ1, we see
that every state has only finitely many letters in X where it restricts nontrivially.
From this we see that we actually have to be in the restricted wreath product. As the
restricted wreath product preservers (elementary) amenability, we get the claim about
(elementary) amenability as well.

We see that together with Corollary 4.3.5, finite compositions of structurally finite
entire transcendental functions have elementary amenable monodrony groups.

Corollary 4.5.8. Let f be a map in the Speiser class. For every n ≥ 1, the monodromy
group of f is amenable if and only if the monodromy group of f n is amenable.

Proof. If the monodromy group of f is amenable, then an inductive application of the
previous lemma shows that the monodromy group of f n is amenable. In the other
direction, the monodromy group of f is a quotient of the monodromy group of f n .
As amenability is preserved by taking quotients, we obtain the result .

4.6 Periodic spiders
Now we actually do dynamics with entire functions. First recall standard definitions

from holomorphic dynamics. See [Mil06] for an introduction.

Definition 4.6.1. Let f : C→C be an entire function. The Fatou set F ( f ) is the set of
normality of f , it is the largest open subset in C such that the family of iterates f , f 2, . . .
forms a normal family. The Julia set J ( f ) is the complement of F ( f ).

A periodic point w of f of period n is called superattracting if ( f n)′(w) = 0, i.e., if
a critical point lies on the forward orbit of w . A periodic point is called repelling if
|( f n)′(w)| > 1. Superattracting periodic points are always in the Fatou set, repelling
periodic points are in the Julia set.

We will use the following dynamical facts about post-singularly finite entire func-
tions. See for example [Sch10] for a general overview of dynamics of entire functions,
and [Pfr19, Section 2] for dynamics of post-singularly finite entire functions.

Lemma 4.6.2 (Böttcher coordinates). Let f be a post-singularly finite transcendental
entire function. Then every periodic point is either superattracting or repelling. Let a
be a periodic point in F ( f )∩P( f ) of period k. Let U be the component of the Fatou set
containing a. Then there is a conformal map Φ : U → D and an n > 1 such that the

following diagram commutes.
U D

U D

Φ

f k zn

Φ

(Here zn is shorthand for the map z 7→ zn

on D).
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Proof. For the first claim see [Pfr19, Corollary 2.13]. For a general reference for
Böttcher coordinates see [Mil06, Chapter 9], in the case of post-singularly finite tran-
scendental entire functions, see for example [Pfr19, Proposition 2.34].

Definition 4.6.3 (Internal rays). In the notation of the previous lemma, for θ ∈ R/Z
the preimage of the radius Rθ := {

r e2πiθ : r ∈ [0,1)
}

under Φ is called the internal ray
rθ in U of angle θ.

Lemma 4.6.4 (Periodic internal rays land). Every periodic ray lands at a repelling
periodic point of f . For a given periodic Fatou component, different periodic rays land
at different periodic points.

Proof. See the discussion up to [Pfr19, Proposition 2.37] for the first statement, and
[Pfr19, Proposition 2.41] for the second.

Remark 4.6.5. In the course of the proof of our main theorem it will convenient to
pass to iterates of f . For a finite set of periodic points of f and periodic legs, let m be
the least common multiple of all periods. Then f m fixes all the periodic points and
periodic legs. Also, for a finite set of preperiodic points, choosing m highly divisible
enough makes sure , that point is mapped to a fixed point after one iteration. As we
have seen in Corollary 4.5.8 , the monodromy group of f is amenable if and only if
the monodromy group of f m is amenable, and by Lemma 4.4.10 that the iterated
monodromy groups of f and f m are naturally isomorphic, so there is no loss in our
theorems in doing this step.

We import [Mih10] here:

Lemma 4.6.6. Let f be a post-singularly finite entire transcendental function. Let A ⊂C
be a finite forward invariant set that properly contains P( f ). Let z0 be a fixed point in
A ∩ J( f ). Let γ be a leg, i.e., an arc from z0 to ∞ meeting A only in z0. Let L be the
leg pullback map at z0. Then there exists n < m ∈Nwith L n(γ) homotopic to L m(γ)
relative to A.

Proof. This is a special case of [Mih10, Theorem 3.3]. In fact U :=C\ A is an admissible
expansion domain in the sense of [Mih10, Definition 3.1] , so we can indeed apply the
cited result.

Lemma 4.6.7. Let f be a post-singularly finite transcendental entire function. Then
there exists a natural number n ≥ 1, a fixed point t of f n , and a spider S= (γa)a∈P( f ),
such that S is isotopic to a pullback spider of S under f n relative to P( f )∪ {t }.

Proof. We will repeatedly use Remark 4.6.5, that is, we will pass to a higher iterate of
f to repeatedly pass from periodic to fixed objects. A transcendental entire function
has infinitely many periodic points [Ber91]. By Remark 4.6.5, we can assume without
loss of generality that f has a fixed point t distinct from P( f ), every periodic point of
P( f ) is fixed by f and every preperiodic point of P( f ) is mapped to a fixed point of f .
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Let a1, . . . , ak the periodic points in P( f )∩F ( f ), let b1, . . . ,bl be the periodic points in
P( f )∩ J ( f ), and let c1, . . . ,cm be the set of strictly preperiodic points in P( f ).

For every ai , there are infinitely many repelling periodic points on the boundary of
the Fatou component with center ai that are connected to ai via a periodic internal
ray by Lemma 4.6.4. So we can choose repelling periodic points a′

i with internal rays
ri connecting ai to a′

i such that all a′
i are distinct and disjoint from P( f ). By passing to

an even higher iterate if needed, we can assume that the rays ri are in fact fixed by f .
From now on, let A := {a′

1, . . . , a′
k ,b1, . . . ,bl } and B := {a′

1, . . . , a′
k } ∪ P( f ) ∪ {t } and

Pper( f ) := {a1, . . . , ak ,b1, . . . ,bl }. Then B is forward invariant and properly contains
P( f ), and A ⊂ B consists of repelling periodic points. Since the rays r1, . . . ,rk are pair-
wise disjoint arcs, they do not separate the plane. So we can choose a collection of
disjoint spider legs (γ̂a)a∈A that meet the rays r1, . . . ,rk and the set B only possibly at
the endpoints of the spider legs.

By Lemma 4.6.6, the homotopic classes relative to B of the pullbacks L n(γ̂a) are
eventually periodic. By Lemma 4.2.7, this also means that the isotopic classes are
eventually periodic.

Since the rays r1, . . . ,rk are forward invariant under f , the pullbacks L n(γ̂a) meet
the rays also only possibly at the end points of the spider legs. Also, for fixed n, L n(γ̂a)
and L n(γ̂b) are disjoint for a 6= b. So by replacing γ̂a by L n(γ̂a) for n large enough
and again passing to a high enough iterate of f , we can assume that γ̂a is isotopic to
its pullback L (γ̂a) relative to B .

We can now define spider legs (γ̃a)a∈Pper( f ): for the repelling fixed points b1, . . .bl , we
take γ̃b j = γ̂b j , for the superattracting fixed points, we take γ̃ai as the concatenation of
the internal ray ri and γ̂a′

i
. Note that (γ̃a) are pairwise disjoint.

We finally can define our invariant spider S= (γp )p∈P( f ): for b1, . . .bt , we take γb j =
L (γ̂b j ), for the super attracting periodic points, we take γai as the concatenation of
the internal ray ri and L (γ̂a′

i
). For the preperiodic points c1, . . . ,ck , we chose for γci a

lift of γ̃ f (ci ) in the sense of Lemma 4.2.8.
Every spider leg of S is a pullback of a spider leg of (γ̃a)a∈Pper( f ) landing at different

points. So in fact the legs ofS are disjoint. Also note that for every p ∈ Pper( f ), we have
that γ̃p and γp are isotopic relative to P( f )∪ {t }. For b j this is clear as γ̃b j = γ̂b j and
γb j =L (γ̂b j ) are isotopic relative to B ⊃ P( f )∪ {t }. For ai we have that γ̃ai and γai are
the concatenation of ri and γ̂a′

i
or L (γ̂a′

i
), respectively, and we can apply Lemma 4.2.7

to promote the isotopy between γ̂a′
i

and L (γ̂a′
i
) relative to B to an isotopy between

γ̃ai and γai .
Note that by construction, every leg of S landing at a periodic point is homotopic

to a spider leg of γ̃. For q ∈ Pper( f ), let Hq be a homotopy between γ̃q and γq relative
to B . For every p ∈ P( f ), let H ′

p be the lift of H f (p) at p starting at γp in the sense
of Lemma 4.2.8. Call the spider leg at the end of the homotopy γ′p . Then γ′p is a lift
of γ f (p), so S′ = (γ′p )p∈P( f ) is a pullback spider that is homotopic to S legwise, so by
Lemma 4.2.7 it is isotopic. This proves the theorem.
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Remark 4.6.8. The construction of periodic spiders should be compared to the con-
struction of dynamical partitions in [Mih09] and [Pfr19]. For a large class of entire
functions defined in [Rot+11], which in particular contains entire functions of finite
order, it is possible to realize isotopy classes of periodic spiders via spiders that are
periodic as arcs and not just up to isotopy, using dynamic rays. For general entire
functions dynamic rays might not exists, but there is the notion of dreadlocks [BR20],
that has been used in [Pfr19] to define dynamical partitions for general entire func-
tions. We are interested in spiders for the combinatorial understanding of the biset of
entire functions, so considering them up to isotopy is good enough for us. Also, this
notion is flexible enough for generalization to topological entire maps in the sense of
[HSS09].

Proof of Theorem 4.A. By Lemma 4.4.10 and Lemma 4.6.7 and passing to an iterate if
needed, we have a fixed point t of f and a spider S for P( f ) that is isotopic to some
pullback spider S′ under f relative to P( f )∪ {t }. Note that since S and S′ are isotopic,
the associated generating sets of π1(C\ P( f ), t ) are the same. By Lemma 4.5.4, we have
that the biset of f is isomorphic to a biset of an autonomous dendroid automaton. .
So by Lemma 4.5.3, we are done.

Proof of Theorem 4.B. If the iterated monodromy group of f is amenable, then so it
is its monodromy group, as it is a quotient of the iterated monodromy group. So it
suffices to show that if the monodromy group is amenable, then so is the iterated
monodromy group.

We apply the criterion of [Rei20a]. The first level action of the self-similar group
in the previous proof is the monodromy action of some iterate f n of f . So it is the
monodromy action of an entire function (in the Speiser class), so by 4.2.14, the first
level action is recurrent. By assumption the monodromy action of f is amenable, so
by and Corollary 4.5.8, so is the monodromy action of f n . So the monodromy group
of the first level of the self-similar group in the previous proof is amenable. So by
Theorem 3.B, the iterated monodromy group is also amenable.

Via the results of Corollary 4.3.5 and Lemma 4.5.7, we see that compositions of
structurally finite entire transcendental functions have amenable monodrony groups,
so by Theorem 4.B, post-singularly finite functions in this class also have amenable
monodromy group. As our running example (1− z)exp z is structurally finite, its
iterated monodromy group is amenable.

4.7 Outlook
We describe iterated monodromy groups of post-singularly finite entire transcen-

dental functions via dendroid automata. The natural question arises when we try to
go in the other direction: which dendroid automata can appear as the combinatorial
description of entire functions. For polynomials, there is an answer given in [Nek05,
Theorem 6.10.8]. This is done in two steps: first, the class of considered functions is
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extended from complex polynomials to “topological polynomials”, and dendroid au-
tomata are also considered for topological polynomials. Then, a criterion in [BFH92]
is used to see which topological polynomials are equivalent to actual complex polyno-
mials. The classification result is based on Thurston’s classification of rational maps
[DH93]. For entire functions, an analogous classification result is so far only available
for exponential functions [HSS09].

The definition of bisets of post-singularly finite entire functions can be also extended
to topological models of post-singularly finite entire functions. While topological
models do not need to have periodic spiders, the methods of Section 5 still apply. We
use this in [Reia] to define a combinatorial topology of bisets of topological models
of entire functions, and approximate post-singularly finite entire functions via post-
singularly polynomials with the same dynamics on the post-singular set. From this
construction we show that in the space of marked groups in the sense of [Gri84],
iterated monodromy groups of post-singularly finite structurally finite entire functions
are in the closure of iterated monodromy groups of post-singularly finite polynomials.
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5 Outlook
In the thesis, we constructed iterated monodromy groups for entire functions and

gave a model via dendroid automata. The methods we used in particular in Chapter 4
are mostly topological in nature. We hope to extend this results to larger classes of
maps.

5.1 Transcendental Thurston Theory
Classical Thurston theory of rational maps studies topological models of post-

singularly finite rational maps. A Thurston map is a continuous map f : (Ĉ, A) → (Ĉ, A)
such that A is a finite set with f (A) ⊂ A, the map f restricts to a covering Ĉ\ f −1(A) →
Ĉ\ A and f can be written as a composition h1 ◦ g ◦h2, where the hi are orientation
preserving homeomorphisms of Ĉ and g is an rational map. While this is not the
standard definition of a Thurston map, it is useful as it can be easily generalized to
transcendental Thurston maps.

Two Thurston maps f : (Ĉ, A) → (Ĉ, A) and g : (Ĉ,B) → (Ĉ,B) are called Thurston
equivalent if there are (orientation preserving) homeomorphisms h1,h2 : (Ĉ, A) →
(Ĉ,B) such that h1 is isotopic to h2 relative A, hi (A) = B and the following diagram
commutes:

(Ĉ, A) (Ĉ,B)

(Ĉ, A) (Ĉ,B)

f

h1

g

h2

A Thurston map is called realizable if it is Thurston equivalent to a rational map.
Thurston’s characterization [DH93] shows that a Thurston map is realizable if and
only it does not have a so-called Thurston multi-curve obstruction. For polynomials,
the situation simplifies. For polynomials, a polynomial Thurston map is realized if
and only if it doesn’t have a Levy obstruction, see [BFH92]. This is used in [Nek09] to
give a realization criterion in terms of the biset.

The proof of the classification is based on the action on the Teichmüller space
TA =T (Ĉ, A). A Thurston map f : (Ĉ, A) → (Ĉ, A) induces the Thurston pullback map
σ f : TA → TA, and a Thurston map is realized if and only if its pullback map has a
fixed point.

A transcendental Thurston map is a map f : (C, A) → (C, A) such that A ⊂C is finite
with f (A) ⊂ A, the map f restricts to a coveringC\ f −1(A) →C\ A and f can be written
as a composition h1◦g ◦h2, where the hi are orientation preserving homeomorphisms
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5 Outlook – 5.2 Polynomial approximation of Thurston maps

of C and g is an entire transcendental map. A transcendental Thurston map is a
topological model of a post-singularly finite entire function, and we have similar
notions of Thurston equivalence and realizability. It it also possible to define bisets
and iterated monodromy groups for them.

For classical Thurston maps, the isotopy class of f is encoded in the biset of f , see
[Kam01]. If we look at Thurston maps with a fixed marked set A ⊂C, we can consider
the set of Thurston maps with marked set A up to isotopy relative to A to obtain the
mapping class biset. The mapping class group of homeomorphisms of (C, A) acts on
the mapping class biset via pre- and postcomposition. Two Thurston maps (with the
same marked set) are Thurston equivalent if they are conjugated in the mapping class
biset. This allows us to answer questions about Thurston equivalence via algebraic
computations in biset. A celebrated result in this direction is the solution of the twisted
rabbit problem [BN06]. More generally, [BD17] shows that the questions whether two
Thurston maps are equivalent is algorithmically decidable.

There is also the positive Thurston criterion [Thu20]. One should note that hyper-
bolic polynomials cannot have Thurston obstructions, and are always realized.

In the setting of transcendental dynamics, so far the only analog of the Thurston
theorem has been shown in the case of the exponential family [HSS09], and a full com-
binatorial classification of post-singularly finite exponential maps has been achieved
in [LSV08].

So while there isn’t yet a full analog of Thurston theorem for transcendental maps,
the approach of Thurston theory for entire functions via biset might be interesting.
Similar to the twisted rabbit problem, it should be possible to solve the classification
problem for a very concrete class of hyperbolic entire functions: maps in the cosine
family z 7→ a cos z +b sin z with a super-attracting fixed point and an attracting two-
cycle. By analogy with hyperbolic polynomials, one should expect that all Thurston
maps in this class are realized, and a possible line of attack is an explicit computation
in the associated mapping class biset.

5.2 Polynomial approximation of Thurston maps
An approach to understand the dynamics of entire transcendental functions is to

approximate them via polynomials and investigate how the dynamics transfer from
polynomials to entire functions. See for example [Bod+00] for the exponential family,
and [KK99] for a general statement on the Hausdorff convergence of Julia sets.

On the level of transcendental Thurston maps, the formalism of bisets allows for
a new kind of combinatorial convergence: using the description of bisets in terms
of labeled Schreier graphs, we can consider combinatorial convergences on pointed
labeled Schreier graphs. In the forthcoming [Reia] we show that this is combinatorial
convergence implies locally uniform convergence of the associated Thurston pullback
maps in Teichmüller space. This in particular implies that the property of being real-
ized is open in the combinatorial topology, and we can approximate post-singularly
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finite entire functions via post-singularly finite polynomials preserving the dynamics
on the post-singular set.

t

...

...

a
b t

a
b

Figure 5.1 – Combinatorial approximation of (1− z)exp z by a polynomial

On the level of (compositions of) structurally finite maps, we can use this to show
that in the space of marked groups (in the sense of [Gri84]), iterated monodromy
groups of structurally finite entire functions are in the closure of iterated monodromy
groups of polynomials. As polynomials are residually finite, IMGs of structurally finite
entire functions are locally embeddable in the class of finite groups.

5.3 Landing properties of dreadlocks / rays
For post-singularly finite rational functions, the Schreier graphs of higher and higher

iterates look closer and closer to the Julia sets. A way to make this precise is to use the
notion of contracting self-similar groups as developed in [Nek05]. In this setting it is
possible to construct a symbolic Julia set out of the iterated monodromy action, and
show that the dynamics on the symbolic Julia set and the actual Julia set are conjugate.
The comparison of the symbolical Julia set and the actual Julia set shows in particular
that the Julia set of post-singularly finite rational functions are connected and locally
connected (a well known result that is usually proved using contracting properties of
the hyperbolic metric).

For polynomials, a classical way to describe the Julia set is by using laminations.
We discuss for simplicity only post-singularly finite polynomials. In this case, there
are Böttcher coordinates Φ : I ( f ) → C \D conjugating f to zd , and the inverse map
extends on the boundary to a quotient S1 → J( f ). We compare the Julia set of f to
the Julia set of zd and see what additional identifications we have to carry out. Using
an appropriate basis for the biset (see for example [BD18, Section 5]), it is possible to
compute this quotient map in terms of the biset of f .

For post-singularly entire transcendental functions, the Julia set is much bigger than
the Julia set for polynomials. In particular, the escaping set I ( f ) is now a subset of the
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Julia set. Points in the interior the same dynamic ray (or the same dreadlock) share
the same combinatorics; we cannot expect to distinguish them just by using symbolic
dynamics.

However, for certain entire functions, called docile in [ARS21], it is possible to do
a similar comparison for the Julia set of f to the Julia set of a dynamically simpler
function in the same parameter space. One such class of functions are strongly sub-
hyperbolic entire maps, as shown in [Mih09]. A post-singularly finite entire function
is strongly subhyperbolic if no asymptotic values are in the Julia set of f and the
local degree of points in the Julia set is uniformly bounded. Strongly subhyperbolic
maps have an expanding orbifold metric near the Julia set. A natural question is if the
landing relations for docile entire can be also understood by the biset. The class of
strongly subhyperbolic maps seems suitable to ensure that the involved self-similar
group is contracting in the right sense.

5.4 Geometric group theory of self-similar groups on
infinite alphabets

The main focus of this thesis are iterated monodromy groups of entire functions,
realized as self-similar groups of bounded activity growth on infinite alphabets. In
particular, we showed an amenability criterion for groups generated by automata of
bounded activity growth. It is clear that the condition of amenability of the mon-
odromy group arising from the first level action is necessary. For our proof we also
needed the recurrence of the first level action in order to deduce that action on every
orbital Schreier graph of the ends Xω is recurrent, and thus extensively amenable. It
would be interesting to see if it is possible to show extensively amenability directly.

For finite alphabets, it is shown in [AAV13] that the action on the end of the trees is
recurrent for groups generated by automata of linear activity growth. It is not clear if
one can similarly deduce the recurrence for infinite alphabets.

We studied in particular amenability of iterated monodromy groups of entire func-
tions. A group theoretical property of particular interest for iterated monodromy
groups of rational maps is word growth. They are examples of iterated monodromy
groups of polynomials with intermediate growth, such as z2+i [BP06] and the Fabrykowski–
Gupta [FG91] group.

For entire transcendental functions, the word growth of the monodromy group of
every iterate forms a lower bound for the word growth of the iterated monodromy
group. In contrast to rational maps, where the monodromy group of every iterate is
finite, these bounds are often non-trivial. For example, we have shown that the second
iterate of a function in the exponential family has as monodromy group Z oZ, and
in particular exponential word growth, so every function in the exponential family
has exponential word growth for the iterated monodromy group as well. Apart from
the exponential family, most structurally finite entire transcendental functions have
a monodromy group of exponential growth, so their iterated monodromy group has
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exponential growth as well.
For general entire functions, the growth of the monodromy group might be a more

interesting object to study than the growth of the iterated monodromy group. As the
iterated monodromy group of a post-critically finite rational map can be realized as
the monodromy group of an meromorphic function (compare [LM97]), we expect the
existence of entire transcendental functions with monodromy groups of intermediate
growth. However, it is less clear if it is possible to have an entire transcendental
function such that the monodromy group of the second iterate has subexponential
growth.

An other topic are algorithmic properties of iterated monodromy groups of entire
functions. For example, we expect that the word problem for IMGs can be solved by
working with automata representatives, provided one has a sensible representation of
the monodromy action. In particular, compositions of structurally finite entire maps
might be an approachable class to consider.
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group defined by a three state automaton”. In: vol. 12. 1-2. International
Conference on Geometric and Combinatorial Methods in Group The-
ory and Semigroup Theory (Lincoln, NE, 2000). 2002, pp. 223–246. DOI:
10 . 1142 / S0218196702001000. URL: https : / / doi . org / 10 . 1142 /
S0218196702001000 (cit. on pp. 15, 19, 20, 23, 40).

[Gri84] Rostislav. I. Grigorchuk. “Degrees of growth of finitely generated groups
and the theory of invariant means”. In: Izv. Akad. Nauk SSSR Ser. Mat. 48.5
(1984), pp. 939–985. ISSN: 0373-2436 (cit. on pp. 74, 77).

[Hou79] C. H. Houghton. “The first cohomology of a group with permutation mod-
ule coefficients”. In: Arch. Math. (Basel) 31.3 (1978/79), pp. 254–258. ISSN:
0003-889X. DOI: 10.1007/BF01226445. URL: https://doi.org/10.
1007/BF01226445 (cit. on p. 63).

[HSS09] John Hubbard, Dierk Schleicher, and Mitsuhiro Shishikura. “Exponential
Thurston maps and limits of quadratic differentials”. In: J. Amer. Math. Soc.
22.1 (2009), pp. 77–117. ISSN: 0894-0347. DOI: 10.1090/S0894-0347-08-
00609-7. URL: https://doi.org/10.1090/S0894-0347-08-00609-7
(cit. on pp. 23, 73, 74, 76).

[HSS01] John Hubbard, Dierk Schleicher, and Scott Sutherland. “How to find all
roots of complex polynomials by Newton’s method”. In: Invent. Math.
146.1 (2001), pp. 1–33. ISSN: 0020-9910. DOI: 10.1007/s002220100149.
URL: https://doi.org/10.1007/s002220100149 (cit. on p. 14).

[HS94] John H. Hubbard and Dierk Schleicher. “The spider algorithm”. In: Com-
plex dynamical systems (Cincinnati, OH, 1994). Vol. 49. Proc. Sympos.
Appl. Math. Amer. Math. Soc., Providence, RI, 1994, pp. 155–180. DOI:
10.1090/psapm/049/1315537. URL: http://dx.doi.org/10.1090/
psapm/049/1315537 (cit. on p. 13).

[Jus18] Kate Juschenko. “Non-elementary amenable subgroups of automata groups”.
In: J. Topol. Anal. 10.1 (2018), pp. 35–45. ISSN: 1793-5253. DOI: 10.1142/
S179352531850005X. URL: https://doi.org/10.1142/S179352531850005X
(cit. on pp. 21, 38).

[Jus+16] Kate Juschenko, Nicolás Matte Bon, Nicolas Monod, et al. “Extensive
amenability and an application to interval exchanges”. In: Ergodic Theory
and Dynamical Systems (2016), pp. 1–25 (cit. on pp. 20, 21, 50).

[JNS16] Kate Juschenko, Volodymyr Nekrashevych, and Mikael de la Salle. “Exten-
sions of amenable groups by recurrent groupoids”. In: Invent. Math. 206.3
(2016), pp. 837–867. ISSN: 0020-9910. DOI: 10.1007/s00222-016-0664-6.
URL: http://dx.doi.org/10.1007/s00222-016-0664-6 (cit. on pp. 6,
20, 21, 40, 41, 46, 48, 50).

83

https://doi.org/10.1142/S0218196702001000
https://doi.org/10.1142/S0218196702001000
https://doi.org/10.1142/S0218196702001000
https://doi.org/10.1007/BF01226445
https://doi.org/10.1007/BF01226445
https://doi.org/10.1007/BF01226445
https://doi.org/10.1090/S0894-0347-08-00609-7
https://doi.org/10.1090/S0894-0347-08-00609-7
https://doi.org/10.1090/S0894-0347-08-00609-7
https://doi.org/10.1007/s002220100149
https://doi.org/10.1007/s002220100149
https://doi.org/10.1090/psapm/049/1315537
http://dx.doi.org/10.1090/psapm/049/1315537
http://dx.doi.org/10.1090/psapm/049/1315537
https://doi.org/10.1142/S179352531850005X
https://doi.org/10.1142/S179352531850005X
https://doi.org/10.1142/S179352531850005X
https://doi.org/10.1007/s00222-016-0664-6
http://dx.doi.org/10.1007/s00222-016-0664-6


Bibliography –

[Kam01] Atsushi Kameyama. “The Thurston equivalence for postcritically finite
branched coverings”. In: Osaka J. Math. 38.3 (2001), pp. 565–610. ISSN:
0030-6126. URL: http://projecteuclid.org/euclid.ojm/1153492513
(cit. on p. 76).

[KK99] Bernd Krauskopf and Hartje Kriete. “Hausdorff convergence of Julia sets”.
In: Bull. Belg. Math. Soc. Simon Stevin 6.1 (1999), pp. 69–76. ISSN: 1370-
1444. URL: http://projecteuclid.org/euclid.bbms/1103149968
(cit. on p. 76).

[LSV08] Bastian Laubner, Dierk Schleicher, and Vlad Vicol. “A combinatorial clas-
sification of postsingularly finite complex exponential maps”. In: Dis-
crete Contin. Dyn. Syst. 22.3 (2008), pp. 663–682. ISSN: 1078-0947. DOI:
10.3934/dcds.2008.22.663. URL: https://doi.org/10.3934/dcds.
2008.22.663 (cit. on pp. 23–26, 76).

[LM97] Mikhail Lyubich and Yair Minsky. “Laminations in holomorphic dynam-
ics”. In: J. Differential Geom. 47.1 (1997), pp. 17–94. ISSN: 0022-040X. URL:
http://projecteuclid.org/euclid.jdg/1214460037 (cit. on p. 79).

[Mer03] Sergiy A. Merenkov. “Determining biholomorphic type of a manifold using
combinatorial and algebraic structures”. PhD thesis. Purdue University,
Indiana, United States, 2003 (cit. on p. 61).
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